
Citation: Du, C.; Xu, G.; Guo, Y.;

Wang, Z.; Yu, W. A Novel Seed

Generation Approach for

Vulnerability Mining Based on

Generative Adversarial Networks and

Attention Mechanisms. Mathematics

2024, 12, 745. https://doi.org/

10.3390/math12050745

Academic Editor: Andrea Scozzari

Received: 26 January 2024

Revised: 27 February 2024

Accepted: 28 February 2024

Published: 1 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Novel Seed Generation Approach for Vulnerability Mining
Based on Generative Adversarial Networks and
Attention Mechanisms
Chunlai Du 1, Guizhi Xu 1, Yanhui Guo 2,* , Zhongru Wang 1,3 and Weiqiang Yu 4

1 School of Information Science and Technology, North China University of Technology, Beijing 100144, China;
duchunlai@ncut.edu.cn (C.D.); 2021316210181@mail.ncut.edu.cn (G.X.); wangzhongru@cac.gov.cn (Z.W.)

2 Department of Computer Science, University of Illinois Springfield, Springfield, IL 62703, USA
3 Chinese Academy of Cyberspace Studies, Beijing 100048, China
4 Beijing DigApis Technology Co., Ltd., Beijing 100081, China; yuweiqiang@digapis.cn
* Correspondence: yguo56@uis.edu

Abstract: Coverage-guided fuzzing has been widely applied in software error and security vul-
nerability detection. The fuzzing technique based on AFL (American Fuzzy Loop) is a common
coverage-guided fuzzing method. The code coverage during AFL fuzzing is highly dependent on the
quality of the initial seeds. If the selected seeds’ quality is poor, the AFL may not be able to detect
program paths in a targeted manner, resulting in wasted time and computational resources. To solve
the problems that the seed selection strategy in traditional AFL fuzzing cannot quickly and effectively
generate high-quality seed sets and the mutated test cases cannot reach deeper paths and trigger secu-
rity vulnerabilities, this paper proposes an attention mechanism-based generative adversarial network
(GAN) seed generation approach for vulnerability mining, which can learn the characteristics and
distribution of high-quality test samples during the testing process and generate high-quality seeds for
fuzzing. The proposed method improves the GAN by introducing fully connected neural networks to
balance the competitive adversarial process between discriminators and generators and incorporating
attention mechanisms, greatly improving the quality of generated seeds. Our experimental results
show that the seeds generated by the proposed method have significant improvements in coverage,
triggering unique crashes and other indicators and improving the efficiency of AFL fuzzing.

Keywords: security vulnerabilities; fuzzing; seed generation; generative adversarial network;
attention mechanism

MSC: 90C70

1. Introduction

With the rapid development of computer technology and its widespread application
in various fields, software plays an irreplaceable role in the defense and military indus-
tries, finance and economy, daily life, and other aspects. However, there are also software
security concerns, escalating the severity of security risks attributable to software vulnera-
bilities. Even ostensibly minor vulnerabilities have the potential to result in the compromise
of sensitive information. Conversely, high-risk vulnerabilities possess the capability to
facilitate remote device control, thereby precipitating significant information disclosure,
service disruptions, and, in extreme cases, systemic destruction culminating in substantial
losses. In 2016, the Japanese space satellite “Tong” disintegrated due to underlying software
failures, causing billions of dollars in losses. In 2018, the National Information Technology
Commission of Pakistan suffered from the leakage of personal information of millions of
citizens due to network vulnerabilities in its applications. In 2018 and 2019, the Boeing
737MAX aircraft crashed twice due to software design flaws, resulting in 346 fatalities.

Mathematics 2024, 12, 745. https://doi.org/10.3390/math12050745 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12050745
https://doi.org/10.3390/math12050745
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1814-9682
https://doi.org/10.3390/math12050745
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12050745?type=check_update&version=1

Mathematics 2024, 12, 745 2 of 16

Software security has risen to national security, and software serving national key projects
must undergo rigorous and meticulous testing and inspection to prevent irreparable losses
caused by vulnerabilities. In order to effectively ensure software security, it is urgent to
identify potential vulnerabilities before the software is put into use.

Within this framework, fuzzing technology has surfaced as a methodology [1]. Fuzzing
involves subjecting the target program to automatic or semi-automatic testing methods,
utilizing a meticulously crafted seed file as input. Throughout the testing process, dynamic
information is gathered to guide the mutation of the seed. When a crash occurs during
testing, the fuzzer captures the current input file, enabling subsequent assessment to
ascertain potential defects in the target program. The quality of seed files is crucial as it
significantly influences the effectiveness and efficiency of fuzzing.

Among numerous fuzzing tools, the American Fuzzy Loop (AFL) is a coverage-guided
fuzzing framework developed by American security researchers. AFL has become one
of the foremost choices in the realm of fuzzing. Its deployment not only substantively
enhances the security of the tested software but also actively promotes the development of
fuzzing technology.

The AFL fuzzing process is a dynamic and systematic approach to identifying software
vulnerabilities by injecting mutated inputs into a target program. The process begins
with an initial set of seeds, representing diverse input files, and the target program is
instrumented to track code coverage during the execution. AFL employs a coverage-
guided strategy, prioritizing inputs that lead to the exploration of new or less-explored
code paths. The fuzzer continually mutates and tests inputs, adapting seeds based on
the feedback received from the coverage analysis. Seed selection is a critical component
of AFL’s strategy, starting with a diverse set of seeds to cover a broad range of program
behaviors. The fuzzer dynamically adjusts its seed set during the fuzzing campaign,
favoring inputs that contribute to increased code coverage and have the potential to
uncover novel vulnerabilities. This iterative and adaptive process, guided by coverage
feedback, enables AFL to efficiently explore the vast input space and discover security
issues in target applications.

This article endeavors to tackle the pertinent issue and directs attention toward
enhancing research in the domain of fuzzing seed generation. Our proposition intro-
duces an innovative approach that integrates generative adversarial networks (GAN) and
attention mechanisms to elevate the quality and diversity of fuzzing seeds. To solve
the problems of gradient vanishing and pattern collapse, we propose an attention-based
GAN seed generation method (AtGAN) for vulnerability mining. This paper makes the
following contributions:

1. A pioneering approach AtGAN is devised for vulnerability mining seed generation,
amalgamating GAN with attention mechanisms. This method not only inherits the
generation power of GAN but also enhances the generator’s learning capability
for input data through the incorporation of attention mechanisms. The synergistic
integration of GAN and attention mechanisms in AtGAN presents a novel approach
to test case generation, thereby making innovative contributions to the realm of
software testing.

2. An effective solution has been proposed to address the prevalent issue of gradient
vanishing encountered during the training of GAN generators. Through the incor-
poration of refined normalization operations into the attention mechanism, we have
effectively alleviated the problem posed by excessively large values in the query-key
(QK) pairs after dot product operations and mitigated gradient vanishing issues in
softmax operations. The implementation of this normalization operation facilitates a
more seamless learning process for the generator during training, thereby averting
the detrimental effects of gradient vanishing on model performance.

