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Abstract: Model averaging has become a crucial statistical methodology, especially in situations
where numerous models vie to elucidate a phenomenon. Over the past two decades, there has
been substantial advancement in the theory of model averaging. However, a gap remains in the
field regarding model averaging in the presence of missing censoring indicators. Therefore, in
this paper, we present a new model-averaging method for accelerated failure time models with
right censored data when censoring indicators are missing. The model-averaging weights are
determined by minimizing the Mallows criterion. Under mild conditions, the calculated weights
exhibit asymptotic optimality, leading to the model-averaging estimator achieving the lowest squared
error asymptotically. Monte Carlo simulations demonstrate that the method proposed in this paper
has lower mean squared errors compared to other model-selection and model-averaging methods.
Finally, we conducted an empirical analysis using the real-world Acute Myeloid Leukemia (AML)
dataset. The results of the empirical analysis demonstrate that the method proposed in this paper
outperforms existing approaches in terms of predictive performance.

Keywords: model averaging; accelerated failure time model; censoring indicator
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1. Introduction

In some practical scenarios, we often need to select useful models from a candidate
model set. A popular approach to address this issue is model selection. Methods such
as the Akaike Information Criterion (AIC) [1], Mallows’ Cp [2] and Bayesian Information
Criterion (BIC) [3] are designed to identify the best model. However, in cases where a
single model does not receive strong support from the data, these model-selection methods
may overlook valuable information from other candidate models, leading to issues of
model-selection uncertainty and bias [4].

To tackle these challenges and enhance prediction accuracy, several model-averaging
techniques have been developed to leverage all information from the candidate models.
Taking inspiration from AIC and BIC, Buckland et al. [5] proposed smoothed AIC (SAIC)
and smoothed BIC (SBIC) methods based on AIC and BIC, respectively. Hansen [6] in-
troduced the Mallows model-averaging (MMA) estimator, obtaining weights through the
minimization of Mallow’s Cp criterion. The MMA estimator asymptotically attains the min-
imum squared error among the model-averaging estimators in its class. Subsequently, Wan
et al. [7] relaxed the constraints of Hansen [6], allowing for non-nested candidate models
and continuous weights. In practical applications, many datasets exhibit heteroscedasticity.
Therefore, it is essential to explore model-averaging methods tailored for heteroscedastic
settings. Firstly, Hensen and Racine [8] proposed Jackknife model averaging (JMA), which
determines weights by minimizing a cross-validation criterion. JMA significantly reduces
Mean Squared Error (MSE) compared to MMA when errors are heteroscedastic. Secondly,
Liu and Okui [9] modified the MMA method proposed by Hensen [6] to make it suitable for
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heteroscedastic scenarios. Furthermore, Zhao et al. [10] extended [6]’s work by estimating
the covariance matrix based on the weighted average of squared residuals corresponding
to all candidate models. This approach improves the model average estimator under
heteroskedasticity settings.

In survival analysis, the accelerated failure time (AFT) model provides a straightfor-
ward description of how covariates directly impact survival time and has consequently
garnered widespread attention. There are several parameter-estimation methods for the
Accelerated Failure Time (AFT) model, including Miller’s estimator [11], Buckley–James
estimator [12], Koul–Susarla–Van Ryzin (KSV) estimator [13] and WLS estimator [14]. How-
ever, all these methods assume that the censoring indicator is observable. Therefore, Wang
and Dinse [15] improved the KSV estimator to make it adaptable to situations where the
censoring indicator is missing.

Under practical conditions, it is common to encounter situations where only the ob-
served time is available and it is uncertain whether the event of interest has occurred. In
such cases, data suffer from missingness in the censoring indicator. For example, in a
clinical trial for lung cancer, a patient may die for unknown reasons and while the sur-
vival time is observed, it is uncertain whether the patient died specifically due to lung
cancer. This situation leads to missingness in the censoring indicator. Previous studies
have mainly addressed the issue of missingness in the censoring indicator under a specific
model. Research on model averaging for right-censored data typically assumes that the
censoring indicator is observable. Therefore, this paper adopts the inverse probability
weighting method proposed by [15] to construct the response variable. Through appropri-
ate weight-selection criteria, weights are chosen to build the model-averaged estimator for
the accelerated failure time model. It significantly enhances the predictive performance
of the model and mitigates the bias introduced by the selection of a single model. Com-
pared to previous research, this paper makes two main contributions: First, it introduces
a novel model-averaging method for the case of missingness in the censoring indicator.
Second, the paper allows for heteroscedasticity and employs model-averaging techniques
to estimate variance.

The remaining sections of this paper are organized as follows. In Section 2, we com-
mence by introducing the notation and progressively delineate the methodology and
associated theoretical properties of the proposed model-averaging approach. In Section 3,
we report the Monte Carlo simulation results. In Section 4, we assess the predictive per-
formance of the proposed model-averaging method against other approaches using the
real-world Acute Myeloid Leukemia (AML) dataset. In Section 5, we provide a comprehen-
sive summary of the entire paper and suggest future research directions in this area. All
theorem proofs will be presented in Appendix A.

