
Citation: Kiamari, M.; Krishnamachari,

B.; Yun, S. Blizzard: A Distributed

Consensus Protocol for Mobile

Devices. Mathematics 2024, 12, 707.

https://doi.org/10.3390/

math12050707

Academic Editor: Hsien-Chung Wu

Received: 16 November 2023

Revised: 14 February 2024

Accepted: 19 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Blizzard: A Distributed Consensus Protocol for Mobile Devices
Mehrdad Kiamari 1,*, Bhaskar Krishnamachari 1,2 and Seokgu Yun 3

1 Department of Electrical and Computer Engineering, University of Southern California,
Los Angeles, CA 90089, USA; bkrishna@usc.edu

2 Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
3 SovereignWallet Network, Seoul 442736, Republic of Korea; phantom@sovereignwallet.network
* Correspondence: kiamari@usc.edu

Abstract: We present Blizzard, a Byzantine fault tolerant (BFT) distributed ledger protocol that is
aimed at making mobile devices first-class citizens in the consensus process. Blizzard introduces
a novel two-tier architecture by having the mobile nodes communicate through online brokers,
and includes a decentralized matching scheme to ensure each node connects to a certain number
of random brokers. Through mathematical analysis, we derive a guaranteed safety region (i.e.,
the set of ratios of malicious nodes and malicious brokers for which the safety is assured) for the
Blizzard protocol. Liveness is shown as well. We analyze the performance of Blizzard in terms
of its throughput, latency, and message complexity. Through experiments based on a software
implementation, we show that Blizzard is capable of throughput on the order of several thousand
transactions per second per shard and sub-second confirmation latency.

Keywords: mobile-based distributed consensus; transactions; safety; latency; throughput

MSC: 68W15

1. Introduction

It has been estimated that there are more than 4 billion mobile device users world-
wide [1], and the mobile ecosystem is still growing [2]. We are therefore motivated to
examine the design of a mobile-first consensus protocol suited for distributed ledger main-
tenance that can leverage such a massive user base. Specifically, unlike previous research
focusing on security and privacy concerns related to using mobile devices for client soft-
ware hosting (such as digital wallets) that merely send and receive transactions [3,4], our
study seeks to investigate the potential for these devices to engage more actively in the
consensus mechanism by participating in transaction validation. While a major reason for
previous work limiting the role of mobile devices to that of a client is their generally more
resource-constrained nature compared to larger compute servers, it is important to note
that today’s mobile devices are already capable of significant computation, communication,
and storage. Furthermore, as Moore’s law has been shown to apply to mobile platforms as
well [5], we can expect these capabilities to continue expanding in the future.

The distributed mobile-based consensus protocol for distributed ledger maintenance
that we propose is called Blizzard. Blizzard (the shorter version of this paper is presented
in [6]) is a leaderless consensus protocol in which mobile nodes connect and communicate
with a number of online servers called brokers. Mobile nodes only need to store and
communicate with a number of end addresses that scales with the number of brokers in the
system, rather than with the number of all mobile devices in the system. Of course, non-
mobile devices such as online servers could also participate as validators, our point is that
this is the first protocol to explicitly allow for mobile device-based validators, which can be
switched off or connect intermittently. Each mobile node connects to a random subset of
these servers for a given period of time and communicates with all other mobile nodes in
each broker’s group. Effectively, each broker creates a broadcast group of mobile nodes that

Mathematics 2024, 12, 707. https://doi.org/10.3390/math12050707 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12050707
https://doi.org/10.3390/math12050707
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12050707
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12050707?type=check_update&version=2

Mathematics 2024, 12, 707 2 of 20

can query and respond to each other. Importantly, Blizzard is designed to operate effectively
in environments with heterogeneous mobile devices, seamlessly adapting to varying levels
of operating systems, hardware capabilities, and communication technologies among
these devices.

We briefly enumerate our contributions in this work as follows:

1. Blizzard is the first mobile-based leaderless Byzantine fault tolerant (BFT) distributed
consensus protocol. Not only can mobile devices issue transactions, but they can
participate in the core transaction verification and consensus process as well. This
could increase the number of nodes capable of participating in validation by 2 to
3 orders of magnitude, thereby enhancing both adoption and security.

2. We propose a novel two-tier protocol, where consensus between mobile nodes is
enabled by the use of online brokers, and a decentralized matching scheme that
ensures each mobile node connects to exactly k random brokers.

3. Provable safety guarantee. We mathematically derive the set of ratios of Byzantine
nodes and brokers for which Blizzard’s safety is guaranteed. We also discuss why
liveness holds in Blizzard.

4. We analytically characterize the throughput of Blizzard by modeling the sequen-
tial pipeline involved in processing transactions at each node and identifying the
throughput bottleneck via empirical profiling.

5. Likewise, we also analytically characterize the confirmation latency and message
complexity of Blizzard. We show that the use of brokers in Blizzard creates a com-
munication topology that allows for efficient consensus; under reasonable parameter
settings, transactions are propagated in Blizzard within just four communication
rounds with high probability.

6. Through experiments based on a software implementation of Blizzard, we show
that it is capable of 10,000 transactions per second per shard, and allows for sub-
second confirmations.

2. Related Works

The original Bitcoin paper by Nakomoto [7] provided a joint solution to several
problems, including consensus (through longest-chain adoption), ledger representation
(hashed chain of blocks), Sybil control (through proof of work), and incentives (through
mining and transaction rewards). However, we argue that it is both possible and valuable
to consider these various components separately. To place our work in context, we briefly
survey the literature with respect to these five dimensions.

Consensus: In this work, we focus solely on the problem of distributed consensus,
focusing, in particular, on BFT. In [8], the Bitcoin protocol is formalized, and it is shown
how it can be extended to provide Byzantine agreement. There is, in fact, an earlier study
on BFT consensus for distributed systems, primarily focused on leader-based protocols,
such as PBFT [9], BFT-Smart [10], and others. More recently, in the context of Blockchain,
several new leader-based consensus solutions have been proposed that improve the speed
of BFT consensus under partial synchrony assumptions. These include Tendermint [11],
Hotstuff [12], and Casper CBC [13]. There has also been recent work on leaderless protocols,
including Hashgraph [14], Avalanche [15], DBFT [16], and Aleph [17], which do not require
having a single proposer or leader for each round of consensus. The Blizzard protocol
described in this paper is a leaderless BFT protocol that is designed to allow mobile devices
to participate in the consensus by leveraging online brokers. Blizzard builds on the idea of
gossip-based consensus presented originally in Avalanche but is structurally significantly
different due to the introduction of aggregating brokers and, therefore, requires a different
safety, throughput, and latency analysis, which are all presented in this work.

Ledger Representation: There are broadly two classes of approaches to ledger repre-
sentation in distributed ledger systems, either using a linear Blockchain as in the original
Bitcoin, Ethereum, and many other protocols, or allowing transactions (or blocks) to point
to other previous transactions (or blocks) resulting in a directed acyclic graph (DAG) data

Mathematics 2024, 12, 707 3 of 20

structure. Examples of such DAG-based protocols include IOTA [18], Hashgraph [14],
Avalanche [15], and Helix [19].

Sybil control: Surveying different Sybil control mechanisms, we find that Ethereum
also uses proof of work for Sybil control, while newer projects and systems, such as
Cosmos [20], Algorand [21], Ouroboros [22], Dfinity [23], and Ethereum 2.0 [24], have
been exploring energy-efficient alternatives such as proof of stake and delegated proof
of stake. Meanwhile, in permissioned blockchains, such as Hyperledger Fabric [25] and
Hyperledger Sawtooth [26], Sybil control is handled explicitly by only allowing a limited
set of pre-vetted, pre-approved validators into the system. In this work, we do not treat the
problem of Sybil control, similar to other prior work focused on distributed consensus.

Incentives: Finally, like most prior work on BFT consensus protocols and permissioned
blockchains (but unlike many cryptocurrency projects such as Bitcoin and Ethereum),
Blizzard is agnostic to how incentives are provided to validating nodes. This allows its use
for a broader range of use cases beyond cryptocurrency, but keeps the flexibility to allow
incentive mechanisms to be employed as a separate modular layer if needed.