3. To tackle the challenge of pattern collapse, an enhanced residual connection strategy
has been introduced. Following each stage of the attention mechanism, we refined
residual connections and incorporated scaling factors. This improvement not only

Mathematics 2024, 12, 745 3 of 16

helps to better maintain information transmission but also introduces more reasonable
weights in residual connections, effectively resolving the problem of pattern collapse.
Generators can consistently produce diverse samples without undue bias towards a
specific pattern, ensuring greater stability in the generation process.

2. Related Work

Fuzzing has emerged as a widely adopted and scalable methodology for uncovering
software vulnerabilities. Within the dynamic execution phase, commonly known as the
fuzzing loop, the fuzzer employs a seed selection algorithm to choose optimal seeds. These
selections are based on feedback information gathered from the execution of the Program
Under Test (PUT). Subsequently, the fuzzer engages in seed mutation, employing a series
of strategies to generate new samples. This iterative process aims to explore different paths
within the target program. The versatility of fuzzing extends its application to diverse
domains, including testing for vulnerabilities in application software, libraries, kernel codes,
protocols, and more. The subsequent discussion delves into various dynamic technologies
and methods that are popularly employed in fuzzing.

2.1. Coverage Guide Fuzzing

Traditional seed selection strategies typically require a significant amount of time to
obtain high-quality seeds, and in many cases, they have not shown significant advantages
over random selection strategies [2]. To address this issue, Wang et al. [3] proposed a seed
generation tool called Skyfire, which targets programs that require highly structured files as
input. Through probabilistic context-sensitive grammar (PCSG) learning, Skyfire is able to
automatically extract semantic information and grammar rules based on input and utilize
left inference and character prediction probabilities when generating new seeds to ensure
passing semantic parsing and grammar checks. However, due to its ability to only generate
seeds for context-independent lightweight scripting languages and because it is limited by
syntax models, it cannot cover all input file formats.

Currently, many vulnerability detection studies have also adopted deep learning
technology [4–6]. The combination of deep learning and fuzzing provides new ideas for
solving the bottleneck problem of traditional fuzzing technology. Deep learning technology
can automatically learn grammar from a corpus set that conforms to input grammar rules
and explore hidden correlations that are difficult to detect by manual methods during the
learning process [7]. Learn & Fuzz [8] attempts to learn PDF syntax rules through the
Seq2Seq model and iteratively predicts characters by moving the input sequence position
step by step to intelligently guide seed generation. However, it only migrates the generated
PDF objects to the original file objects, and the improvement in fuzzing performance
is limited. Cheng et al. [9] proposed a machine learning-based framework that utilizes
neural networks to discover the correlation between PDF files and the execution in the
target program, in order to improve the seed input quality of fuzzing programs that use
PDF files as input, but it mainly focuses on the generation of PDF files and does not
provide a detailed explanation of the feasibility for other file types. Faster Fuzzing [10]
uses generative adversarial networks (GAN) [11] instead of recurrent neural networks
(RNN) to learn the distribution characteristics of data and directly generate new samples.
However, due to the small size of the test cases used in the experiment, their effectiveness
is limited. Smartseed [12] implemented seed generation using a Wasserstein GAN (WGAN)
model. It faces problems due to the low quality of generated data samples and difficulty
in convergence, and there is no clear explanation of the effectiveness of more complex
GAN models. Ganfuzz [13] demonstrated the ability of GAN to generate highly structured
inputs, learn the structure and distribution of data frames through GAN, and generate
models that can resemble protocol message sequences. However, it only focuses on public
or private industrial agreements.

Present seed generation endeavors encounter several challenges: (1) The efficacy
of current seed generation strategies remains suboptimal, prompting the need to devise

Mathematics 2024, 12, 745 4 of 16

methods for generating seed files swiftly and effectively. (2) Ensuring the intrinsic value of
automatically generated seed files poses a significant concern, warranting attention to the
quality and relevance of the generated seeds. (3) The question of whether the generated
seeds possess universality across various fuzzing tools necessitates exploration as the
compatibility and applicability of seeds across different tools remain a critical aspect of
seed generation research.

2.2. Directed Greybox Fuzzing

Directed grey-box fuzzing (DGF) is a fuzzing approach based on the target location
or the specific program behavior obtained from the characteristics of a vulnerable code.
Unlike CGF, which blindly increases path coverage, DGF aims to reach a predetermined
set of places in the code (potentially vulnerable parts) and spends most of the time budget
arriving there, without wasting resources emphasizing irrelevant parts.

AFLgo [14] and Hawkeye [15] were performed within the program against user-
specified target sites using distance metrics. A disadvantage of the distance-based approach
is that it only focuses on the shortest distance; therefore, when there are multiple paths to
the same goal, longer paths may be ignored, resulting in lower efficiency. MemFuzz [16]
focused on code regions related to memory access and further guided the fuzzer by memory
access information executed by the target program. UAFuzz [17] and UAFL [18] focused
on UAF vulnerability-related code regions, leveraging target sequences to find use-after-
free vulnerabilities, where memory operations must be performed in a specific order
(e.g., allocate, free, and then store/write). Memlock [19] mainly focused on memory
consumption vulnerabilities, took memory usage as the fitness goal, and searched for
uncontrolled memory consumption vulnerabilities but did not consider the influence of
data flow. AFL-HR [20] triggered hard-to-show buffer overflow and integer overflow
vulnerabilities through coevolution.

3. GAN Based on Attention Mechanism for Vulnerability Mining

In response to the low efficiency of current seed selection strategies, the inability to
guarantee seed quality, and the insufficient universality of seed generation schemes, this
paper proposes to generate seeds through an attention-based GAN (AtGAN) as shown in
Figure 1. This method collects excellent test samples from the fuzzing process and inputs
them into the AtGAN for training and optimization. The trained AtGAN can fit the real
data distribution, and its attention mechanism can focus on specific effective parts of the
input data, learn the structural characteristics of high-quality test samples, and generate
high-quality test seeds to improve the testing performance of AFL.

3.1. Seed Generation Framework

In software testing, an initial input seed with good characteristics is crucial for im-
proving the efficiency of fuzzing. When we obtain a batch of test cases (seeds) with good
characteristics, being able to reuse them multiple times in different target programs is
crucial for the efficiency and results of fuzzing. This advantage is particularly important
in the initial path exploration stage as it effectively reduces the time and resource costs
required for fuzzing while also reducing the difficulty of software vulnerability mining.

This article proposes a seed generation approach utilizing an improved GAN to
generate high-quality seeds. The core idea is to use GAN to learn input test samples
and then obtain seeds that can integrate various excellent features and provide more
comprehensive code path coverage for the tested program. In the process of selecting
GANs, this article opts for fully connected GANs. These networks are characterized
by their lightweight design, making them well-suited for scenarios with low problem
complexity or limited data scales. Notably, in seed generation, fully connected GANs
stand out by efficiently producing high-quality test cases at a minimal computational cost
compared to other GANs. This approach also introduces an attention mechanism in the
process of integrating GAN, which can make the GAN model more focused on the key parts

Mathematics 2024, 12, 745 5 of 16

of the input test samples and more targeted when generating new seeds. The core goal of
introducing an attention mechanism is to enable the GAN to learn input test samples more
intelligently and to pay more attention to preserving test samples that can trigger crash
points when generating seeds. This mechanism of focusing on key points helps to generate
seeds with higher effectiveness, thereby enhancing the effectiveness of fuzzing, improving
code coverage, and ultimately discovering more potential security vulnerabilities in the
target programs.

