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Abstract: This paper investigates the interval-valued-multi-objective-optimization problem, whose
objective function is a vector-valued max-plus interval function and the constraint function is a
real-affine function. The strong and weak solvabilities of the interval-valued-optimization problem
are introduced, and the solvability criteria are established. A necessary and sufficient condition for
the strong solvability of the multi-objective-optimization problem is provided. In particular, for the
bi-objective-optimization problem, a necessary and sufficient condition of the weak solvability is
provided, and all the solvable sub-problems are found out. The interval optimal solution is obtained
by constructing the set of all optimal solutions of the solvable sub-problems. The optimal load
distribution is used to demonstrate how the presented results work in real-life examples.
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1. Introduction

Multi-objective optimization is concerned with mathematical optimization problems
involving more than one objective function to be optimized simultaneously. It is one
of the most complex decision-making problems and has significant theoretical and ap-
plied potential in combination with a wide diversity of models. Many optimal solution
methods have been proposed for linear- or nonlinear-optimization problems, such as the
simplex method, the Karush–Kuhn–Tucker approach, heuristic algorithms (including the
genetic algorithm, the simulated-annealing algorithm, particle-swarm optimization, etc.)
and so on (see, e.g., Refs. [1–4]). In real-word applications, Zhang et al. [5], for exam-
ple, established the Karush–Kuhn–Tucker-based-optimization algorithm for solving the
torque-allocation problem, with the objective being to improve the stability performance
of distributed-drive electric vehicles. Shafigh et al. [6] developed a linear-programming-
embedded simulated-annealing algorithm for solving a comprehensive model for large-size
problems in distributed-layout-based manufacturing systems, with the aim of minimizing
the total cost of material handling, machine relocation, inventory holding, and internal-
part production cost. Gangwar et al. [7] built a network-reconfiguration method for an
unbalanced distribution system by using the repository-based constrained-nondominated-
sorting genetic algorithm, with the aim being to minimize daily energy loss, energy not
supplied and the cumulative-current-unbalance factor. The simplex method [3] perfectly
solves linear-programming problems whose objective and constraint functions are both
real linear functions. The Karush–Kuhn–Tucker approach [1] is effective for nonlinear
optimization problems with a single objective. Heuristic algorithms [2] based on intuition
and experience have a wide scope of application, while the deviation degree between the
feasible solution and the optimal solution searched for by the heuristic algorithms cannot
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be estimated, in general. It is of great significance to develop an accurate method to solve
specific types of multi-objective-nonlinear-optimization problems.

Max-plus algebra has a nice algebraic structure and is effectively used to model, ana-
lyze, control and optimize some nonlinear-time-evolution systems with synchronization
but no concurrency (see, e.g., Refs. [8–11]). These nonlinear systems can be described
by a max-plus linear-time-invariant model, which is called the max-plus linear system.
Max-plus linear systems have wide applications in manufacturing, transportation, schedul-
ing, robotics and high-throughput screening, as well as reinforcement learning and other
fields (see, e.g., Refs. [12–17]). Many methods have been put forward to solve all kinds
of optimization problems for max-plus linear systems. For example, Butkovič and Mac-
Caig [18] studied the integer optimization of max-plus linear systems and found out the
integer solutions. Xu et al. [19] investigated the optimistic optimization of max-plus linear
systems, and they established efficient algorithms to find the approximation of globally
optimal solutions for general nonlinear optimization. Gaubert et al. [20] studied the tropical-
linear-fractional-programming problem, whose objective function is a max-plus rational
function and a constraint condition that is a two-sided max-plus linear inequality, and
they reduced such a problem to the auxiliary-mean-payoff-game problem. Goncalves
et al. [21] provided efficient algorithms to solve the tropical-linear-fractional-programming
problem, whose objective function is a max-plus function and a constraint condition that
is a two-sided max-plus linear equation. Marotta et al. [22] presented a solution to the
tropical-lexicographic-synchronization-optimization problem, whose objective function is
a max-plus rational function and a constraint condition that is a two-sided max-plus linear
equation. Tao et al. [23–26] studied the global-optimization problem of max-plus linear
systems, whose objective function is a max-plus vector-valued function and a constraint
function that is a real-affine function, and they provided the necessary and sufficient con-
ditions for the existence and uniqueness of globally optimal solutions. Shu and Yang [27]
solved the minimax-programming problem, in which the objective function is to minimize
the maximum of all variables, while the constraint is a system of max-plus inequalities.