Mobility: In the context of mobile-based consensus protocols, several key studies have
laid the groundwork, although they primarily focus on nodes with mobility rather than uti-
lizing smartphones as consensus nodes. An efficient consensus protocol for MANETs, based
on a hierarchical approach for message efficiency, is presented by Wu et al. [27]. The consen-
sus problem in mobile environments with disconnections is addressed by Badache et al. [28].
In [29], a modular approach for designing hierarchical consensus protocols in mobile ad hoc
networks is proposed. The design of a message-efficient consensus protocol for MANETs
is presented in [30]. Our proposed Blizzard protocol, as the first one to specifically use
smartphones for consensus, is a significant departure from these earlier works.

One crucial aspect of widely adopted protocols such as Bitcoin, Ethereum, and
Avalanche is their open, permissionless nature, allowing any device to join or leave the net-
work at any time. Therefore, they do not utilize any information about the total number of
validator nodes when voting for blocks. This significant feature, which is also essential for
mobile networks, incurs the cost that such a validator number-agnostic protocol can only be
proved to operate safely under a synchronous model [31]. Specifically, the safety of permis-
sionless consensus in partially synchronous or asynchronous models is not guaranteed [31].
On the other hand, the Blizzard protocol, as we introduce, does not make assumptions
about the total count of nodes involved. Therefore, its safety assurance is limited to a
synchronous model, similar to the situation with Bitcoin, Ethereum, and Avalanche.

In Table 1, we summarize some of the main Blockchain protocols and their key proper-
ties and attributes, along with Blizzard, to help put our contribution in context. In a nutshell,
as we will show, Blizzard provides both high throughput and low latency comparable to
state-of-the-art protocols while enabling significantly greater scalability by allowing mobile
devices to serve as transaction validators.

Table 1. Comparison of different protocols.

Protocol Sybil Control
Method Leaderless Ledger

Structure BFT
Transaction
per Second
per shard

Confirmation
Latency

Number of
Validators Mobile-Based

Bitcoin [7] PoW No Chain No 7 ∼40 min 100k+ No

Ethereum [24] PoW/PoS No Chain No 20 ∼60 s 100k+ No

Tendermint [11] Agnostic No Chain Yes ∼10,000 ∼2–15 s ∼100–1k No

Avalanche [15] Agnostic Yes DAG Yes ∼3400 ∼1.35 s 100k+ No

Blizzard Agnostic Yes DAG Yes ∼10,000 ∼0.65 s 100M+ Yes

3. System Model

We consider a broker-assisted mobile network, where disjoint sets NC and NM, respec-
tively, represent sets of correct and malicious mobile nodes (set of all nodes is denoted by

Mathematics 2024, 12, 707 4 of 20

N := NC ∪NM). Furthermore, set B indicates the set of all brokers, which consists of sets
BC and BM, representing the subsets of correct and malicious brokers, respectively. Other
notations are provided in Table 2.

Table 2. Notation description.

n : Number of all mobile nodes (where n = |N |).
c : Number of correct mobile nodes.
b : Number of Byzantine mobile nodes.

m : Number of all brokers.
mc : Number of correct brokers.
mb : Number of Byzantine brokers.

N (b) : Set of connected mobile nodes to broker b.
B(u) : Set of connected brokers to mobile node u.

k : Number of brokers being sampled by each mobile node.
α : Majority threshold of mobile nodes for considering a “yes” vote.
η : Majority threshold of brokers for considering a “yes” vote.

β1 : Security threshold used for consecutive counter.
β2 : Security threshold used for confidence counter.

Mobile nodes issue cryptographically signed transactions. We assume all validating
nodes have access to a common function that can determine if any two transactions are
conflicting or not (this is general enough, for example, to cover the detection of conflicting
transactions under either a UTXO or account-based model). Correct nodes never issue
conflicting transactions, while Byzantine nodes may issue conflicting transactions.

Regarding misbehavior acts, we assume the existence of both Byzantine mobile nodes
as well as brokers. In Blizzard, malicious brokers are effectively limited to suppressing
messages as they do not sign or initiate any messages themselves and are assumed to
not be able to forge messages from mobile nodes. As far as the Byzantine behavior for
malicious mobile nodes is concerned, malicious nodes are computationally limited (not
able to forge signatures), while they can choose any execution strategy that they desire.
Moreover, the consensus remains unaffected by mobile nodes turning off as long as the
fraction of correctly connected mobile nodes is sufficiently high [15].

Since we aim to have a protocol such that any vote on a new transaction would be
a vote on some previous transactions, we incorporate a DAG structure into our protocol.
To do so, some parent transactions would be assigned for each new transaction. Therefore,
any vote on a specific transaction is a vote on all of its ancestor transactions (i.e., all
transactions accessible through the parents of a transaction) as well. The overview of the
DAG structure is presented in Appendix B.

We next present how our proposed Blizzard scheme works in detail.

3.1. Proposed Blizzard Scheme

Our proposed scheme works as follows: each node u ∈ N connects to k brokers
(represented by B(u)) uniformly at random (the mechanism of k random connections will
be discussed in the following subsection) and queries them on a new transaction T.

Upon receiving a query, each broker b ∈ B(u) computes η-majority vote on T by
querying all of its connected nodes denoted by N (b). Then, each node v ∈ N (b) for all
brokers b ∈ B(u) affirmatively responds to the query if all of the ancestor transactions
of T are currently the preferred choice of transaction in their corresponding conflict sets
in the stored DAG of node v. Afterwards, broker b ∈ B(u) aggregates the count of all
positive responses collected from nodes N (b) and sends an affirmative response to all its
connected nodes using a suitable key aggregation scheme if ≥ η|N (b)| (where 1

2 < η < 1)
collected responses from nodes N (b) are positive. In the case of having ≥ αk (where
1
2 < α < 1) positive responses, collected from brokers Bu for T, then T will be appended
to the stored DAG of node u and node u never queries T again. The protocol would
continue by following the same process for all nodes having T in their known transaction

Mathematics 2024, 12, 707 5 of 20

sets. An example of our proposed scheme for k = 2, where one node queries on a new
transaction, is depicted in Figure 1. The details of the Blizzard protocol are elaborated in
Algorithm 1 and side function Querybroker(., .) in (1).

QueryBroker (b, T) :=
{

1 if ∑u′∈N (b) QueryNode(u′, T) ≥ η|N (b)|
0 if else

(1)

where QueryNode(u′, T) is 1 if transaction T and all its ancestor transactions are the preferred trans-
actions among their corresponding conflict sets (see Appendix B for more details on conflict sets and
preferred transaction in a conflict set); otherwise, it is 0.

Nodes

Brokers

𝐵" 𝐵# 𝐵$ 𝐵% 𝐵&

𝑁" 𝑁# 𝑁$ 𝑁% 𝑁(𝑁) 𝑁*

Figure 1. An illustration on how Blizzard works for k = 2. Mobile Node 1 queries brokers B2 and
B3 on a new transaction these brokers have not queried yet (shown with blue arrows). Then, these
brokers query all their connected mobile nodes about the transaction (depicted with orange arrows).
Afterwards, all connected mobile nodes respond back to queries (shown with green arrows) and
brokers reflect the majority vote to all of the connected nodes (presented by dashed-black arrows).

Algorithm 1: Blizzard Algorithm
Input: Set of mobile nodes N , brokers B, and transactions coming over time
Output:

Set of non-conflicting transactions accepted by every correct mobile node u ∈ N
Initialization:
- Each node u ∈ N randomly connects to k brokers represented by B(u).
- Set Tu = Qu = ∅ for all nodes which do not issue transaction where Tu and Qu

represent known and queried transaction sets of node u, respectively.
while there is a transaction T at any node u such that T ∈ Tu, T ̸∈ Qu do

- Rbrokers := ∑b∈B(u) QueryBroker(b, T);
if Rbrokers ≥ αk then

- vu,T = 1 // T receives a voucher and appends to the DAG of node u.
- Update DAG and the conflicting sets of node u after appending T.

end
- Qu = Qu ∪ {T} // mark T as a queried transaction.

end

We next present a distributed mechanism to enforce k random connections for mo-
bile nodes.

3.2. Distributed Random Matching

For Blizzard to work, we need to ensure that each mobile node is connected to k random
brokers. Since random connection plays a key role in preventing collusion between Byzan-
tine entities, we propose a mechanism which requires all mobile nodes, even Byzantine
ones, to provide a proof of their connections being random.

