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Abstract: Causality has become a powerful tool for addressing the out-of-distribution (OOD) gen-
eralization problem, with the idea of invariant causal features across domains of interest. Most
existing methods for learning invariant features are based on optimization, which typically fails to
converge to the optimal solution. Therefore, obtaining the variables that cause the target outcome
through a causal inference method is a more direct and effective method. This paper presents a new
approach for invariant feature learning based on causal inference (IFCI). IFCI detects causal variables
unaffected by the environment through the causal inference method. IFCI focuses on partial causal
relationships to work efficiently even in the face of high-dimensional data. Our proposed causal
inference method can accurately infer causal effects even when the treatment variable has more
complex values. Our method can be viewed as a pretreatment of data to filter out variables whose
distributions change between different environments, and it can then be combined with any learning
method for classification and regression. The result of empirical studies shows that IFCI can detect
and filter out environmental variables affected by the environment. After filtering out environmental
variables, even a model with a simple structure and common loss function can have strong OOD
generalization capability. Furthermore, we provide evidence to show that classifiers utilizing IFCI
achieve higher accuracy in classification compared to existing OOD generalization algorithms.

Keywords: invariant feature learning; causal representation learning; out-of-distribution generalization;
causal inference

MSC: 68T01; 68T07

1. Introduction

Traditional machine learning algorithms that rely on independent and identical dis-
tribution (i.i.d) hypotheses have been considerably successful. However, they often face
challenges in generalization performance when confronted with distribution shifts, a com-
mon occurrence in real-world datasets. Specifically, situations arise where training and
testing data are drawn from different distributions. Consequently, a machine learning algo-
rithm trained on the training data may struggle to make accurate predictions on the testing
data [1]. Thus, ensuring a machine learning algorithm’s capability for out-of-distribution
(OOD) generalization and maintaining stable performance under distribution shifts be-
comes paramount, especially in critical applications such as medical diagnosis, criminal
justice, financial analysis, etc. [2].

For classified tasks, traditional machine learning methods that minimize the model’s
risk on the entire dataset may struggle to distinguish the true causes of labels from spu-
rious correlations. Consider, for instance, a problem of classifying images of cows and
camels [1,3]. As we all know, most cattle are found in grasslands, whereas most camels are
found in the desert. This introduces selection bias, causing the trained model to rely on
spurious correlations between the environment and the animals. Therefore, after training
on this dataset, the model fails to correctly classify simple examples of cow images when
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they are taken on sandy beaches. In summary, traditional methods based on empirical risk
minimization can lead to significant errors when confronted with out-of-distribution data.

In the example above, the background color is an environmental feature that can vary
with the sampling environment. In the context of animal classification, features such as
shape, color, texture, etc., are the ones that truly establish a causal relationship with the
animal category. Advanced deep learning models, such as Convolutional Neural Networks
(CNNs), can extract various features from images. However, they cannot distinguish
between environmental features and causal features. Other deep learning models encounter
similar challenges, as they are primarily designed to learn correlations from observational
data rather than capture causality.

It is crucial for the OOD problem to distinguish which features of the data are affected
by the environment or exhibit spurious correlations with the target and which features are
direct causes of the target [4]. In most out-of-distribution generalization problems, features
acting as direct causes of the target variable maintain an invariant joint distribution with
the target variable. Therefore, the direct causes of the target variable are often referred to
as invariant features. An essential approach involves empowering the model to identify
invariant features from the observed data and subsequently use these invariant features to
predict the target variable. In this paper, we propose a method of learning invariant features
based on causal inference (IFCI) to solve this problem. Our method leverages datasets
from multiple environments to infer the features affected by the environments. Firstly, we
assume that the data generation process adheres to the following causal mechanism:

y← f (Φc(x))

e→ Φe(x), (1)

where x and y represent the observational data and labels, respectively; e represents the
environment, which can be obtained from a heterogeneous environments dataset; and
Φc(·) : X → Rc and Φe(·) : X → Re are the feature extraction processes [1,4]. We refer to
Φc(x) and Φe(x) as causal features and environmental features, respectively. Therefore, if
the predictor focuses on causal features, it will not be affected by environmental changes.
The IFCI model we propose aims to learn the feature extraction process Φc(·).

In this paper, we extract causal features through causal inference methods and sta-
tistical hypothesis testing. However, conducting causal inference and hypothesis testing
among all variables requires substantial computational resources, especially when deal-
ing with high-dimensional data. Therefore, according to the data-generating process, we
divide the features of observational data z into three modules, namely causal features zc,

environmental features ze, and redundant features zr, i.e., z =

 zc
ze
zr

. The causal graph

of our model is illustrated in Figure 1a. We offer a detailed explanation of the definitions of
zc, ze, and zr in Definition 2. The modular method [5] helps eliminate redundant causal
relationships we do not care about.

In Figure 1a, we can observe the challenges encountered in out-of-distribution predic-
tion: If an algorithm fails to identify environmental features, its classification model might
incorporate environmental variables when making category inferences. This is problematic
because a correlation between Y and Ze could be a spurious correlation. For the same Y, the
distribution of Ze will change after a shift in the environment, so the correlation between
Ze and Y will change, which causes the failure of the model trained on the previous envi-
ronment. Thus, the utilization of environmental features by the predictor is the primary
reason for the predictor’s failure on OOD data.

In general, the gold standard for calculating causal effects is through random ex-
periments [6]. For instance, if we aim to investigate whether smoking causes people to
develop lung cancer, a randomized experiment would involve identifying two groups of
individuals identical in all aspects except for their smoking habits. One group would be
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designated as smokers (the smoking group), while the other would abstain from smoking
(the non-smoking group). Researchers would then assess whether smoking is the cause
of the development of lung cancer by observing whether there is a significant difference
in the number of individuals developing lung cancer in each group. From the example
above, it can be seen that randomized experiments are often impractical and can involve
significant costs and ethical concerns in many situations. The model we propose aims to
make generalizable predictions using observational data. We leverage causal graphs and
adjustment formulas to estimate causal effects from observational data [6,7]. To identify
environmental features from observational data across multiple environments, we use
E[z|do(e)] to evaluate the causal effect of the environment on the features, where do(·)
represents the do-operator [6,7]. The interference of potential confounders on the causal
effect is mitigated by E[z|do(e)].

(a) (b)

Figure 1. (a) The causal graph of modular variables. (b) The causal graph of non-modular variables.
The black arrows represent the detgasssined causal relationships. The blue arrows represent the
possible causal relationships, which are determined by the dataset.

The Average Causal Effect (ACE) is usually used to measure the causal effect between
treatment variables X and potential outcome Y, and it is expressed in Equation (2) [6,7].

ACE = P(Y = y|do(X = x))− P(Y = y|do(X = x′)) (2)

However, when X takes on more than two values, the ACE alone cannot measure the causal
effect between variables. Therefore, we introduce statistical methods instead of the ACE to
test the association between E[z|do(e)] and e. We have demonstrated that by transforming
the variable Z, focusing on the mean value E[z|do(e)] can effectively measure the causal
effect between Z and e.

The main contributions of this paper can be summarized as follows:

• We incorporate causal inference into a machine learning algorithm to identify invariant
features, moving beyond a passive search through optimization.