Mathematics 2024, 12, x FOR PEER REVIEW 5 of 17

Figure 1. A GAN based on an attention mechanism for vulnerability mining.

3.1. Seed Generation Framework
In software testing, an initial input seed with good characteristics is crucial for im-

proving the efficiency of fuzzing. When we obtain a batch of test cases (seeds) with good
characteristics, being able to reuse them multiple times in different target programs is cru-
cial for the efficiency and results of fuzzing. This advantage is particularly important in
the initial path exploration stage as it effectively reduces the time and resource costs re-
quired for fuzzing while also reducing the difficulty of software vulnerability mining.

This article proposes a seed generation approach utilizing an improved GAN to gen-
erate high-quality seeds. The core idea is to use GAN to learn input test samples and then
obtain seeds that can integrate various excellent features and provide more comprehen-
sive code path coverage for the tested program. In the process of selecting GANs, this
article opts for fully connected GANs. These networks are characterized by their light-
weight design, making them well-suited for scenarios with low problem complexity or
limited data scales. Notably, in seed generation, fully connected GANs stand out by effi-
ciently producing high-quality test cases at a minimal computational cost compared to
other GANs. This approach also introduces an attention mechanism in the process of in-
tegrating GAN, which can make the GAN model more focused on the key parts of the
input test samples and more targeted when generating new seeds. The core goal of intro-
ducing an attention mechanism is to enable the GAN to learn input test samples more
intelligently and to pay more attention to preserving test samples that can trigger crash
points when generating seeds. This mechanism of focusing on key points helps to generate
seeds with higher effectiveness, thereby enhancing the effectiveness of fuzzing, improving
code coverage, and ultimately discovering more potential security vulnerabilities in the
target programs.

3.2. GAN for Seed Generation
A GAN for seed generation consists of two main components: a generator and a dis-

criminator, which can use different neural networks (NN) to adapt to specific task require-
ments. The specific implementation of GAN for seed generation is shown in Figure 2. The
generator network consists of three subparts: attention block, local detail block, and merge
block. The combination of multiple networks is used to capture features with multiple

Figure 1. A GAN based on an attention mechanism for vulnerability mining.

3.2. GAN for Seed Generation

A GAN for seed generation consists of two main components: a generator and a
discriminator, which can use different neural networks (NN) to adapt to specific task
requirements. The specific implementation of GAN for seed generation is shown in Figure 2.
The generator network consists of three subparts: attention block, local detail block, and
merge block. The combination of multiple networks is used to capture features with
multiple scales and multiple receiving fields. The attention module extracts features by
introducing attention-driven and remote dependencies. Local detail blocks extract and
process local features from input data, including convolutional layers, normalization layers,
and activation functions, which ensure the generator better mimics the features of real data
and improve the whole approach’s performance and stability. Finally, the merge module is
applied to merge the features obtained from attention blocks and local detail blocks and
generate the final seed samples.

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 17

scales and multiple receiving fields. The attention module extracts features by introducing
attention-driven and remote dependencies. Local detail blocks extract and process local
features from input data, including convolutional layers, normalization layers, and acti-
vation functions, which ensure the generator better mimics the features of real data and
improve the whole approach’s performance and stability. Finally, the merge module is
applied to merge the features obtained from attention blocks and local detail blocks and
generate the final seed samples.

Figure 2. Specific Implementation Process of Fuzzing Seed Generation.

3.3. Construction of Initial Seed Set
To train the AtGAN, an initial seed set is needed. We performed a 48-h fuzzing on

the target software using AFL tools and collected and screened high-quality mutation
seeds as an initial seed set for training. Then, we defined test samples that met the follow-
ing criteria as high-quality seeds: (1) test samples that can cause program crashes during
runtime, (2) test samples with high code coverages, and (3) test samples that can trigger
new code paths during runtime. These types of test samples exhibit significant differences
in program behavior during runtime compared to programs that use the original input
seed as input, making them more likely to trigger new execution paths. Therefore, the test
cases we collected not only retained the original structure of the seed files but also con-
tained mutation information.

The seed data must be processed to meet the input format requirements of the GAN.
Firstly, each seed 𝑥 in the filtered dataset is tensorized to obtain the tensor form 𝑋, where 𝑥 is the i-th byte of seed 𝑥. 𝑋 = [𝑥ଵ, 𝑥ଶ, 𝑥ଷ, ⋯ , 𝑥] (1)

Then, each seed is padded so that each input tensor seed has the same length. To
improve training performance, the filled length is an integer multiple of 32 which is de-
fined as: 𝑚𝑎𝑥𝑙𝑒𝑛 = 𝑚𝑎𝑥𝑙𝑒𝑛 + (32 − 𝑚𝑎𝑥𝑙𝑒𝑛%32) (2)

Finally, all input tensors are traversed, and zeros are padded at the end of each input
tensor with a length less than 𝑚𝑎𝑥𝑙𝑒𝑛. After the above processing, the training samples
are transformed into equal-length tensors that can be input into the GAN for training. The
size of each element in the constructed tensor is within the range of [0, 255]. To accelerate
the convergence of the network, the value of each element is normalized into the range of [−1, 1] through normalization operation as: 𝑋ᇱ = (𝑋 − 128)/128 (3)

where 𝑋 is the input tensor before normalization and 𝑋ᇱ is the input after normalization.

3.4. AtGAN
To improve the performance of GAN in generating high-quality seeds, the proposed

AtGAN utilizes attention mechanisms to focus on the specific characteristics of input data,

Figure 2. Specific Implementation Process of Fuzzing Seed Generation.

Mathematics 2024, 12, 745 6 of 16

3.3. Construction of Initial Seed Set

To train the AtGAN, an initial seed set is needed. We performed a 48-h fuzzing on the
target software using AFL tools and collected and screened high-quality mutation seeds
as an initial seed set for training. Then, we defined test samples that met the following
criteria as high-quality seeds: (1) test samples that can cause program crashes during
runtime, (2) test samples with high code coverages, and (3) test samples that can trigger
new code paths during runtime. These types of test samples exhibit significant differences
in program behavior during runtime compared to programs that use the original input
seed as input, making them more likely to trigger new execution paths. Therefore, the
test cases we collected not only retained the original structure of the seed files but also
contained mutation information.

The seed data must be processed to meet the input format requirements of the GAN.
Firstly, each seed x in the filtered dataset is tensorized to obtain the tensor form X, where
xi is the i-th byte of seed x.

X = [x1, x2, x3, · · · , xn] (1)

Then, each seed is padded so that each input tensor seed has the same length. To
improve training performance, the filled length is an integer multiple of 32 which is
defined as:

maxlen = maxlen + (32 − maxlen%32) (2)

Finally, all input tensors are traversed, and zeros are padded at the end of each input
tensor with a length less than maxlen. After the above processing, the training samples are
transformed into equal-length tensors that can be input into the GAN for training. The
size of each element in the constructed tensor is within the range of [0, 255]. To accelerate
the convergence of the network, the value of each element is normalized into the range of
[−1, 1] through normalization operation as:

X′ = (X − 128)/128 (3)

where X is the input tensor before normalization and X′ is the input after normalization.