Mathematics 2024, 12, 707 6 of 20

Our proposed distributed random matching scheme works as follows:

1. Each mobile device applies a hash function on the combination of the random number
coming from a distributed random beacon (note that a distributed random beacon is
now live online at https://drand.love/ (accessed on 15 November 2023)) [32] with
the ID of the mobile device. Regarding the hash function, it outputs B bits where 0
and 1 are equally likely. Then, the indices of the first k ones represent the brokers each
mobile device has to connect with. The mobile device afterwards sends the output of
its hash function as well as its IDs to the brokers it is supposed to connect with.

2. Brokers validate the ID of mobile devices, verify that hash values generated by mobile
devices are correctly produced, taking into account the distributed random beacon,
and thus verify that mobile devices are authorized to connect.

An illustration of the proposed distributed random matching scheme is depicted in
Figure 2. One crucial factor ensuring the effectiveness of our proposed scheme is that the
hash function outputs a sufficiently long sequence (or equivalently, a large value of B),
ensuring that there are at least k ones in the hashed value with high probability. Theorem 1
determines parameter B for our proposed distributed random matching scheme to satisfy
this condition.

Theorem 1. In order to ensure the probability of existing at least k ones in a sequence of length B
to be 1 − δ (for small δ), parameter B should satisfy 1

2 log 1
δ = (1

2 − k−1
B)2B.

Proof.
P(H(B) ≤ k − 1) ≤ δ = exp (−2ϵ2B) (2)

where (2) follows from Hoeffding’s inequality, H(B) indicates the number of ones in a
sequence of length B, and ϵ := 1

2 − k−1
B .

Distributed Random Beacon

HashID

Mobile

Verifier

Broker

Figure 2. Proposed distributed random matching scheme for connecting each mobile node to
k brokers.

4. Safety and Liveness

As mentioned earlier, it has been shown in [31] that permissionless protocols that
do not make any assumption about the total number of nodes involved in the consensus
protocol can only be proved to operate correctly under a synchronous model. This applies
to previously proposed protocols such as Bitcoin, Ethereum, and Avalanche, and also to
Blizzard. Thus, in the following discussion, we assume a synchronous network where the
maximum latency for any message is bounded by a known constant.

4.1. Safety Analysis

To establish the robustness of the Blizzard scheme in terms of safety, it suffices to
demonstrate that every correct node uniformly agrees on the same transaction from a set of
conflicting ones within a finite time frame almost surely. For instance, consider a scenario
where transaction T1 is already present and transaction T2 (which conflicts with T1) is newly

https://drand.love/

Mathematics 2024, 12, 707 7 of 20

introduced to the network. For simplicity and illustrating the nodes’ preferences between
two conflicting transactions, we assign two distinct colors to the nodes: red and blue.

Nodes favoring transactions T1 and T2 are depicted as red- and blue-colored nodes,
respectively. For simplicity and without any loss of generality, our analysis concentrates on
scenarios where all correct nodes unanimously choose the red color as their consensus.

The operational guidelines for mobile nodes and brokers in the network are outlined
as follows:

1. Every correct mobile node always responds with honesty upon receiving any query.
2. A queried Byzantine node may respond with any color or even refuse to respond.
3. Every correct broker computes η-majority of the votes collected from all nodes con-

nected to it and broadcasts the majority vote to all of them.
4. Byzantine brokers cannot forge information since they cannot cryptographically sign

transactions from nodes. However, a Byzantine broker may compute η-majority of
the votes collected from an arbitrary subset of nodes connected to it and send the
computed vote to any selected nodes that are connected to this broker. They could
also choose not to communicate.

The primary objective of adversaries with respect to safety is to prevent correct nodes
from reaching a consensus on the same transaction among all conflicting transactions
within a finite time. To achieve this, malicious nodes do their best to hinder the process of
all correct nodes reaching a unanimous decision on a single color.

In order to prevent adversarial attacks, similar to Avalanche, we incorporate two
following counters for each mobile node:

(1) Conviction in Current Color (C3) counter to store how many consecutive computed
majority votes have resulted in the same color. Once a node flips its color, this counter
reset to zero. Furthermore, a node locks into the current color when this counter
exceeds some security parameter β1.

(2) Confidence counter to take into account the number of queries that have yielded
a majority vote for their corresponding colors. A node flips its color only if the
confidence value of its computed vote is larger than the confidence value of the
current color. Moreover, a node locks into a color once the confidence value of this
color exceeds some security parameter β2.

Color-based Blizzard: Considering the aforementioned assumptions, the color-based
Blizzard scheme works as follows: each mobile node connects to k brokers uniformly at
random and queries them. Please note that randomly connecting each mobile to k brokers
is guaranteed by the distributed random matching scheme described in the previous
section. Then, each of these brokers queries all its connected nodes regarding their colors.
Subsequently, each of the connected nodes, upon being queried, sends its color to the
brokers that it is connected to. Once the color of all nodes connected to broker i received,
then the broker computes whether ≥ η|N (i)| (where N (i) represents nodes connected to
broker i and η ∈ (1

2 , 1]) collected responses have the same color or not. In the case of having
≥ η|N (i)| responses with the same color, then the broker broadcasts the computed majority
vote to all nodes connected to it.

Once α-majority of votes collected from brokers connected to a node yields to a color,
i.e., receiving ≥ αk positive responses, the confidence counter for that color will increase by
one. If this color (the one computed from the majority votes coming from k brokers) is the
same as the node’s current color, C3 counter increases by one; otherwise, the node resets
C3 counter to zero. A node flips its color to a new color if the confidence counter of new
color is larger than the confidence counter of current color.

Safety Analysis of Color-based Blizzard: Without loss of generality, we assume that
the initial node colors are randomly assigned such that c

2 + 1 nodes have red color, while
the remaining nodes are blue. This is the worst-case scenario for reaching consensus due to
balance in number of nodes with different colors.

Mathematics 2024, 12, 707 8 of 20

Let us represent correct mobile nodes that prefer red and blue colors with u and v,
respectively. To show consensus is achieved, we can show that nodes that prefer blue
color gradually gain confidence in the red color over time, and they eventually turn into
red-preferred nodes with high probability. By defining z.Conf[R] as the confidence of node
z in color R, i.e., the number of queries yielding a majority vote for color R for node z (and
similar definition for z.Conf[B]), the rule for color change is straightforward: node z will
change its color to red if z.Conf[R] > z.Conf[B] and flips to blue otherwise.

Our proof for reaching consensus will be shown as the following steps:

Step 1: After some finite time, the system reaches the point where there are c
2 + ∆ red

nodes while the remaining nodes are blue.
Step 2: At this point, v nodes have negative average growth in confidence value for

blue color at any time (note that average growth in confidence value of node z
for color x is E[z.Conf (t)[x]]−E[z.Conf (t−1)[x]]), with high probability. After a
short period of time, we have v.Conf[B]− v.Conf[R] = −1, with high probability,
and as a result, v nodes flip their color to red. Note that u nodes just gain more
confidence in red as time elapses in this step.

4.1.1. Step 1

We can model our scheme as a discrete-time Markov Chain with state si, ∀i ∈
{0, . . . , c}, where si represents the state with i red and c − i blue nodes, with transition
probability matrix M.

Since each of these transition probabilities is a function of the adversary, let us now
elaborate upon its behavior. The most malicious scenario conducted by the adversary aims
to achieve the following goal: keep the confidence value of blue and red colors nearly the
same for u nodes while letting v nodes increase their confidence value of blue color as
much as they can. More formally, the scenario is to have u.Conf[R] = u.Conf[B] + 1 and
maximizing κ, where κ ≜ v.Conf[B]− v.Conf[R]. Therefore,

• When a u node queries: All Byzantine mobile nodes acquire red colors. Regarding
the malicious brokers, all of them act with honesty without suppressing any color.

• When a v node queries: All Byzantine mobile nodes pick blue colors, and all Byzantine
brokers with a red-color majority switch to a blue-majority broker by not reflecting
their red-color mobile nodes. With high probability, as shown in Appendix A, a node
is connected to at most f ≜ mbr

m Byzantine brokers in a population of r red brokers and
m − r blue brokers.

Since none of the transition probabilities are zero, the system can reach to the state
sc/2+∆ in finite time. We will discuss how ∆ can be determined in the next step. It is
important to emphasize that we set the security parameters k, α,η, β1, and β2 such that no
node finalizes its color during this step.