2. Methodology and Theoretical Property

We denote Y = log(T) = (Y1, · · · , Yn)′, C = log(V) = (C1, · · · , Cn)′, where T repre-
sents the survival time and V denotes the censored time. X = (X′

1, X′
2, . . . , X′

n)
′ denotes

the covariate matrix for n independent observations, where Xi = (xi1, xi2, . . . , xip) . The
accelerated failure time model can be expressed as follows:

Yi = µi + ei =
p

∑
j=1

β jxij + ei, (i = 1, . . . , n), (1)

where ei is the random error with E(ei|Xi) = 0 and E(e2
i |Xi) = σ2

i .
We assume that there are M candidate models in the candidate model set. Where the

mth candidate model contains pm covariates. Following [7], these candidate model forms
are non-nested. The mth candidate model is

Ymi =
pm

∑
j=1

β jxij + emi, (i = 1, . . . , n), (2)
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for m = 1, · · · , M. The matrix form of (2) is

Ym = Xmβm + em, (3)

where Xm is an n × pm dimensional full column-rank matrix, Ym = (Ym1, · · · , Ymn)′ ,
βm = (β1, · · · , βpm)

′, em = (em1, . . . , emn)
′.

In the case of right censored data, the response variable Yi might be censored, making
it unobservable. We only observe (Zi, Xi, δi), where Zi = min(Yi, Ci) and the censoring
indicator δi = I(Yi ≤ Ci). Define a missingness indicator ξi which is 1 if δi is observed
and is 0 otherwise. When the censoring indicators are missing, the observed data are
{Zi, Xi, ξi, ξiδi} . For simplicity, we set Ui = (Zi, Xi)

′. In this paper, similar to [15], we
assume the missing mechanism for δ to be:

P(ξ = 1|Z, X, δ) = P(ξ = 1|Z).

This assumption is more stringent than the missing at random (MAR) condition yet less
restrictive than the assumption of missing completely at random (MCAR).

Koul et al. [13] introduced a method that involves synthetic data for constructing linear
regression models. Wang and Dinse [15] extended [13]’s method to address the situation where
censoring indicators are missing. In our work, we follow the approach proposed by [15] to
construct a response in the form of inverse probability weighting, specifically:

YWi =

ξiδi
π(Zi)

+ (1 − ξi
π(Zi)

)m(Ui)

1 − Gn(Zi)
Zi, (4)

where π(z) = E(ξ|Z = z), m(u) = E(δ|U = u). Gn(·) represents the cumulative distribu-
tion function of C . It is easy to observe that under the missing data mechanism in this
paper:

E(YWi|Xi) = µi = Xiβ.

Similar to Equation (2), we have:

YWi =
pm

∑
j=1

β jxij + eWi, (i = 1, . . . , n), (5)

where E(eWi|Xi) = 0 , σ2
Wi = var(eWi|Xi). This is expressed in matrix form as:

YW = Xmβm + eW , (6)

where YW = (YW1, · · · , YWn)
′ , eW = (eW1, · · · , eWn)

′. And then the weighted least squares
estimator of βm:

β̂m = (X′
mDXm)

−1X′
mDYW , (7)

where D = diag{ 1
σ2

W1
, · · · , 1

σ2
Wn

}.

Let µmi = E(YWi|Xi); subsequently, the estimation for the mth candidate model
µm = (µm1, · · · , µmn)′ is given by:

µ̂m = Xm β̂m = Xm(X′
mDXm)

−1X′
mDYW = PmYW , (8)

where Pm = Xm(X′
mDXm)−1X′

mD. Denote weight vector w = (w1, · · · , wM)T , belonging
to the set HM = {w ∈ [0, 1]M : ∑M

m=1 wm = 1}. The model-averaging estimator of µ is
defined as follows:

µ̂Gn
(w) =

M

∑
m=1

wmXm β̂m =
M

∑
m=1

wmXm(X′
mDXm)

−1X′
mDYW = P(w)YW , (9)
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for any w ∈ HM , where P(w) = ∑M
m=1 wmXm(X′

mDXm)−1X′
mD.

Define the square loss function LGn(w) = ∥µ − µ̂(w)∥2, where ∥ · ∥ denotes the
Euclidean norm. Then the risk function is defined as:

RGn(w) = E(LGn(w)) = ∥P(w)µ − µ∥2 + tr{P(w)ΩP′(w)}, (10)

where Ω = diag{σ2
W1, · · · , σ2

Wn}. The derivation of (10) is as follows:

RGn(w) = E[LGn(w)]

= E[(µ − µ̂(w))′(µ − µ̂(w))]

= E[u′µ − 2u′P(w)YW + Y′
W P′(w)P(w)YW ]

= u′µ − 2u′P(w)µ + u′P′(w)P(w)µ + tr(P′(w)ΩP(w))

= (P(w)µ − µ)′(P(w)µ − µ) + tr(P(w)ΩP′(w)). (11)

Regarding the choice of weights, a natural approach is to minimize the risk function
to obtain the optimal weights. However, as shown in Equation (11), we recognize that the
risk function includes the unknowns µ, which makes it infeasible to directly minimize the
risk function to obtain the optimal weights. Therefore, we replace µ with YW and seek an
unbiased estimator of the risk function as the criterion for weight selection.

Define the criterion for weight selection as

CGn(w) = ∥YW − µ̂(w)∥2 + 2tr{P(w)Ω}. (12)

It is not difficult to observe that E(CGn(w)) = RGn(w) + ∑n
i=1 σ2

Wi . By disregarding a term
that is independent of w, CGn(w) serves as an unbiased estimator of the risk function .