3.4. AtGAN

To improve the performance of GAN in generating high-quality seeds, the proposed
AtGAN utilizes attention mechanisms to focus on the specific characteristics of input data,
learning the structural features of high-quality test samples and thereby improving the
diversity and quality of generated samples.

3.4.1. GAN

In GANs, the role of the generator is to generate as many realistic samples as possible,
while the role of the discriminator is to determine whether the samples come from real
data or fake data simulated by the generator. During the training process of the GAN, the
generator is continuously trained to generate realistic samples, attempting to deceive the
discriminator into recognizing the generated samples from real data, while the discrimina-
tor tries to improve its recognizing ability as much as possible to avoid being deceived by
the generator. They play games and optimize each other until the generator can produce
samples comparable to real data (Figure 3).

The training process of GAN can be seen as a zero-sum game, where there is a
competitive and cooperative relationship between the generator and discriminator. The task
of the generator is to estimate the distribution of real data features to generate synthetic data
with similar characteristics, while the task of the discriminator is to accurately distinguish
between real data and generated data as much as possible. The goal of GANs is to find a
balance point where the outputs of the generator cannot be effectively distinguished by the
discriminator.

Mathematics 2024, 12, 745 7 of 16

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 17

learning the structural features of high-quality test samples and thereby improving the
diversity and quality of generated samples.

3.4.1. GAN
In GANs, the role of the generator is to generate as many realistic samples as possible,

while the role of the discriminator is to determine whether the samples come from real
data or fake data simulated by the generator. During the training process of the GAN, the
generator is continuously trained to generate realistic samples, attempting to deceive the
discriminator into recognizing the generated samples from real data, while the discrimi-
nator tries to improve its recognizing ability as much as possible to avoid being deceived
by the generator. They play games and optimize each other until the generator can pro-
duce samples comparable to real data (Figure 3).

Figure 3. Training Process of Generative Adversarial Network.

The training process of GAN can be seen as a zero-sum game, where there is a com-
petitive and cooperative relationship between the generator and discriminator. The task
of the generator is to estimate the distribution of real data features to generate synthetic
data with similar characteristics, while the task of the discriminator is to accurately dis-
tinguish between real data and generated data as much as possible. The goal of GANs is
to find a balance point where the outputs of the generator cannot be effectively distin-
guished by the discriminator.

The training objective for a GAN can be obtained as follows: Given real data x and
discriminator 𝐷(𝑥) , training the discriminator maximizes the output value of function 𝐷(𝑥). The generator function corresponding to random noise z is defined as 𝐺(𝑧). The
training objective of the output 𝐺(𝑧) of the generator needs to satisfy the maximization
of 𝐷(𝐺(𝑧)). The discriminator needs to correctly judge the real data and generated data,
and the training objective for the generated data satisfies 𝐷(𝐺(𝑧)) output minimization.

The objective function in the training process of GAN can be expressed as: 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝ௗ௧(𝑥)[𝑙𝑜𝑔 𝐷(𝑥)] + 𝐸𝑧~𝑝௭(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] (4)

where 𝑥 represents real data, 𝑝ௗ௧(𝑥) represents the distribution that real data follow, 𝑧 represents data generated by random noise, and 𝑝௭(𝑥) represents the distribution that
the generated data follow. 𝐸(𝑥~𝑝ௗ௧(𝑥)) is the expectation of the distribution of real
data 𝑥~𝑝ௗ௧(𝑥), and 𝐸(𝑧~𝑝௭) is the expectation for generating the distribution of data 𝑧~𝑝௭.

The specific training process is as follows: At the start of the training, the parameters
of generator 𝐺 are first fixed and the discriminator 𝐷 is specifically trained, that is, the
value of 𝐷(𝑥) is maximized first and the 𝑉(𝐷, 𝐺) function is maximized. After the dis-
criminator is trained, the parameters in discriminator 𝐷 are fixed, and the generator is
trained to minimize the value of part 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))), promoting the generator to gen-
erate data close to reality. Through long-term mutual confrontation, the discriminator and

Figure 3. Training Process of Generative Adversarial Network.

The training objective for a GAN can be obtained as follows: Given real data x and
discriminator D(x), training the discriminator maximizes the output value of function
D(x). The generator function corresponding to random noise z is defined as G(z). The
training objective of the output G(z) of the generator needs to satisfy the maximization of
D(G(z)). The discriminator needs to correctly judge the real data and generated data, and
the training objective for the generated data satisfies D(G(z)) output minimization.

The objective function in the training process of GAN can be expressed as:

min max V(D, G) = Ex ∼ pdata(x)[log D(x)] + Ez ∼ pz(z)[log(1 − D(G(z)))] (4)

where x represents real data, pdata(x) represents the distribution that real data follow, z
represents data generated by random noise, and pz(x) represents the distribution that the
generated data follow. E(x ∼ pdata(x)) is the expectation of the distribution of real data
x ∼ pdata(x), and E(z ∼ pz) is the expectation for generating the distribution of data
z ∼ pz.

The specific training process is as follows: At the start of the training, the parameters of
generator G are first fixed and the discriminator D is specifically trained, that is, the value
of D(x) is maximized first and the V(D, G) function is maximized. After the discriminator
is trained, the parameters in discriminator D are fixed, and the generator is trained to
minimize the value of part log(1 − D(G(z))), promoting the generator to generate data
close to reality. Through long-term mutual confrontation, the discriminator and generator
in the GAN tend to converge in multiple rounds of training, ultimately resulting in similar
properties and characteristics between the distribution pdata(x) of real data and the distri-
bution pz(z) of generated data. The discriminator cannot accurately distinguish between
real data and generated data.

3.4.2. Attention Mechanism

Attention mechanism is a technique in deep learning that mimics human vision and
perception mechanisms. Its core principle is to effectively convert input data into vector
form, assigning corresponding weights to each input position to represent the level of
attention. The essence of the attention mechanism is to filter out a small amount of im-
portant information and focus on important information. The larger the weight, the more
focused it is on its corresponding value, that is, the weight represents the importance of
information, and the value is its corresponding information. The key calculation steps
involve calculating the correlation between the model state and each input position, usually
achieved by measuring the similarity between the input vector and the model state, such
as dot product, scaled dot product, etc. In calculations, these weights are dynamically
generated, allowing the model to flexibly adjust its attention to different location infor-
mation in different contexts and input contexts. This dynamic adjustment mechanism
enables the model to focus more on critical information in the input data, improving the
model’s perception ability and information processing efficiency. As shown in Figure 4, the

Mathematics 2024, 12, 745 8 of 16

attention mechanism aggregates attention between the query and the key. Given a query, it
calculates the correlation between the query and the key. Then, based on this correlation, it
identifies the most suitable value. This process achieves attention weight allocation for the
value, generating the final output result.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 17

generator in the GAN tend to converge in multiple rounds of training, ultimately resulting
in similar properties and characteristics between the distribution 𝑝ௗ௧(𝑥) of real data
and the distribution 𝑝௭(𝑧) of generated data. The discriminator cannot accurately distin-
guish between real data and generated data.

