
Citation: Vishnevsky, V.M.; Klimenok,

V.I.; Sokolov, A.M.; Larionov, A.A.

Investigation of the Fork–Join System

with Markovian Arrival Process

Arrivals and Phase-Type Service Time

Distribution Using Machine Learning

Methods. Mathematics 2024, 12, 659.

https://doi.org/10.3390/

math12050659

Academic Editors: Tadashi Dohi and

Antonio Di Crescenzo

Received: 9 November 2023

Revised: 13 February 2024

Accepted: 21 February 2024

Published: 23 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Investigation of the Fork–Join System with Markovian Arrival
Process Arrivals and Phase-Type Service Time Distribution
Using Machine Learning Methods
Vladimir Mironovich Vishnevsky 1,*,† , Valentina Ivanovna Klimenok 2,† , Aleksandr Mikhailovich Sokolov 1,†

and Andrey Alekseevich Larionov 1,†

1 Institute of Control Sciences of Russian Academy of Sciences, 117997 Moscow, Russia;
aleksandr.sokolov@phystech.edu (A.M.S.); larioandr@gmail.com (A.A.L.)

2 Department of Applied Mathematics and Computer Science, Belarusian State University,
220030 Minsk, Belarus; klimenok@bsu.by

* Correspondence: vishn@inbox.ru
† These authors contributed equally to this work.

Abstract: This paper presents a study of fork–join systems. The fork–join system breaks down each
customer into numerous tasks and processes them on separate servers. Once all tasks are finished,
the customer is considered completed. This design enables the efficient handling of customers.
The customers enter the system in a MAP flow. This helps create a more realistic and flexible
representation of how customers arrive. It is important for modeling various real-life scenarios.
Customers are divided into K ≥ 2 tasks and assigned to different subsystems. The number of tasks
matches the number of subsystems. Each subsystem has a server that processes tasks, and a buffer
that temporarily stores tasks waiting to be processed. The service time of a task by the k-th server
follows a PH (phase-type) distribution with an irreducible representation (βk, Sk), 1 ≤ k ≤ K. An
analytical solution was derived for the case of K = 2 when the input MAP flow and service time
follow a PH distribution. We have efficient algorithms to calculate the stationary distribution and
performance characteristics of the fork–join system for this case. In general cases, this paper suggests
using a combination of Monte Carlo and machine learning methods to study the performance of
fork–join systems. In this paper, we present the results of our numerical experiments.

Keywords: fork–join system; Markovian arrival process; phase-type distribution; stationary
performance characteristics; machine learning

MSC: 60K25

1. Introduction

Queueing systems with data partitioning and resynchronization (generally accepted
as fork–join systems) are natural models of various computer and communication sys-
tems, particularly systems that perform parallel computing, customer processing in dis-
tributed databases, and parallel disk access [1–4]. The key feature of these systems is that
after a customer enters the system, it is divided into a particular set of K tasks that are
serviced by K parallel servers. A customer leaves the system when all subsystems complete
all customer tasks. Thus, tasks corresponding to the same customer are joined before
departing the system, and, accordingly, the service time of a customer corresponds to the
maximum time spent in the system by one of the tasks.

In the case of infinite buffer, difficulties arise in calculating the joint stationary dis-
tribution of queue lengths, even under the most straightforward assumptions about the
nature of the input flow and service times. Finding such a distribution is the subject of [5],
where the case K = 2, infinite buffer to servers, stationary Poisson flow, and exponential

Mathematics 2024, 12, 659. https://doi.org/10.3390/math12050659 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12050659
https://doi.org/10.3390/math12050659
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7373-4847
https://orcid.org/0000-0002-3903-6444
https://orcid.org/0000-0002-3589-5700
https://orcid.org/0000-0003-0539-0442
https://doi.org/10.3390/math12050659
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12050659?type=check_update&version=2

Mathematics 2024, 12, 659 2 of 22

distributions of service times are considered. For such a system, a functional equation for
the generating function of the joint distribution of queue lengths is obtained, and questions
of the asymptotic behavior of joint probabilities are investigated. The results of [5] are used
in [6], where a formula is derived for the mean sojourn time in the mentioned system under
the simplifying assumption that the service rates on both servers are equal. In [7], the au-
thors consider a fork–join system with two subsystems and more general time distributions
between hyperexponential arrivals and the Erlang distribution of service times.

Due to the complexity of the problem of finding the sojourn time distribution in fork–
join systems, in most works, the authors limit themselves to analyzing only mean sojourn
time [5–8], in particular, finding upper or lower bounds for this time [9–11]. The overview
of research in this area until 2014 can be found in [12].

Extensive applications of fork–join systems not only in computing systems and net-
works with parallel services but also in other industries, including the banking sector,
medicine [13,14], and some others [15–18], stimulated further research in this area. The
authors in [19] considered a method for calculating the stationary distribution of a fork–join
system with a Markovian arrival, K ≥ 2 homogeneous servers characterized by an expo-
nential service time distribution, and infinite buffer, which involves solving a nonlinear
matrix integral equation and the truncation of the state space of the process describing
the operation of the system. The main results are obtained for the case K = 2. In [20], a
fork–join system with parallel servicing of customers (K = 2), Poisson input flow, and PH-
distribution of service time is considered. The conditions for a stationary mode, the main
characteristics of system performance, and analytical expressions for the lower and upper
bounds of the mean sojourn time in the system are found. An analysis of more general
cases of studying fork–join systems, particularly with an arbitrary distribution of service
time, was carried out in the literature only using approximate methods [21–24]. In the
articles [25,26], systems with multiple resources are explored. A distinctive feature of such
systems is that tasks from the customer simultaneously occupy a random number of servers.
It depends on the number of tasks in the customer. In the article [27], you can familiarize
yourself with the use of neural networks for the analysis of fork–join systems and other
complex problems of queuing theory (for example, [28,29]).

The previous review showed that, despite using K = 2 and making basic assumptions
about the input flow and service time, a detailed analytical solution for determining the
stationary characteristics of a fork–join system was not found. This article is important
because it analyzes a fork–join system, considering the different assumptions about input
flows and service time distribution. This research holds significant practical and theoretical
value, making it truly novel and original. This work holds both practical and theoretical
significance, marking a crucial advancement in the field. For the case where K = 2, we
obtained analytical expressions for the probability of losses, average queue length, and the
distribution function of the response time for the first time. If K ≥ 2, a new method is
created and used. This method combines machine learning and the Monte Carlo methods.
It efficiently calculates the characteristics of a complex fork–join system on a large scale. It is
particularly useful for building real systems that require effective parallel task management.

This paper considers the various architectures of fork–join systems in more general
assumptions about input flow and the distribution of service times. Customers enter the
system according to the Markovian arrival process (MAP). Service times have a phase
distribution (PH distribution). We organized the article as follows. Section 2 presents
the problem statement. Section 3 is devoted to implementing a mathematical algorithm
for calculating the stationary distribution and characteristics for the particular case of a
fork–join system with K = 2 with an input MAP flow and PH—service time distribution.
Section 4 describes a method for solving the general problem of studying a fork–join system
using simulation and machine learning methods. Section 5 presents the numerical results
of the study.

Mathematics 2024, 12, 659 3 of 22

2. Problem Statement

We consider a fork–join queueing system with K ≥ 2 servers in parallel (see Figure 1).
Customers enter the system in a Markovian arrival process (MAP), which is specified by
the underlying process νt, t ≥ 0, which is a Markov chain with the state space {0, 1, . . . , W},
and the matrices D0 and D1. The non-diagonal entries of the matrix D0 are the rates
of transitions of the chain νt, t ≥ 0, which are not accompanied by the generation of a
customer, while the entries of the matrix D1 are the rates of transitions of the chain which
are accompanied by the generation of a customer. The matrix D(1) = D0 + D1 represents
an infinitesimal generator of the chain νt, t ≥ 0. The arrival rate λ is defined as λ = θD1e,
where θ is a vector of the stationary distribution of the process νt, which is defined as the
unique solution of the system of linear algebraic equations θD(1) = 0, θe = 1. Here and
further, e is a column vector consisting of ones, and 0 is a row vector consisting of zeros.
A more detailed description of the MAP can be found, for example, in [30,31].