In practice, m(·) , π(·) and Gn(·) are usually unknown; therefore, we need to estimate
them. Firstly regarding the estimation of m(u), it is usually estimated by the Logit model.
Suppose m(u) is estimated by the parametric model m0(u; θ), where m0(u; θ) = eUθ

1+eUθ . By

the maximum likelihood estimation method, we can obtain the parameter estimate θ̂n for
the parameter θ. π(z) usually can be estimated nonparametrically by

π̂n(z) =
n

∑
i=1

ξiW
(

z − Zi
bn

)
/

n

∑
i=1

W
(

z − Zi
bn

)
,

where W(·) is a kernel function and bn is a bandwidth sequence. Next, we define u(z) =
E(δ|Z = z), u(z) estimated nonparametrically by

ûn(z) =
∑n

i=1

(
δi

ξi
π̂n(Zi)

K
(

z−Zi
hn

))
∑n

i=1

(
ξi

π̂n(Zi)
K
(

z−Zi
hn

)) ,

where K(·) is a kernel function and hn is a bandwidth sequence. We adopt the following
estimator of Gn(z):

Ĝn(z) = 1 − ∏
i:Zi≤z

(
n − Ri

n − Ri + 1

)1−ûn(Zi)

,

where Ri denotes the rank of Zi .
Next, replacing m(·), π(·) and Gn(·) with m0(·, ·), π̂n(·) and Ĝn(·), we have:

ŶWi =

ξiδi
π̂n(Zi)

+ (1 − ξi
π̂n(Zi)

)m0(Ui, θ̂n)

1 − Ĝn(Zi)
Zi.

And the corresponding weight selection criterion is as follows:

CĜn
(w) = ∥ŶW − µ̂Ĝn

(w)∥2 + 2trace{P(w)Ω}, (13)
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where ŶW = (ŶW1, · · · , ŶWn). The weights for minimizing CĜn
(w) are given by:

w̃ = arg min
w∈HM

CĜn
(w). (14)

Then, we enumerate the necessary regularity conditions for the asymptotic optimality.

(C1) Let S(t) = 1 − (1 − F(t)(1 − Gn(t))) and τH = inf{t : S(t) = 1}, where F(t) is the
cumulative distribution function of Yi . Assume that 1 − Gn(τH−) > 0.

(C2) There exists a positive constant k such that max1≤i≤n |µi| ≤ k .
(C3) Denote ξn = infw∈HM RGn(w) and w0

m is an M × 1 unit vector in which the mth
element is 1 and the others are 0. For some integer 1 ≤ J < ∞ and some positive
constant k such that E(e4J

i ) ≤ k < ∞, assume

Mξ−2J
n

M

∑
m=1

{
RGn

(
w0

m

)}J
→ 0.

(C4) There exists ϵ > 0 such that inf e2
Wi > ϵ, i = 1, · · · , n.

(C5) m(·) and π(·) are bounded.
(C6) nhn → ∞ and nh2

n → 0.
(C7) Let p̃ = maxm pm , ρm

ii denote the ith diagonal element of Pm. There exists a constant c

such that
∣∣∣ρ(m)

ii

∣∣∣ ≤ cn−1 pm .

Condition (C1) is utilized in [16] and it ensures that 1 − Gn(t) is not equal to 0. Condi-
tion (C2) mandates that the conditional expectation of µi remains within bounded limits,
in line with assumptions seen in prior research, including [7,17]. Condition (C3) is a re-
quirement commonly found in model-averaging literature (e.g., [7,18]). Condition (C4)
mandates the non-degeneracy of the covariance matrix Ω as n → ∞. Similar assumptions
can also be found in [9,10]. Similar to [15], Conditions (C5) and (C6) impose constraints
on the bounds of m(·), π(·) and bandwidth, respectively. Condition (C7) is frequently
employed in the analysis of the asymptotic optimality of cross-validation methods, as seen
in prior works like [8].

Theorem 1. Under Conditions (C1) to (C6),

LĜn
(w̃)

inf
w∈HM

LĜn
(w)

p→ 1.

Theorem 1 establishes the asymptotic optimality of the model-averaging procedure
employing weights w̃, as its squared loss converges to that of the infeasible best possible
model average estimator.

In most cases, Ω is unknown and needs to be estimated. We estimate Ω using residuals
derived from the model-averaging process: ê(w) = ŶW − µ̂(w) = {êW1(w), · · · , êWn(w)}′.
Specifically, the estimator of Ω is

Ω̂(w) = diag{σ̂2
W1(w), · · · , σ̂2

Wn(w)}, (15)

where σ̂2
Wi = var(êWi).

In the existing literature on model averaging, most estimates of variance are predomi-
nantly derived from the largest candidate model, as exemplified by works such as [6,16].
In contrast, our approach, following [10], leverages information from all candidate models
for estimation rather than relying on a single model. Such an estimation method is more
robust. Replacing Ω by Ω̂(w) in (13), C(w) becomes

ĈĜn
(w) = ∥ŶW − µ̂Ĝn

(w)∥2 + 2trace{P(w)Ω̂(w)}. (16)
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The weights that minimize ĈĜn
(w) are as follows:

ŵ = arg min
w∈HM

ĈĜn
(w). (17)

This weight selection criterion ĈĜn
(w) is a cubic function of w.