• We eliminate redundant causal relationships by modularizing features, which signif-
icantly reduces the complexity of causal inference. This modularization makes our
causal inference algorithm applicable to complex datasets.

• We introduce a statistical testing-based method for measuring causal effects, address-
ing the limitation of the Average Causal Effect (ACE). Our proposed method can
handle scenarios where the intervention variable can take multiple values.

2. Related Works

Our work primarily involves a combination of OOD generalization and causal inference.
OOD Generalization: The OOD generalization problem [8,9] has been widely ob-

served in various domains [1,4,10–17]. To address this issue, researchers have proposed
various algorithms from different perspectives, such as distributional robust optimiza-
tion [18,19] and causal inference, which points out that OOD data can be categorized
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into data with diversity shifts [20] and correlation shifts [19]. In this paper, we focus on
the latter.

Meanwhile, several existing works have also leveraged causality to investigate the
OOD generalization problem [1,4,17,21–25]. In recent years, exploring the relationship
among causality, prediction, and OOD generalization has gained increasing interest, partic-
ularly since the seminal work by [26]. Causality-based methods rely on the long-standing
assumption that the causal mechanism is invariant across different domains [7]. Some
researchers have introduced the concept of stable learning by reweighting data to mitigate
the impact of confounders on parameter estimation [23,25,27]. However, most of these
methods are optimization-based [1,4]. Such methods aim to learn invariant predictors
by designing a loss function and incorporating regularization terms within it. Conse-
quently, optimization-based methods aim to extract causal features and make predictions
simultaneously by defining specific optimization objectives. Since they do not explicitly
identify causal features, these methods often face challenges in demonstrating their ability
to effectively extract causal features. Additionally, specific optimization-based methods
have been subject to theoretical and experimental studies [28,29], revealing that they fre-
quently fall short of achieving desirable out-of-distribution generalization performance
and have stringent requirements on environmental conditions. In this paper, we utilize
causal inference to actively search for causal features.

Causal Inference: In many applications, inferring cause–effect relationships between
variables is a fundamental objective. This type of causal inference has its roots in diverse
fields, with various conceptual frameworks contributing to its understanding and quantifi-
cation. Among these are the frameworks of potential outcomes and counterfactuals [30,31],
structural equation modeling [6,32,33], and graphical modeling [34,35]. Ref. [36] estab-
lished a connection between these frameworks using single-world intervention graphs.
Overviews of different branches of causal inference and their applications in various fields
were provided by [37,38]. Summaries of the development and application methods of
causal inference in machine learning were presented in [39,40]. Our work uses structural
equation modeling to capture the causality of latent variables and the environment.

3. Invariant Feature Detection Based on Causal Inference

In this section, we discuss a method for learning invariant features based on causal
inference (IFCI). In Section 3.1, we establish the problem and assumptions. In Section 3.1,
we introduce the causal structure behind the prediction problem. In Section 3.3, we present
the causal inference method employed in our algorithm.

3.1. Setup and Assumptions

Following [1,2,4], we consider a dataset D = {(Xe, Ye)}e∈εall from multiple environ-
ments and an observed dataset De = {

(
xe

i , ye
i
)
}ne

i=1, xi ∈ X, yi ∈ Y and e ∈ εtr, where εall
represents all environments and εtr denotes the set of training environments. The goal
of this work is to find a predictor f (·) : X → Y with good performance on data from all
environments [1,2,4,10]. Inspired by [26], we attempt to achieve this goal using causal
inference methods. However, conducting causal inference directly from high-dimensional
observational data is sometimes impractical, such as inferring the causal relationship be-
tween each pixel and class in image classification. Therefore, we define a feature extraction
function: Φ : X → Z, dim(Z) ≪ dim(X). Then, we infer causal relationships from the
obtained high-dimensional features Z. In this section, we assume that reasonable features
Z have been extracted. The details of the feature extraction function are introduced in the
following section.

In disentangled representation learning tasks, the goal is to learn independent represen-
tations to enhance the model’s performance [41,42]. However, achieving fully independent
representations is often challenging. Our method does not require completely independent
data representations. Therefore, we employ a modular approach [5] to eliminate redundant
causal relationships.



Mathematics 2024, 12, 696 5 of 23

Definition 1. A subset of latent features I is termed modular whenever Z is the Cartesian product
of ZI and ZĪ .

Our method only makes a weaker assumption about the independence among mod-
ules. We divide the latent feature Z into three parts: Zc, Ze, and Zr. Then, in Assumption 1,
we impose restrictions on the causal directions among modules. Assumption 1 indicates
that Zc is not the parent node of Ze in the causal graph, but Zc can still influence Ze
through Y.

Assumption 1. The causal features Zc are not a direct cause of the environmental features Ze.

Assumption 1 can be seen as a relaxed version of the disentangled representation in
which independent representations are required. It requires that the causal features of the
target variable are not direct causes of environmental features. Therefore, this assumption
is easier to achieve through feature extraction models.

Without any prior knowledge or causal structural assumptions, it is impossible to
figure out the OOD generalization problem since one cannot characterize the unseen latent
environments in εall . A commonly used assumption in the invariant learning problem was
proposed in [1,2,43]:

Assumption 2. There exists a random variable Φc(X) such that the following properties hold:

(a) Invariance property: for all e, e′ ∈ εall , we have that Pe(Y|Φc(X)) = Pe′(Y|Φc(X)) holds.
(b) Sufficiency property: Y = f (Φc(X), ϵ), ϵ⊥X.

This assumption indicates the existence of invariant features and their sufficiency
for predicting the target Y using Φc. The sufficiency property coincides with the causal
mechanism we proposed in (1).

According to the second equation in Equation (1), Ze changes with the environment
e. Therefore, a predictor that depends on the environmental features may fail in a new
environment. Our proposed method utilizes the dependence of environmental features on
the environment to identify them.

Assumption 3. For any X ∈ Environment e, Z = Φ(X) ∼ N(µ, ∑). Following the data-
generation process (1), Ze is generated from P(Ze|e). There exist at least two environments
e1, e2 ∈ εtr such that Pe1(Ze) ̸= Pe2(Ze).

Assumption 3 imposes a constraint on the training dataset. This assumption indi-
cates that the causal relationship between the environment and its features varies with
environmental changes.

3.2. Causal Structure behind the Predict Problem

Numerous variables exist in the observational data, resulting in a complex causal
relationship between variables even after feature extraction. Consequently, making causal
inferences at the variable level becomes impractical. We divide feature vector Z into three
modules according to the causal relationship among features Z, target Y, and environment
e. The three modules are defined as follows:

Definition 2.

(a) If a variable Zi is the cause of Y, then Zi is called a causal variable. All causal variables
constitute the causal features.

(b) If a variable Zi is not the cause of Y and the environment e is the cause of Zi, then Zi is called
an environmental variable. All environmental variables constitute the environmental
features.
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(c) If a variable Zi is in the latent features but Zi is not the causal variable or environmental
variable, then Zi is called a redundant variable. All redundant variables constitute the
redundant features.

Given that our objective is to discern environmental features Ze from Z by estimating
causal effects, this modular method preserves the relevant causal relationships while
eliminating the redundant ones.