An arriving customer entering the system forks into K tasks to be served in K inde-
pendent subsystems G1, G2, . . . , Gk. The service time of a task by the k-th server has a PH
(phase-type) distribution with an irreducible representation (βk, Sk). This means that the

service process on the k-th server is managed by the Markov chain m(k)
t , t ≥ 0, with the

state space {1, . . . , M(k), M(k) + 1}, where the state M(k) + 1 is an absorbing one. The rates
of transitions in the set of unessential states are given by the matrices Sk and the transition
rates to absorbing states are given by the vectors S(k)

0 = −Ske. More details about the PH
can be found, for example, in [31,32]. A customer that arrives when the buffer of one of
the systems Gi, i = 1, 2, . . . , K is full leaves the system without a service (it is considered
to be lost). A customer accepted into the system leaves the system as soon as all servers
complete their task services. Thus, tasks corresponding to the same customer are joined
before departing the system.

The main stationary characteristics of the performance of the described fork–join
system are found, including the sojourn time in the system, average queue lengths, and the
loss probability of customers.

Figure 1. A fork–join system when a customer consists of K > 2 tasks.

3. Study of the Characteristics of a Fork–Join System with Parallel Servicing of Tasks
(K = 2)

The analysis of this particular case is of theoretical interest, because the study of such
a system under the assumption of an incoming MAP flow and a PH distribution of service
time has not been previously considered in the literature. In addition, the numerical results
of this section will be used to validate a simulation model that describes the functioning of
the general fork–join system (K ≥ 2) considered in this article.

Mathematics 2024, 12, 659 4 of 22

3.1. Markov Chain Describing the Process of System Functioning

Assume that the first service device (k = 1) has infinite buffer, and the capacity of the
second (k = 2) is limited.

At time t, let the following:

• it denotes the number of tasks in the subsystem G1, i ≥ 0;
• jt denotes the number of tasks in the subsystem G2, j = 0, J;
• νt denotes the states of the underlying process of the MAP, νt = 0, W;

• m(k)
t denotes the states of underlying process of the PH service process on the kth

server, m(k)
t = 1, M(k), k = 1, 2.

The operation of the system is described by a regular irreducible Markov chain ξt, t ≥ 0,
with the state space

Ω = {(0, 0, ν), ν = 0, W}
⋃
{(i, 0, ν, m(1)), i > 0, ν = 0, W, m(1) = 1, M(1)}

⋃
{(0, j, ν, m(2)), j = 0, J, ν = 0, W, m(2) = 1, M(2)}

⋃
{(i, j, ν, m(1), m(2)), i > 0, j = 1, J, ν = 0, W, m(1) = 1, M(1), m(2) = 1, M(2)}.

Let us arrange the states of the chain ξt in the lexicographic order and denote by
Qi,i′ the matrix of transition rates of the chain from the states with the value i of the first
component to the states with the value i′ of this component. We also denote by Qr the
matrix that is defined as Qr = Qi,i+r−1, i ≥ 1, r ≥ 0.

To proceed to writing the infinitesimal generator Q of the Markov chain ξt, t ≥ 0, we
introduce the following notations:

• I (O) is an identity (zero) matrix;
• W̄ = W + 1;
• ⊗(⊕) is a symbol of the Kronecker product (sum) of matrices;
• diag {Zl , l = 1, L } is a diagonal matrix with diagonal blocks Zl ;
• diag−{Zl , l = 0, L} is a sub-diagonal matrix with sub-diagonal blocks Zl ;
• diag+{Zl , l = 0, L} is an over-diagonal matrix with over-diagonal blocks Zl ;

Lemma 1. The infinitesimal generator Q of the Markov chain ξt, t ≥ 0, has a block tridiago-
nal structure

Q =

Q0,0 Q0,1 O O O . . .
Q1,0 Q1 Q2 O O . . .
O Q0 Q1 Q2 O . . .
O O Q0 Q1 Q2 . . .
...

...
...

...
...

. . .

;

where non-zero blocks Qi,i′ have the following form:

• Q0,0 is a square matrix of size W̄(1 + JM2),

Q0,0 = diag{D0, D0 ⊕ S2, D0 ⊕ S2, . . . , D0 ⊕ S2, D(1)⊕ S2}+

diag−{IW̄ ⊗ S(2)
0 , IW̄ ⊗ S(2)

0 β2, IW̄ ⊗ S(2)
0 β2, . . . , IW̄ ⊗ S(2)

0 β2};

• Q0,1 is a matrix of size W̄(1 + JM2)× W̄M1(1 + JM2),

Q0,1 = diag+{D1 ⊗ β1 ⊗ β2 D1 ⊗ β1 ⊗ IM2 , D1 ⊗ β1 ⊗ IM2 , . . . , D1 ⊗ β1 ⊗ IM2};

• Q1,0 is a matrix of size W̄M1(1 + JM2)× W̄(1 + JM2),

Q1,0 = diag{IW̄ ⊗ S(1)
0 , IW̄ ⊗ S(1)

0 ⊗ IM2 , IW̄ ⊗ S(1)
0 ⊗ IM2 , . . . , IW̄ ⊗ S(1)

0 ⊗ IM2};

Mathematics 2024, 12, 659 5 of 22

• Q0 is a square matrix of size W̄M1(1 + JM2),

Q0 = diag{IW̄ ⊗ S(1)
0 , IW̄ ⊗ S(1)

0 β1 ⊗ IM2 , IW̄ ⊗ S(1)
0 β1 ⊗ IM2 , . . . , IW̄ ⊗ S(1)

0 β1 ⊗ IM2};

• Q1 is a square matrix of size W̄M1(1 + JM2),

Q1 = diag{D0 ⊕S(1), D0 ⊕S1 ⊕S2, D0 ⊕S1 ⊕S2, . . . , D0 ⊕S1 ⊕S2, D(1)⊕S1 ⊕S2}+

diag−{IW̄M1
⊗ S(2)

0 , IW̄M1
⊗ S(2)

0 β2, IW̄M1
⊗ S(2)

0 β2, . . . , IW̄M1
⊗ S(2)

0 β2};

• Q2 is a square matrix of size W̄M1(1 + JM2),

Q2 = diag+{D1 ⊗ IM1 ⊗ β2, D1 ⊗ IM1 M2 , D1 ⊗ IM1 M2 , . . . , D1 ⊗ IM1 M2}.

Proof. We represent each of the matrices Qi,i′ in the block form Qi,i′ = (Qi,i′)j,j′=0,J and
explain the probabilistic meaning of their blocks.

The matrix Q0,0 describes the rates of transitions of the Markov chain ξt, t ≥ 0, that do
not lead to an increase in the number of tasks in the subsystems G1 and G2. In this matrix
(Q0,0)j,j′ = O, j′ > j, j′ < j − 1, and the others blocks are described as follows:

(Q0,0)0,0 contains the rates of transitions of the chain ξt caused by the idle transitions
of the MAP (the rates are described by the matrix D0);

(Q0,0)j,j−1, j = 1, J, contains the rates of transitions of the chain ξt accompanied by the

end of servicing on server 2 (the rates describe the matrix IW̄ ⊗ S(2)
0 , if j = 1, and the matrix

IW̄ ⊗ S(2)
0 β2, if j > 1);

(Q0,0)j,j, j = 1, J − 1, contains the rates of transitions of the chain ξt, that do not lead
to the arrival of a customer in the MAP or the completion of the service on server 2.
Such transitions are made during idle transitions of the underlying process MAP or the
underlying process of the service on server 2 (the rates are described by the matrix D0 ⊕ S2);

(Q0,0)J,J contains the rates of transitions of the chain ξt that are caused by a change
in the state of the underlying process of the MAP (accompanied or not accompanied by
the arrival of a customer) or idle transitions of the underlying process of the PH service on
server 2 (the rates are described by the matrix D(1)⊕ S2);

The matrix Q0,1 = (Q0,1)j,j′=0,J describes the rates of transitions of the Markov chain
ξt which entail the arrival of a customer in the MAP. It has a block over-diagonal structure,
where, for j = 0, the over-diagonal blocks describe the transitions of the underlying process
of the MAP accompanied by the establishment of the initial phase of the service processes
on the first and on the second servers (the matrix D1 ⊗ β1 ⊗ β2)) or, for 0 < j < J, transitions
of the underlying process of the MAP accompanied by the establishment of the initial
phase of the service process on the first server and an increase in the queue in the system
G2 by one (the matrix D1 ⊗ β1 ⊗ IM2).