Theorem 2. Under Conditions (C1) to (C7),

LĜn
(ŵ)

inf
w∈HM

LĜn
(w)

p→ 1.

3. Simulation

In the simulation study, we generate data from the accelerated failure time (AFT) model,
log(Ti) = Yi = ∑1000

j=1 βjxij + ei, where βj = 1/j2; the observations of Xi = (xi1, xi2, · · · , xi1000)
are generated from a multivariate normal distribution with zero mean and covariance matrix
Σ = (σij) with σij = 0.5|i−j|. The errors ei follow normal distribution N(0, γ2(x4

i2 + 0.01)). By
varying the value of γ, we allow R2 to range from 0.1 to 0.9. This variance specification closely
resembles that of [8]. However, we introduce a small constant, 0.01, to ensure that the variances
remain strictly positive. The censoring time Ci is generated from N(C0, 7). By varying the
value of C0, we achieve censoring rates (CRs) of approximately 20%, 40%. We set sample sizes
n = 150, 300. Here, our model configuration is set in a nested form, meaning the first m models
include the first m regressors. The number of candidate models M was set to be ⌈3n1/3⌉, where
⌈x⌉ denote the smallest integer greater than x.

Based on the missing mechanism described in this paper, we assume that the prob-
ability of missing censoring indicators, denoted as 1 − π(z), is determined via a logis-
tic model: log{ π(z)

1−π(z)} = θ1 + θ2z . Following [15], we employed the uniform kernel

function W(x) = 1
2 for |x| ≤ 1 and W(x) = 0 otherwise. Additionally, we used the bi-

weight kernel function K(x) = 15
16 (1 − 2x2 + x4) for |x| ≤ 1 and K(x) = 0 otherwise. The

bandwidths were bn = hn = n− 1
3 max(Z). We estimated m(u) under the logistic model:

log{ m(u)
1−m(u)} = γ1 + γ2z + γ3x. As highlighted by [19], when the data on δ are completely

(or quasi-completely) separated, the maximum likelihood estimate of γ = (γ1, γ2, γ3) does
not exist. In our simulation setup, the number of covariates significantly exceeds the sample
size. Therefore, we employ the lasso method to estimate the parameters.

We compare the proposed Model-Averaging method for the Missing Censoring Indica-
tors in the Heteroscedastic setting (HCIMA) with other classical model-selection and model-
averaging methods in this article. Brief descriptions of these methods are provided below:

• The model-selection methods rely on AIC and BIC, where the AIC and BIC criterion for
the mth model are defined as follows:

AIC(m) = log
(

σ̂2
Ĝnm

)
+ 2n−1 tr(Pm),

and
BIC(m) = log

(
σ̂2

Ĝnm

)
+ n−1 tr(Pm)log(n),

where σ̂2
(Ĝnm)

= n−1
∥∥∥ŶW − µ̂Ĝnm

∥∥∥2
.

• Model methods based on SAIC and SBIC: The weights for the mth candidate model are
given by:

wAIC
(m) = exp(−AICm/2)/

M

∑
m=1

exp(−AICm/2),

wBIC
(m) = exp(BICm/2)/

M

∑
m=1

exp(−BICm/2),
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where AICm = AIC(m)− min(AIC) , BICm = BIC(m)− min(BIC) .
• Additionally, we compare our approach with the method that estimates the variance

using the maximum candidate model (MCIMA). And the specifics of variance estimation
and weight selection in their approach are as follows:

σ̂Ĝn
= (σ̂Ĝn1, · · · , σ̂Ĝnn)

T =

√
n

n − M
(I − PM)ŶW ,

Ĉn(w) = ∥ŶW − µ̂(w)∥2 + trace{P(w)Ω̂},

where Ω̂ = diag{σ̂2
Ĝ1

, · · · , σ̂2
Ĝn

}.

In the simulation, we utilize the Mean Squared Error (MSE) to evaluate the perfor-

mance of various methods, where the MSE is defined as 1
n

∥∥∥µ̂Ĝn
− µ

∥∥∥2
. We present the mean

of MSEs from 500 replications.
Figures 1 and 2, respectively, show the Mean Squared Error (MSE) values for various

methods across 500 repetitions under different censored rates and sample sizes, with
missing rates of 20% and 40%. In terms of Mean Squared Error (MSE), our proposed HCIMA
method outperforms other approaches. Additionally, the MCIMA method performs better
than existing methods in all cases except for when compared to HCIMA. Furthermore, it is
evident that SAIC and SBIC outperform their respective AIC and BIC counterparts, further
highlighting the advantages of model-averaging methods.

Figure 1. Mean Squared Errors (MSEs) of various methods under different sample sizes and censor
rates at MR = 20%.
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Figure 2. Mean Squared Errors (MSEs) of various methods under different sample sizes and censor
rates at MR = 40%.

Comparing Figures 1 and 2, it is observed that the MSE at MR = 20% is slightly
higher than at MR = 40%. The reason for this occurrence is that when ξi = 1, δi = 0, the
signs of YWi and Zi are opposite. As MR increases, the occurrence of the ξi = 1, δi = 0
situation decreases. Although this result may seem counterintuitive, it does not affect the
performance of the method proposed in this paper, which still keeps its advantages in this
case.