During the practical operation of a physical system, parameter perturbations are
inevitable because of disturbances and errors in the estimation of processes. In practical
applications, it is usually necessary to make an optimal decision in uncertainty environ-
ments. Necoara et al. [28] found a solution to a class of finite-horizon min-max controls
for uncertain max-plus linear systems. Le Corronc et al. [29] synthesized an optimal
controller to reduce the uncertainty at the output of interval max-plus linear systems.
Myskova and Plavka [30–32] studied the robustness of interval max-plus linear systems,
and they presented the necessary and sufficient conditions for interval matrices to be robust.
Farahani et al. [33] constructed a solution for the optimization of stochastic max-min-plus
scaling systems by using an approximation method based on moment-generating functions.
Wang et al. [34] studied the optimal input design for uncertain max-plus linear systems,
and they constructed the exact interval input to minimize the range of input that ensures
the system can output at the desired point.

This paper studies the multi-objective-optimization problem for uncertain max-plus
linear systems whose parameters are not exactly known but belong to an interval. Multi-
objective optimization for interval max-plus systems is formulated as an interval-valued-
optimization problem. The strong and weak solvabilities of the interval-valued-optimization
problem are introduced based on the solvability of its sub-problems with deterministic
parameters. The solvability criteria for the interval-valued-optimization problem are es-
tablished. For one thing, it is pointed out that the problem is strongly solvable only if
the interval objective function is degenerated to a max-plus function with deterministic
coefficients, and then the strong solvability is reduced to the solvability of its unique
sub-problem. A necessary and sufficient condition for the strong solvability of the multi-
objective-optimization problem is established. For another, the weak solvability of the
bi-objective-optimization problem is studied. A necessary and sufficient condition of weak
solvability is provided and all the solvable sub-problems are found out. The interval
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optimal solution is obtained by constructing the set of all optimal solutions of the solv-
able sub-problems. To demonstrate the effectiveness of the proposed results in real-life
examples, the bi-objective-optimization technique is applied in the load distribution of
distributed systems, by which the minimum completion time can be advanced.

Comparing with the previous works, the main novelty and contribution of this paper
are summarized as follows:

• The multi-objective-optimization problem is investigated. The global optimal solution
and the global minimum are obtained.

• The hybrid-optimization problem is considered. More specifically, the constraint
function is a real-affine function, while the objective function is a nonlinear function.

• The interval-valued-optimization problem is studied. The solvability criteria are
established, and the interval optimal solution is constructed, to make the optimal
decisions under uncertainty.

The remainder of this paper is organized as follows. Section 2 recalls some basic
concepts and results from max-plus algebra. Section 3 establishes the multi-objective-
optimization model of interval max-plus systems, and gives a necessary and sufficient
condition for strong solvability. Section 4 studies the weak solvability of bi-objective opti-
mization for interval max-plus systems, and finds the interval optimal solution. Section 5
presents an application example in optimal load distribution. Section 6 draws conclusions
and highlights future works.

2. Preliminaries

This section introduces some notations, terminologies and properties from max-plus
algebra, most of which can be found in Refs. [8–11] for more details.

Let R be the set of real numbers, N be the set of natural numbers and N+ be the set of
positive integers. For n ∈ N+, denote by Nn the set {1, 2, . . . , n}. For a, b ∈ R∪ {−∞}, let

a ⊕ b = max{a, b} and a ⊗ b = a + b,

where max{a,−∞} = a and a + (−∞) = −∞. The algebraic structure (R∪ {−∞},⊕,⊗) is
called max-plus algebra and is simply denoted by Rmax, in which −∞ and 0 are the zero and
identity elements, denoted by ε and e, respectively. The symbol /◦ is used to represent the
conventional −, i.e., for a, b ∈ Rmax, a/◦b = a− b, which is valued in Rmax(= Rmax ∪{+∞})
not just in Rmax. Note that by definition, (+∞)⊗ (−∞) = −∞ and (−∞)/◦(−∞) = +∞.

Let Rn
max and Rm×n

max be the sets of n-dimensional vectors and m × n matrices with
entries in Rmax, respectively. To prevent confusion, matrices and vectors are represented by
bold-type letters. The addition ⊕, multiplication ⊗ and scalar multiplication ◦ of max-plus
matrices are defined as follows:

• For A = (aij), B = (bij) ∈ Rm×n
max , (A ⊕ B)ij = aij ⊕ bij;

• For A = (aij) ∈ Rm×r
max and B = (bij) ∈ Rr×n

max,

(A ⊗ B)ij =
r⊕

k=1

aik ⊗ bkj;

• For d ∈ Rmax and A = (aij) ∈ Rm×n
max , (d ◦ A)ij = d ⊗ aij.

In addition, for d ∈ Rmax and x = (xj) ∈ Rn
max, (d/◦x)j = d/◦xj.

For A = (aij) ∈ Rm×n
max , let A⊺ be the transposition of A, and Ai� be the ith row of A, i.e.,

Ai� = (ai1 ai2 . . . ain).