The matrix Q1,0 describes the rates of transitions of the Markov chain ξt that lead to
the completion of the service on the second server ((the rates are described by the matrix
IW̄ ⊗ S(1)

0 , if j = 1, and by the matrix IW̄ ⊗ S(1)
0 β1 ⊗ IM2 , if j > 1);

The blocks Q0, Q1, Q2 of the generator are described similarly to the blocks
Q1,0, Q0,0, Q0,1 but taking into account the fact that, at the time of the chain transition,
the system G1 is not empty.

Corollary 1. The process ξt, t ≥ 0, belongs to the class of quasi- birth-and-death (QBD) processes.
Proof of the corollary follows from the structure of the infinitesimal generator and the definition of a
quasi- birth-and-death process given in [32].

Mathematics 2024, 12, 659 6 of 22

3.2. Ergodicity Condition

The criterion for the existence of a stationary regime in the system under consideration
coincides with the necessary and sufficient condition for the ergodicity of the Markov chain
ξt, t ≥ 0. This condition is defined in the following theorem.

Theorem 1. The necessary and sufficient condition for the ergodicity of the Markov chain ξt, t ≥ 0,
is the fulfillment of the inequality

λ(1 − yJe) < µ1, (1)

where

yJ =
(λ

µ2
)J/J!

J
∑

j=0
(λ

µ2
)j/j!

. (2)

Proof. According to [33], a necessary and sufficient condition for ergodicity is the fulfill-
ment of the inequality

xQ2e < xQ0e, (3)

where the stochastic vector x is a solution to a system of linear algebraic equations

x(Q0 + Q1 + Q2) = 0, (4)

xe = 1.

Let us represent the vector x in the form x = (x0, x1, . . . , xJ), where the vector x0 has
order an of W̄M1 and vectors xj, j = 1, J have orders W̄M1M2. Then, taking into account
the expressions for the blocks Q0, Q1, Q2, specified in Lemma 1, the system (4) will be
written as

x0 A0 + x1(IW̄M1
⊗ S(2)

0) = 0

xj−1(D1 ⊗ IM1 ⊗ β2) + xj A + xj+1(IW̄M1
⊗ S(2)

0 β2) = 0, j = 1, J − 1, (5)

xJ−1(D1 ⊗ IM1 ⊗ β2) + xJ(A + D1 ⊗ IM1 M2) = 0,

where
A0 = IW̄ ⊗ (S1 + S(1)

0 β1) + D0 ⊗ IM1 ,

A = IW̄ ⊗ (S1 + S(1)
0 β1)⊗ IM2 + D0 ⊗ IM1 M2 + IW̄M1

⊗ S2.

Let us now represent the vectors xj in the form x0 = θ⊗ y0, xj = θ⊗ yj ⊗ δ2, j = 1, J,
where θ is the stationary vector of MAP, δ2 is a stationary vector PH2, i.e., is the only
solution to the system δ2(S2 + S(2)

0 β2) = 0, δ2e = 1, and vectors yj of order M1 satisfy the

normalization equation
J

∑
j=0

yje = 1. We use these expressions in the equations of system (5),

having previously multiplied the first equation by eW̄ ⊗ IM1 , and each of the subsequent
equations on eW̄ ⊗ IM1 ⊗ eM2 .

Taking into account the relations θe = 1, −θD0e = θD1e = λ, µ2 = δ2S(2)
0 , we reduce

system (5) to the following system for vectors yj:

y0[−λIM1 + S1 + S(1)
0 β1] + y1µ2 = 0

yj−1λIM1 + yj[(S1 + S(1)
0 β1)− λIM1 − µ2 IM1] + yj+1µ2 = 0, j = 1, J − 1, (6)

yJ−1λ + yJ [(S1 + S(1)
0 β1)− µ2 IM1] = 0.

Mathematics 2024, 12, 659 7 of 22

Next, we multiply the equations of system (6) on the right by eM1 . As a result, we are
convinced that the probabilities yje, j = 0, J, satisfy the system of equilibrium equations
for the process of death and reproduction with death rates µ2 and reproduction rates λ.
Having added the normalization equation, we come to the conclusion that the probability
yJe present on the left side of (8) has the form (2).

Now, consider inequality (3), which specifies the ergodicity condition. Our goal in
this inequality is to move from vectors xj to vectors yj, whose order is W̄M2 times smaller,
and to simplify this inequality as much as possible.

We use the representation xj = θ⊗ yj ⊗ δ2 and substitute the vectors xj, in this form,
into the inequality (3). Then, taking into account the form of the blocks Q0, Q2 of the
generator specified in Lemma 1, we reduce inequality (3) to the form

J−1

∑
j=0

θD1eyje <
J

∑
j=0

yjS
(1)
0 . (7)

Taking into account the relations θD1e = λ,
J−1
∑

j=0
yje = 1− yJe,

J
∑

j=0
yj = δ1, µ1 = δ1S(1)

0 ,

let us transform inequality (7) into the form

λ(1 − yJe) < µ1. (8)

Then, taking into account the notation yJ = yJe, inequality (8) is reduced to form (1).

Remark 1. The left-hand side of inequality (1) is a rate of the flow of customers accepted into the
system, and the right-hand side is a rate of the output flow from the first server (serving an infinite
buffer) under overload conditions. It is clear that, for the existence of a stationary regime in the
system, it is necessary and sufficient that the first of the mentioned rates is less than the second one.
Inequality (1) can be rewritten in terms of the system load factor, ρ,

ρ =
λ(1 − yJ)

µ1
< 1. (9)

3.3. Stationary Distribution and Performance Measures

Denote by pi, i ≥ 0 the vectors of the stationary probabilities of the Markov chain
ξt, t ≥ 0, corresponding to the state i of the first component. To find these vectors, we use
a special algorithm for calculating the stationary distribution of a quasi-birth-and-death
process [32,33].

Formulas for calculating stationary probability vectors are as follows (Algortihm 1):

Algorithm 1 Formulas for calculating stationary probability vectors.

pi = p1Ri−1, i ≥ 1,

where the matrix R is the minimal non-negative solution of the matrix equation

R2Q0 +RQ1 + Q2 = O,

and vectors p0 and p1 are the only solutions to the following system of linear algebraic
equations

p0Q0,0 + p1Q1,0 = 0,

p0Q0,1 + p1(Q1 +RQ0) = 0,

p0e + p1(I −R)−1e = 1.

Mathematics 2024, 12, 659 8 of 22

Having calculated the stationary distribution pi, i ≥ 0, we can calculate a number of
performance measures of the system under consideration.

• Joint distribution of the number of tasks in the subsystems G1 and G2

p0,0 = p0

(
eW̄

0T
JW̄M2

)
. p0,j = p0

 0T
W̄[1+(j−1)M2]

eW̄M2
0T

W̄(J−j)M2

, i = 0, j = 1, J.

pi,0 = pi

(
eW̄M1

0T
JW̄M1 M2

)
, i > 0. pi,j = pi

 0T
W̄M1[1+(j−1)M2]

eW̄M1 M2
0T

W̄(J−j)M1 M2

, i > 0, j = 1, J.

• Stationary distribution of the number of tasks in the subsystem G1

pi = pie, i ≥ 0.

• Average number of tasks in the subsystem G1

L1 =
∞

∑
i=1

ipi.

• Variance of the number of tasks in the subsystem G1

D1 =
∞

∑
i=1

i2 pi − L2.

• Stationary distribution of the number of tasks in the subsystem G2

qj =
∞

∑
i=0

pi,j.

• Average number of customers in the subsystem G2.

L2 =
J

∑
j=1

jqj.

• Row vector of joint probabilities that the subsystem G1 is empty and the MAP is in
the state ν, ν = 0, W,

κ0 = p0

(
IW̄

IW̄ ⊗ eJM2

)
.