3.4.2. Attention Mechanism
Attention mechanism is a technique in deep learning that mimics human vision and

perception mechanisms. Its core principle is to effectively convert input data into vector
form, assigning corresponding weights to each input position to represent the level of at-
tention. The essence of the attention mechanism is to filter out a small amount of important
information and focus on important information. The larger the weight, the more focused
it is on its corresponding value, that is, the weight represents the importance of infor-
mation, and the value is its corresponding information. The key calculation steps involve
calculating the correlation between the model state and each input position, usually
achieved by measuring the similarity between the input vector and the model state, such
as dot product, scaled dot product, etc. In calculations, these weights are dynamically gen-
erated, allowing the model to flexibly adjust its attention to different location information
in different contexts and input contexts. This dynamic adjustment mechanism enables the
model to focus more on critical information in the input data, improving the model’s per-
ception ability and information processing efficiency. As shown in Figure 4, the attention
mechanism aggregates attention between the query and the key. Given a query, it calcu-
lates the correlation between the query and the key. Then, based on this correlation, it
identifies the most suitable value. This process achieves attention weight allocation for the
value, generating the final output result.

By introducing attention mechanisms, the deep learning model can better capture the
dependency relationships between different parts, thus better adapting to the require-
ments of different tasks.

Overall, the attention mechanism introduces flexible information processing meth-
ods, enabling the model to respond to changes more intelligently in different scenarios
and input data, improving the performance and generalization ability of deep learning
models.

Figure 4. Principle of attention mechanism.

Figure 4. Principle of attention mechanism.

By introducing attention mechanisms, the deep learning model can better capture the
dependency relationships between different parts, thus better adapting to the requirements
of different tasks.

Overall, the attention mechanism introduces flexible information processing methods,
enabling the model to respond to changes more intelligently in different scenarios and
input data, improving the performance and generalization ability of deep learning models.

3.4.3. GAN with Attention Mechanisms

In the implementation of the generator, the proposed AtGAN model introduces an
attention mechanism to enhance the generator’s learning ability on input data. The attention
mechanism allows the generator to focus on specific parts of the input seed and improves
the generator’s ability to learn important features.

In GAN, when the learning abilities of the generator and discriminator do not match,
it may lead to the loss function of the discriminator converging too quickly during learning,
making it difficult for the generator to effectively learn data features. In order to coordinate
the learning steps of the generator and discriminator, in this paper, both the generator
and discriminator use feedforward neural network models. The discriminator adopts a
three-layer fully connected network, which can effectively learn the features in the input
data and accurately determine its authenticity. To enhance the discriminative ability and
accuracy of the discriminator, LeakyReLU is selected as the activation function, which has
good nonlinear characteristics. The specific structure and parameters of the discriminator
in the proposed GAN are shown in Table 1.

Table 1. Discriminator Network Model Parameters in GAN.

Layer (Type) Output Shape

Fully connected 1 (Linear) (batch size, 256)
ReLU 1 (LeakyReLU) (batch size, 256)
Fully connected 2 (Linear) (batch size, 256)
ReLU 2 (LeakyReLU) (batch size, 256)
Fully connected 3 (Linear) (batch size, 1)
Sigmoid (Sigmoid) (batch size, 1)

Mathematics 2024, 12, 745 9 of 16

The generator adopts a three-layer fully connected network, which can convert the
input noise into generated data samples that conform to a specific distribution. In the first
two fully connected layers of the network, each layer contains a linear transformation and
a ReLU activation function, which has a good ability to fit the characteristics of real data
and has certain nonlinear characteristics, improving the expression ability of the neural
network. The final layer of a fully connected network includes a linear transformation
and a Tanh activation function to map input values to the range of [−1, 1]. The specific
structure and parameters of the final layer of the fully connected network are shown in
Table 2.

Table 2. The final layer of the fully connected network.

Parameters Values

Type Linear fully connected
Input size 100
Output size (8, 2, 2)
Activation None (Tanh applied separately)
Weight initialization Mean: 0, Standard deviation: 0.02
Bias initialization Mean: 0.01

By combining the learning mechanisms of generators and discriminators, we aim to
optimize the performance of GAN and solve problems that arise from mismatched learning
abilities, thereby improving the diversity and quality of generated samples and improving
the testing performance of AFL.

Specifically, the attention mechanism is introduced into the generator network to
enhance its learning of key features in input data. This mechanism is implemented through
a set of linear transformation layers, which are responsible for mapping input features to
representations of queries (Q), keys (K), and values (V). Through these representations,
the network can calculate the interrelationships between different positions in the feature
space. At the same time, in the attention mechanism, some <Q, K> pairs have larger values
compared to other pairs after dot product operation, resulting in the occupation of the
vast majority of weights in softmax operations, while the softmax scores of other pairs
approach zero, leading to the problem of gradient vanishing. To address this issue, we
introduced a refined normalization operation, which involves division by a constant after
the dot product operation. This process can be mathematically expressed as:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (5)

where QKT represents the dot product of the query and key and measures the similarity
between features.

√
dk is the scaling factor, and its purpose is to control the size of the

dot product to prevent the gradient from disappearing during backpropagation. The nor-
malized attention score is then used to weight the value (V) to generate an output that
integrates the information of the entire input sequence. In the architecture of the generator
network, the attention module is designed to be located between consecutive transposed
convolutional layers. Each transposed convolutional layer consists of a convolutional
kernel and a batch normalization layer, followed closely by a nonlinear ReLU activation
function. These layers gradually expand the size of features through multi-scale upsam-
pling operations, thereby adding details at different scales at each step. The introduction of
the attention module enables the network to not only capture local features but also learn
long-range dependencies in input data, which is particularly important in generation tasks.
This can be further quantified by the following formula:

x′ = Attention
(

xWQ, xWK, xWV
)

(6)

Mathematics 2024, 12, 745 10 of 16

where WQ, WK, and WV are the learned weight matrices used to map the original features
to the Q, K, and V spaces. x′ is the output of the attention mechanism, which is added to
the original input feature x to form residual connections, namely:

x′′ = x + x′ (7)

Such residual connections help alleviate the problem of gradient vanishing and allow
for deeper network structures. Finally, after a series of upsampling and attention mecha-
nism processing, the features are normalized through a tanh activation function for output,
making the generated seeds more consistent with the real data. Through this structure
and mechanism, our generator network has shown significant advantages in fuzzing as it
can generate seeds containing key features and complex patterns, thereby increasing the
likelihood of discovering software defects. By selectively emphasizing key parts of input
data through attention mechanisms, the generator’s ability to describe important features
is improved.

In the proposed AtGAN, the attention mechanism is utilized in three stages, corre-
sponding to the three transposed convolutional layers in the generator, as shown in Figure 5.
At each stage, a matrix of queries, keys, and values is generated through linear transforma-
tion, and attention mechanisms are used to dynamically calculate and allocate the weights
of input elements. This enables the generator to adapt more flexibly to the characteristics of
existing data distributions when processing noise vectors, thereby generating high-quality
new samples.

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 17

Figure 5. Specific Calculation Process of Attention Mechanism where * means multiplication.