4.1.2. Step 2

In this step, we show how v nodes flip their color to red, and as a result, all correct
nodes reach consensus with high probability. To do so, we write the expected confidence
value for mobile nodes at time t as follows:

E[u.Conf (t)[R]] = E[u.Conf (t−1)[R]] + P(C(t)
u is red)

= E[u.Conf (t−1)[R]] +
m

∑
r=αk

P(C(t)
u = red | Ai

r)P(Ai
r)

= E[u.Conf (t−1)[R]] +
m

∑
r=αk

(k

∑
j′=αk

(r
j′)(

m−r
k−j′)

(m
k)

)(m
r

)
pr

i+b(1 − pi+b)
m−r,

(3)

where C(t)
u represents the color of the computed vote of node u at time t. Moreover, Ai

r de-
notes the event of having r red-majority brokers and m− r blue-majority brokers when there

Mathematics 2024, 12, 707 9 of 20

are i red mobile nodes in a population of n nodes. Therefore, P(Ai
r) = (m

r)pr
i (1 − pi)

m−r,
where pi, the probability of a broker to be red given total i red nodes in a population of n
nodes, is

pi ≜
n

∑
ℓ=1

∑j≥ηℓ (
i
j)(

n−i
ℓ−j)

(n
ℓ)

.︸ ︷︷ ︸
probability of the broker being red given ℓ connections

×
(

n
ℓ

)
(

1
m
)
ℓ

(1 − 1
m
)

n−ℓ

︸ ︷︷ ︸
probability of the broker having ℓ connections

(4)

Similarly, we would have

E[u.Conf (t)[B]] = E[u.Conf (t−1)[B]] +
m

∑
r=αk

(k

∑
j′=αk

(r
j′)(

m−r
k−j′)

(m
k)

)(m
r

)
(1 − pi)

r pi
m−r (5)

E[v.Conf (t)[R]] = E[v.Conf (t−1)[R]] +
m

∑
r=αk

(k

∑
j′=αk

(r− f
j′)(

m−r+ f
k−j′)

(m
k)

)(m
r

)
pr

i (1 − pi)
m−r (6)

E[v.Conf (t)[B]] = E[v.Conf (t−1)[B]] +
m

∑
r=αk

(k

∑
j′=αk

(r+ f
j′)(

m−r− f
k−j′)

(m
k)

)(m
r

)
(1 − pi)

r pi
m−r. (7)

By defining D ≜
(
E[v.Conf (t)[B]]− E[v.Conf (t−1)[B]]

)
−

(
E[v.Conf (t)[R]]−

E[v.Conf (t−1)[R]]
)

, we have

D =
m

∑
r=αk

(k

∑
j′=αk

(r+ f
j′)(

m−r− f
k−j′)

(m
k)

)(m
r

)
(1 − pi)

r pi
m−r −

m

∑
r=αk

(k

∑
j′=αk

(r− f
j′)(

m−r+ f
k−j′)

(m
k)

)(m
r

)
pr

i (1 − pi)
m−r. (8)

We now aim to show that D acquires negative values, and once v.Conf[B]− v.Conf[R]
reaches value −1, all correct nodes acquire a red color. Let us introduce the following
random variables Xt ≜ v.Conf (t)[B]− v.Conf (t)[R] and X1:t ≜ ∑t

i=1 Xi.
Since X1:t satisfies Hoeffding’s inequality condition due to the fact that (a) Xt are i.i.d

and (b) Xt’s are sub-Gaussian due to their nature of having bounded values, we would
have P(X1:t −E[X1:t] ≥ q) ≤ exp (−2tq2).

Therefore, in order to show X1:t is negative, with high probability, it suffices to show
that E[X1:t] is negative. To do so, based on the recursive formulas (6) and (7), we need to
show that D acquires negative values under certain conditions. Let us first elaborate upon
how (8) can be approximated as in the following Theorem.

Theorem 2. D can be approximated as follows

D ≈ G(k, m, 1 + ρb, α, 1 − pi)− G(k, m, 1 − ρb, α, pi), (9)

where

G(k, m, λ, α, pi) ≜∑
r

1

1 + e
−1.702

(
k
m λr−αk√
k
m λr(1− λr

m)

) e
− (r−mpi)

2

2σ2
i√

2πσ2
i

,

σ2
i ≜ mpi(1 − pi).

(10)

Proof. We note that the probability mass function (PMF) of hyper-geometric distribution

with parameters (r, m, k) is phg(x; r, m, k) ≜ (r
x)(

m−r
k−x)

(m
k)

. By approximating

1. Binomial distribution Bionomial(n, p) (corresponds to terms (m
r)pr

i (1 − pi)
m−r or

(m
r)(1 − pi)

r pi
m−r) with normal distribution N (np, np(1 − p)),

Mathematics 2024, 12, 707 10 of 20

2. Hyper-geometric distribution Hyper − Geometrical(r, m, k) with normal distribution
N (k r

m , k r
m (1 − r

m)),

D can be approximated as

D ≈ ∑
r

(
1 − Φ(

αk − k r+ f
m√

k r+ f
m (1 − r+ f

m)
)
) e

− (r−m(1−pi))
2

2σ2
i√

2πσ2
i

− ∑
r

(
1 − Φ(

αk − k r− f
m√

k r− f
m (1 − r− f

m)
)
) e

− (r−mpi)
2

2σ2
i√

2πσ2
i

.

(11)

where Φ(x) represents the cumulative distribution function (CDF) of normal distribution
N (0, 1). According to [33], Φ(x) ≈ 1

1+e−1.702x . Therefore, by substituting f = ρbr and using
the aforementioned approximation of Φ(x), we can approximate D as (9).

Remark 1. One can easily see that D can acquire negative values when pi >
1
2 . This is due to

the fact that the logistic coefficient of the normal distribution in G(.) considerably scales down
normal distribution N (m(1− pi), mpi(1− pi)) (appeared in G(k, m, 1+ ρb, α, 1− pi)) compared
to normal distribution N (mpi, mpi(1 − pi)) (appearing in G(k, m, 1 − ρb, α, pi)).

Remark 2. As k increases, the logistic term in G(.) forms a sharper transition around the central
point (value that makes logistic term equal to 1

2). Therefore, for a sufficiently large k, D would
be negative if mα

1+ρb
> m(1 − pi) and mα

1−ρb
< mpi, due to the fact that the mean of N (m(1 −

pi), mpi(1 − pi)) < central point of logistic coefficient of N (m(1 − pi), mpi(1 − pi)) and the
mean of N (mpi, mpi(1 − pi)) > central point of logistic coefficient of N (mpi, mpi(1 − pi)). The
aforementioned conditions are equivalent to pi > max(α

1−ρb
, 1 − α

1+ρb
).

Determining ∆: The proper choice of i can be obtained by finding the least integer i,
where D is negative. By denoting the appropriate i as i∗, then ∆ (presented in Step 1) can
be found by solving c

2 + ∆ = i∗.
All tuples (ρn, ρb) for which the safety is guaranteed can be obtained by checking if

there exists an i such that D < 0 for those values of ρn and ρb.
We further perform simulations to obtain all tuples (ρn, ρb) such that safety is assured

for the case of having 2000 mobile devices. Figure 3 illustrates this guaranteed safety
region, shown with yellow color, for different numbers of brokers and different numbers
of connections. We consider 1000 iterations with a 0.05 resolution for the Byzantine ratio
of nodes and brokers. One interesting observation is that the Byzantine ratio of mobile
nodes and brokers can, respectively, reach 50% (when ρb is small) and <60% of Byzantine
brokers (when ρn is small), with a tradeoff seen between these ratios. Notably, if the
ratio of Byzantine nodes increases, the maximum tolerable ratio of Byzantine brokers for
ensuring safety decreases, and vice versa. This dynamic is particularly relevant when
considering the specific behaviors of Byzantine entities in Blizzard. Malicious brokers
are mostly limited to suppressing messages, as they cannot initiate or forge messages,
while Byzantine mobile nodes, although computationally constrained and unable to forge
signatures, can adopt any execution strategy. It is crucial to recognize that mobile devices
are inherently more susceptible to failures, such as battery drain or network disconnections,
which, within the context of the Blizzard protocol, are treated akin to malicious behaviors.
However, the protocol is designed to operate effectively as long as the combined proportion
of Byzantine mobile nodes and brokers falls within the safety-guaranteed region. Moreover,
brokers, due to their typically more stable infrastructure, are less prone to the types of
failures common to mobile devices, allowing for a higher tolerable ratio of Byzantine
brokers compared to mobile nodes. This distinction underscores the strategic advantage
of investing in the integrity and reliability of brokers. By ensuring a higher proportion

Mathematics 2024, 12, 707 11 of 20

of correct brokers, Blizzard can maintain operational safety even with a greater ratio of
mobile nodes exhibiting malicious or failure-induced behaviors. This insight highlights
the protocol’s capacity to adapt to and mitigate the risks associated with the inherent
vulnerabilities of mobile nodes, further enhancing Blizzard’s resilience and operational
efficacy in environments with diverse Byzantine threats. One notable observation is that
the safety region expands as k increases. This phenomenon can be attributed to the intuitive
understanding that a higher value of k indicates a greater involvement of nodes in the
transaction query.