Proposition 1. Under Assumption 2, Ze and e are not the cause of Zc or Y.

The proof of Proposition 1 is detailed in Appendix A. Building on Assumption 1 and
Proposition 1, we construct the causal graph (Figure 1a), depicting the causal relation-
ships between the modules and targets. The dynamic distribution of the environmental
variable Ze across different environments poses a challenge for traditional empirical risk
minimization (ERM) methods, which utilize all input features to generalize effectively
out of the distribution. Consequently, our method seeks to sift out the descendants of
the environmental variables (nodes directly or indirectly influenced by the environmental
variable e in the causal graph) among the feature variables through causal inference.

The introduction of the modular method facilitates straightforward causal inference
on high-dimensional features, as depicted in Figure 1a. The causal graphs we encounter
may exhibit much greater complexity when analyzed from a non-modular perspective, as
illustrated in Figure 1b. In Figure 1b, we use environmental features Ze as an example to
illustrate the complex causal relationships that may exist within modules. For simplicity,
we do not show the internal causal relationships between causal features Zc and redundant
features Zr, as in reality, they may also have complex causal graphs internally. Given that
variables within modules can have causal relationships, the number of tests required when
the variables increase in the non-modularized approach grows exponentially. Specifically, if
the number of variables is d, the number of tests is O(2d). However, with our modularized
method, since we only need to test the causal relationships among features, labels, and
environmental variables, the number of tests maintains a linear relationship with the
number of variables, i.e., the number of tests is O(d). Consequently, the modularized
approach significantly mitigates the complexity of causal inference. In the next section, we
also demonstrate through experiments that our method exhibits rapid convergence speed.

In Figure 1, the black arrows are derived from the definitions of Zc and Ze. The blue
arrows are established based on Assumption 1. Two causal paths exist from e to Ze: e→ Ze
and e → Y → Ze. The second path represents the backdoor path from e to Ze. Therefore,
according to the backdoor criterion, we can compute P(Z = z|do(e)) from the observational
data as follows:

P(Z = z|do(e)) = ∑
y

P(Z = z|e, Y = y)P(Y = y). (3)

We mitigate the impact of the confounder Y on the estimation of the causal effect between e
and Z by employing Equation (3). We introduce the backdoor criterion in Appendix B.

3.3. Causal Inference with Multiple Environments

In this section, we use multi-environment data to infer the environmental features Ze.
Subsequently, we introduce an OOD prediction algorithm by making predictions using
features other than environmental features.

3.3.1. The Mean after Intervention

As discussed in Section 1, we introduce a novel causal estimation method to estimate
the causal effect, replacing the ACE. Traditional methods, such as the adjustment formula
(Equation (3)) or inverse probability weighting, are commonly employed for inferring
causality from correlations [6]. However, both approaches necessitate the estimation of
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the probability distribution after intervention. Given that the latent variable Z is a contin-
uous random vector, estimating the probability distribution after intervention becomes
challenging. To address this, we propose a mean-based statistical testing method to assess
the causal effect.

Theorem 1. Under Assumption 3, let zei ,j denote the jth dimension of z in the ith environment,

zei ,j ∼ N(µei ,j, σ2
ei ,j

) . If µ̃e1,j = µ̃e2,j = · · · = µ̃ei ,j, where µ̃ei ,j =
µei ,j
σei ,j

, the distribution of zei ,j

remains constant for all ei.

The proof of Theorem 1 is provided in Appendix A. From the proof of Theorem 1, it
becomes evident that we normalize z as z̃, where its mean is µ̃ = µ

σ . After normalization,
the variance differences between different environments are translated into differences in
the mean values. According to Theorem 1, the mean value after intervention is the only
statistic of concern.

Proposition 2. Following (3), we can obtain the mean after intervention:

E[Z = z|do(e)] = ∑
y

P(Y = y)E[Ze|Y = y, e] (4)

The proof of Proposition 2 is shown in Appendix A. Our method first calculates the
mean of feature z after intervening in environment e using Equation (4), which we denote
as µ. Then, applying the formula for variance D(X) = E(X2) − E(X)2, we derive the
variance after intervention σ2. This allows us to compute µ̃ = µ

σ , as discussed in Theorem 1.
After obtaining the probability distribution after intervention, we use hypothesis testing
for variables that have significant causal effects with the environment e.

3.3.2. Analysis of Variance in Causal Inference

The distribution of environmental variables changes with the environment. Therefore,
we aim to identify which variables in Z exhibit significant differences across different
environments. In our method, we employ analysis of variance (ANOVA) [44] to test the
significance of the differences among variables in various environments. Additional details
about the introduction of ANOVA and the abbreviations used in ANOVA can be found in
Appendix C.

In Section 3.3.1 and Appendix A, we have demonstrated that zj exhibits the same
variance. Therefore, zj aligns with the assumption that the dependent variables in each
category share the same variance. Our method utilizes the mean value after intervention to
compute the SSA and SSE (the descriptions of the SSA, SSE, and ¯̄x are shown in Appendix C).
Subsequently, we calculate the total mean value ¯̄x, and the SSA, SSE, and F-statistic using
the method outlined in Appendix C. We adopt a significance level α of 0.05.

Using ANOVA, we identify the dimensions in Z whose mean value is not influenced
by the environment. Subsequently, the variance difference of Z in each environment is
transformed into a difference in the mean value through normalization. Therefore, based on
Assumption 3, the distribution of the screened variables is not affected by the environment.
The algorithm for filtering environmental variables through causal inference is summarized
in Algorithm 1.

Through Algorithm 1, we obtain the indices of environmental variables Ze, allowing us
to remove these dimensions in the downstream tasks while retaining Zc and Zr. Redundant
variables Zr are not contributory to prediction; however, their distributions are independent
of the environment, ensuring no spurious correlations between redundant variables Zr
and prediction variables Y. Therefore, in classification, clustering, or regression tasks, the
optimization algorithm, such as gradient descent, minimizes the parameters of Zr. Thanks
to the modular approach, we only need to test the causal effect between the feature Z and
the environment, resulting in a final computational complexity of O(d). In contrast, without
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the use of a modularized causal inference method, it would be necessary to calculate the
causal effects between all variables, leading to a computational complexity of O(2d), which
is often infeasible for high-dimensional data.

Algorithm 1 Filter environmental variables Ze

Input:
{
(zi1, yi1), (zi2, yi2), · · ·,

(
zini , yini

)}
, i = 1, 2, · · ·, k, zij ∈ Rd, yij ∈ N+, ei ∈ N+, α.

Output: The indices of environmental variables Index = {index1, index2, · · · }.
1: Index = {}
2: for ind = 0 to length(z) do
3: Calculate the mean value and the variance after intervention:

µi = ∑y P(y)E[z(ind)|y, e] (z(i) denotes the ith dimension of z),
σi = µi(z2)− µ2

i
4: Normalization: µ̃i =

µi
σi

5: Construction of test statistics: ¯̄z = ∑k
i=1 ni µ̃i

n , SSA = ∑k
i=1 ni(µ̃i − ¯̄z)2,

SSE = ∑k
i=1 ∑ni

j=1

(
zij − µ̃i

)2

6: Calculate F statistics: F =
SSA
k−1
SSE
n−k

7: if F > Fα then
8: Index ← ind
9: end if

10: end for
11:
12: return Index

Figure 2 illustrates the system architecture of our algorithm. Here, µi represents the
mean of feature Zi after intervening in environment e, and σi represents the variance of
feature Zi after intervening in environment e.