The specific parameters and settings for the generator network model and attention
mechanism are shown in Tables 3 and 4. In the generator network, a fully connected net-
work projects the input latent vector onto an intermediate high-dimensional space,
providing feature information for subsequent transposed convolutional layers. ReLU is
an activation function used to introduce nonlinear features and activate intermediate fea-
ture vectors in transposed convolutional layers. Tanh is used to activate the output of the
last layer of the generator by transposing the convolutional layer. In the attention mecha-
nism, the fully connected layer is used to generate the weight matrix required for the
query, key, and value. QKV is used to calculate the linear layers of the query, key, and
value matrices in the attention mechanism, mapping input data onto the three spaces cal-
culated by the attention mechanism. The head number is the number of attention heads
that allow the model to simultaneously capture different aspects of input data. The atten-
tion drop ratio is applied to the dropout layer of attention weights to prevent overfitting
and improve the generalization performance of the model.

Table 3. Generator Network Model Parameters in GAN.

Layer (Type) Output Shape
Fully connected 1 (Linear) (Batch size, 1024)
ReLU 1 (ReLU) (Batch size, 1024)
Fully connected 2 (Linear) (Batch size, 1024)
ReLU 2 (ReLU) (Batch size, 1024)
Fully connected 3 (Linear) (Batch size, Output size)
Tanh (Tanh) (Batch size, Output size)

Table 4. Attention Mechanism Parameters in GAN.

Layer (Type) Output Shape
Fully connected (Linear) (8, 2, 2)
QKV 1 (Linear) (128, 128, 3)
QKV 2 (Linear) (64, 64, 3)

Figure 5. Specific Calculation Process of Attention Mechanism where * means multiplication.

The specific parameters and settings for the generator network model and attention
mechanism are shown in Tables 3 and 4. In the generator network, a fully connected
network projects the input latent vector onto an intermediate high-dimensional space,
providing feature information for subsequent transposed convolutional layers. ReLU is an
activation function used to introduce nonlinear features and activate intermediate feature
vectors in transposed convolutional layers. Tanh is used to activate the output of the last
layer of the generator by transposing the convolutional layer. In the attention mechanism,
the fully connected layer is used to generate the weight matrix required for the query, key,
and value. QKV is used to calculate the linear layers of the query, key, and value matrices

Mathematics 2024, 12, 745 11 of 16

in the attention mechanism, mapping input data onto the three spaces calculated by the
attention mechanism. The head number is the number of attention heads that allow the
model to simultaneously capture different aspects of input data. The attention drop ratio is
applied to the dropout layer of attention weights to prevent overfitting and improve the
generalization performance of the model.

Table 3. Generator Network Model Parameters in GAN.

Layer (Type) Output Shape

Fully connected 1 (Linear) (Batch size, 1024)
ReLU 1 (ReLU) (Batch size, 1024)
Fully connected 2 (Linear) (Batch size, 1024)
ReLU 2 (ReLU) (Batch size, 1024)
Fully connected 3 (Linear) (Batch size, Output size)
Tanh (Tanh) (Batch size, Output size)

Table 4. Attention Mechanism Parameters in GAN.

Layer (Type) Output Shape

Fully connected (Linear) (8, 2, 2)
QKV 1 (Linear) (128, 128, 3)
QKV 2 (Linear) (64, 64, 3)
QKV 3 (Linear) (32, 32, 3)
Head number 8
Attention drop ratio 0.1

3.4.4. Implementation of AtGAN
Network Training

Due to the difficulty in training adversarial networks, there are issues such as training
instability, gradient vanishing, and pattern collapse. Therefore, in the process of training
neural networks, additional optimization methods are needed to improve training stability
and the quality of seed optimization models.

The Adam optimizer combines the advantages of the momentum method and RM-
SProp and can adaptively adjust the learning rate on different parameter dimensions. This
optimization algorithm performs well in handling sparse gradients or non-stationary ob-
jective functions, making it very suitable for training deep learning models. The Adam
optimizer adjusts the learning rate of each parameter by calculating first-order and second-
order moment estimates (i.e., mean and variance), which helps stabilize the training process,
improve model convergence speed, and achieve better performance in seed generation and
fuzzing applications.

Specifically, Adam’s algorithm is used in the AtGAN, whose steps are described as
follows.

First, calculate the exponential weighted average (EWA) of the gradient, expressed as:

mt = β1mt−1 + (1 − β1)gt (8)

where gt is the gradient of the current step, and β1 is the decay rate, usually close to 1.
Second, in order to cope with the variance change of the gradient, calculate the EWA of the
gradient squared, expressed as:

vt = β2vt−1 + (1 − β2)g2
t (9)

where β2 is another decay rate. Next, to prevent excessive deviation during the early stages
of training, bias correction is carried out, which includes:

m̂t = mt/
(
1 − βt

1
)

(10)

Mathematics 2024, 12, 745 12 of 16

v̂t = vt/
(
1 − βt

2
)

(11)

Finally, use these correction values to update the model parameters:

θt+1 = θt − η·m̂t/
(√

v̂t + ϵ
)

(12)

where η is the learning rate, and ϵ is a small constant to prevent division by zero. This
method makes the Adam optimizer particularly effective in various deep learning scenar-
ios, especially in AtGAN training, balancing learning rate, and improving stability and
convergence speed.

Residual Connection Scaling

Optimizing residual connections is crucial for information transmission and gradient
flow in generators. After each stage of the attention mechanism, the residual connections
are optimized. The proposed optimization approach introduces a scaling factor in the
residual connection whose purpose is to better maintain the effective transmission of
information and alleviate the impact of gradient vanishing. The proposed optimized
residual connection is designed as follows:

Output = Input + Scaler × Attention_Output (13)

where Scaler is the scaling factor, set as a constant value between 0 and 1. The purpose of
this adjustment is to introduce more reasonable weights, to better balance the information
flow between the front and back layers. The scaling factor can maintain the stability of
gradients, ensure the transmission of key information in the network, and improve the
training effectiveness of the generator. This adjustment not only enhances the residual
connection function but also plays a positive role in promoting the overall performance of
the model.

In addition, in the first two layers of the fully connected network in the generator
network, we adopted a more flexible activation function, LeakyReLU. This adjustment
helps to improve the network’s ability to learn nonlinear features while better preventing
gradient vanishing problems. Compared to traditional ReLU functions, LeakyReLU allows
for a small slope when the input is negative, which can better handle situations with zero
gradients. The formula is as follows:

f (x) =
{

x i f (x > 0)
alpha × x i f (x ≤ 0)

(14)

The adjusted activation function formula is:

Output = LeakyReLU(Linear(Iuput) + Residua(connection) (15)

where Iuput represents the input of this layer, Linear() performs a linear transformation
on the input, and Residua() represents the residual connected part, usually the output of
the previous layer or the output of another layer.

By introducing the LeakyReLU activation function, we expect the generator to be
more stable and effective in handling attention mechanisms, residual connections, and
network structures, thereby improving the modeling effect on complex data distributions.
The introduction of this activation function helps to enhance the non-linear expression
ability of the network and alleviates the problem of gradient vanishing during the gradient
transfer process. Therefore, this improvement will enable the generator to better learn the
features of the data and enhance its ability to fit the true distribution of the data.

4. Experimental Results

To evaluate the proposed method, we used three evaluation objectives to validate the
effectiveness of the proposed model in optimizing the testing performance of AFL tools.