The safety region plot effectively showcases the resilience of the Blizzard protocol
against adversarial behaviors, particularly focusing on the range of actions that Byzantine
nodes and brokers might undertake. It is crucial to note that while correct mobile nodes con-
sistently respond truthfully, Byzantine nodes may offer any response. Additionally, while
correct brokers broadcast the η-majority vote, Byzantine brokers, despite their inability to
forge information, can selectively compute and communicate the η-majority from a subset
of nodes. This nuanced behavior underlines the importance of the safety region in ensuring
that all correct nodes decide on the same transaction among conflicting ones, a vital aspect
for maintaining integrity in real-world scenarios where diverse adversarial tactics may
be employed. For example, if there are 170 brokers in the network and around 20% of
them are malicious, then according to the safety-guaranteed region in Figure 3, the Blizzard
protocol guarantees reaching consensus as long as the portion of Byzantine mobile nodes
does not exceed 40% of all mobile nodes. This demonstrates Blizzard’s capacity to uphold
consensus and safety even in significantly adverse conditions, emphasizing its practical
utility in distributed systems where the presence of malicious actors is a real concern.

𝑚 = 100

𝑘
=
35

𝑘
=
5

𝑚 = 170

N
od

e
By

za
nt

in
e

ra
tio

N
od

e
By

za
nt

in
e

ra
tio

N
od

e
By

za
nt

in
e

ra
tio

N
od

e
By

za
nt

in
e

ra
tio

N
od

e
By

za
nt

in
e

ra
tio

Broker Byzantine ratioBroker Byzantine ratio

Broker Byzantine ratioBroker Byzantine ratio

Figure 3. An illustration of safety-guaranteed region (indicated with yellow color) of Blizzard protocol
through simulation for different number of connections of each mobile node, i.e., k, and different
number of brokers, i.e., m while fixing total number of mobile nodes n = 2000 and 1000 iterations.

Mathematics 2024, 12, 707 12 of 20

4.2. Liveness

Similar to other DAG-based protocols such as IOTA [18] and Avalanche [15], liveness
failure in Blizzard occurs when either a transaction has an invalid transaction as its parent
or a transaction does not gain enough confidence value. The former scenario can be
resolved by re-issuing the transaction with new valid parents, while the latter could be
resolved by having a node send additional valid transactions as successors to increase the
confidence value.

5. Performance Analysis

We first present our analysis on throughput per shard, and then we focus on analyz-
ing latency.

5.1. Throughput per Shard

We elaborate upon obtaining the throughput of Blizzard from a novel perspective,
i.e., modeling it as a pipeline, as illustrated in Figure 4. By considering ti as the required
time for performing the task of component i, and considering that the component with the
smallest rate would dominate the result, the throughput would be equal to min1≤i≤8

1
ti

.
Considering the network bandwidth as BW bps and the transaction size as 300 Bytes,

the rate of the communication components (represented by green-colored boxes, specifically
Components 2–3, 5, and 7) would be approximately BW

2400 transactions per second (tps).
Among the computing components (orange-colored boxes), i.e., Components 1, 4, 6, and 8,
Component 4 (checking if a transaction is strongly preferred) dominates the computing
time due to the fact that it is more time-consuming compared to the other computing
components. Using this analysis, we will quantify the throughput using experimental
measurements in Section 6.

Node
Preprocessing

Query
Connected

Brokers

Query
Connected

Nodes

Nodes
Compute

IsStronglyPref

Brokers
Compute
Majority
of Nodes’
Responses

Brokers
Response
To Node

Nodes
Response
To Broker

Nodes
Compute
Majority

of Brokers’
Responses

Component

Required
Time:

New
Transaction

𝑡" 𝑡# 𝑡$ 𝑡% 𝑡& 𝑡' 𝑡(𝑡)

1 2 3 4 5 6 7 8

Figure 4. The pipeline modeling of different components of Blizzard to acquire throughput. We use
orange for computing components and green for communication components in our box diagrams.

5.2. Latency
Total latency refers to the time interval from when a transaction is issued until it is

finalized. It is upper-bounded by the sum of three terms:

Latency ≤ tpropagation + tvalidation + tconfidence (12)

These terms are, respectively, (1) the propagation time tpropagation, which is the time
taken for a transaction to be disseminated throughout the entire network; (2) the transaction
validation time tvalidation; and (3) the confidence-gathering time tconfidence, which is the time
required for a transaction to achieve a threshold level of confidence through successive
transactions voting for it. We analyze each of the aforementioned terms as follows.

5.2.1. Propagation Time

Since the propagation time is linearly proportional to the number of communication
rounds (a communication round is a communication transmission from a mobile node to a
broker or vice versa), we aim to obtain the least number of communication rounds (LNCR)
required for a transaction to propagate in the entire network by starting from the node that

Mathematics 2024, 12, 707 13 of 20

issued this transaction and ending by the last node which discovers this transaction. We
are able to prove a strong result about LNCR in Blizzard.

Theorem 3. Let us assume that (m−k)n
(m−1)m > 1; then, the LNCR of Blizzard equals 4 with high

probability.

Proof. We first demonstrate that, with high probability, the distance between any two
vertices representing brokers in the corresponding bipartite graph is 2. Then, the distance
between any two vertices indicating mobile nodes would be at most 2 more than that, i.e., 4
with high probability. The probability that vertices v1 and v2, ∀v1 ̸= v2 and v1, v2 ∈ V,
have a distance of 2, which can be obtained as follows:

P(dist(v1, v2) = 2) = P(existence of at least one node

u ∈ U which is connected to both v1 and v2)

(a)
= 1 −

(
1 −

(m−2
k−1)

(m−1
k−1)

) n
m
= 1 −

(
1 − m − k

m − 1

) n
m (b)
≈ 1 − e−r

where (a) follows from considering average n
m mobile nodes per broker, and (b) follows

from limn→∞ (1 − r
n)

n = e−r and considering r := (m−k)n
(m−1)m . It is easy to see e−r is small

enough if r > 1 (or equivalently the condition of the Theorem holds). This condition is
realistic due to the fact that we expect n >> m.

5.2.2. Transaction Validation Time

As mentioned earlier, the transaction validation time refers to the time required for
a node to check the validity of transactions. Therefore, we can use the pipeline scheme,
explained in the previous section on throughput and illustrated in Figure 4, to model this
time. Mathematically, the transaction validation time can be expressed as ∑8

i=1 ti.

5.2.3. Confidence-Gathering Time

Let us assume L represents the average number of transactions come later after a
transaction appended to the DAG until it gets finalized. The value of L would depend
on the security parameters of the protocol as well as the DAG-attachment policy adopted
by nodes; in the special case when all transactions are attached sequentially in a chain, it
can be shown that L would be equal to min (β1, β2). By defining ζ as the arrival rate of
transactions, the average confidence-gathering time would be L

ζ .
Using the above analysis, we will quantify the latency using experimental measure-

ments in Section 6.

5.3. Average Message Complexity

Average message complexity refers to the average number of messages required for
a transaction to be queried by all nodes. The average message complexity of Blizzard
can be obtained by noting that each broker is queried by one of its connected nodes and
then collects and sends back the majority vote to all its connected nodes. This implies that
Blizzard needs m + 2kn messages for querying.

While we argue that Avalanche cannot be implemented on mobile device networks
in a scalable manner as it requires direct peer-to-peer communication between any two
random devices, we can still compare Blizzard and Avalanche in terms of their trade-off
between message complexity and LNCR, assuming Blizzard were to be implemented on
the same network as Avalanche, as shown in Figure 5. For having a fair comparison (i.e.,
equal number of nodes being queried on each transaction), q (number of sampled nodes in
Avalanche) should be nk

m . As q increases in the Avalanche protocol, the LNCR decreases,
while the total number of required messages significantly increases. However, Blizzard
protocol obtains the best of both worlds, i.e., having a lower LNCR and lower total number

Mathematics 2024, 12, 707 14 of 20

of required messages. Note that the number of required messages in Blizzard could be
reduced further by decreasing m, but this would result in lower security.