Figure 2. The system architecture of the proposed algorithm. The black boxes represent the data, and
the blue boxes represent operations on the data. The area inside the red dashed box represents the
invariant causal inference process.

4. Empirical Studies

In this section, we assess the effectiveness of the proposed IFCI algorithm using
simulated data, semi-synthetic data, and real-world data. We trained the model on data
from certain available domains and evaluated its performance on data from the remaining
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domains not used during training. The code for the IFCI algorithm can be downloaded from
https://github.com/hangsuuuu/IFCI (accessed on 10 January 2024). To further evaluate
the value of the IFCI algorithm, we utilized current mainstream causal invariant learning
methods in our experiment: ICP [26], IRM [1], V-REx [45], RVP [46], and CoCo [4]. Among
them, IRM, V-REx, RVP, and CoCo are based on regularized optimization of invariant
learning algorithms, and RVP and CoCo are the latest causal invariant learning algorithms.
ICP is a classic method that utilizes hypothesis testing for causal inference. In addition, to
evaluate whether there was a difference in data distribution between the training dataset
and the testing dataset, we used an empirical risk minimization (ERM)-based model as a
benchmark. We can evaluate whether an algorithm has out-of-distribution generalization
ability by comparing it with the ERM model.

4.1. Linear Simulated Data

In this section, we initially assess the performance of IFCI on linear simulated data. We
generated data from three distinct causal graphs, individually evaluating the performance
of IFCI in each of these scenarios. The causal graphs for the three datasets are presented in
Figure 3, and the data-generation formulas are explained in detail in Appendix F.

The relationships between variables followed a linear mapping with additive noise. To
generate data from different environments, we set the parameter γe ∈ {0.5, 1.0, 5.0} (for the
usage of γe, please refer to Appendix F). We generated 10,000 data points for the first and
third environments and 3000 data points for the second environment. In this experiment,
we simulated selection bias that might occur during data collection by generating varying
amounts of data in different environments—the first two as training environments and the
last one as a testing environment.

These three cases corresponded to the different causal graphs. We used this example
to test the performance of IFCI when the data partially violated the assumption. IFCI
uses a linear layer to process features, followed by mapping the output values to the
[0, 1] range through the sigmoid function. We compared IFCI with the following methods:
ERM, Invariant Causal Prediction (ICP) [26], Invariant Risk Minimization (IRM) [1], Risk
Extrapolation (V-REx) [45], Risk Variance Penalization (RVP) [46], and Constrained Causal
Optimization (CoCo) [4]. RVP and CoCo are the most recent optimization-based methods
for invariant learning. ICP is a classic method that utilizes hypothesis testing for causal
inference. All the parameter settings and training configurations for the models involved
in the comparison are described in Appendix E. The experimental results are presented in
Tables 1–3.

Tables 1–3 show that ERM exhibited a significant difference between the testing and
training accuracies. This is because the selection bias in the data led ERM to rely on
environmental variables. The optimization-based causal learning methods (IRM, V-REx,
RVP, CoCo) exhibited a somewhat smaller difference between the testing and training
accuracies. However, in some cases, such as Case 2 and Case 3, their testing accuracies did
not show significant improvements compared to ERM. In Case 2, V-REx and RVP exhibited
lower testing accuracies compared to ERM, and their convergence was slower than ERM.
This might be due to the variance of the ancestral nodes of the predicted target Y being
influenced by the environment, as the performance of V-REx and RVP heavily relied on
the assumption of distributional invariance. CoCo typically exhibited a smaller difference
between the testing and training accuracies compared to IRM, V-REx, and RVP. However,
in Case 3, CoCo performed poorly, with the lowest training and testing accuracies. This
may have been due to the strong regularization imposed by CoCo, which weakened the
fitting capability of a model with only a single-layer linear structure. Regularization tended
to favor simpler model structures during optimization, while overly strong regularization
could have made the model too simple and lacking sufficient fitting ability, making it
unable to capture the relationships between variables in Case 3. This can be seen in the
low accuracy rate of CoCo’s training. IFCI and ICP initially performed feature selection
and then used the selected features for prediction. ICP tended to have high variance in

https://github.com/hangsuuuu/IFCI
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its prediction results. In Case 1, ICP correctly identified invariant features, leading to
high training and testing accuracies. Since IFCI and ICP use the same predictor, their
training results were identical as long as they selected the same features. The difference
in convergence time was mainly due to the varying time required for feature selection.
ICP needed to test all feature combinations to determine the final set of invariant features,
whereas IFCI only needed to test each feature once, making IFCI converge faster than ICP.
ICP’s results were empty in Case 2 because ICP rejected the null hypothesis for all feature
combinations in this case. In other words, based on its tests, none of the feature sets were
considered invariant. As a result, ICP could not train a predictor in Case 2. In Case 3, ICP
identified the set of all variables as invariant, so the results of ICP are the same as those
of ERM. The failure of ICP in Case 2 and Case 3 is because the environment influenced
the parent nodes of the direct causal variables of Y. Although Case 2 and Case 3 violated
Assumption 1, the experimental results showed that IFCI performed well in all three cases.
This suggests that Assumption 1 is a sufficient condition for Theorem 1 to hold, rather
than a necessary condition. IFCI achieved the highest testing accuracy in each case, with a
minimal difference between the testing and training accuracies.

Table 1. Predictive accuracy in training and testing environments for linear simulated data in Case 1, and
the time it took for each model to converge during training. The bold numbers represent the optimal result.

Algorithm Training Accuracy Testing Accuracy Training Time

ERM 92.8 80.7 18.85 s
IRM 90.2 83.9 17.72 s

V-REx 90.0 86.8 17.70 s
RVP 91.1 87.0 23.60 s

CoCo 85.1 84.5 20.1 s
ICP 93.6 92.3 19.69 s
IFCI 93.6 92.3 18.03 s

Table 2. Predictive accuracy in training and testing environments for linear simulated data in Case 2, and
the time it took for each model to converge during training. The bold numbers represent the optimal result.

Algorithm Training Accuracy Testing Accuracy Training Time

ERM 96.4 82.0 16.83 s
IRM 94.4 83.6 17.36 s

V-REx 93.0 77.2 34.50 s
RVP 88.1 74.2 34.53 s

CoCo 86.1 81.8 42.90 s
ICP - - -
IFCI 94.2 91.5 16.96 s

Table 3. Predictive accuracy in training and testing environments for linear simulated data in Case 3, and
the time it took for each model to converge during training. The bold numbers represent the optimal result.

Algorithm Training Accuracy Testing Accuracy Training Time

ERM 89.0 70.9 23.47 s
IRM 89.6 80.9 16.33 s

V-REx 86.8 74.6 34.47 s
RVP 85.9 71.7 35.37 s

CoCo 79.0 64.0 20.1 s
ICP 89.0 70.9 19.69 s
IFCI 91.2 88.3 15.03 s
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(a) (b) (c)

Figure 3. The causal graphs for the simulated data, where Y represents the target variable and the
blue nodes represent the environmental variables. These structures are unknown during inference,
and we infer environmental variables solely from the observed data. (a) The causal graph for Case 1.
(b) The causal graph for Case 2. (c) The causal graph for Case 3.