For a, b ∈ Rmax, a ⩽ b if a ⊕ b = b. For x, y ∈ Rn
max, x ⩽ y if x ⊕ y = y. For

A, B ∈ Rm×n
max , A ⩽ B if A ⊕ B = B. If A ⩽ B and x ⩽ y, then A ⊗ x ⩽ B ⊗ y.
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For A ∈ Rm×n
max , the vector-valued function

F : Rn
max → Rm

max

x 7→ A ⊗ x

is called a max-plus function of type (n, m). A max-plus linear system is a system that can be
described by max-plus functions.

Given A = (aij) ∈ Rm×n
max and b = (bi) ∈ Rm

max, a system of max-plus linear equations
with unknown x is represented by

A ⊗ x = b, (1)

where x = (xj) ∈ Rn
max. System (1) is said to be solvable if there exists x̃ ∈ Rn

max, such that

A ⊗ x̃ = b and x̃ is called a solution of system (1). For x̃ ∈ Rn
max, x̃ is called a subsolution of

system (1) if A ⊗ x̃ ⩽ b. The greatest subsolution is constructed as below, to establish a
criterion for the solvability of system (1).

Lemma 1 ([8]). The greatest subsolution of system (1), denoted by x∗(A, b), exists and is given by

e/◦x∗(A, b) = (e/◦b)⊗ A.

In a conventional framework, x∗(A, b) = (x∗j (A, b)) ∈ Rn
max can be expressed as

x∗j (A, b) = min
i∈Nm

{bi − aij}, j ∈ Nn. (2)

The greatest subsolution x∗(A, b) naturally satisfies the following properties:

(i) A ⊗ x∗(A, b) ⩽ b;

(ii) if x̃ is a subsolution of system (1), then x̃ ⩽ x∗(A, b). In particular, if x̃ is a solution of
system (1), then x̃ ⩽ x∗(A, b).

System (1) is solvable if and only if the greatest subsolution is a solution, i.e.,
A ⊗ x∗(A, b) = b.

A (closed) interval in Rmax is a set of the form

U = [u, ū] = {u ∈ Rmax | u ⩽ u ⩽ ū},

where u, ū ∈ Rmax are the lower and upper bounds of interval U, respectively (see, e.g., [35]).
Denote by I(Rmax) the set of closed intervals in Rmax.

An interval matrix in Rmax is defined by

A =


A11 A12 · · · A1n
A21 A22 · · · A2n

...
...

...
Am1 Am2 · · · Amn

 =


[a11, ā11] [a12, ā12] · · · [a1n, ā1n]
[a21, ā21] [a22, ā22] · · · [a2n, ā2n]

...
...

...
[am1, ām1] [am2, ām2] · · · [amn, āmn]

, (3)

where Aij = [aij, āij] ∈ I(Rmax). Let A = (aij), A = (āij) ∈ Rm×n
max . Then,

A = [A, A] = {A ∈ Rm×n
max | A ⩽ A ⩽ A}.

Denote by I(Rm×n
max ) the set of m × n interval matrices in Rmax. Specifically, I(R1×n

max)
and I(Rn×1

max) are the sets of n-dimensional row and column interval vectors in Rmax,
respectively, which are simply denoted by I(Rn

max).
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For A = [A, A] ∈ I(Rm×n
max ), the interval-valued function

F : Rn
max → I(Rm

max)

x 7→ A⊗ x = [A ⊗ x, A ⊗ x]

is called a max-plus interval function of type (n, m), which is a set of max-plus functions, i.e.,

F (x) = A⊗ x = {F(x) = A ⊗ x | A ∈ A}.

An interval max-plus linear system is a system that can be described by max-plus interval
functions.

3. Multi-Objective Optimization of Interval Max-Plus Systems

This section establishes the multi-objective-optimization model for interval max-plus
systems and considers the solvability of such an interval-valued-optimization problem.

The multi-objective-optimization problem for interval max-plus systems is formulated as

min
x∈X

F (x), (4)

where the decision variable is x = (xj) ∈ Rn; the objective function is a max-plus interval
function F (x) = A⊗ x, where A ∈ I(Rm×n

max ) is given in (3); the constraint set is

X =

{
x ∈ Rn

∣∣∣ n

∑
j=1

k jxj = c, k j > 0, c ∈ R
}

,

which can be normalized as

X̃ =

{
x ∈ Rn

∣∣∣ n

∑
j=1

k̃ jxj = c̃,
n

∑
j=1

k̃ j = 1, k̃ j > 0, c ∈ R
}

,

where k̃j = kj/∑n
j=1 kj and c̃ = c/∑n

j=1 kj. Without loss of generality, assume that ∑n
j=1 kj = 1

in X in the discussion later in this paper.
For each F(x) ∈ F (x), the multi-objective-optimization problem

min
x∈X

F(x) (5)

is called a sub-problem of the interval-valued-optimization problem (4). The objective
function of problem (5) is a max-plus function F(x) = A ⊗ x, where A ∈ A.