• Row vector of joint probabilities that there are j > 0 tasks in the subsystem G1,
the MAP is in the state ν, and the service process on server 1 is in the state m1,
ν = 0, W, m1 = 1, M1,

κi = pi

(
IW̄M1

IW̄M1
⊗ eJM2

)
, i > 0.

• Row vector of joint probabilities that the usbsystem G2 is empty and the MAP is in
the state ν, ν = 0, W

γ0 = p0

(
IW̄

OW̄ JM2×W̄

)
+

∞

∑
i=1

pi

(
IW̄ ⊗ eM1

OW̄ JM1 M2×W̄

)
.

Mathematics 2024, 12, 659 9 of 22

• Row vector of joint probabilities that there are j > 0 tasks in the subsystem G2,
the MAP is in the state ν, and the service process on server 2 is in the state m2,
ν = 0, W, m2 = 1, M2,

γj = p0

OW̄×W̄M2

OW̄(j−1)M2×W̄M2

IW̄M2
OW̄(J−j)M2×W̄M2

+
∞

∑
i=1

pi

OW̄M1×W̄M2

OW̄(j−1)M1 M2×W̄M2

IW̄ ⊗ eM1 ⊗ IM2

OW̄(J−j)M1 M2×W̄M2

, j = 1, J.

• Loss probability

Ploss =
1
λ

γJ(D1 ⊗ IM2)e.

3.4. Sojourn Time of Tasks in the Subsystems G1 and G2

Denote by Vk(t) the stationary distribution function of the sojourn time of a task ac-

cepted into the usbsystem Gk and by vk(u) =
∞∫

t=0
e−utdVk(t), Re u ≥ 0, the Laplace–Stieltjes

transform of this distribution function, k = 1, 2. Using the probabilistic interpretation of the
Laplace–Stieltjes transform and the total probability formula, we can write the following
expressions for the functions v1(u) and v2(u).

v1(u) =
1
λ

[
κ0D1eχ1(u) +

∞

∑
i=1

κi(D1e ⊗ IM1)(uI − S1)
−1S(1)

0 [χ1(u)]i
]

, Re u ≥ 0.

v2(u) =
1
λ

[
γ0D1eχ2(u) +

J−1

∑
j=1

γj(D1e ⊗ IM2)(uI − S2)
−1S(2)

0 [χ2(u)]j
]

, Re u ≥ 0.

The average value v̄k of the sojourn time of a customer accepted into the subsystem Gk

is calculated by the well-known formula v̄k = − v1(u)
du |u=0. After differentiation, we obtain

the following expressions for v̄k, k = 1, 2 :

v̄1 =
1
λ

{
[κ0 +

∞

∑
i=1

iκi(IW̄ ⊗ eM1)]D1eb1 −
∞

∑
i=1

κi(D1 ⊗ S−1
1)e

}
,

v̄2 =
1
λ

{
[γ0 +

J−1

∑
j=1

jγj(IW̄ ⊗ eM2)]D1eb2 −
J−1

∑
j=1

γj(D1 ⊗ S−1
2)e

}
.

Also note that any initial moment of the sojourn time of order l > 0 for the subsystem Gk
can be calculated by the formula

v̄(l)k = (−1)l dvl
k(u)

dul |u=0, k = 1, 2, l > 0.

3.5. Sojourn Time of a Customer in the System

In this section, we consider the average sojourn time of a customer in the system from
the moment it arrives to the moment when tasks corresponding to the same customer are
joined before departing the system. Denote this average as V̄. Below, we derive the lower
and upper bounds for V̄. In doing so, we take into account the following considerations.

(1). The average V̄ is not less than the average value of the maximum service times,
V̄max,service(G1, G2), of tasks belonging to the same customer.

(2). The average V̄ is not greater than the average value of the maximum sojourn
times of tasks belonging to the same customer, V̄max,sojourn(G1, G2), if we assume that the
subsystems G1 and G2 are independent.

(3). The average sojourn time in the subsystem G2, V̄(G2), is not greater than the
average sojourn time in the similar subsystem Ĝ2 having an infinite buffer, V̄(Ĝ2).

Mathematics 2024, 12, 659 10 of 22

(4). The average sojourn time in the subsystem G1 where the original MAP is thinned
out due to the finite buffer in the subsystem G2, V̄(G1) is no more than the average sojourn
time in the similar subsystem Ĝ1 with an infinite buffer and the original MAP.

From point 1, it follows that

V̄ ≥ V̄max,service(G1, G2). (10)

Let us calculate the right-hand side of inequality (10).
Let ζk be a random variable equal to the service time on the first server, k = 1, 2.

Then, the average V̄max,service(G1, G2) is equal to the average value of the random variable
ζ = max{ζ1, ζ2}. Taking into account that the service times on the servers of subsystems
G1 and G2 are independent random variables, it is easy to see that the distribution function
Φ(t) of the random variable ζ is found as Φ(t) = Pr(ζ < t) = Pr(ζ1 < t, ζ2 < t) =
(1 − β1eS1te)(1 − β2eS2te). Let us now calculate the mean value of the random variable ζ.

V̄max,service(G1, G2) =

∞∫
0

tdΦ(t) =

∞∫
0

td[(1 − β1eS1te)(1 − β2eS2te)] =

= −
∞∫

t

t[β1S1eS1te(1 − β2eS2te) + (1 − β1eS1te)β2S2eS2te] =

= −
∞∫

0

tβ1S1eS1te +

∞∫
0

tβ1S1eS1teβ2eS2te)−
∞∫

0

tβ2S2eS2te +

∞∫
0

tβ1eS1teβ2S2eS2te =

= −
∞∫

0

tβ1S1eS1te +

∞∫
0

tβ1S1eS1teβ2eS2te)−
∞∫

0

tβ2S2eS2te +

∞∫
0

tβ1eS1teβ2S2eS2te) =

{ ∞∫
0

tβ1S1eS1teβ2eS2te) =
∞∫

0

tβ1S1eS1te ⊗ β2eS2te) = (β1 ⊗ β2)(S1 ⊗ IM2)

∞∫
0

te(S1⊕S2)tdte =

= (β1 ⊗ β1)(S1 ⊗ IM2)(S1 ⊕ S2)
−2e = (β1S1 ⊗ β2)(S1 ⊕ S2)

−2e
}

=

= [β1(−S1)
−1 + β2(−S2)

−1 + (β1S1 ⊗ β2)(S1 ⊕ S2)
−2 + (β1 ⊗ β2S2)(S1 ⊕ S2)

−2]e. (11)

Furthermore, from points 2–4, the following inequalities follow

V̄ ≤ V̄max,sojourn(G1, G2) ≤ V̄max,sojourn(Ĝ1, Ĝ2). (12)

The systems Ĝ1, Ĝ2 introduced above are MAP/PH/1 systems that differ only in the
parameters of the service time distribution. The distribution of the service time in the
system Ĝk is described by an irreducible representation (βk, Sk), k = 1, 2. Let us find an
upper bound, V̄max,sojourn(Ĝ1, Ĝ2), of the desired average, V̄, as the average of the maximum
of sojourn times in the systems Ĝ1 and Ĝ2. It is known, as can be seen in [33], that the
sojourn time in the system MAP/PH/1 has a PH distribution. Denote the irreducible
representation of this distribution for the system Ĝk as (τk, Tk), k = 1, 2. To calculate the
upper bound V̄max,sojourn(Ĝ1, Ĝ2), we will use the proof similar to that for formula (12).
As a result, we obtain the following relations:

V̄max,sojourn(Ĝ1, Ĝ2) =

∞∫
0

td(1 − τ1eT1te)(1 − τ2eT2te) =

Mathematics 2024, 12, 659 11 of 22

= [τ1(−T1)
−1 + τ2(−T2)

−1 + (τ1T1 ⊗ τ2)(T1 ⊕ T2)
−2 + (τ1 ⊗ τ2T2)(T1 ⊕ T2)

−2]e. (13)

Next, it is necessary to obtain expressions for the parameters τk, Tk, k = 1, 2, of the
sojourn time distributions in the systems Ĝ1 and Ĝ2. These expressions were obtained
in [33] and will be given below for the convenience of the reader. Since all further results
on finding the sojourn time are valid for any system MAP/PH/1, including the systems
Ĝ1 and Ĝ2, in order to avoid cumbersome expressions, we will omit the index k in the
notation βk, Sk, τk, Tk. That is, we will consider the distribution of the sojourn time in the
MAP/PH/1 system with MAP given by the matrices D0, D1 and PH, and the service time
distribution given by the Mth-order representation (β, S).