4. Real Data Analysis

In this section, we assess the predictive performance of our proposed HCIMA method
using the real Acute Myeloid Leukemia (AML) dataset. This dataset contains 672 samples,
including 97 variables such as patient age, survival time, gender, race, mutation count,
etc. For more specific information about this dataset, we refer the reader to https://www.
cbioportal.org/study/clinicalData?id=aml_ohsu_2018 (accessed on 13 December 2023).

We selected ten variables for analysis: Cause Of Death, Age, Sex, Overall Survival
Status, Overall Survival Months (Survival Time), Number of Cumulative Treatment Stages,
Cumulative Treatment Regimen Count, Mutation Count, Platelet Count and WBC (White
Bloodcell Count). After removing rows with missing values, we retained a total of 396
samples. We treat samples with unknown causes of death as missing censoring indicators.
Among these 396 samples, 76 have unknown causes of death and 167 samples are still
alive after the clinical trial ends. Therefore, the missing rate is approximately 19% and
the censoring rate is 42%. We focus on the impact of seven variables, excluding “Cause
Of Death” and “Overall Survival Status” on Survival Time. Therefore, we can construct
27 − 1 = 127 non-nested candidate models.

https://www.cbioportal.org/study/clinicalData?id=aml_ohsu_2018
https://www.cbioportal.org/study/clinicalData?id=aml_ohsu_2018
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We randomly select data from n0 samples as the training dataset, while the remaining
n1 = n − n0 samples are used as the testing dataset. We set the training dataset size to 50%,
60%, 70% and 80% of the total dataset size, respectively. Following [16,20], we employed
the normalized mean squared prediction error (NMSPE) as the performance metric:

NMSPE =
∑n

i=n0+1

(
ŶWi − µ̂i

)2

minm=1,2,··· ,M ∑n
i=n0+1

(
ŶWi − µ̂mi

)2 ,

where µ̂i represents the predicted value and µ̂mi denotes the value of µ̂ for the mth model.
We calculate the mean, the standard deviation and the optimal rate of each method

over these 1000 repetitions. Specifically, the optimal rate refers to the frequency at which
the minimum value is achieved across these 1000 repetitions.

Table 1 displays the mean, optimal rates and standard deviations of NMSPE for each
method over 1000 repetitions. Consistent with the simulation results, the HCIMA method
exhibits the lowest average NMSPE and standard deviation and the highest optimal rate.
The MCIMA method also performs well, ranking second after HCIMA. This indicates that
the proposed model-averaging methods in this paper demonstrate superior predictive
performance compared to other approaches.

Table 1. The mean, optimal rate and standard deviation of NMSPE.

Method AIC SAIC BIC SBIC MCIMA HCIMA

50% Mean 1.3628 1.3370 1.3517 1.3345 1.2765 1.2165
Standard deviation 0.5283 0.5060 0.5123 0.4970 0.4039 0.3500

Optimal rate 0.084 0.137 0.042 0.093 0.306 0.338

60% Mean 1.3663 1.3388 1.3556 1.3404 1.2651 1.1800
Standard deviation 0.5504 0.5166 0.5151 0.5068 0.4343 0.3066

Optimal rate 0.094 0.119 0.049 0.091 0.288 0.359

70% Mean 1.3347 1.3213 1.3361 1.3259 1.2451 1.1766
Standard deviation 0.5324 0.5232 0.5288 0.5257 0.3433 0.2966

Optimal rate 0.097 0.140 0.057 0.079 0.259 0.368

80% Mean 1.2794 1.2619 1.2828 1.2628 1.2034 1.1504
Standard deviation 0.4865 0.4714 0.4861 0.4777 0.2941 0.2030

Optimal rate 0.083 0.165 0.063 0.129 0.240 0.320

5. Discussion

To address the uncertainty in model selection and enhance predictive accuracy, this
paper proposes a novel model-averaging approach for the accelerated failure time model
with missing indicators. Moreover, we establish asymptotic optimality under certain mild
conditions. In Monte Carlo simulations, the method proposed in this paper exhibits lower
mean squared errors compared to other model-selection and model-averaging methods.
Empirical results demonstrate that the proposed method has a lower NMSPE compared
to other approaches, indicating its superior predictive performance. This further under-
scores the applicability of the proposed method to real-life data scenarios with missing
censoring indicators.

In this paper, we introduce the inverse probability weighted form of response variable
proposed in [15]. The primary advantage of this form of response variable lies in its double
robustness, making it less susceptible to the impact of model misspecification (if π(·) or
m(·) is misspecified). However, as mentioned in [15], its drawback, compared to synthetic
response [13], regression calibration and imputation [15], is a larger variance. Yet, in
practical scenarios, the harm caused by model misspecification often outweighs the harm
of higher variance. Therefore, in our work, we follow the recommendation of [15] to use
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the inverse probability weighted form of the response variable. A future research direction
is to further enhance this response variable for better applicability in the context of missing
censoring indicators.

As far as we know, there is currently very limited research on model averaging for
missing censoring indicators. Therefore, there are still many questions that deserve further
investigation. There is potential for extending our approach to high-dimensional data in
terms of data and in terms of models, exploration into partial linear models, generalized
linear models and other extensions could be pursued.
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Appendix A

In this appendix, we provide the proofs for Theorems 1 and 2. To facilitate the
presentation, we begin with several lemmas.