Definition 1 ([24]). Problem (5) is said to be solvable if there exists x̃ ∈ X , such that F(x̃) ⩽ F(x)
for any x ∈ X and x̃ is called an optimal solution of problem (5).

Next, let us introduce the solvability of interval-valued-optimization problem (4)
based on the solvability of its sub-problems.

Definition 2. Problem (4) is said to be weakly solvable if there exists F(x) ∈ F (x), such that
sub-problem (5) is solvable. Problem (4) is said to be strongly solvable if for any F(x) ∈ F (x)
sub-problem (5) is solvable.

In other words, interval-valued-optimization problem (4) is weakly solvable if it
has at least one solvable sub-problem, and problem (4) is strongly solvable if each of its
sub-problems is solvable. Before establishing the solvability criteria of problem (4), it is
necessary to study the solvability of sub-problem (5).
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Lemma 2 ([24]). For sub-problem (5), let b = (bi) ∈ Rm
max be defined by

bi =
n

∑
j=1

k jaij + c, i ∈ Nm. (6)

Then, b is the greatest lower bound of F(x), i.e.,

(i) F(x) ⩾ b for any x ∈ X ;

(ii) if y is a lower bound of F(x), then y ⩽ b.

Lemma 3 ([24,25]). Sub-problem (5) is solvable if and only if

n

∑
j=1

k jx∗j (A, b) = c, (7)

where b is the greatest lower bound given in (6). Moreover, if Equation (7) holds, then x∗(A, b) is
the unique optimal solution of sub-problem (5).

Next, let us give a necessary condition for strong solvability.

Theorem 1. If problem (4) is strongly solvable, then A = A.

Proof. Since problem (4) is strongly solvable, it follows that for any A ∈ A, sub-problem (5)
is solvable. Then, Equation (7) holds. It can be known from (2) that x∗j (A, b) ⩽ bi/◦aij for
any i ∈ Nm and j ∈ Nn. Suppose there exists j0 ∈ Nn, such that x∗j0(A, b) < bi/◦aij0 . Then,

c =
n

∑
j=1

k jx∗j (A, b) <
n

∑
j=1

k j(bi − aij) = bi −
n

∑
j=1

k jaij =
n

∑
j=1

k jaij + c −
n

∑
j=1

k jaij = c.

This contradiction implies that x∗j (A, b) = bi/◦aij for any i ∈ Nm and j ∈ Nn. Let
pj = x∗1(A, b)/◦x∗j (A, b). Then, for any i ∈ Nm and j ∈ Nn,

ai1 ⊗ pj = ai1 ⊗ x∗1(A, b)/◦x∗j (A, b) = ai1 ⊗ (bi/◦ai1)/◦(bi/◦aij) = aij. (8)

That is, for any A = (aij) ∈ A,

aij/◦ai1 = a1j/◦a11 = pj, i ∈ Nm, j ∈ Nn. (9)

Specifically, for A ∈ A, we have aij/◦ai1 = a1j/◦a11 for any i ∈ Nm and j ∈ Nn. Suppose
that there exist i0 ∈ Nm and j0 ∈ Nn such that ai0 j0 < āi0 j0 . Let A = (aij) ∈ A be defined by

aij =

{
āij, i = i0, j = j0,
aij, others.

It follows from (9) that ai0 j0 /◦ai01 = a1j0 /◦a11, i.e., āi0 j0 /◦ai01 = a1j0 /◦a11. Hence,

a1j0 /◦a11 = āi0 j0 /◦ai01 > ai0 j0 /◦ai01 = a1j0 /◦a11.

This contradiction implies that A = A.

It can be seen from the theorem above that interval-valued-optimization problem (4)
cannot be strongly solvable if A ̸= A. In other words, problem (4) is strongly solvable only
if the interval objective function is degenerated to a max-plus function with deterministic
coefficients. Consequently, the strong solvability of problem (4) is reduced to the solvability
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of its unique sub-problem (5). Then, the following necessary and sufficient condition for
the strong solvability can be obtained from Theorem 1 and Lemma 3.

Corollary 1. Problem (4) is strongly solvable if and only if A = A and Equation (7) holds for
A = A (or A).

4. Weak Solvability of Bi-Objective Optimization Problem

This section studies the weak solvability of bi-objective optimization problem for
interval max-plus linear systems, that is, the weak solvability of problem (4) in the case of
m = 2.