According to [33], when deriving expressions for the parameters τ, T, the blocks of
the Markov chain generator describing the operation of the system MAP/PH/1 are used.
This generator looks like

A =

A0,0 A2 O O . . .
A0 A1 A2 O . . .
O A0 A1 A2 . . .
...

...
...

...
. . .

,

where
A0,0 = D0 ⊗ IM, A0 = D1 ⊗ IM, A1 = D0 ⊕ S, A2 = IW̄ ⊗ (S0β).

Denote by πi, i ≥ 0, the vectors of the stationary distribution of the system states
at an arbitrary time. The vectors πi, i ≥ 0, are calculated using an algorithm similar to
Algorithm 1 with minimal changes. For the convenience of the reader, we present this
algorithm below (Algorithm 2).

Algorithm 2 The vectors of the stationary state probabilities of the MAP/PH/1 system.

πi = π0Ri, i ≥ 0,

where the matrix R is the minimal non-negative solution of the matrix equation

R2 A0 + RA1 + A2 = O,

and the vector π0 is the unique solution of the following system of linear algebraic
equations

π0(A0,0 + RA0) = 0, π0(I − R)−1e = 1.

Next, we use the results of [33] for the sojourn time in the queueing system, the op-
eration of which is described by the general QBD process. According to these results,
the indicated sojourn time has a PH distribution, the parameters of which are defined
in [33]. In our case, we modify these results to the case of the MAP/PH/1 system, which
is a special case of the system considered in [33]. Taking into account this difference, we
derive the following statement.

Statement 1. The sojourn time in the system MAP/PH/1 under consideration has a PH distri-
bution with an irreducible representation (τ, T), where the row vector τ and the square matrix T
have orders (W̄M)2 and are calculated by the following formulas:

τ = ζT(IW̄M ⊗ ∆̂), T = (A1 + A2)⊗ IW̄M + A0 ⊗ ∆̂−1R̂T∆̂, (14)

Mathematics 2024, 12, 659 12 of 22

where

ζ =

ζ1
ζ2
ζ3
...

ζW̄M

, (15)

ζl is a column vector of order W̄M whose lth entry is equal to one and the remaining entries are
equal to zero, ∆̂ -diagonal matrix of order W̄M, whose diagonal entries are equal to the corresponding
entries of the vector

η̂ = {π0 A2[I + (A1 + RA0)
−1 A2]

−1e}−1π0 A2(I − R̂)−1, (16)

where the matrix R̂ is calculated as

R̂ = −(A1 + RA0)
−1 A2. (17)

Corollary 2. The upper bound V̄max,sojourn(Ĝ1, Ĝ2) is calculated by formula (13), where the vectors
τk and the matrices Tk, k = 1, 2, are defined by formulas (14)–(17) in which all occurring notations
(except W̄) are provided with the index k.

Thus, it follows from formulas (10)–(13) that the lower and upper bounds for mean sojourn
time, V̄, in the fork–join queue under consideration are defined from the following inequalities:

[β1(−S1)
−1 + β2(−S2)

−1 + (β1S1 ⊗ β2)(S1 ⊕ S2)
−2 + (β1 ⊗ β2S2)(S1 ⊕ S2)

−2]e ≤

V̄ ≤

[τ1(−T1)
−1 + τ2(−T2)

−1 + (τ1T1 ⊗ τ2)(T1 ⊕ T2)
−2 + (τ1 ⊗ τ2T2)(T1 ⊕ T2)

−2]e, (18)

where the vectors τk and the matrices Tk, k = 1, 2, are defined by Statement 1 and Corollary 2.

4. Study of General Fork–Join Systems

In the previous section, we obtained the analytical solution only when the customer
consisted of two tasks. It is a complex problem to obtain a similar solution for the general
case K > 2 even with the most straightforward assumptions about the incoming flow of
customers and the distribution of the task’s service time (the Poisson incoming flow and
exponential service time). Such a solution and the corresponding algorithms and programs
for finding numerical results are necessary for using the fork–join model of systems for
practical applications.

The Monte Carlo method takes several seconds to several minutes to calculate the
performance characteristics of the fork–join system depending on the input parameters
and the required accuracy. This method has proven itself well when solving a direct
problem, i.e., when all the system’s characteristics are known, and it is necessary to find
the performance characteristics of the system. In system design problems in which the
inverse problem is solved, to select a system based on initial performance characteristics
and find optimal characteristics for it, it is necessary to go through many different options,
using, for example, the branch and bound method. Using the Monte Carlo method in
this case can take significant time and computational resources. In order to accelerate the
production of results and find quick performance estimates, in this article, we suggest a
combined approach based on the Monte Carlo method and machine learning (ML) to find
the performance characteristics of a general fork–join system.

Figure 2 shows a diagram using the combined method. Within the framework of
this scheme, at the first stage, an algorithm and software package is implemented in
Python to obtain numerical results for assessing the performance characteristics of the
fork–join system (K = 2), the description of which is given in Section 3. We used these
numerical results to validate the simulation model for a fork–join system of general form
(K ≥ 2) developed at the second stage. We used the open source library Pyqumo when

Mathematics 2024, 12, 659 13 of 22

we developed the simulation model (Monte Carlo method). The library is available at the
link https://github.com/ipu69/pyqumo (accessed on 8 November 2023). After that, we
generated synthetic data for training ML algorithms.

Figure 2. Scheme of a combined method for calculating the performance characteristics of a fork–join
system using Monte Carlo and ML methods.

The following section will provide a detailed description of the implementation of the
Monte Carlo method and the use of ML algorithms to predict the performance of a general
fork–join system.

4.1. Description of Simulation Model of a General Type Fork–Join System

The discrete-event model allows us to obtain accurate results by modeling many
events. There are events such as the generation of new customer, the processing of task,
and the servicing and joining of tasks. All events are in a priority queue and sorted by the
event’s time. Thus, time in the model changes in jumps. After the occurrence of an event,
the time inside the model will change to the time of the next event.

The selection of the next event and the generation of the subsequent one is carried out
until the required accuracy is achieved or the required number of customers is generated.
Sometimes, a time limit is set for executing the simulation model. The algorithm for
executing the simulation model (the Monte Carlo method) is shown in Figure 3.

Figure 3. Operation scheme of the simulation model (Monte Carlo method).

The input parameters for the simulation model are as follows:

• MAP, which is specified by the matrices D0 and D1;
• An array of PHk distributions, each of which consists of both the Sk and βk matrices,

the size of array equals to subsystems number;
• An array of buffer sizes Rk for each server, the size of array equals to subsystems number.

To validate the simulation model, we used the implementation of the analytical model
of Section 3 and compared the results of their execution.

https://github.com/ipu69/pyqumo

Mathematics 2024, 12, 659 14 of 22

4.2. Description of the Machine Learning Model

In this section, we describe machine learning methods to predict various characteristics
of a fork–join system. We built models to estimate the system response time and the
probability of losing a customer.

The main problem when using ML models to predict the performance of a fork–join
system is the parameterization of the distributions. As noted in the article, MAP and PH
distributions have a matrix representation. In addition, to specify systems, it is necessary to
specify the PH distribution for each service. To parameterize MAP, we used the following
parameters: intensity (λa), coefficient of distribution asymmetry (γa), coefficient of variation
(cva), and distribution lag (l). Next, we used the MAP recovery algorithm described in [34].
A similar algorithm was used to restore PH on each server. To restore the PH distributions,
It is necessary to know the following parameters: intensity (λs), coefficient of variation
(cvs), and asymmetry coefficient (γs). A similar method is used for recovery [34,35]. When
parameterizing the K distributions in the model, we added several restrictions:

• All PH distributions have the same cvs and γs;
• The buffer capacity of all subsystems is the same;
• To set the intensity of distributions, two schemes are used: in the first, λsmax and λsmin

are specified, and the dependence λ(i) is restored using 2 points, where i is the index
of server, λ(1) = λsmin, and λ(K) = λsmax, the remaining values i = 2, . . . , K − 1 are
calculated from the resulting equation. In the second case, λsmax and λsmin are also
generated. The share of slow servers is also generated, whose intensity is equal to
λsmin, and the remaining servers have an intensity of λsmax, respectively.