3.019

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10

N
um

be
r o

f M
es

sa
ge

s Th
ou

sa
nd

s

LNCR

Blizzard

Avalanche

Figure 5. The total number of massages versus the lowest number of communication rounds (LNCR)
in Blizzard compared with Avalanche for the following setting: n = 500, k = 3, and m is varied from
4 to 19.

6. Implementation and Experimental Measurements

We implemented Blizzard in C++ and also a version of Avalanche for comparison
purposes. We have made our source code for the implementation of Blizzard as well as its
comparison with Avalanche publicly available at https://github.com/ANRGUSC/Blizzard
(accessed on 15 December 2022).

Using our implementation, we ran computations of Blizzard on a computing machine
with the configuration of 2.3 GHz Intel core i5 (whose frequency is less than the frequency
of state-of-the-art mobile CPUs [34]) so that all computations are emulated in real time.
For the communication between nodes and brokers, we simulated it with one-way network
latency drawn from a uniform distribution with 100 ms mean and standard deviation 25 ms.
We next present the experimental measurements of throughput and latency, as well as an
estimation of battery energy consumption.

6.1. Throughput Evaluation

As we explained in Section 5.1, since Component 4 (checking if a transaction is strongly
preferred) in Figure 4 dominates the computational time, we implemented component 4 in
C++ and observed empirically that t4 ≈ 100 µs for the setting where there are 400 transac-
tions known by mobile nodes. Since the computing power of the top 10 iOS mobile devices
exceeds the computing power of the device used in the implementation we performed
(based on https://www.geekbench.com/ (accessed on 15 November 2023)), the throughput
of Blizzard is as presented in the following table:

Network Bandwidth 100 Mbps 10 Mbps 1 Mbps

Throughput on PCs 10,000 TPS 4166 TPS 416 TPS

6.2. Latency Evaluation

Assuming security parameters β1 = 11, β2 = 150, a chain topology for the DAG and a
transaction arrival rate higher than 100 tps, the propagation and validation times are going
to be dominant compared to the confidence time, and in turn, they will each be dominated
by four communication steps; this implies a total latency on the order of <1 s (∼0.65 s).

https://github.com/ANRGUSC/Blizzard
https://www.geekbench.com/

Mathematics 2024, 12, 707 15 of 20

Figure 6 shows the histograms of the transaction latency of our proposed scheme
and Avalanche [15] in two different settings. As it can be observed, Blizzard significantly
reduces latency by ∼50%. Further, one can see Avalanche has a wide range of transaction
latency while Blizzard has a dense one.

Figure 6. The left and right plots, respectively, represent the histogram of transaction latency of our
proposed scheme (Blizzard) compared with Avalanche [15] for the case of 100 transactions, security
parameters β1 = 11 and β2 = 150. The left histogram corresponds to the settings of 100 nodes,
8 brokers, and 3 connections per node, while the right figure corresponds to the case of 200 nodes,
11 brokers, and 6 connections per node.

6.3. Battery Energy Consumption

Here, we provide a rough estimate of the energy consumed per transaction validated
by a mobile device. Given that the amount of data exchanged between the mobile nodes
and online brokers for each transaction is relatively small, and considering that no computa-
tionally intensive Sybil control mechanism, such as proof of work, is required, the primary
source of energy consumption in our protocol is computation. As discussed above, the dom-
inant source of computation when validating a transaction (see Figure 4) is Component 4
(Computing IsStronglyPref.). Based on our experiments, we estimate this takes about 100 µs.
Assuming a mobile CPU power consumption of 1.5 Watt [34] and conservatively assuming
full CPU utilization, this would translate to about 1.5 × 10−4 Joules per transaction. While
we are not aware of benchmark numbers for other protocols we could compare this with
since other protocols are typically not built with the energy efficiency of validators in mind,
we believe this imposes a relatively low, manageable load on a mobile device, particularly
as the device owner is free to determine what number of transactions it participates in over
a given period of time.

To succinctly highlight the differences between Blizzard and Avalanche, we present
the comparative Table 3.

Table 3. Comparison of different protocols.

Protocol Transaction per
Second per Shard

Confirmation
Latency

Number of
Validators Mobile-Based

Avalanche [15] ∼3400 ∼1.35 s 100k+ No

Blizzard ∼10,000 ∼0.65 s 100M+ Yes

7. Discussion

Here, we briefly elaborate on topics that merit further attention. These topics are out
of scope for the present paper, but we are actively pursuing these directions.

Mathematics 2024, 12, 707 16 of 20

7.1. Mobile-Device-Oriented Sybil Control

What has been presented in this paper thus far is a consensus mechanism. It implicitly
assumes that there is already a Sybil control mechanism in place, such as those based on
proof of work or proof of stake. To implement Blizzard in a network with millions of mobile
devices, it may be helpful to create a Sybil control mechanism such that only users with
valid mobile devices can participate in the consensus with significant cost associated with
creating or operating multiple, potentially fake identities. A potential design for such a
system could leverage the existence of globally unique mobile IDs, such as IMEI numbers,
while still maintaining an overall architecture that is sufficiently open and decentralized.
Another alternative is to utilize decentralized IDs on the mobile nodes with a permissioned
setup. Yet another approach may be to use location information or wireless signal strength
as the basis for a Sybil control mechanism [35,36]. Another approach could be to use proof
of social Contacts [37], which leverages encounter information between mobile nodes to
detect and blacklist Sybil nodes.

7.2. Improving Scalability

One of the crucial bottlenecks of a DAG-based protocol is that all nodes need to store
the entire DAG as well as investigate whether a transaction is strongly preferred by going
through the entire DAG. As a result, the system faces storage and computation bottlenecks.
These challenges may be exacerbated when involving relatively more resource-limited
mobile nodes in the consensus mechanism, as we have proposed in Blizzard. To address
the computation and storage challenge, we consider three approaches, namely sharding [38],
pruning DAG , and offloading verification, to improve the scalability.

Sharding: This technique creates multiple pools of mobile nodes, where each pool
focuses on storing and verifying transactions belonging to a corresponding subset of
all accounts (per the well-known Blockchain Trilemma, this solution trades off security
for scalability while maintaining decentralization). The implementation of sharding is
particularly beneficial in mobile environments as it helps alleviate computational and
storage constraints on cell phones, allowing them to participate more effectively in the
consensus process without being overwhelmed by the demands of the entire network.

Pruning DAG: By defining check-point transaction as the one that is finalized, it is clear
that all ancestor transactions of a check-point transaction are also finalized. In the account
model (the state-based approach used in Ethereum), as long as we reach a check-point
transaction on the DAG, we do not need to store all its ancestor transactions. Therefore,
each mobile node can save a significant amount of memory by storing only the pruned
DAG. By including such a concept of check points, we could fulfill the criterion of having
lightweight nodes. However, as discussed in [39], there are several other practical consid-
erations to keep in mind, such as retaining historical information on some full nodes and
ensuring it is accessible in a decentralized manner for security purposes. In our architecture,
the online brokers could potentially serve the role of full nodes that store the entire history,
while the mobile nodes only store information past the last check-point. This approach
significantly assists in easing the memory storage constraints on mobile devices, enabling
them to participate in the network without the burden of storing extensive historical data.

Off–loading Verification: Inspired by [40], this approach would allow the computa-
tion associated with verification (investigating whether a transaction is strongly preferred
or not) to be offloaded to more powerful servers that provide zero-knowledge proofs
that can be verified in a more lightweight manner by the mobile devices. More research is
needed to flesh out and realize such an approach. This method is particularly advantageous
for mobile devices, as it addresses the computation power constraint, enabling them to
efficiently verify transactions without expending significant processing resources.

7.3. Safety under a Partially Synchronous Model

As shown in [31], in order to prove safety under a partially synchronous model,
the protocol must explicitly take into account the total number of participating nodes and

Mathematics 2024, 12, 707 17 of 20

their votes when determining when to finalize a transaction, as seen in protocols such
as Tendermint [11] and Hotstuff [12]. Alternatively, it would be interesting to explore
the development of a decentralized BFT approach to empirically quantifying (possibly
in a time-varying manner) an upper bound on the network latency at all times. Given
such a mechanism, the protocol parameters could be suitably adapted to ensure correct
and efficient operation despite a time-varying network latency, i.e., in a partially syn-
chronous network.