Mathematics 2024, 12, 745 13 of 16

The specific method is to set up comparative experiments to compare whether the output
of the seed by the AtGAN model proposed in this article has better quality than the original
input seeds.

4.1. Experimental Environment

This experiment is based on Linux systems, namely Ubuntu 18.04. The specific
configuration is shown in Table 5. The experimental object is selected as the commonly
used toolset Binutils on Linux system, which includes commonly used software such as
readelf, nm, and objdump. The version selected is the older version 2.25, which has many
vulnerabilities and is conducive to verifying whether the seed optimization model used in
this experiment can enhance the AFL vulnerability detection ability.

Table 5. Ubuntu Experimental Environment Configuration.

Configurations

Operation system Ubuntu 18.04.1
CPU Intel (R) Xeon (R) CPU E7-4820 v2 @ 2.00 GHz
Number of CPU cores 16
Memory 16 GB
Hard disk 100 GB
Clang/LLVM ver. 11.0.0
AFL ver. 2.57b

In order to improve the testing performance during the testing process, the AFL testing
mode in this article was based on source code instrumentation. During the source code
compilation phase, the AFL-GCC compiler was used for instrumentation compilation,
replacing the QEMU mode for binary program instrumentation. This avoids wasting
system resources during the testing process and improves testing efficiency.

To fully demonstrate the effectiveness of the proposed improvement method in opti-
mizing the performance of AFL fuzzing, the following three experiments were set up:

(1) AFL group: This group is a control group that does not use any optimization methods
and only uses ordinary seeds to input into the AFL tool for fuzzing experiments.

(2) GAN-AFL group: This group uses a seed optimization model based on the original
GAN to optimize the seed input of AFL.

(3) MOPT-AFL group: This group utilizes a customized particle swarm optimization
(PSO) algorithm to find the optimal selection probability distribution of operators
with respect to fuzzing effectiveness.

(4) ECOFUZZ group: This group is based on a unique adaptive scheduling algorithm as
well as a probability-based search strategy.

(5) GSA-FUZZ group: This group is based on learning the optimal selection probability
distributions of operators and mutation positions and designs a position-sensitive
strategy to guide seed mutation with learned distributions.

(6) AtGAN-AFL group: This group uses the proposed AtGAN to optimize the seed input
of AFL.

This article evaluates the performance of the generated seeds using three metrics: code
coverage, new edges, and crashes.

Code coverage: The meaning of this indicator is the code statement executed in the test
program during fuzzing. The higher the code coverage, the more fully tested the program,
and the more powerful the vulnerability.

New edges: The meaning of this indicator is that it is mutated by fuzzing tools in
the process of fuzzing. The total number of new paths of the program is triggered by the
generated test samples. This metric measures the scalability of the input seeds.

Crashes: This metric means that, during fuzzing, the program will be executed with
invalid, unexpected, or random inputs to crash the system under test. The higher the
number, the more likely it is that there will be a high number of vulnerabilities.

Mathematics 2024, 12, 745 14 of 16

4.2. Results

In the experiments, ordinary seeds and model output seeds were input into AFL tools
for 24-h fuzzing on four software types: readelf, nm, objdump, and tcpdump. The specific
results are shown in Table 6:

Table 6. Performance of experiments using AFL, GAN-AFL, MOPT-AFL, ECOFUZZ, GSA-FUZZ,
and AtGAN-AFL.

Fuzzing Model Comparison readelf nm objdump tcpdump

AFL
Number of crashes 0 96 3 0
Program path gain 3049 1203 868 1285
Code coverage 35.50% 25.90% 31.60% 16.40%

GAN-AFL
Number of crashes 0 208 20 0
Program path gain 3120 1926 3147 1432
Code coverage 36.40% 37.70% 37.70% 18.10%

MOPT-AFL
Number of crashes 0 0 0 0
Program path gain 3629 11,813 3308 10,413
Code coverage 39.5% 41.82% 41.80% 26.60%

ECOFUZZ
Number of crashes 0 0 0 0
Program path gain 5580 11,740 6260 11,266
Code coverage 42.28% 41.06% 41.90% 23.43%

GSA-FUZZ
Number of crashes 0 0 0 0
Program path gain 4789 11,488 13,219 11,822
Code coverage 40.84% 41.54% 45.80% 27.05%

AtGAN-AFL
Number of crashes 3 105 60 0
Program path gain 3680 1302 3192 3532
Code coverage 38.70% 30.70% 39.50% 28.10%

5. Discussion

In terms of vulnerability discovery, no vulnerabilities were found in the six exper-
iments conducted on the tcpdump software. This result is attributed to the powerful
security measures embedded in the software, which prevent vulnerabilities from being
detected within a limited experimental time. During the testing of nm, more vulnerabilities
were detected compared to AFL, MOPT-AFL, ECOFUZZ, and GSA-FUZZ, but less than
GAN-AFL. This difference can be traced back to the introduction of attention mechanisms.
These mechanisms seem to have not effectively adapted to the generalization of various
programs during the training process, leading to limitations in the ability of nm test seeds
to fully cover or trigger target program vulnerabilities.

Regarding the assessments of readelf and objdumpm, the AtGAN-AFL group discov-
ered more vulnerabilities than the other groups, demonstrating a significant advantage.
This result emphasizes the effectiveness of the seed optimization method proposed in
this paper, which integrates attention mechanisms. This combination effectively solves
the problem of gradient vanishing during the training process of generative adversarial
networks. Therefore, it significantly optimized the quality of output seeds and improved
the ability of AFL to explore vulnerabilities.

In terms of code coverage, AtGAN-AFL has better overall performance than AFL
and GAN-AFL, with the highest code coverage on readelf, objdump, and tcpdump soft-
ware and is second only to GAN-AFL on nm software. Although the code coverage of
AtGAN-AFL is lower than that of MOPT-AFL, ECOFUZZ, and GSA-FUZZ experiments,
more vulnerabilities have been discovered than these three experiments. This validates
the superiority of the seed optimization method that combines attention mechanisms in
generating adversarial networks.

In terms of the number of program path gains, AtGAN-AFL performs better overall
than AFL and GAN-AFL. However, the overall performance is not as good as MOPT-AFL,

Mathematics 2024, 12, 745 15 of 16

ECOFUZZ, and GSA-FUZZ, indicating that these three groups of experiments tested a
large number of invalid paths during the testing process, causing resource waste. This
indicates that the attention mechanism-based generative adversarial network vulnerability
mining model can effectively enhance the scalability of seeds, and mutated test samples
are more likely to trigger new effective paths in the program.

6. Conclusions

This article focuses on the low efficiency and low quality of seed selection strategies in
current fuzzing. By introducing GANs to optimize seed generation, the goal of efficiently
obtaining high-quality seeds is achieved. The main contribution is reflected in enhancing
the GAN by incorporating attention mechanisms, improving the quality and diversity
of seed generation, and enabling the generation of high-quality seeds in a short period.
The experimental results show that this method can obtain high-quality seeds in a short
period, significantly improving the efficiency and accuracy of fuzzing and providing a
more convenient and reliable means for vulnerability detection and repair in the field of
software security.