Lemma A1. Under Conditions (C1) to (C3), there exists a positive constant c1 such that

max
1≤i≤n

E
(

e4J
W,i | Xi

)
≤ c1,

where J is given in Condition (C3).

Lemma A1 is consistent with Lemma 6.1 in [16] and under our specific conditions, the
proof technique for Lemma 1 is the same as the proof technique for Lemma 6.1 in [16].

Lemma A2. Under Conditions (C1) to (C3),

| LGn(w)

RGn(w)
− 1| = op(1).

Under our specific conditions, we can prove this lemma using the same techniques as
the proof of (A.3) in [7]. Therefore, we omit the proof here.

Lemma A3. Under Conditions (C1) to (C5), as n → ∞ , we have∥∥∥ŶW − YW

∥∥∥2
= op(1).

Proof of Lemma A3.

∥∥∥ŶW − YW

∥∥∥2
=

n

∑
i=1

{
ξiδi

π(Zi)
+ (1 − ξi

π(Zi)
)m(Ui)

1 − Gn(Zi)
−

ξiδi
π̂n(Zi)

+ (1 − ξi
π̂n(Zi)

)m0(Ui, θ̂n)

1 − Ĝn(Zi)
}2Zi

≤ K
n

∑
i=1

{ 1
1 − Gn(Zi)

− 1
1 − Ĝn(Zi)

}2Zi

≤ C

{
n1/2 max

1≤i≤n

∣∣∣∣∣ 1
1 − Ĝn(Zi)

− 1
1 − Gn(Zi)

∣∣∣∣∣
}2(

1
n

µTµ +
1
n

eT
WeW

)
,
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where K is a constant. By Condition (C2), we have 1
n µTµ = Op(1) and 1

n eT
WeW = Op(1).

According to [15], Ĝn(Zi)− Gn(Zi) = op(1). Combined with Condition (C1), we have:∣∣∣∣∣ Ĝn(z)− Gn(z)
1 − Gn(z)

∣∣∣∣∣ = op(1),

and ∣∣∣∣∣ Ĝn(z)− Gn(z)
1 − Ĝn(z)

∣∣∣∣∣ = op(1).

Similar to the proof of Lemma 6.2 in [16], we have:

n1/2 max
1≤i≤n

∣∣∣∣∣ 1
1 − Ĝn(Zi)

− 1
1 − Gn(Zi)

∣∣∣∣∣ = op(1).

Furthermore, we can obtain
∥ŶW − YW∥2 = op(1).

With the three lemmas mentioned above, we can now proceed to prove Theorem 1.

Proof of Theorem 1. Fist, we note that

CĜn
(w) = ∥ŶW − µ̂Ĝn

(w)∥2 + 2trace{P(w)Ω}

= ∥ŶW − µ + µ − µ̂Ĝn
(w)∥2 + 2trace{P(w)Ω}

= ∥ŶW − µ∥2 + ∥µ − µ̂Ĝn
(w)∥2 + 2(ŶW − µ)′(µ − µ̂Ĝn

(w)) + 2trace{P(w)Ω}

= ∥eW∥2 + LĜn
(w) + 2e′W(µ − P(w)µ + P(w)µ − µ̂Ĝn

(w)) + 2trace{P(w)Ω}

= LĜn
(w) + 2e′W(I − P(w))µ + 2trace(P(w)Ω)− 2e′W P(w)eW + ∥eW∥2.

Following [7], except for a term unrelated to w, to prove Theorem 1, we only need to verify

sup
w∈HM

|e′W(I − P(w))µ|
RGn(w)

= op(1), (A1)

sup
w∈HM

|trace(P(w)Ω)− 2e′W P(w)eW |
RGn(w)

= op(1), (A2)

sup
w∈HM

|
LĜn

(w)

RGn(w)
− 1| = op(1). (A3)

We begin by proving Equation (A1). As per Equation (11), we can ascertain that:

RGn(w
0
m) ≥ ∥P(w0

m)µ − µ∥2, (A4)

RGn(w
0
m) ≥ trace(P(w0

m)ΩPT(w0
m)). (A5)

Furthermore, we denote the maximum eigenvalue of matrix A as λmax(A); since Pm is
an idempotent matrix, we have:

λmax(Pm) = 1, (A6)

λmax{P(w)} ≤
M

∑
m=1

wmλmax{Pm} ≤ 1. (A7)
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According to the proof of Theorem 1 in [21], we have:

lim
n→∞

sup
w∈HM

λmax(P(w)P(w)′) < ∞. (A8)

Applying the triangle inequality, Bonferroni’s inequality, Chebyshev’s inequality and
Theorem 2 of [22], we can conclude, for any τ > 0,

P

{
sup

w∈HM

|e′W(I − P(w))µ|
RGn(w)

> τ

}

≤ P

{
sup

w∈HM

M

∑
m=1

wm
∣∣e′W(I − Pm)µ

∣∣ > τξn

}

= P
{

max
1≤m≤M

∣∣e′W(I − Pm)µ
∣∣ > τξn

}
= P

{{∣∣∣〈eW , A
(

w0
1

)
µ
〉∣∣∣ > τξn

}
∪ · · · ∪

{∣∣∣〈eW , A
(

w0
M

)
µ
〉∣∣∣ > τξn

}}
≤

M

∑
m=1

P
{∣∣∣〈eW , A

(
w0

m

)
µ
〉∣∣∣ > τξn

}
≤

M

∑
m=1

E

{〈
eW , A

(
w0

m
)
µ
〉2J

τ2Jξ2J
n

}

≤ C1τ−2Jξ−2J
n

M

∑
m=1

∥∥∥Ω(2J)1/2 A
(

w0
m

)
µ
∥∥∥2J

,

where ⟨, ⟩ represents an inner product, A(w) = I − P(w). C1 is a constant, Ω(2J) =

diag
(
γ2

1(2J), . . . , γ2
n(2J)