Consider the bi-objective optimization problem

min
x∈X

F (x), (10)

where x and X are the same decision variable and constraint set as problem (4), respectively,
and the objective function F (x) = A⊗ x is a special case of problem (4) for m = 2, i.e.,

A =

(
A11 A12 · · · A1n
A21 A22 · · · A2n

)
=

(
[a11, ā11] [a12, ā12] · · · [a1n, ā1n]
[a21, ā21] [a22, ā22] · · · [a2n, ā2n]

)
.

Let us first establish a weak solvability criterion for problem (10).

Theorem 2. Problem (10) is weakly solvable if and only if

max
j∈Nn

{a2j/◦ ā1j} ⩽ min
j∈Nn

{ā2j/◦a1j}. (11)

Proof. Necessity. Since interval problem (10) is weakly solvable, there exists A = (aij) ∈ A,
such that sub-problem (5) is solvable. It can be known from the proof of Theorem 1
that Equation (8) holds. It follows that a2j/◦a1j = (a21 ⊗ pj)/◦(a11 ⊗ pj) = a21/◦a11. Let
d = a21/◦a11. Then, a2j = a1j ⊗ d. Hence, a2j/◦ ā1j ⩽ a2j/◦a1j = d ⩽ ā2j/◦a1j, ∀j ∈ Nn. This
implies that max

j∈Nn
{a2j/◦ ā1j} ⩽ d ⩽ min

j∈Nn
{ā2j/◦a1j}, i.e., Inequality (11) holds.

Sufficiency. Since Inequality (11) holds, there exists d ∈ R, such that a2j/◦ ā1j ⩽ d ⩽ ā2j/◦a1j

for any j ∈ Nn. Let A = (aij) ∈ R2×n
max be defined by

a1j =

{
a2j/◦d, if d ∈ [a2j/◦ ā1j, a2j/◦a1j],
a1j, if d ∈ [a2j/◦a1j, ā2j/◦a1j];

(12)

a2j =

{
a2j, if d ∈ [a2j/◦ ā1j, a2j/◦a1j],
a1j ⊗ d, if d ∈ [a2j/◦a1j, ā2j/◦a1j].

(13)

For j ∈ Nn, if d ∈ [a2j/◦ ā1j, a2j/◦a1j], then

a1j = a2j/◦(a2j/◦a1j) ⩽ a1j = a2j/◦d ⩽ a2j/◦(a2j/◦ ā1j) = ā1j,

a2j = a2j ⩽ ā2j;

if d ∈ [a2j/◦a1j, ā2j/◦a1j], then

a1j = a1j ⩽ ā1j,

a2j = a1j ⊗ a2j/◦a1j ⩽ a2j = a1j ⊗ d ⩽ a1j ⊗ ā2j/◦a1j = ā2j.
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Hence, A ∈ A. It can be seen from (12) and (13) that a2j = d ⊗ a1j for any j ∈ Nn. Then,

b2 =
n

∑
j=1

k ja2j + c =
n

∑
j=1

k j(a1j + d) + c =
n

∑
j=1

k ja1j + c + d = b1 + d.

It follows that b2 − a2j = (b1 + d)− (a1j + d) = b1 − a1j, and so

x∗j (A, b) = min
i∈N2

{bi − aij} = b1 − a1j, j ∈ Nn.

Hence,

n

∑
j=1

k jx∗j (A, b) =
n

∑
j=1

k j(b1 − a1j) = b1 −
n

∑
j=1

k ja1j =
n

∑
j=1

k ja1j + c −
n

∑
j=1

k ja1j = c.

From Lemma 3, the sub-problem with objective function F(x) = A ⊗ x is solvable.
Hence, problem (10) is weakly solvable.

Let us illustrate the theorem above with a numerical example.

Example 1. Consider the interval-valued-optimization problem

min
x∈X

F (x), (14)

where the objective function is F (x) = A⊗ x,

A =

(
[1, 2] [−2, 3] [−1, 4]
[0, 4] [−3, 0] [0, 5]

)
,

and the constraint set is X =
{

x ∈ R3 | 2x1 + 3x2 + x3 = 6
}

, which can be normalized as

X =

{
x ∈ R3 ∣∣ 1

3
x1 +

1
2

x2 +
1
6

x3 = 1
}

.

By a direct calculation,

max
j∈N3

{a2j/◦ ā1j} = max{−2,−6,−4} = −2 < min
j∈N3

{ā2j/◦a1j} = min{3, 2, 6} = 2.

It then follows from Theorem 2 that problem (14) is weakly solvable.
Indeed, let d = 0 ∈ [−2, 2]. According to (12) and (13), construct a matrix as below:

A =

(
a11 a12 a23
a11 a12 a23

)
=

(
1 −2 0
1 −2 0

)
∈ A.