4.2. Gaussian Mixture Model

In this subsection, we simulate a Gaussian mixture dataset with a Gaussian mixture
model (GMM). We test our algorithm through multi-class classification problems in this
example when the inputs contain non-causal covariates [4]. In this dataset, (xe, ze) are the
observed variables and ye is the label associated with the observed variables, where e is the
environment index. For environment e, the data are generated using Equation (5):

xe ←
K

∑
k=1

1
K
N (µk, I)

ye ← Categorical(p1, · · · , pK)

ze ← (1− pe)δue
ye + peδue

k1
,

(5)

where pk = N (xe; µk, I)/ ∑K
k′=1
N

(
xe; µk′ , I

)
, pe depends on environment e, and

k1 ∼ Multinomial (1/K, · · · , 1/K), corresponding to k1 = {1, 2, · · · , K}, respectively. In
this model, the distribution of xe and the mapping from xe to label ye are invariant across
all e, whereas the distribution of ze depends on e.

The generated data for this example can be obtained from the code available at
https://github.com/mingzhang-yin/CoCo (accessed on 1 February 2021). For a detailed
explanation of the generation process, please refer to [4].

We generated training environments with K = 5, where xe has five dimensions, and
ze has three dimensions. In this experiment, five different environments were created,
each corresponding to pe ∈ {0.01, 0.02, · · · , 0.05}. In Equation (5), xe is generated by the
GMM model with a mean vector µk =

√
1.5Kek ∈ RK, where ek is a k-dimensional vector

with elements equal to 1. ye is the class corresponding to the maximum value among
pk. To generate the environmental variable ze, K random vectors

{
ut

k
}K

k=1 were generated,

where ut
k ∼ ∏

[ k
2 ]

i=1 U(0, 1) for environment e. Since the values of ye and k1 are in the
range {1, 2, · · ·, K}, ze is influenced jointly by ye, k1, and pe. Therefore, there is a spurious
correlation between ze and ye, but ze is not a causal variable for ye. Additionally, since pe

is influenced by the environment, ze is an environmental variable. We set the maximum
iterations to 2000. In this example, we used the cross-entropy loss function for IFCI, which
is the same as ERM.

We first applied IFCI to the training data to obtain the indices of the invariant features.
Subsequently, we configured the predictor as a fully connected neural network with two
hidden layers, using only the invariant features as input to the predictor. We evaluated
the test performance based on the classification accuracy and convergence time of the
models. The parameter settings for ERM, IRM, V-REx, RVP, and CoCo in this experiment
are provided in Appendix E.

The results are presented in Figure 4 and Table 4. Figure 4 illustrates the trace plots of
the predictive accuracy.

https://github.com/mingzhang-yin/CoCo
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Figure 4. Trace plots of testing accuracy for IFCI, ERM, V-REx, RVP, IRM, and CoCo. The horizontal
coordinate represents the training epoch, and the vertical coordinate represents the accuracy of the
models on the test set.

Table 4. Predictive accuracy in training and testing environments for GMM, and the time it took for
each model to converge during training. The bold numbers represent the optimal result.

Algorithm Training Accuracy Testing Accuracy Training Time

ERM 99.0 50.5 21.9s
IRM 93.1 88.0 32.24 s

V-REx 92.7 85.9 17.70 s
RVP 93.1 88.6 18.16 s

CoCo 89.3 89.3 65.92 s
ICP - - -
IFCI 91.8 91.7 16.96 s

Figure 4 indicates a pattern where the testing accuracy initially increased for all meth-
ods during the early stages of training but experienced a decline in the later stages for ERM,
IRM, and V-REx. This suggests that ERM, IRM, and V-REx initially enhanced prediction
accuracy by leveraging all features, including causal ones. However, in the later training
stage, they may have become more reliant on spurious associations, leading to a drop in
performance in the test environment. The results of CoCo were relatively unstable, during
both training and testing. At times, the accuracy of CoCo even approached that of ERM.
This instability could be attributed to CoCo’s sensitivity to variable initialization during
training. In contrast, IFCI relied on statistical hypothesis testing for variable selection,
making it less sensitive to variations in variable initialization. By successfully identify-
ing environmental variables through causal inference methods and excluding them in
the predictor, IFCI rapidly improved the testing accuracy to a high level during training.
Ultimately, IFCI converged to the highest testing accuracy at the fastest speed.

Table 4 provides a comprehensive overview of the numerical results obtained in
this experiment. Table 4 shows that ERM achieved the highest training accuracy, but
its performance on the test set was poor. This discrepancy arose from ERM fitting all
features during training, resulting in overfitting. RVP, an enhanced model based on V-
REx, generally outperformed V-REx in most cases. However, due to the more intricate
calculation of the penalty terms in RVP, it exhibited a slower convergence rate compared
to V-REx. Since ICP obtained an empty set as an invariant set in this experiment, it was
impossible to train the predictor. Therefore, there are no results corresponding to ICP
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in Table 4. IFCI exhibited the highest prediction accuracy during testing. Furthermore,
IFCI exhibited a minimal difference between the testing and training accuracies, second
only to CoCo. Although CoCo’s results fluctuated considerably, there was always a slight
difference between the training and testing accuracies of the model trained by CoCo. This
was perhaps due to CoCo’s strong focus on invariance during training, which led to a loss
of the model’s predictive capability. The IFCI model has fewer parameters than others
because it is trained solely on invariant features. As a result, the convergence speed can be
even faster than the simplest structured ERM model. Based on optimization, methods like
IRM and CoCo exhibited the slowest convergence speeds due to the need for additional
gradient computations and more complex loss functions. While IFCI required an additional
causal inference stage, our modular approach and simplified hypothesis testing methods
significantly reduced the time consumed for causal inference. Moreover, causal inference
was performed only once during training, eliminating its need in every iteration. Therefore,
IFCI exhibited the fastest convergence speed among all the compared models.

Table 5 summarizes the F-statistics for each dimension in IFCI. Table 5 indicates a
significant difference in the F-statistics between causal and environmental variables. In
this experiment, the F-value corresponding to a significance level of α = 0.05 was denoted
as F0.05 = 2.37, allowing for accurate discrimination between environmental variables
and causal variables with 100% accuracy. This underscores the effectiveness of IFCI in
practically and reliably separating environmental variables. It is important to note that
since other models involved in the comparison did not necessitate the construction of test
statistics, Table 5 exclusively includes the F-statistics generated by IFCI.

Table 5. F-statistics of each dimension calculated in IFCI. In IFCI, the significance level α was selected
as 0.05. Ci represents the causal variable. Ei represents the environmental variable. The bold numbers
represent the recognized environmental variables.