Thus, the features when training ML algorithms were as follows:

• λa—intensity of the MAP;
• cva—coefficient of variation of MAP;
• γa—coefficient of asymmetry of MAP;
• la—MAP distributions lag ;
• cvs—coefficient of variation of PH distribution;
• γs—coefficient of asymmetry of PH distribution;
• λsmin—minimum intensity of PH distribution;
• λsmax—maximum intensity of PH distribution;
• K—the number of tasks that the customer contains, and the number of subsystems;
• R—buffer capacity for servers;
• N—number of slow servers (0 ≤ N ≤ K).

Figure 4 shows the complete data preparation cycle for training ML models. In the
first stage, a dataset is generated; the intervals for each characteristic are given in Table 1.
To transfer the parameters to the simulation model, MAP and PH distributions are re-
stored. After restoring the distributions, we calculated characteristics using the Monte
Carlo method.

Figure 4. Scheme for generating a dataset for training ML models.

Mathematics 2024, 12, 659 15 of 22

Table 1. Table of limits within which the value of each model parameter was generated.

Parameter Minimum Value Maximum Value

λa 0.1 50
cva 0.1 5
γa 0 100
la 0.5 1

cvs 0.1 5
γs 1 100

λsmin 0.1 50
λsmax λsmin 50

K 1 32
R 0 20
N 0 K

5. Results of Numerical Research

This section presents numerical results obtained during the study of fork–join systems.
At the beginning, we present the results of the validation of the simulation model using an
analytical solution for K = 2. We also present the time it takes to find stationary character-
istics of the system depending on the parameters: buffer size, order of the input MAP flow,
orders of distributions PH1, and PH2. The remainder describes the results obtained using
the combined method to predict the probability of loss and system sojourn time.

The analytical model was implemented in Python language using the Numpy library.
The ML algorithms were trained in Jupyter-Lab. We used scikit-learn and PyTorch li-
braries. The research results are available at https://github.com/ipu69/queues-fork-join
(accessed on 8 November 2023).

5.1. Validation of Monte Carlo Method Implementation

As noted in the previous section, the implementation of the analytical calculation of a
particular case of the fork–join system for K = 2 was used to validate the implementation of
the Monte Carlo method for calculating the characteristics of an arbitrary system. A feature
of the calculation of the analytical model is the significant time required to calculate
the characteristics.

Figure 5 shows the dependence of the time of calculating characteristics analytically
depending on various system parameters: MAP size, PH size, and buffer size. The depen-
dence on the size of MAP and PH is power-law, and on the buffer size, it is linear. This is
due to the dependence of the block sizes Qi,j on the matrices D0,1, S1,2 and the dependence
of the number of blocks on the parameter J in the analytical model.

Figure 5. Dependence of the time for calculating the characteristics of a fork–join system in an
analytical way depending on various system parameters: MAP size, PH size, and buffer size.

Figure 6 shows the results of comparing the calculations of the characteristics of the
fork–join system for the case K = 2 using the analytical method and the Monte Carlo
method. According to the validation results, the error in calculating characteristics using
the Monte Carlo method was about 1%. One of the advantages of calculating characteristics
using the Monte Carlo method is that the time for calculation almost does not depend

https://github.com/ipu69/queues-fork-join

Mathematics 2024, 12, 659 16 of 22

on input parameters. The calculation time does not depend on the size of MAP and
PH, but depends only on the number of simulated customers and the accuracy of the
calculation. Figure 7 shows the dependence of the execution time of the simulation model
on the number of generated customers.

Figure 6. Validation of Monte Carlo calculations using the implementation of analytical calculations
in Python.

Figure 7. Dependence of the time for calculating the characteristics of the fork–join system on the
number of generated customers.

5.2. Predicting Customer Sojourn Time Using ML Algorithms

In this problem, using the fork–join system parameters, we trained classical ML [36,37]
algorithms and a neural network to predict the sojourn time of the fork–join system for
the case when a linear function approximates the tasks PH intensities at the servers. We
generated a synthetic dataset consisting of approximately 150 thousand records. In the
experiment, we used classical algorithms on trees—decision trees [36] and gradient boost-
ing [37]—as well as a neural network. During training, the dataset was divided into 80%
for training, 15% for testing, and 5% for validation.

Figure 8 shows scatterplots for various methods. The best result in terms of metrics
was shown by gradient boosting. The maximum subtree depth in the gradient boosting
algorithm was equal to 10, and the number of trees was equal to 1200.

Mathematics 2024, 12, 659 17 of 22

Figure 8. Scatterplots of the system sojourn time prediction for regression algorithms.

The neural network for the regression problem contained one input layer and one
hidden layer. The hidden layer consisted of 128 neurons. The input layer used LeakyReLu
as the activation function, and the hidden layer used ReLu. We used mse as the loss
function and Adam’s algorithm [38] as the optimization algorithm. Absolute errors for ML
algorithms are shown in Figure 9.

Figure 9. Error chart of ML algorithms when predicting system sojourn time.

The validation used a dataset in which all parameters were fixed and others varied.
The values by which the dependence of the system sojourn time was plotted with other
fixed parameters: the intensity of the MAP flow, the buffer size, as well as the number
of serving devices or the number of requests in the application. The following fixed
system parameters were used during validation: λa = 5 λsmin = 20, λsmax = 20, K = 4,
R = 14, cva = 4, cvs = 0.9, γa = 20, la = 0.5, γa = 60. When validating the intensity
MAP, parameter λa varied from 5 to 50. When constructing the sojourn time dependence,
the buffer size varied from 2 to 18 with a step of 2. Accordingly, when constructing the
dependence on the number of servers, which is the same as the number of requests in the
customer, parameter N varied from 4 to 14.

Figure 10 shows the results of a comparison of the sojourn time calculations using
ML algorithms and using the Monte Carlo method. It is worth noting that the trained
algorithms demonstrated relatively high accuracy rates. Table 2 shows a comparison of
metrics for algorithms. Gradient boosting and neural network show approximately the
same results.

Table 2. Metric values for regression models predicting system sojourn times.

Algorithm Correlation R2 Mean Square Error

Decision tree 0.97 0.95 0.27
Gradient boosting 0.99 0.99 0.029
Neural network 0.99 0.99 0.037

Mathematics 2024, 12, 659 18 of 22

Figure 10. Comparison of prediction results of ML algorithms with results obtained using Monte
Carlo method.

Table 3 shows the sojourn time calculation times using the Monte Carlo method
and using various ML algorithms. ML algorithms provide a speed of calculation time of
approximately 104 times, which gives a significant gain when designing natural technical
systems. For example, to design a fork–join system, it is necessary to solve the problem
using the branch-and-bound method to find optimal parameters. When using the Monte
Carlo method to solve problems of this kind, finding the optimal solution can take much
time. The use of ML algorithms reduces the time required to find a solution.

Table 3. Comparison of the system sojourn time calculations using different algorithms.

Algorithm Time, s

Monte Carlo method 10
Decision tree 0.0003

Gradient boost 0.0012
Neural network 0.0017

5.3. Predicting the Loss Probability of a Customer Using ML Methods

During this experiment, the accuracy of predicting the loss probability in a fork–join
system was studied in function of the speed of service, and servers were divided into slow
and fast. For training, we used a synthetic dataset generated using the Monte Carlo method,
consisting of approximately 100 thousand rows. This experiment also used classical tree
algorithms and a neural network. As noted in the previous section, one of the features was
the number of slow servers.