Then, the sub-problem with objective function F(x) = A ⊗ x is solvable, whose minimal value

is b =

(
1
3

1
3

)⊺

, and which is attained at the point x∗(A, b) =
(
−2

3
7
3

1
3

)⊺

. This implies that

problem (14) is weakly solvable.

Next, let us find all the solvable sub-problems of the interval-valued-optimization
problem (10). For convenience of presentation, let

α = max
j∈Nn

{a2j/◦ ā1j} and ᾱ = min
j∈Nn

{ā2j/◦a1j}.
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It can be seen from the proof of sufficiency of Theorem 2 that the solvable sub-problems
have a common characteristic that A1� and A2� are proportional in the max-plus framework.
The following corollary shows the existence of the matrices in A whose rows are proportional.

Corollary 2. For d ∈ R, let T (d) = {A ∈ A | A2� = d ◦ A1�}. Then, T (d) ̸= ∅ if and only if
d ∈ [α, ᾱ].

Proof. Necessity. Since T (d) ̸= ∅, there exists A ∈ A, such that a2j = d ⊗ a1j for any
j ∈ Nn. Then,

a2j/◦ ā1j ⩽ d = a2j/◦a1j ⩽ ā2j/◦a1j, ∀j ∈ Nn.

This implies that d ∈ [α, ᾱ].
Sufficiency. For d ∈ [α, ᾱ], let A = (aij) ∈ R2×n

max be defined by (12) and (13). It has
been proved in Theorem 2 that A ∈ A and A2� = d ◦ A1�. Hence, A ∈ T (d), and so
T (d) ̸= ∅.

For d ∈ [α, ᾱ], let

S(d) =
{

A ∈ R2×n
max | A1� ∈ U(d), A2� = d ◦ A1�

}
,

where U(d) = [u, ū] = ([uj, ūj]) ∈ I(R1×n
max) is defined by

uj =

{
a2j/◦d, if d ∈ [a2j/◦ ā1j, a2j/◦a1j],
a1j, if d ∈ [a2j/◦a1j, ā2j/◦a1j];

ūj =

{
ā1j, if d ∈ [a2j/◦ ā1j, ā2j/◦ ā1j],
ā2j/◦d, if d ∈ [ā2j/◦ ā1j, ā2j/◦a1j].

(15)

Then, all the solvable sub-problems of problem (10) can be represented as follows.

Theorem 3. If problem (10) is weakly solvable, then all the solvable sub-problems have the form

min
x∈X

F(x), (16)

where F(x) = A ⊗ x, A ∈ S(d) and d ∈ [α, ᾱ].

Proof. Since problem (10) is weakly solvable, it follows from Theorem 2 that α ⩽ ᾱ. Next,
let us prove S(d) = T (d) for d ∈ [α, ᾱ], where T (d) is given in Corollary 2. On the one
hand, let

A(d) =
(

u
d ◦ u

)
and A(d) =

(
ū

d ◦ ū

)
, (17)

where u, ū ∈ Rn
max defined by (15) are the lower and upper bounds of U(d), respectively. It

has been proved in the sufficiency of Theorem 2 that A(d) ∈ A. Similarly, we can prove
A(d) = (aij) ∈ A. Indeed, for j ∈ Nn, if d ∈ [a2j/◦ ā1j, ā2j/◦ ā1j], then

a1j ⩽ a1j = ā1j,

a2j = ā1j ⊗ a2j/◦ ā1j ⩽ a2j = ā1j ⊗ d ⩽ ā1j ⊗ ā2j/◦ ā1j = ā2j;

if d ∈ [ā2j/◦ ā1j, ā2j/◦a1j], then

a1j = ā2j/◦(ā2j/◦a1j) ⩽ a1j = ā2j/◦d ⩽ ā2j/◦(ā2j/◦ ā1j) = ā1j,

a2j ⩽ a2j = ā2j.

Hence, for any A ∈ S(d), A2� = d ◦ A1� and A ⩽ A(d) ⩽ A ⩽ A(d) ⩽ A, i.e.,
A ∈ A. Therefore, A ∈ T (d) and so S(d) ⊆ T (d). On the other hand, for any A ∈ T (d),
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let us prove that A1� ∈ U(d). Suppose there exists j1 ∈ Nn such that a1j1 < uj1 . If
d ∈ [a2j1 /◦ ā1j1 , ā2j1 /◦ ā1j1 ], then

a2j1 = a1j1 ⊗ d < uj1 ⊗ d = a2j/◦d ⊗ d = a2j1 ;

if d ∈ [a2j1 /◦a1j1 , ā2j1 /◦a1j1 ], then a1j1 < uj1 = a1j1 , both of which are contradicted to A ∈ A.
Suppose that there exists j2 ∈ Nn, such that a1j2 > ūj2 . If d ∈ [a2j2 /◦ ā1j2 , ā2j2 /◦ ā1j2 ], then
a1j2 > ūj2 = ā1j2 ; if d ∈ [a2j2 /◦a1j2 , ā2j2 /◦a1j2 ], then

a2j2 = a1j2 ⊗ d > ūj2 ⊗ d = ā2j/◦d ⊗ d = ā2j2 ,

both of which are also contradicted to A ∈ A. Hence, a1j ∈ [uj, ūj] for any j ∈ Nn, i.e.,
A1� ∈ U(d). This implies that A ∈ S(d) and, hence, T (d) ⊆ S(d). Therefore, T (d) = S(d).
Hence, all the solvable sub-problems have the form (16).