C1 C2 C3 C4 C5 E1 E2 E3

1.19 0.27 0.23 0.12 0.80 3561.62 485.23 589.32

4.3. Colored MNIST

In this subsection, IFCI is tested on a semi-synthetic dataset known as Colored
MNIST [1], designed for binary classification. The Colored MNIST dataset is derived
from the MNIST dataset, where handwritten digits 0–4 are labeled as y = 0 and digits
5–9 are labeled as y = 1. The digits are colored green with a probability of pe when
y = 1 and with a probability of 1− pe when y = 0. If the digit is not colored green, it is
colored red. The probability pe of coloring varies across different environments. In this
example, training environments were constructed with pe ∈ {0.1, 0.3}, whereas pe = 0.9
was used for testing. The data for this example can be generated using the code avail-
able at https://github.com/facebookresearch/InvariantRiskMinimization (accessed on 1
January 2024).

Performing causal inferences on each pixel of the original image data is not meaningful.
Therefore, feature extraction becomes essential. In this paper, we chose β-VAE [47] as the
feature extractor. VAE [48] is an unsupervised probabilistic model based on variational
inference. The VAE model’s structure is illustrated in Figure A1, and the loss function
is provided in Appendix D. VAE first maps high-dimensional data to a low-dimensional
normal distribution and then resamples from the normal distribution to reconstruct the
original image through a decoder. This ensures that the low-dimensional vector obtained
through VAE follows a normal distribution using the reparameterization method, ensuring
that the features extracted by VAE satisfy Assumption 3. Therefore, theoretically, using VAE
guarantees that our model can discover the causal variables. For β-VAE, a hyperparameter
β is introduced to the second term of the VAE loss function to enhance the ability to learn
disentangled representations.

https://github.com/facebookresearch/InvariantRiskMinimization
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In this experiment, a four-layer convolutional neural network was employed as the
encoder, and a four-layer deconvolution neural network served as the decoder. The hy-
perparameter β was set to 2, and the dimensions of the latent variables were 10. The
reconstructed images from β-VAE are depicted in Figure A2, demonstrating that β-VAE
effectively reconstructed the images, signifying that its latent vector Z retained a sub-
stantial amount of information from the original images. IFCI was then applied to the
low-dimensional vectors extracted by β-VAE to identify the environmental variables.
Figure 5 illustrates the interpolation of latent features extracted by β-VAE and the results
on the latent variables obtained by IFCI. Since there were only two training environments
in this experiment, we compared the difference between the mean values of the two
environments to reduce computational complexity.

(a) (b)

Figure 5. (a) The interpolation of latent features β-VAE extracted. Each row is a dimension of the
latent vector. The color of the numbers corresponds to an environmental feature we added, which
does not help predict the target variable, but there is a correlation between the color of the numbers
and the target variable in the training set. (b) The results on the latent variables of IFCI.

From Figure 5a, it is evident that the fifth dimension of the latent vector captured the
color information of the digits, which is environment-dependent. Consistently, the results
obtained by IFCI highlight the fifth dimension with a significantly larger value compared
to other dimensions. Therefore, the output of IFCI aligns with the expected outcome,
indicating that IFCI successfully identified and emphasized the environment-dependent
feature in the latent space.

After filtering out the environmental variables, we input the latent vector into a
classifier for classification. In this experiment, we used a fully connected network with
three hidden layers as a classifier and employed the binary cross-entropy loss function
for IFCI, which was the same as ERM. Table 6 presents the classification accuracies and
training times of IFCI, ERM, IRM, V-REx, RVP, CoCo, and ICP. The parameter settings for
the comparison models are detailed in [4], and additional parameter settings for the other
models are provided in Appendix E.3. Although ERM and V-REx converged quickly, their
performance on the test set was even worse than random guessing, indicating a failure
to learn invariant features. V-REx and RVP exhibited a significant difference between the
training and testing accuracies, indicating that they did not effectively learn the invariant
features and were heavily reliant on color features. ICP performed similarly on both the
training and testing sets. However, based on the training accuracy, it appears that ICP did
not identify all the invariant features but only a subset. Consequently, the model failed
to achieve satisfactory predictive performance due to the insufficient features provided
to the predictor. Because ICP directly tested the set of invariant features, whereas IFCI
tested the environmental features and removed them, the set obtained by ICP was typically
a subset of the true set of invariant features. In contrast, the feature set obtained by
IFCI included the true set of invariant features. Therefore, IFCI’s set contained more
information. Consequently, the training and testing accuracies of IFCI were higher than
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those of ICP. IFCI requires using β-VAE for feature extraction on image data, so it exhibited
a slightly slower convergence speed compared to ERM and V-REx. However, IFCI achieved
the highest test accuracy among all the models. This can be attributed to its ability to
discover environmental variables that interfered with model generalization and effectively
remove them.

Table 6. Classification accuracy in training and testing environments for Colored MNIST, and the time
it took for each model to converge during training. The bold numbers represent the optimal result.

Algorithm Training Accuracy Testing Accuracy Training Time

ERM 99.1 47.4 30.30 s
IRM 96.4 70.3 35.38 s

V-REx 98.9 49.5 30.86 s
RVP 98.5 56.9 33.92 s

CoCo 93.5 88.7 92.24 s
ICP 85.3 82.1 35.44 s
IFCI 93.8 91.9 33.12 s

4.4. Real-World Data

In this subsection, we utilize the Non-I.I.D. Image Dataset with Contexts (NICO) [49],
which contains wildlife and vehicle images captured in different environments. This
dataset can be downloaded from https://nico.thumedialab.com (accessed on 18 April
2022). The objective of this example is to classify bears and cows in images. During
training, we employed images taken in forests or rivers. During testing, we selected
images captured in the snow. Data collected in different environments typically follow
distinct distributions due to various physical factors, such as landscape, background color,
illumination conditions, etc. These physical factors, reflected in the image background,
might be predictive of the species but in a spurious manner.

In this example, we aimed to filter out these factors through IFCI, retaining consistent
features across different environments. Similar to the previous example, we utilized the β-
VAE model to extract low-dimensional features from images. We employed ResNet18 [50]
as the encoder to extract features from real-world images. The reconstructed image of
the β-VAE model is illustrated in Figure A3, indicating that β-VAE successfully extracted
most of the information from the original image. Subsequently, a five-layer fully connected
network was employed for classification. Similar to the previous section, IFCI and ERM
used the binary cross-entropy loss function. The parameter settings for the other models
are introduced in Appendix E.4. The training accuracy, testing accuracy, and time taken for
each model to converge during training are summarized in Table 7.

Table 7. Classification accuracy in training and testing environments for NICO, and the time it took
for each model to converge during training. The bold numbers represent the optimal result.

Algorithm Training Accuracy Testing Accuracy Training Time

ERM 96.9 54.0 1648.6 s
IRM 85.3 73.4 2351.2 s

V-REx 95.6 69.1 2169.3 s
RVP 92.1 73.7 2571.3 s

CoCo 81.9 79.5 4687.2 s
ICP 75.1 72.6 1990.5 s
IFCI 83.1 81.7 1953.0 s

IFCI still achieved the highest testing accuracy, with a minimal difference between the
testing and training accuracies, Although CoCo and ICP also exhibited minimal differences
between the testing and training accuracies, their performance was below that of IFCI. This
was primarily due to the strong regularization imposed by CoCo and the fact that ICP

https://nico.thumedialab.com
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identified a subset of the true invariant set of features. ERM and V-REx failed in this example
because they received interference from spurious correlations, such as environmental
backgrounds. The accuracy of RVP was slightly higher than that of V-REx, but there was
still a significant difference between its performance on the testing set and the training
set. IFCI maintained a relatively fast convergence speed (second only to ERM), so IFCI
maintained high prediction accuracy and convergence speed even on larger images.