)
and γ2

i (2J) = E(e2J
Wi|Xi)

1/2J . By Lemma A1, γ2
i (2J) < ∞; thus,

λmax(Ω(2J))J = O(1). Hence, combining this with Equation (A4), we have:

P

{
sup

w∈HM

|⟨eW , A(w)µ⟩|/RGn(w) > τ

}

≤ C1τ−2Jξ−2J
n λmax(Ω(2J))J

M

∑
m=1

∥∥∥A
(

w0
m

)
µ
∥∥∥2J

≤ C′
1τ−2Jξ−2J

n

M

∑
m=1

∥∥∥A
(

w0
m

)
µ
∥∥∥2J

≤ C′
1τ−2Jξ−2J

n

M

∑
m=1

(
RGn

(
w0

m

))J
.

And together with condition (C3), we can prove Equation (A1). Next, we will prove
(A2). Similar to the proof of Equation (A1), we have:

P

{
sup

w∈HM

| trace[ΩP(w)]− ⟨eW , P(w)eW⟩|/RGn(w) > τ

}

≤
M

∑
m=1

P
{∣∣∣trace

[
ΩP

(
w0

m

)]
−

〈
eW , P

(
w0

m

)
eW

〉∣∣∣ > τξn

}
≤

M

∑
m=1

E

{[
trace

[
ΩP

(
w0

m
)]

−
〈
eW , P

(
w0

m
)
eW

〉]2J

τ2Jξ2J
n

}

≤C2τ−2Jξ−2J
n

M

∑
m=1

{
tr
[

P
(

w0
m

)′
Ω(4J)P

(
w0

m

)]}J
,
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where C2 is a constant, Ω(4J) = diag
(
γ2

1(4J), . . . , γ2
n(4J)

)
and γ2

i (4J) = E(e4J
Wi|Xi)

1/4J . By
Lemma A1, γ2

i (4J) < ∞; thus, λmax(Ω(4J))J = O(1). Hence, combining Equation (A5) and
condition (C3), we have:

P

{
sup

w∈HM

| trace[ΩP(w)]− ⟨eW , P(w)eW⟩|/RGn(w) > τ

}

≤C2τ−2Nξ−2N
n λmax[Ω(4N)]N

M

∑
m=1

tr
[

P
(

w0
m

)′
P
(

w0
m

)]

≤C2τ−2Jξ−2J
n

(
inf

i
e2

Wi

)−J M

∑
m=1

{
inf

i
e2

Witrace(P2(w0
m))

}J

≤C3τ−2Jξ−2J
n

M

∑
m=1

[
RGn

(
w0

m

)]J
= o(1).

Next, we will prove Equation (A3). Note that∣∣∣∣∣ LĜn
(w)

RGn(w)
− 1

∣∣∣∣∣
=

∣∣∣∣∣ LGn(w)

RGn(w)
− 1 +

LĜn
(w)− LGn(w)

RGn(w)

∣∣∣∣∣
≤
∣∣∣∣ LGn(w)

RGn(w)
− 1

∣∣∣∣+
∣∣∣∣∣∣∣
∥∥∥µ − µ̂Ĝn

(w)
∥∥∥2

− ∥µ − µ̂(w)∥2

RGn(w)

∣∣∣∣∣∣∣. (A9)

From Lemma A2, we know that | LGn (w)
RGn (w)

− 1| = op(1), Therefore, to prove (A3), it is
sufficient to verify that the second part of Equation (A9) converges to 0 in probability.∣∣∣∣∣∣∣

∥∥∥µ − µ̂Ĝn
(w)

∥∥∥2
− ∥µ − µ̂(w)∥2

RGn(w)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2(µ − µ̂(w))′

(
µ̂(w)− µ̂Ĝn

(w)
)
+

∥∥∥µ̂(w)− µ̂Ĝn
(w)

∥∥∥2

RGn(w)

∣∣∣∣∣∣∣
≤

2{LGn(w)}1/2
∥∥∥P(w)

(
ŶW − YW

)∥∥∥
RGn(w)

+

∥∥∥P(w)
(

ŶW − YW

)∥∥∥2

RGn(w)
. (A10)

According to Lemma A3, we have:∥∥∥P(w)
(

ŶW − YW

)∥∥∥2
≤ λmax(P(w))

∥∥∥ŶW − YW

∥∥∥2
= Op(1).

Combining this with Lemma A3, we can conclude that (A9) is of op(1), which estab-
lishes the proof for (A3).