7.4. Connectivity

Blizzard is designed to function in the unpredictable and unreliable network envi-
ronments characteristic of mobile devices. If a mobile node disconnects, the integrity
of the system is maintained as long as the proportion of malicious entities is within the
specified safe range. The only requirement for the disconnected node upon reconnection is
to update its DAG ledger, which is efficiently achieved through communication with the
connected brokers.

In our protocol, safety is effectively ensured through the strategy of establishing ran-
dom connections to brokers. This approach is critical in protecting against coordinated
adversarial attacks. To further adapt our protocol to the dynamic nature of user mobility,
we propose leveraging advancements in telecommunications like 5G and the forthcom-
ing 6G networks. These technologies will enable a more densely connected network of
brokers, enhancing our system’s resilience to both adversarial threats and the complex-
ities introduced by mobile user behavior. This strategy of combining random broker
connections with increased broker density is key to evolving our protocol for more realistic
network scenarios.

7.5. Challenges in Real-World Implementation

There are several key challenges pertinent to the implementation of consensus pro-
tocols on mobile devices. One significant hurdle is the resource constraint inherent in
mobile devices, which possess limited battery life compared to traditional computing
nodes. Consequently, optimizing consensus protocols for low resource consumption is
critical to prevent excessive battery drain and performance degradation. Moreover, from an
implementation standpoint, it is imperative that every mobile node and broker has access
to the distributed random beacon. This access is vital for facilitating random connections
between mobile devices and brokers, leading to additional considerations regarding the
network’s architecture, security, and dependability. The challenge of providing stable and
secure beacon access in a broad and fluctuating network of mobile devices is unique and
must be tackled to preserve the consensus protocol’s integrity and operational effectiveness.
Another crucial aspect to consider is the impact of these protocols on user experience. It
is imperative that the running of consensus protocols in the background does not intru-
sively affect the primary functionalities of the device, ensuring that they operate seamlessly
without significantly impacting the user’s experience with the device.

8. Conclusions

In this work, we have presented Blizzard, the first mobile-device-oriented BFT consensus-
based distributed ledger protocol. Blizzard incorporates a novel two-tier broker-based
architecture and a decentralized random matching mechanism. We have mathematically
analyzed and presented the safety guarantee for Blizzard. Interestingly this guarantee is
in the form of a two-dimensional region—for sufficiently large networks, our numerical
computations show that the protocol is capable of supporting < 50% of Byzantine nodes
(when the number of Byzantine brokers is small) and <60% of Byzantine brokers (when
the number of Byzantine nodes is small), with a tradeoff seen between these ratios.

We have also discussed how Blizzard satisfies liveness. Moreover, we have also
analyzed and evaluated the performance of Blizzard in terms of throughput, latency,
and message complexity. We also demonstrated that Blizzard has superior performance in

Mathematics 2024, 12, 707 18 of 20

terms of significantly low message complexity and short propagation latency compared
to its benchmark, which in any case would be challenging to implement in a mobile-first
scenario considered here as it is challenging to allow mobile devices to directly randomly
query any other mobile nodes in a large network without going through any online servers.

We have shown that Blizzard can provide a desirable level of throughput per shard.
To improve throughput performance further, it is important to develop or adopt additional
scaling mechanisms that have been proposed in other projects, such as account-based
sharding and second-layer solutions such as state channels. Memory limitations of mobile
devices can be addressed by a suitable combination of check-point-based DAG pruning
and prior offloaded verification solutions. As a key future direction, we aim to implement
Blizzard on real mobile devices and empirically measure the throughput and latency.

Author Contributions: Conceptualization, M.K., B.K. and S.Y.; Data curation, M.K. and B.K.; Formal
analysis, M.K. and B.K.; Funding acquisition, B.K. and S.Y.; Investigation, M.K., B.K. and S.Y.;
Methodology, M.K. and B.K.; Project administration, B.K. and S.Y.; Resources, M.K., B.K. and S.Y.;
Software, M.K. and B.K.; Supervision, B.K. and S.Y.; Validation, M.K., B.K. and S.Y.; Visualization,
M.K. and B.K.; Writing—original draft, M.K. and B.K.; Writing—review and editing, M.K., B.K. and
S.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by a gift to the USC Center for Cyberphysical Systems and
the Internet of Things from SovereignWallet Network and in part by AFOSR grant FA9550-23-1-0312.
We also acknowledge the helpful inputs provided by Muhammad Naveed.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/ANRGUSC/Blizzard (accessed on 13 February 2024).

Conflicts of Interest: Seokgu Yun is employed by the SovereignWallet Network. Other authors
declare no conflict of interest.

Appendix A. High-Probability Connections

By defining random variable X as a number of Byzantine brokers picked by selecting

ℓ brokers from all brokers, P(X = x) =
(mb

x)(mc
ℓ−x)

(
mb+mc

ℓ
)

. Based on the Hoeffding inequality, we

have P(X −E[X] > θ) ≤ e−
2θ2

ℓ2 , where E[X] = mb
m ℓ = ρbℓ.

Appendix B. Overview on DAG Structure of the Ledger

A mobile node designates several parents for a new transaction once upon issuing a
new transaction and forms edges on the DAG. The main difficulty of keeping the DAG is to
select one transaction among conflicting ones. Double-spending is one of the examples of
conflicting transactions. Once a transaction is queried, all ancestor transactions of this one
are implicitly included in the query. A node affirmatively responds to the query if all of the
ancestors are currently the preferred choice of transaction in their corresponding conflict sets.
In the case of having ≥ αk (where 1

2 < α < 1) positive response for transaction T, then this
transaction receives voucher vu,T = 1 and be appended to the DAG; otherwise vu,T = 0.

Every node stores the entire transactions it has known in its DAG. Each DAG consists of
mutually exclusive conflict sets PT for T ∈ Tu, where Tu represents the subset of the known
transaction by node u. Each conflict set PT has three components, namely the preferred
transaction PT .pref, last seen transaction PT .last, and counter PT .counter. Moreover, every
node u computes the confidence value of transaction T by the following formula:

du(T) ≜ ∑
T′ :T′∈Tu ,T′⇝T

vu,T′ (A1)

where T′ ⇝ T indicates a path from T′ to T. Furthermore, DAGs created by different
nodes are assured to be consistent, meaning that relation T → T′ exists for the DAG of
all nodes if T → T′, and there is no node with relation T → T′ if T ̸→ T′. Each node
maintains a counter for the number of votes it has received for each transaction. Once the

https://github.com/ANRGUSC/Blizzard

Mathematics 2024, 12, 707 19 of 20

number of affirmative votes surpasses a certain predefined threshold, the transaction is
considered finalized.

References
1. Walden, P.; Dahlberg, T.; Penttinen, E. Introduction to the Minitrack on Digital Mobile Services for Everyday Life. In Proceedings

of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA, 8–11 January 2019.
2. Greenstein, B. Delivering the Mobile Web to the Next Billion Users. In Proceedings of the 19th International Workshop on Mobile

Computing Systems & Applications, Tempe, AZ, USA, 12–13 February 2018; p. 99.
3. Biryukov, A.; Tikhomirov, S. Security and privacy of mobile wallet users in Bitcoin, Dash, Monero, and Zcash. Pervasive Mob.

Comput. 2019, 59, 101030. [CrossRef]
4. Sai, A.R.; Buckley, J.; Le Gear, A. Privacy and Security Analysis of Cryptocurrency Mobile Applications. In Proceedings of the

2019 Fifth Conference on Mobile and Secure Services (MobiSecServ), Miami, FL, USA, 2–3 March 2019; pp. 1–6.
5. Yu, K.; Feng, J. Moore’s Law and Price Trends of Digital Products: The Case of Smartphones. Econ. Innov. New Technol. 2019,

10, 1628509.
6. Kiamari, M.; Krishnamachari, B.; Naveed, M.; Yun, S. Distributed Consensus for Mobile Devices using Online Brokers. In

Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, 2–6 May
2020; pp. 1–3.

7. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 15
December 2019).