5. Conclusions and Future Work

In this paper, we present an innovative approach to invariant feature learning called
invariant feature learning based on causal inference (IFCI). Our method introduces causal
inference into representation learning, enabling machine learning algorithms to acquire
causal representations. Through experiments, we validate that algorithms relying on causal
representations often exhibit robust generalization capabilities. To facilitate causal infer-
ence in high-dimensional data, we adopt a modular approach, which aids in eliminating
redundant causal relationships and retaining only those causally linked to the task at hand.
For causal inference, we extend the Average Causal Effect (ACE) to handle multiple vari-
able values, facilitating the effective measurement of causal effects. Experimental results
demonstrate that IFCI can successfully filter out environmental variables, significantly
improving the model’s generalization ability. In summary, our proposed IFCI method
addresses the limitations of optimization-based approaches by conducting causal inference
at the feature level, thereby enhancing out-of-distribution generalization. Furthermore,
the modular approach contributes to faster convergence compared to other methods for
out-of-distribution generalization.

In addition to classification, IFCI can also be applied to other problems, such as
regression analysis. After filtering environmental variables through IFCI, the regression
model can also have a stronger generalization ability. Therefore, the modular methods and
construction of causal diagrams in other machine learning problems are worth studying in
the future.

A suitable feature extraction method can extract more valuable features. The current
feature extraction method we are using is based on unsupervised techniques. However,
designing a feature extraction method that effectively utilizes environmental and label
information could significantly enhance the model’s performance. Therefore, this will be
a direction worth exploring in future research. When designing such a feature extraction
method, it is essential to be cautious and avoid being influenced by spurious correlations
in the data.

Studying causal learning methods for time-series data is a valuable research topic.
Time-series data often involve dependencies over time, and understanding causal relation-
ships in such data can significantly impact various fields, including finance, healthcare, and
climate science. When dealing with multi-dimensional time-series data, our proposed IFCI
method can be viewed as performing causal inference at a cross-sectional level. However,
if the model can utilize temporal information for causal inference, it will have greater
robustness because it can discover features with temporal invariance. Furthermore, explor-
ing the non-stationarity of time-series data to discover causal variables for labels rather
than relying on different environments is also a worthwhile research topic. For multi-
dimensional time-series data, whether it is possible to define specific time windows and
flatten them to apply our proposed method for causal inference is also a direction worth
exploring. If causal variables can be identified in time-series data without environmental
partitioning, it could greatly benefit the generalization and application of such machine
learning algorithms.
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Appendix A. The Proof of Propositions and Theorems

Proof of Proposition 1. Firstly, let us assume that e → Y or Ze → Y. According to As-
sumption 2(b), we can conclude that e ⊆ ϵ or Ze ⊆ ϵ. Therefore, we can deduce that e⊥X
or Ze⊥X. However, it can be seen from Definition 2 that e→ Ze and Ze ⊆ Z = Φ(X). So,
e ⊥̸X and Ze ⊥̸X, which is contradictory.

Secondly, we assume that e → Zc. Then, Φc(X) = Φc(X, e). Therefore, there exists
X, e1 and e2 such that Φc(X, e1) ̸= Φc(X, e2). This contradicts the fact that Φc is a function.
So, e does not cause Zc. We can prove that e is not the cause of Ze in the same way.

Proof of Theorem 1. From Assumption 3, we know that Z ∼ N(µ, ∑) in any environment.
Therefore, if µi and σi are constant across all environments, the distribution of zi is constant
across all environments. We normalize z as follows:

z̃ei ,j =
zei ,j

σei ,j
,

So, the mean value of the ith environment µei ,j can be calculated as follows:

µ̃ei ,j =
µei ,j

σei ,j
,

where µei ,j and σei ,j are the mean value and standard deviation, respectively.
After normalization, the standard deviation from each environment is equal to 1. The

difference in variance between different environments is transferred to the difference in the
mean value through normalization. So, if we deduce that µ̃e1,j = µ̃e2,j = · · · = µ̃ei ,j, the jth
variable of z is constant across environments.

Proof of Proposition 2. According to the definition of the mean, the mean after interven-
tion can be obtained from (3):

E[Z = z|do(e)] = ∑
z

z

[
∑
y

P(Z = z|Y = y, e)P(Y = y)

]
= ∑

y
∑
z

zP(Z = z|Y = y, e)P(Y = y)

= ∑
y

P(Y = y)E[Z = z|Y = y, e]

(A1)

Appendix B. Backdoor Criterion and Backdoor Adjustment Formula

In causal inference, we often need to estimate the causal effect of variable X on another
variable Y, i.e., P(Y|do(X)). In calculating the causal effect of X on Y, it is necessary to

https://github.com/facebookresearch/InvariantRiskMinimization
https://github.com/facebookresearch/InvariantRiskMinimization
https://www.dropbox.com/sh/8mouawi5guaupyb/AAD4fdySrA6fn3PgSmhKwFgva?dl=0
https://www.dropbox.com/sh/8mouawi5guaupyb/AAD4fdySrA6fn3PgSmhKwFgva?dl=0
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ensure that all false associations between X and Y, that is, non-causal paths from X to Y, are
excluded. At the same time, it is also necessary to maintain that the causal path between
X and Y is not blocked. Therefore, it is necessary to find a node set Z that can block any
backdoor path to X. If these backdoor paths are not blocked, they will confuse the causal
effect between X and Y. The backdoor criterion provides us with a fast judgment criterion
for finding a node set Z. This criterion is one of the most widely used basic criteria when
using structural causal models to infer causal effects.

Definition A1. (Backdoor criterion) For a pair of ordered variables (X, Y) in a directed acyclic
graph, if the variable set Z satisfies the following criteria, we say that Z satisfies the backdoor
criterion with respect to (X, Y):

(1) There is no descendant node of X in Z;
(2) Z blocks every backdoor path between X and Y that passes through X.

If the variable set Z satisfies the backdoor criterion for (X, Y), the causal effect of X
on Y can be corrected by applying the backdoor adjustment formula to Z. The specific
calculation method for the backdoor adjustment formula is as follows:

P(Y = y|do(X = x)) = ∑
z

P(Y = y|X = x, Z = z)P(Z = z) (A2)

Appendix C. Analysis of Variance

Analysis of variance is a statistical analysis method [44] used to analyze the influence
of categorical independent variables on numerical dependent variables. It is used to test
whether the influence of category variables on dependent variables is significant through
the analysis of data error. Analysis of variance can be performed for variables that meet the
following assumptions:

(1) The dependent variable population follows a normal distribution.
(2) The dependent variable population between different categories has the same variance σ2.
(3) Each observation is independent of the others.

Next, we describe the specific steps of the ANOVA hypothesis test:

1. Suggest a hypothesis:

H0 : µ1 = µ2 = · · · = µk
H1 : µi is not completely equal, where µi denotes the population mean of the ith category.