Definition 3. The sub-problems with objective functions F(x) = A(d)⊗ x and F(x) = A(d)⊗ x
are called the lower and upper extreme solvable sub-problems (relative to d) of problem (10),
respectively, where A(d) and A(d) are given in (17).

Let us illustrate the theorem above with the following example.

Example 2 (continued from Example 1). Find all solvable sub-problems of problem (14). For
d ∈ [−2, 2], let U(d) = [u, ū] = ([uj, ūj]) ∈ I(R3

max) be defined by

u1 =

{
e/◦d, if d ∈ [−2,−1],
1, if d ∈ [−1, 3];

ū1 =

{
2, if d ∈ [−2, 2],
4/◦d, if d ∈ [2, 3];

u2 =

{
−3/◦d, if d ∈ [−6,−1],
−2, if d ∈ [−1, 2];

ū2 =

{
3, if d ∈ [−6,−3],
e/◦d, if d ∈ [−3, 2];

u3 =

{
e/◦d, if d ∈ [−4, 1],
−1, if d ∈ [1, 6];

ū3 =

{
4, if d ∈ [−4, 1],
5/◦d, if d ∈ [1, 6].

That is,

U(d) =


([−d, 2] [−3 − d,−d] [−d, 4]), if d ∈ [−2,−1];
([1, 2] [−2,−d] [−d, 4]), if d ∈ [−1, 1];
([1, 2] [−2,−d] [−1, 5 − d]), if d ∈ [1, 2].

(18)

Hence, all the solvable sub-problems have the form

min
x∈X

F(x),

where F(x) = A ⊗ x, A ∈ S(d) and

S(d) =
{

A ∈ R2×n
max | A1� ∈ U(d), A2� = d ◦ A1�, d ∈ [−2, 2]

}
.

Specifically, for example, let d = 1. Then, U(1) = ([1, 2] [−2,−1] [−1, 4]). The solvable
sub-problems (relative to 1) have the form

min
x∈X

F(x),

where F(x) = A ⊗ x, A ∈ S(1) and S(1) =
{

A ∈ R2×n
max | A1� ∈ U(1), A2� = 1 ◦ A1�

}
.

Finally, let us present the optimal solutions of problem (10).
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Theorem 4. The set of all optimal solutions of solvable sub-problems of problem (10) is{
H A⊺

1� + c | A1� ∈ U(d), d ∈ [α, ᾱ]
}

, (19)

where U(d) is defined by (15), and

H =


k1 − 1 k2 · · · kn

k1 k2 − 1 · · · kn
...

...
. . .

...
k1 k2 · · · kn − 1

, c =


c
c
...
c

.

Proof. For d ∈ [α, ᾱ] and A ∈ S(d), we have a2j = d ⊗ a1j for any j ∈ Nn. By (6),

b1 =
n

∑
j=1

k ja1j + c,

b2 =
n

∑
j=1

k ja2j + c =
n

∑
j=1

k j(d + a1j) + c =
n

∑
j=1

k ja1j + c + d = b1 + d.

By (2), for j0 ∈ Nn,

x∗j0(A, b) = min{b1 − a1j0 , b2 − a2j0} = min{b1 − a1j0 , (b1 + d)− (a1j0 + d)}

= b1 − a1j0 =
n

∑
j=1

k ja1j + c − a1j0 = ∑
j ̸=j0

k ja1j + k j0 a1j0 − a1j0 + c

= ∑
j ̸=j0

k ja1j + (k j0 − 1)a1j0 + c = Hj0∗A⊺
1� + c.

Then, x∗(A, b) = H A⊺
1� + c. According to Lemma 3 and Theorem 3, the set of all

optimal solutions of solvable sub-problems of problem (10) can be represented by (19).

Definition 4. For each d ∈ [α, ᾱ], the set of optimal solutions given in (19) is called an interval
optimal solution of problem (10).

Let us find the interval optimal solution of problem (14) by using the theorem above.