8. Garay, J.; Kiayias, A.; Leonardos, N. The bitcoin backbone protocol: Analysis and applications. In Proceedings of the Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, 26–30 April 2015.

9. Castro, M.; Liskov, B. Practical Byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. (TOCS) 2002, 20,
398–461. [CrossRef]

10. Bessani, A.; Sousa, J.; Alchieri, E.E. State machine replication for the masses with BFT-SMaRt. In Proceedings of the 2014
44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Atlanta, GA, USA, 23–26 June 2014;
pp. 355–362.

11. Kwon, J. Tendermint: Consensus without Mining. 2014. Available online: http://tendermint.com/docs/tendermint.pdf
(accessed on 15 November 2023).

12. Abraham, I.; Gueta, G.; Malkhi, D. Hot-Stuff the Linear, Optimal-Resilience, One-Message BFT Devil. CoRR 2018, abs/1803.05069.
13. Zamfir, V.; Rush, N.; Asgaonkar, A.; Piliouras, G. Introducing the “Minimal CBC Casper” Family of Consensus Protocols; DRAFT v1. 0;

Ethereum Research: Zug, Switzerland, 2018.
14. Baird, L. The Swirlds Hashgraph Consensus Algorithm: Fair, Fast, Byzantine Fault Tolerance; Swirlds Tech Report SWIRLDS-TR-2016-01;

Swirlds Inc.: College Station, TX, USA, 2016; Volume 34, pp. 9–11.
15. Rocket, T.; Yin, M.; Sekniqi, K.; van Renesse, R.; Sirer, E.G. Scalable and Probabilistic Leaderless BFT Consensus through

Metastability. arXiv 2019, arXiv:1906.08936.
16. Crain, T.; Gramoli, V.; Larrea, M.; Raynal, M. DBFT: Efficient Leaderless Byzantine Consensus and its Application to Blockchains.

In Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge,
MA, USA, 1–3 November 2018; pp. 1–8.

17. Gagol, A.; Swietek, M. Aleph: A Leaderless, Asynchronous, Byzantine Fault Tolerant Consensus Protocol. arXiv 2018,
arXiv:1810.05256.

18. Popov, S. The Tangle. 2016. Available online: https://www.iota.org/research/academic-papers (accessed on 15 December 2019).
19. Zhelezov, D.; Fohrmann, O. HelixMesh: A Consensus Protocol for IoT. In Proceedings of the 2019 International Electronics

Communication Conference, Okinawa, Japan, 7–9 July 2019; pp. 44–51.
20. Cosmos. Available online: https://cosmos.network/resources/whitepaper (accessed on 18 December 2019).
21. Micali, S. ALGORAND: The Efficient and Democratic Ledger. arXiv 2016, arXiv:1607.01341.
22. Kiayias, A.; Russell, A.; David, B.; Oliynykov, R. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. Cryptology

ePrint Archive, Report 2016/889. 2016. Available online: https://eprint.iacr.org/2016/889 (accessed on 15 November 2023).
23. Hanke, T.; Movahedi, M.; Williams, D. DFINITY Technology Overview Series, Consensus System. CoRR 2018, abs/1805.04548.
24. Fairley, P. Ethereum will cut back its absurd energy use. IEEE Spectr. 2018, 56, 29–32. [CrossRef]
25. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,

Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, Porto, Portugal, 23–26 April 2018.

26. Olson, K.; Bowman, M.; Mitchell, J.; Amundson, S.; Middleton, D.; Montgomery, C. Sawtooth: An Introduction; The Linux
Foundation: San Francisco, CA, USA, 2018.

27. Wu, W.; Cao, J.; Yang, J.; Raynal, M. A hierarchical consensus protocol for mobile ad hoc networks. In Proceedings of the 14th
Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06), Sochaux, France, 15–17
February 2006; p. 9. [CrossRef]

http://doi.org/10.1016/j.pmcj.2019.101030
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1145/571637.571640
http://tendermint.com/docs/tendermint.pdf
https://www.iota.org/research/academic-papers
https://cosmos.network/resources/whitepaper
https://eprint.iacr.org/2016/889
http://dx.doi.org/10.1109/MSPEC.2019.8594790
http://dx.doi.org/10.1109/PDP.2006.11

Mathematics 2024, 12, 707 20 of 20

28. Badache, N.; Hurfin, M.; Macedo, R. Solving the consensus problem in a mobile environment. In Proceedings of the 1999 IEEE
International Performance, Computing and Communications Conference (Cat. No.99CH36305), Scottsdale, AZ, USA, 10–12
February 1999; pp. 29–35.

29. Wu, W.; Cao, J.; Raynal, M. Eventual Clusterer: A Modular Approach to Designing Hierarchical Consensus Protocols in MANETs.
IEEE Trans. Parallel Distrib. Syst. 2009, 20, 753–765. [CrossRef]

30. Wu, W.; Cao, J.; Yang, J.; Raynal, M. Design and Performance Evaluation of Efficient Consensus Protocols for Mobile Ad Hoc
Networks. IEEE Trans. Comput. 2007, 56, 1055–1070. [CrossRef]

31. Pass, R.; Shi, E. Hybrid Consensus: Efficient Consensus in the Permissionless Model. In Proceedings of the 31st International
Symposium on Distributed Computing (DISC 2017), Vienna, Austria, 16–20 October 2017; pp. 1–16.

32. Syta, E.; Jovanovic, P.; Kogias, E.K.; Gailly, N.; Gasser, L.; Khoffi, I.; Fischer, M.J.; Ford, B. Scalable Bias-Resistant Distributed
Randomness. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–24 May 2017;
pp. 444–460.

33. Bowling, S.; Khasawneh, M.; Kaewkuekool, S.; Cho, B. A logistic approximation to the cumulative normal distribution. J. Ind.
Eng. Manag. 2009, 2, 114–127. [CrossRef]

34. Halpern, M.; Zhu, Y.; Reddi, V.J. Mobile CPU’s rise to power: Quantifying the impact of generational mobile CPU design trends
on performance, energy, and user satisfaction. In Proceedings of the 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Barcelona, Spain, 12–16 March 2016; pp. 64–76.

35. Jiang, Z.; Krishnamachari, B.; Zhou, S.; Niu, Z. SENATE: A Permissionless Byzantine Consensus Protocol in Wireless Networks.
arXiv 2018, arXiv:1803.08694.

36. King, R.J. Introduction to Proof of Location: The Case for Alternative Location Systems. 2018. FOAM. Available online:
https://blog.foam.space/introduction-to-proof-of-location-6b4c77928022 (accessed on 15 November 2023).

37. Martinez, M.; Hekmati, A.; Krishnamachari, B.; Yun, S. Mobile Encounter-based Social Sybil Control. In Proceedings of the 2nd
International Workshop on Blockchain Applications and Theory (BAT), Paris, France, 20–23 April 2020.

38. On Sharding Blockchains, Ethereum Wiki. Available online: http://github.com/ethereum/wiki/wiki/Sharding-FAQ (accessed
on 15 November 2023).

39. On Pruning in Ethereum. Available online: http://tiny.cc/ethpruning (accessed on 15 November 2023).
40. Al-Bassam, M.; Sonnino, A.; Buterin, V. Fraud Proofs: Maximising Light Client Security and Scaling Blockchains with Dishonest

Majorities. arXiv 2018, arXiv:1809.09044.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPDS.2008.266
http://dx.doi.org/10.1109/TC.2007.1053
http://dx.doi.org/10.3926/jiem.2009.v2n1.p114-127
https://blog. foam. space/introduction-to-proof-of-location-6b4c77928022
http://github.com/ethereum/wiki/wiki/Sharding-FAQ
http://tiny.cc/ethpruning

	Introduction
	Related Works
	System Model
	Proposed Blizzard Scheme
	Distributed Random Matching

	Safety and Liveness
	Safety Analysis
	Step 1
	Step 2

	Liveness

	Performance Analysis
	Throughput per Shard
	 Latency
	Propagation Time
	Transaction Validation Time
	Confidence-Gathering Time

	Average Message Complexity

	Implementation and Experimental Measurements
	Throughput Evaluation
	Latency Evaluation
	Battery Energy Consumption

	Discussion
	Mobile-Device-Oriented Sybil Control
	Improving Scalability
	Safety under a Partially Synchronous Model
	Connectivity
	Challenges in Real-World Implementation

	Conclusions
	High-Probability Connections
	Overview on DAG Structure of the Ledger
	References