Proof of Theorem 2. It is evident from Equations (13) and (16) that:

ĈĜn
(w) = CĜn

(w) + 2 trace{P(w)Ω̂(w)} − 2 trace{P(w)Ω}.
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In conjunction with Theorem 1, it is evident that to prove Theorem 2, we only need
to establish:

sup
w∈HM

[
| trace{P(w)Ω̂(w)} − trace{P(w)Ω}|/RGn(w)

]
= op(1). (A11)

We denote Qm = diag
(

ρ
(m)
11 , . . . , ρ

(m)
nn

)
and Q(w) = ∑M

m=1 wsQm. According to
Lemma A1, we have:

λmax(Ω) = O(1). (A12)

Considering the definition of Ω̂(w), and employing proof techniques similar to [10,23],
we obtain:

sup
w∈HM

[
| trace{P(w)Ω̂(w)} − trace{P(w)Ω}|/RGn(w)

]
= sup

w∈HM

[
| {ŶW − P(w)ŶW}′Q(w){ŶW − P(w)ŶW} − trace{Q(w)Ω} | /RGn(w)

]
= sup

w∈HM

[
| {eW + µ − P(w)ŶW}′Q(w){eW + µ − P(w)ŶW} − trace{Q(w)Ω} | /RGn(w)

]
≤ sup

w∈HM

[∣∣e′W Q(w)eW − trace{Q(w)Ω}
∣∣/RGn(w)

]
+ 2 sup

w∈HM

[∣∣∣e′W Q(w){P(w)ŶW − µ}
∣∣∣/RGn(w)

]
+ sup

w∈HM

[∣∣∣{{P(w)ŶW − µ}′Q(w){P(w)ŶW − µ}
∣∣∣/RGn(w)

]
≤ sup

w∈HM

[∣∣e′W Q(w)eW − trace{Q(w)Ω}
∣∣/RGn(w)

]
+ 2 sup

w∈HM

[∣∣e′W Q(w){P(w)µ − µ}
∣∣/RGn(w)

]
+ 2 sup

w∈HM

[∣∣e′W Q(w)P(w)eW − trace{Q(w)P(w)Ω}
∣∣/RGn(w)

]
+ 2 sup

w∈HM

[| trace{Q(w)P(w)Ω}|/RGn(w)]

+ sup
w∈HM

[∣∣{P(w)ŶW − µ}′Q(w){P(w)ŶW − µ}
∣∣/RGn(w)

]
≡T1 + T2 + T3 + T4 + T5.

Let ρ = maxm maxi ρ
(m)
ii . According to condition (C7), we have:

ρ = O
(

n−1 p̃
)

. (A13)

Given the definition of RGn(w) and condition (C4), the following equation holds:

RGn

(
w0

m

)
≥ trace

{
PmΩPT

m

}
≥ ϵ trace(Pm) = ϵpm,

ξn → ∞ and Mξ−2J
n = o(1). (A14)

From (A6), (A11), (A13), the Chebyshev inequality and Theorem 2 of [22], for any τ > 0,
there exist constants c1 and c2 such that:
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P(T1 > τ) ≤
M

∑
m=1

P
[∣∣e′W QmeW − trace(QmΩ)

∣∣ > τξn
]

≤ τ−2Jξ−2J
n

M

∑
m=1

E
{

eT
W QmeW − trace(QmΩ)

}2J

≤ c1τ−2Jξ−2J
n

M

∑
m=1

{trace{Ω1/2(4J)QmΩ(4J)QmΩ1/2(4J)}}J

≤ c1τ−2Jξ−2J
n Mλ2J

max(Ω(4J)) max
1≤m≤M

{trace(Qm)}J

= ξ−2J
n M

{
O
(

n−1 p̃2
)}J

= o(1), (A15)

P(T3/2 > τ) ≤
M

∑
m=1

P
{∣∣ e′W QmPmeW − trace(QmPmΩ)

∣∣ > τξn
}

≤ τ−2Jξ−2J
n

M

∑
m=1

E
[
e′W QmPmeW − trace(QmPmΩ)

]2J

≤ c2τ−2Jξ−2J
n

M

∑
m=1

trace{Ω1/2(4J)QmPmΩ(4J)PT
mQmΩ1/2(4J)}J

≤ c2τ−2Jξ−2J
n Mλ2J

max(Ω(4J))λJ
max

(
PmPT

m

)
max

1≤m≤M
{trace(Q2

m)}J

= ξ−2J
n M

{
O
(

n−1 p̃2
)}J

= o(1), (A16)

T2/2 ≤ sup
w∈HM

{
∥eW∥2ρ2∥P(w)µ − µ∥2/R2

Gn
(w)

}1/2

≤ ∥eW∥ρξ−1/2
n = ξ−1/2

n O
(

n−1/2 p̃
)
= o(1), (A17)

T4/2 ≤ ξ−1
n ρλmax(Ω) sup

w∈HM

[trace{P(w)}]

≤ ξ−1
n ρλmax(Ω)max

m
{trace(Pm)}

≤ ξ−1
n ρλmax(Ω)max

m
{λmax(Pm)}max

m
{rank(Pm)}

= ξ−1
n O

(
n−1 p̃2

)
= ξ−1

n O
(

n−1 p̃2
)
= o(1), (A18)

T5 ≤ ρ sup
w∈HM

[
{P(w)ŶW − µ}T{P(w)ŶW − µ}/RGn(w)

]
= ρ sup

w∈HM

[LGn(w)/RGn(w)] = O
(

n−1 p̃
)

. (A19)

Therefore, combining (A15)–(A19), along with Condition (C7), it is clear that Theorem 2
holds.
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