2. Construction of test statistics:

(1) The mean of the dependent variables in each category:

x̄i =
∑

ni
j=1 xij

ni
, (i = 1, 2, · · ·, k),

where ni denotes the sample size in the ith category.
(2) The total mean of all observations:

¯̄x =
∑k

i=1 ∑
ni
j=1 xij

n = ∑k
i=1 ni x̄i

n ,
where n denotes the total sample size.

(3) The sum of squares of total errors:

SST = ∑k
i=1 ∑ni

j=1

(
xij − ¯̄x

)2

The sum of squares of intra-group errors:
SSA = ∑k

i=1 ∑ni
j=1(x̄i − ¯̄x)2 = ∑k

i=1 ni(x̄i − ¯̄x)2

The sum of squares of inter-group errors:
SSE = ∑k

i=1 ∑ni
j=1

(
xij − x̄

)2

(4) Calculate the F statistics:

F =
SSA
k−1
SSE
n−k
∼ F(k− 1, n− k).
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The value of the F statistics has a clear intuitive meaning. The SSA reflects the impact
of categories on dependent variables. The SSE measures the influence of random errors on
dependent variables.

If the value of the F statistics is greater than Fα, we can reject the original assumption.

Appendix D. The Structure of VAE

Figure A1. The structure of VAE. The latent variable z ∼ N
(
µ, σ2).

Loss function:

F(θ, ϕ; x, z) = Eqϕ(z|x)[log pθ(x|z)]− DKL
(
qϕ(z|x)||p(z)

)
where, x and z denote the observational data and latent vector, respectively. qϕ denotes the
distribution that the encoder learned from the data. DKL(p1||p2) indicates the Kullback–
Leibler divergence between p1 and p2.

Appendix E. Model Settings

Below, we introduce the parameter settings of each model utilized in the comparison
of the different datasets.

Appendix E.1. Linear Simulated Data

In this experiment, all models have a single-layer linear structure, and the output of
the linear layer is mapped to the [0, 1] interval through a sigmoid function. We set the
maximum number of iterations to 100,000. Training is terminated prematurely when the
mean squared error (MSE) between the mean of the regression coefficients obtained in the
last 100 iterations and the latest regression coefficients is less than 0.001. The learning rate
is set to 0.1 in the fourth example, whereas in the other examples, the learning rate is set
to 0.01.

IRM: For IRM, we set the penalty term coefficient λ to 2.
V-REx: For V-REx, we set the penalty term coefficient λ to 100.
RVP: For RVP, we set the penalty term coefficient λ to 10.
CoCo: For CoCo, we set the penalty term coefficient λ to 1.
ICP: For ICP, we selected a significance level of α = 0.05. For the invariant features

identified after the test, we used a linear layer followed by a sigmoid function as the
predictor to map them to categories.

Appendix E.2. GMM

ERM: The ERM method employs a three-layer MLP (Multi-Layer Perceptron), with
each hidden layer having a dimensionality of 10. The MLP uses the sigmoid function as its
activation function. We set the maximum iterations to 2000. The learning rate is set to 0.01.
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IRM: IRM employs an MLP with the same structure as ERM. The regularization term
coefficient λ is set to 10. We set the maximum iterations to 2000. The learning rate is set
to 0.01.

V-REx: V-REx employs an MLP with the same structure as ERM. The regularization
term coefficient λ is set to 100. We set the maximum iterations to 2000. The learning rate is
set to 0.01.

RVP: RVP employs an MLP with the same structure as ERM. The regularization term
coefficient λ is set to 10. We set the maximum iterations to 2000. The learning rate is set
to 0.01.

CoCo: CoCo employs an MLP with the same structure as ERM. The regularization
term coefficient λ is set to 30. We set the maximum iterations to 2000. The learning rate is
set to 0.01.

ICP: For ICP, we select a significance level of α = 0.05 in hypothesis testing.

Appendix E.3. Colored MNIST

The size of the images generated in this experiment is 2× 14× 14.
ERM: The ERM method employs a three-layer MLP (Multi-Layer Perceptron), with

each hidden layer having a dimensionality of 390. The MLP uses the ReLU function as
its activation function. We set the maximum iterations to 3000. The learning rate is set
to 0.0001.

IRM: IRM employs an MLP with the same structure as ERM. The regularization term
coefficient λ is set to 900. We set the maximum iterations to 3000. The learning rate is set
to 0.0001.

V-REx: V-REx employs an MLP with the same structure as ERM. The regularization
term coefficient λ is set to 500. We set the maximum iterations to 3000. The learning rate is
set to 0.0001.

RVP: RVP employs an MLP with the same structure as ERM. The regularization term
coefficient λ is set to 50. We set the maximum iterations to 3000. The learning rate is set
to 0.0001.

CoCo: CoCo employs an MLP with the same structure as ERM. The regularization
term coefficient λ is set to 500. We set the maximum iterations to 3000. The learning rate is
set to 0.0001.

ICP: For ICP, we select a significance level of α = 0.05 in hypothesis testing.

Appendix E.4. NICO

The size of the images used in this experiment is 3× 224× 224.
ERM: ERM utilizes a combination of ResNet18 and two fully connected layers. The

hidden layer of the fully connected layers has a dimensionality of 10, and the activation
function used is the sigmoid function. We set the maximum iterations to 2000. The batch
size during training is set to 100. The learning rate is set to 0.003.

IRM: IRM employs the same network structure as ERM, and the regularization term
parameter is set to 100. The learning rate is set to 0.003.

V-REx: V-REx employs the same network structure as ERM, and the regularization
term parameter is set to 50. The learning rate is set to 0.003.

RVP: RVP employs the same network structure as ERM, and the regularization term
parameter is set to 5. The learning rate is set to 0.003.

CoCo: CoCo employs the same network structure as ERM, and the regularization term
parameter is set to 500. The learning rate is set to 0.003.

ICP: For ICP, we select a significance level of α = 0.05 in hypothesis testing.
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Appendix F. Generating Linear Simulated Data

Table A1. The formula for generating the data in Section 4.1. The environments are indexed by e, and
γe ∈ {0.5, 1.0, 5.0}.

Case 1 Case 2 Case 3

xe
1 ← N(0, 1) xe

2 ← N(0, (γe)2) xe
2 ← N(1, ( γe

2 )2)
xe

2 ← N(0.5, 1) xe
1 ← xe

2 + U(−1, 1) xe
1 ← xe

2 + U(0, 1)
ye ← δ3xe

1+2xe
2+N(0,1)>1 xe

4 ← xe
1 + N(0, ( 1

2 )
2) xe

3 ← xe
1 + xe

2 + N(0, ( 1
2 )

2)

ze ← γeye + N(0, γe) ye ← δ2xe
1+1.5xe

4+N(0,1)>0 ye ← δxe
2+2xe

3+N(0,1)>6
xe

3 ← γeye + N(0, 1) xe
4 ← γeye + N(0, 1)

where δ f (x)>a takes a value of 1 when f (x) > a, and 0 otherwise.

Appendix G. Experimental Results

Figure A2. Input image and reconstructed image of β-VAE for Colored MNIST, where the image on
the left is the input image and the image on the right is the reconstructed image.

Figure A3. Input images and reconstructed images of β-VAE for NICO, where the image on the left is
the input image and the image on the right is the reconstructed image.
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