The scatterplot is shown in Figure 11. As well as for predicting the system sojourn
time, the gradient boosting algorithm showed the best results. The optimal hyperparam-
eters for classical algorithms were found using the sklearn library. Thus, for a decision
tree, the optimal maximum depth is 12; and the mse function is selected as a criterion.
For gradient boosting, the optimal depth equals 8, the number of weak classifiers is 1000,
and we used mse as the error function. Metric values for regression models are shown in
Table 4.

Mathematics 2024, 12, 659 19 of 22

Figure 11. Scatterplots of prediction of customer loss probability for regression algorithms.

Table 4. Metric values for regression models predicting customer loss probability.

Algorithm Correlation R2 Mean Square Error

Decision tree 0.96 0.92 0.007
Gradient boost 0.99 0.99 0.0007
Neural network 0.99 0.99 0.0009

Several charts are presented comparing the calculation of characteristics using the
Monte Carlo method and the results of predicting the values of ML algorithms. Figure 12
shows the dependence of loss probability on the intensity of the input customers flow,
the number of slow servers in the system, and the intensity of slow server servicing.
The rest remained constant when examining the dependence of the probability of loss on a
specific metric. Absolute errors for ML algorithms are shown in Figure 13.

Thus, when studying the dependence of the loss probability on the MAP intensity,
the remaining parameters were equal to the following values: λsmin = 10, λsmax = 100,
K = 10, N = 5, R = 10, cva = 4, cvs = 0.9, γa = 20, la = 0.4, γa = 60. Using similar
parameters, we calculated the dependence of the customer loss probability on the number
of servers with a low intensity of servicing tasks. When constructing the dependence,
the intensity of the MAP was fixed and was equal to λa = 50, and the number of slow
servers varied from 0 to 10. In the third experiment, when constructing the dependence of
the customer loss probability on the intensity of slow server servicing, the intensity of MAP
flow was also fixed at the level of λa = 50, and the number of slow servers also remained
constant throughout the experiment and amounted to N = 5, that is, half of all servers
K = 10. The service intensity on the slow server varied from 10 to 100 (the service intensity
of a conventional server). As shown in Figure 12, they adequately describe the dependence
of the customer loss probability on the parameters. In this experiment, the neural network
showed the best accuracy; tree algorithms the demonstrated lower prediction accuracy.

Table 5 compares the time for calculating the loss probability for different methods.
Just as when calculating the sojourn time of a system, ML algorithms allow us to obtain
results much faster than the Monte Carlo method.

Mathematics 2024, 12, 659 20 of 22

Figure 12. Comparison of prediction results of ML algorithms with results obtained using the Monte
Carlo method.

Figure 13. Comparison of the results of predicting the customer loss probability using ML algorithms
with the results obtained using the Monte Carlo method.

Table 5. Comparison of the time for calculating the customer loss probability in the system using
various algorithms.

Algorithm Time, s

Monte Carlo method 10
Decision tree 0.00027

Gradient boost 0.0011
Neural network 0.0017

6. Conclusions

In this paper, we investigated a fork–join queuing system with an input MAP flow of
customers consisting of an arbitrary number of tasks K into which the customer forks when
it enters the system, as well as an arbitrary size of the buffer of the subsystem processing a
specific task. Such systems have not been studied in the literature. An analytical solution is
presented for the fork–join system when a customer forks into two tasks for processing.
We obtained a stationary distribution for this case, formulas for calculating the system’s
main characteristics, including the average size of the queue, the customer loss probability,
and the sojourn customer time in the system.

We suggested a new methodology for quickly estimating the system performance
using a combination of Monte Carlo simulation and machine learning to study the general
K ≥ 2 case. Numerical experiments using the suggested method confirmed the high
accuracy of estimating the characteristics of a fork–join system (96–98%). Additionally,
estimation with a trained machine learning model requires orders of magnitude less time

Mathematics 2024, 12, 659 21 of 22

than the Monte Carlo method. Gradient boosting showed the best results among ML
algorithms used in this paper. This methodology makes it possible to use the fork–join
model in complex optimization problems that arise in the design and implementation of
modern systems. Moreover, using this methodology, it is possible to solve the inverse
problem. For example, using a known sojourn time, select the optimal number of servers or
server performance. This method can be used to solve optimization problems and enhance
the performance of the fork–join system.

Author Contributions: Conceptualization, V.M.V. and V.I.K.; methodology, V.M.V., V.I.K. and A.A.L.;
software, A.M.S. and A.A.L.; validation, A.M.S., A.A.L. and V.I.K.; formal analysis, V.I.K. and
V.M.V.; investigation, V.I.K., V.M.V., A.A.L. and A.M.S.; resources, V.M.V.; data curation, V.I.K.;
writing—original draft preparation, V.I.K., A.M.S., A.A.L. and V.M.V.; writing—review and editing,
A.M.S., A.A.L. and V.M.V.; visualization, A.M.S. and A.A.L.; supervision, V.M.V. and A.A.L.; project
administration, V.M.V. and A.A.L.; funding acquisition, V.M.V. All authors have read and agreed to
the published version of the manuscript.

Funding: The reported study was funded by Russian Science Foundation, project number 22-49-02023.

Data Availability Statement: The source code and all research data are available in Github repository:
https://github.com/ipu69/queues-fork-join (accessed on 8 November 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MAP Markovian arrival process
PH Phase type distribution
ML Machine learning
ANN Artificial neural network
MSE Mean squared error
CV Coefficient of variation

References
1. Vianna, E.; Comarela, G.; Pontes, T.; Almeida, J.; Almeida, V.; Wilkinson, K.; Kuno, H.; Dayal, U. Analytical performance models

for mapreduce workloads. Int. J. Parallel Program. 2013, 41, 495–525. [CrossRef]
2. Rizk, A.; Poloczek, F.; Ciucu, F. Stochastic bounds in Fork–Join queueing systems under full and partial mapping. Queueing Syst.

2016, 83, 261–291. [CrossRef]
3. Nguyen, M.; Alesawi, S.; Li, N.; Che, H.; Jiang, H. ForkTail: A black-box fork-join tail latency prediction model for user-facing

datacenter workloads. In Proceedings of the HPDC 2018—2018 International Symposium on High-Performance Parallel and
Distributed Computing, Tempe, AZ, USA, 11–15 June 2018; pp. 206–217. [CrossRef]

4. Enganti, P.; Rosenkrantz, T.; Sun, L.; Wang, Z.; Che, H.; Jiang, H. ForkMV: Mean-and-Variance Estimation of Fork-Join Queuing
Networks for Datacenter Applications. In Proceedings of the 2022 IEEE International Conference on Networking, Architecture
and Storage (NAS), Philadelphia, PA, USA, 3–4 October 2022; pp. 1–8. [CrossRef]

5. Flatto, L.; Hahn, S. Two Parallel Queues Created By Arrivals With Two Demands I. SIAM J. Appl. Math. 1984, 44, 1041–1053.
[CrossRef]

6. Nelson, R.D.; Tantawi, A.N. Approximate Analysis of Fork/Join Synchronization in Parallel Queues. IEEE Trans. Comput. 1988,
37, 739–743. [CrossRef]

7. Kim, C.; Agrawala, A.K. Analysis of the Fork-Join Queue. IEEE Trans. Comput. 1989, 38, 250–255. [CrossRef]
8. Varma, S.; Makowski, A.M. Interpolation approximations for symmetric Fork-Join queues. Perform. Eval. 1994, 20, 245–265.

[CrossRef]
9. Lui, J.C.; Muntz, R.; Towsley, D. Computing Performance Bounds for Fork-Join Queueing Models; University of California: Los

Angeles, CA, USA, 2001.
10. Balsamo, S.; Donatiello, L.; Van Dijk, N.M. Bound performance models of heterogeneous parallel processing systems. IEEE Trans.