While the vulnerability mining method has exhibited success in utilizing fully con-
nected GANs and attention mechanisms, there are still notable limitations and opportunities
for refinement. One of these limitations manifests in the method’s performance weakness
when testing specific programs, such as nm programs. This may be attributed to the insuf-
ficient adaptation of attention mechanisms to the generalization performance of diverse
programs during training. Additionally, opting for a relatively simplistic fully connected
GAN structure may pose constraints when dealing with intricate, high-dimensional data
distributions.

In the future, our focus will be on refining attention mechanisms to enhance generaliza-
tion performance. This entails introducing more program-specific information or exploring
more complex attention mechanism models. Simultaneously, we plan to experiment with
alternative GAN structures to identify a more suitable model configuration for vulnera-
bility mining. These enhancements are anticipated to bolster the overall effectiveness and
applicability of the model in the realm of vulnerability mining.

Author Contributions: Conceptualization, C.D. and Y.G.; methodology, G.X., Y.G. and G.X.; software,
G.X.; validation, C.D. and Y.G. investigation, G.X. and Z.W.; resources, Z.W. and W.Y.; data curation,
G.X.; writing-original draft preparation, G.X.; writing—review and editing, C.D. and Y.G.; visualiza-
tion, G.X.; supervision, Z.W.; project administration, C.D. and Y.G.; funding acquisition, C.D., Z.W.
and W.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China grant
number 62172006 and the National Key Research and Development Plan of China grant number
2019YFA0706404.

Data Availability Statement: The test results data presented in this study are available upon request.
The data set can be found on public websites.

Conflicts of Interest: Weiqiang Yu was employed by Beijing DigApis Technology Co., Ltd. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest. Beijing DigApis
Technology Co., Ltd. had no role in the design of the study; in the collection, analyses, or interpretation
of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Manes, V.J.M.; Han, H.S.; Han, C.; Sang, K.C.; Woo, M. Fuzzing: Art, Science, and Engineering. arXiv 2018, arXiv:1812.00140.
2. Rebert, A.; Cha, S.K.; AVGERINOS, T.; Brumley, D. Optimizing seed selection for fuzzing. In Proceedings of the 23rd USENIX

Security Symposium (USENIX Security 14), San Diego, CA, USA, 20–22 August 2014; pp. 861–875.
3. Wang, J.; Chen, B.; Lei, W.; Yang, L. Skyfire: Data-driven seed generation for fuzzing. In Proceedings of the 32nd IEEE Symposium

on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 579–594.
4. Wartschinski, L.; Noller, Y.; Vogel, T.; Kehrer, T.; Grunske, L. Vudenc: Vulnerability detection with deep learning on a natural

codebase for python. Inf. Softw. Technol. 2022, 144, 106809. [CrossRef]

https://doi.org/10.1016/j.infsof.2021.106809

Mathematics 2024, 12, 745 16 of 16

5. Zhang, L.; Wang, J.; Wang, W. A novel smart contract vulnerability detection method based on information graph and ensemble
learning. Sensors 2022, 22, 3581. [CrossRef]

6. Cao, S.; Sun, X.; Bo, L. MVD: Memory-related vulnerability detection based on flow-sensitive graph neural networks. In
Proceedings of the 44th IEEE/ACM International Conference on Software Engineering, Pittsburgh, PA, USA, 25–27 May 2022; pp.
1456–1468.

7. Du, L.X.H.; Chen, J.; Yang, X.X. Targeted password guessing scheme combined with GAN. J. Xidian Univ. 2022, 49, 129–136.
8. Godefroid, P.; Peleg, H.; Singh, R. Learn&fuzz: Machine learning for input fuzzing. In Proceedings of the 32nd IEEE/ACM

International Conference on Automated Software Engineering (ASE), Urbana, IL, USA, 30 October–3 November 2017; pp. 50–59.
9. Cheng, L.; Zhang, Y.; Zhang, Y.; Wu, C.; Li, H. Optimizing seed inputs in fuzzing with machine learning. In Proceedings of the

41st IEEE/ACM International Conference on Software Engineering: Companion Proceedings, Montreal, QC, Canada, 25–31 May
2019; pp. 244–245.

10. Nichols, N.; Raugas, M.; Jasper, R.; Hilliard, N. Faster Fuzzing: Reinitialization with Deep Neural Models. Available online:
https://arxiv.org/pdf/1711.02807.pdf (accessed on 8 January 2023).

11. Goodfellow, I.; Pouget-abadie, J.; Mirza, M. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [CrossRef]
12. Liu, C.; Ji, S.; Li, Y.; Zhou, J.; Chen, J.; Zhou, P. Smartseed: Smart Seed Generation for Efficient Fuzzing. Available online:

https://arxiv.org/pdf/1807.02606.pdf (accessed on 8 January 2023).
13. Hu, Z.; Shi, J.; Huang, Y.H.; Xiong, J.; Bu, X. GANFuzz: A GAN-based industrial network protocol fuzzing framework. In

Proceedings of the 15th ACM International Conference on Computing Frontiers, Ischia, Italy, 8–10 May 2018; pp. 138–145.
14. Böhme, M.; Pham, V.-T.; Nguyen, M.-D.; Roychoudhury, A. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 2329–2344.
15. Chen, H.; Xue, Y.; Li, Y.; Chen, B.; Xie, X.; Wu, X.; Liu, Y. Hawkeye: Towards a desired directed grey-box fuzzer. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp.
2095–2108.

16. Coppik, N.; Schwahn, O.; Suri, N. Memfuzz: Using memory accesses to guide fuzzing. In Proceedings of the 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST), Xi’an, China, 22–27 April 2019; pp. 48–58.

17. Nguyen, M.-D.; Bardin, S.; Bonichon, R.; Groz, R.; Lemerre, M. Binary-level Directed Fuzzing for Use-After-Free Vulnerabilities.
In Proceedings of the RAID, San Sebastian, Spain, 14–16 October 2020; pp. 47–62.

18. Wang, H.; Xie, X.; Li, Y.; Wen, C.; Li, Y.; Liu, Y.; Qin, S.; Chen, H.; Sui, Y. Typestate-guided fuzzer for discovering use-after-free
vulnerabilities. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, Republic of
Korea, 27 June–19 July 2020; pp. 999–1010.

19. Wen, C.; Wang, H.; Li, Y.; Qin, S.; Liu, Y.; Xu, Z.; Chen, H.; Xie, X.; Pu, G.; Liu, T. Memlock: Memory usage guided fuzzing. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 5–11 October
2020; pp. 765–777.

20. Medicherla, R.K.; Komondoor, R.; Roychoudhury, A. Fitness guided vulnerability detection with greybox fuzzing. In Proceedings
of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, Seoul, Republic of Korea, 27 June–19 July
2020; pp. 513–520.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s22093581
https://arxiv.org/pdf/1711.02807.pdf
https://doi.org/10.1145/3422622
https://arxiv.org/pdf/1807.02606.pdf

	Introduction
	Related Work
	Coverage Guide Fuzzing
	Directed Greybox Fuzzing

	GAN Based on Attention Mechanism for Vulnerability Mining
	Seed Generation Framework
	GAN for Seed Generation
	Construction of Initial Seed Set
	AtGAN
	GAN
	Attention Mechanism
	GAN with Attention Mechanisms
	Implementation of AtGAN

	Experimental Results
	Experimental Environment
	Results

	Discussion
	Conclusions
	References