Example 3 (continued from Example 2). According to Theorem 4, the set of all optimal solutions
of solvable sub-problems of problem (14) is{

H A⊺
1� + c | A1� ∈ U(d), d ∈ [−2, 2]

}
,

where U(d) is given by (18), and

H =
1
6

−4 3 1

2 −3 1

2 3 −5

, c =

1
1
1

. (20)

Specifically, for example, let d = 1. It has been shown in Example 2 that

S(1) =
{

A ∈ R2×n
max | A1� ∈ U(1), A2� = 1 ◦ A1�

}
,
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where U(1) = ([1, 2] [−2,−1] [−1, 4]). The set of optimal solutions of the solvable sub-problems
with an objective function obtained from S(1) is

{
H A⊺

1� + c | A1� ∈ U(1)
}

. For

A =

(
1 −1 2
2 0 3

)
∈ S(1) ∈ A,

the sub-problem with objective function F(x) = A ⊗ x is solvable. By a direct calculation, the

minimal value of F(x) is b =
1
6
(7 13)⊺, which is attained at the point

x∗(A, b) =
1
6
(1 13 − 5)⊺ = H A⊺

1� + c,

where H and c are given in (20).

5. Application Example

Bi-objective-interval-valued-optimization problems appear on many occasions in real-
life examples. This section takes the load-distribution problem as an example, to illustrate
how the obtained results work in practical applications.

Consider the distributed system with the task precedence graph shown in Figure 1,
in which an overall task is partitioned into 7 subtasks T1, T2, ..., T7, the circles represent
subtasks, the number inside each circle represents the corresponding task execution time,
and the number associated with each link corresponds to the interprocessor communication
time. It has been presented in Example 4 of Ref. [24] that the load-distribution problem can
be described by the multi-objective-optimization problem

min
x∈X

F(x), (21)

where X = {x ∈ R2
∣∣ 0.6x1 + 0.4x2 = 2}, F(x) = H ⊗ x and H⊺ =

(
10 5 17 25 35
10 5 17 25 35

)
.

The global minimum of problem (21) is b = (12 7 19 27 37)⊺, which is attained at the point
x∗(A, b) = (2 2)⊺. This implies that if the execution times of tasks T1 and T2 are both 2
units, then the completion times of tasks T3, T4, T5, T6 and T7 are 12, 7, 19, 27 and 37 units,
respectively. Moreover, the overall completion time is 37 units.

Figure 1. Task precedence graph of a distributed system [24].

Suppose that the entries of H⊺ can be varied in the interval

H⊺ =

(
[9, 11] [2, 6] [16, 18] [22, 27] [33, 38]
[8, 11] [4, 7] [15, 18] [23, 28] [32, 36]

)
:= A.
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Next, let us minimize the completion time of the overall task by solving the interval-
valued-optimization problem with coefficient matrix A. By a direct calculation,

α = max
j∈N5

{a2j/◦ ā1j} = max{−3,−2,−3,−4,−6} = −2,

ᾱ = min
j∈N5

{ā2j/◦a1j} = min{2, 5, 2, 6, 3} = 2.

Since α < ᾱ, it follows from Theorem 2 that the interval-valued-optimization problem
is solvable. This implies that the completion time of each subtask can be minimized
simultaneously. Let d = 2. By (17), the coefficient matrix of the objective function of the
lower extreme solvable sub-problem is

A(2) =
(

u
2 ◦ u

)
=

(
9 2 16 22 33
11 4 18 24 35

)
∈ A.

If the coefficient matrix of the objective function of problem (21) is changed to A(2)⊺,
then it follows from (6) that the global minimum is reduced to (11.8 4.8 18.8 24.8 35.8)⊺.
This implies that the completion time of each subtask is advanced through adjusting the
value of parameters within the allowable range A. Moreover, the overall completion time
is reduced from 37 to 35.8.

6. Conclusions

This paper investigated multi-objective optimization for interval max-plus linear
systems, which was formulated as an interval-valued-optimization problem. The strong
and weak solvabilities were studied based on the solvability of sub-problems. It was found
that the solvability of sub-problems is determined by the proportional relation of rows of
the coefficient matrix of the objective function. Such a characteristic is a key to establish
the solvability criteria for the interval-valued-optimization problem. A necessary and
sufficient condition for the strong solvability of the multi-objective-optimization problem
was established. For the bi-objective-optimization problem, a necessary and sufficient
condition of the weak solvability was provided, and all the solvable sub-problems were
found out. The interval optimal solution was obtained by constructing the set of all
optimal solutions of the solvable sub-problems. The bi-objective-optimization technique
was then used in load distribution, to advance the minimum completion time of the
distributed system.

The global-optimization problem studied in Ref. [24] is a specific sub-problem of the
interval-valued-multi-objective-optimization problem introduced. The interval model will
have extensive applications in engineering practice. The solvability of the interval-valued-
optimization problem with more than two objectives deserves further research.
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