Parallel Distrib. Syst. 1998, 9, 1041–1056. [CrossRef]
11. Lebrecht, A.S.; Knottenbelt, W.J. Response Time Approximations in Fork-Join Queues. In Proceedings of the 23rd Annual UK

Performance Engineering Workshop, Ormskirk, UK, 9–10 July 2007.
12. Thomasian, A. Analysis of fork/join and related queueing systems. ACM Comput. Surv. 2014, 47. [CrossRef]

https://github.com/ipu69/queues-fork-join
http://doi.org/10.1007/s10766-012-0227-4
http://dx.doi.org/10.1007/s11134-016-9486-x
http://dx.doi.org/10.1145/3208040.3208058
http://dx.doi.org/10.1109/NAS55553.2022.9925531
http://dx.doi.org/10.1137/0144074
http://dx.doi.org/10.1109/12.2213
http://dx.doi.org/10.1109/12.16501
http://dx.doi.org/10.1016/0166-5316(94)90016-7
http://dx.doi.org/10.1109/71.730531
http://dx.doi.org/10.1145/2628913

Mathematics 2024, 12, 659 22 of 22

13. Jiang, L.; Giachetti, R.E. A queueing network model to analyze the impact of parallelization of care on patient cycle time. Health
Care Manag. Sci. 2008, 11, 248–261. [CrossRef]

14. Armony, M.; Israelit, S.; Mandelbaum, A.; Marmor, Y.N.; Tseytlin, Y.; Yom-Tov, G.B. On patient flow in hospitals: A data-based
queueing-science perspective. Stoch. Syst. 2015, 5, 146–194. [CrossRef]

15. Narahari, Y.; Sundarrajan, P. Performability analysis of fork–join queueing systems. J. Oper. Res. Soc. 1995, 46, 1237–1249.
[CrossRef]

16. Gallien, J.; Wein, L.M. A simple and effective component procurement policy for stochastic assembly systems. Queueing Syst.
2001, 38, 221–248. [CrossRef]

17. Kemper, B.; Mandjes, M. Mean sojourn times in two-queue fork-join systems: Bounds and approximations. Spectrum 2012,
34, 723–742. [CrossRef]

18. Schol, D.; Vlasiou, M.; Zwart, B. Large Fork-Join Queues with Nearly Deterministic Arrival and Service Times. Math. Oper. Res.
2022, 47, 1335–1364. [CrossRef]

19. Qiu, Z.; Pérez, J.F.; Harrison, P.G. Beyond the mean in fork-join queues: Efficient approximation for response-time tails. Perform.
Eval. 2015, 91, 99–116. [CrossRef]

20. Klimenok, V. Performance characteristics of the fork-join queuing system. Informatics 2023, 20, 50–60. [CrossRef]
21. Marin, A.; Rossi, S. Power control in saturated fork-join queueing systems. Perform. Eval. 2017, 116, 101–118. [CrossRef]
22. Lee, K.; Shah, N.B.; Huang, L.; Ramchandran, K. The MDS Queue: Analysing the Latency Performance of Erasure Codes. IEEE

Trans. Inf. Theory 2017, 63, 2822–2842. [CrossRef]
23. Wang, W.; Harchol-Balter, M.; Jiang, H.; Scheller-Wolf, A.; Srikant, R. Delay Asymptotics and Bounds for Multi-Task Parallel Jobs.

SIGMETRICS Perform. Eval. Rev. 2019, 46, 2–7. [CrossRef]
24. Nguyen, M.; Alesawi, S.; Li, N.; Che, H.; Jiang, H. A black-box fork-join latency prediction model for data-intensive applications.

IEEE Trans. Parallel Distrib. Syst. 2020, 31, 1983–2000. [CrossRef]
25. Morozov, E.; Rumyantsev, A. Stability analysis of a MAP/M/s cluster model by matrix-analytic method. In Proceedings of

the Computer Performance Engineering: 13th European Workshop, EPEW 2016, Chios, Greece, 5–7 October 2016; Volume 9951
LNCS, pp. 63–76. [CrossRef]

26. Rumyantsev, A.; Morozova, T.; Basmadjian, R. Discrete-event modeling of a high-performance computing cluster with service
rate control. In Proceedings of the Conference of Open Innovation Association, FRUCT, Bologna, Italy, 13–16 November 2018;
pp. 224–231. [CrossRef]

27. Vishnevsky, V.; Gorbunova, A.V. Application of Machine Learning Methods to Solving Problems of Queuing Theory. Commun.
Comput. Inf. Sci. 2022, 1605 CCIS, 304–316. [CrossRef]

28. Efrosinin, D.; Vishnevsky, V.; Stepanova, N. Optimal Scheduling in General Multi-Queue System by Combining Simulation and
Neural Network Techniques. Sensors 2023, 23, 5479. [CrossRef]

29. Dieleman, N.; Berkhout, J.; Heidergott, B. A neural network approach to performance analysis of tandem lines: The value of
analytical knowledge. Comput. Oper. Res. 2023, 152, 106124. [CrossRef]

30. Lucantoni, D.M. New results on the single server queue with a batch markovian arrival process. Commun. Statistics. Stoch. Model.
1991, 7, 1–46. [CrossRef]

31. Dudin, A.N.; Klimenok, V.I.; Vishnevsky, V.M. The Theory of Queuing Systems with Correlated Flows; Springer: Berlin, Germany,
2019; pp. 1–410. [CrossRef]

32. Neuts, M.F. Matrix-Geometric Solutions in Stochastic Models; The Johns Hopkins University Press: Baltimore, MD, USA, 1981;
p. 348.

33. Ozawa, T. Sojourn time distributions in the queue defined by a general QBD process. Queueing Syst. 2006, 53, 203–211. [CrossRef]
34. Horváth, G. Efficient analysis of the queue length moments of the MMAP/MAP/1 preemptive priority queue. Perform. Eval.

2012, 69, 684–700. [CrossRef]
35. Vishnevsky, V.; Larionov, A.; Ivanov, R.; Semenova, O. Estimation of IEEE 802.11 DCF access performance in wireless networks

with linear topology using PH service time approximations and MAP input. In Proceedings of the 2017 IEEE 11th International
Conference on Application of Information and Communication Technologies (AICT), Moscow, Russia, 20–22 September 2017;
pp. 1–5. [CrossRef]

36. Gordon, A.D.; Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. Biometrics 1984, 40, 874.
[CrossRef]

37. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
38. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10729-007-9040-9
http://dx.doi.org/10.1287/14-SSY153
http://dx.doi.org/10.1057/jors.1995.171
http://dx.doi.org/10.1023/A:1010914600116
http://dx.doi.org/10.1007/s00291-010-0235-y
http://dx.doi.org/10.1287/moor.2021.1171
http://dx.doi.org/10.1016/j.peva.2015.06.007
http://dx.doi.org/10.37661/1816-0301-2023-20-3-50-60
http://dx.doi.org/10.1016/j.peva.2017.08.008
http://dx.doi.org/10.1109/TIT.2017.2674671
http://dx.doi.org/10.1145/3308897.3308901
http://dx.doi.org/10.1109/TPDS.2020.2982137
http://dx.doi.org/10.1007/978-3-319-46433-6_5
https://doi.org/10.23919/FRUCT.2018.8468284
http://dx.doi.org/10.1007/978-3-031-09331-9_24
http://dx.doi.org/10.3390/s23125479
http://dx.doi.org/10.1016/j.cor.2022.106124
http://dx.doi.org/10.1080/15326349108807174
http://dx.doi.org/10.1007/978-3-030-32072-0
http://dx.doi.org/10.1007/s11134-006-7651-3
http://dx.doi.org/10.1016/j.peva.2012.08.003
http://dx.doi.org/10.1109/ICAICT.2017.8687247
http://dx.doi.org/10.2307/2530946
http://dx.doi.org/10.1016/S0167-9473(01)00065-2

	Introduction
	Problem Statement
	Study of the Characteristics of a Fork–Join System with Parallel Servicing of Tasks (K=2)
	Markov Chain Describing the Process of System Functioning
	Ergodicity Condition
	Stationary Distribution and Performance Measures
	Sojourn Time of Tasks in the Subsystems G1 and G2
	Sojourn Time of a Customer in the System

	Study of General Fork–Join Systems
	Description of Simulation Model of a General Type Fork–Join System
	Description of the Machine Learning Model

	Results of Numerical Research
	Validation of Monte Carlo Method Implementation
	Predicting Customer Sojourn Time Using ML Algorithms
	Predicting the Loss Probability of a Customer Using ML Methods

	Conclusions
	References

