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Abstract: Inverse modeling can estimate uncertain parameters in subsurface reservoirs and provide
reliable numerical models for reservoir development and management. The traditional simulation-
based inversion method usually requires numerous numerical simulations, which is time-consuming.
Recently, deep learning-based surrogate models have been widely studied as an alternative to
numerical simulation, which can significantly improve the solving efficiency of inversion. However,
for reservoirs with complex fracture distribution, constructing the surrogate model of numerical
simulation presents a significant challenge. In this work, we present a deep graph learning-based
surrogate model for inverse modeling of fractured reservoirs. Specifically, the proposed surrogate
model integrates the graph attention mechanisms to extract features of fracture network in reservoirs.
The graph learning can retain the discrete characteristics and structural information of the fracture
network. The extracted features are subsequently integrated with a multi-layer recurrent neural
network model to predict the production dynamics of wells. A surrogate-based inverse modeling
workflow is then developed by combining the surrogate model with the differential evolutionary
algorithm. Numerical studies performed on a synthetic naturally fractured reservoir model with
multi-scale fractures illustrate the performance of the proposed methods. The results demonstrate
that the proposed surrogate model exhibits promising generalization performance of production
prediction. Compared with tens of thousands of numerical simulations required by the simulation-
based inverse modeling method, the proposed surrogate-based method only requires 1000 to 1500
numerical simulations, and the solution efficiency can be improved by ten times.

Keywords: naturally fractured reservoir; numerical simulation; surrogate model; deep graph learning;
inverse modeling

MSC: 37MO05; 68120

1. Introduction

Fluid flow in fractured reservoirs is significantly influenced by the distribution of
fractures. Hence, it is necessary to accurately estimate the fracture distribution for the sim-
ulation and management of fractured reservoirs [1]. Inverse modeling, also termed history
matching in petroleum engineering, is an effective method for predicting the distribution
of fractures. Based on numerical simulation techniques, inverse modeling methods can
estimate the uncertain parameters in numerical models by integrating geological infor-
mation and production dynamics [2]. However, the simulation-based inverse modeling
workflows require large numbers of numerical simulations, which can be computationally
expensive [3]. Typically, a single numerical simulation of fractured reservoirs may consume
minutes to hours of computer processing time.
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To tackle this problem, surrogate-based inverse modeling methods utilize computa-
tionally cheap surrogate models to substitute the numerical simulations needed in inversion.
Typically, surrogate models used in inverse modeling fall into three categories: physic-
driven, data-driven, and hybrid ones. Considering the complex fluid flow mechanism of
fractured reservoirs, data-driven surrogate models are often the method of choice. Hamid
et al. [4] applied the Gaussian process model as the surrogate to assist the history matching
of an unconventional gas reservoir. They estimated the coefficient of fluid composition in
the numerical model, which is a 20-dimensional inverse problem. Dachanuwattana et al. [5]
developed a surrogate-assisted inverse modeling method for shale reservoirs, and they
compared the accuracy of quadratic polynomial, cubic polynomial, k-nearest neighboring,
and kriging models. Their results showed that the kriging model has the best effect. Zhang
and Sheng [6] also employed the kriging model as the surrogate for optimizing hydraulic
fracturing in a naturally fractured shale reservoir. These surrogate models are based on
traditional machine learning methods, which are suitable for low-dimensional problems.
Therefore, it is necessary to select a small number of key features as input parameters before
building the surrogate model.

Recently, deep-learning (DL)-based surrogate models have been widely studied for
the inverse modeling of conventional reservoirs [7,8]. The essence of these DL-based
surrogate models lies in the utilization of convolutional neural network (CNN) models to
extract high-level features from spatially distributed parameters with a grid-like structure,
such as the permeability field. Compared with traditional machine learning methods, DL-
based models can directly learn features of high-dimensional parameters, which can avoid
artificial feature selection as well as retaining more detailed information for prediction.
However, unlike conventional reservoirs, fractured reservoirs are composed of fractures
with discrete and irregular characteristics, which is difficult to be processed by conventional
DL methods. Zhang et al. [9] employed a deep sparse autoencoder model to develop the
re-parameterization method for the inverse modeling of fractured reservoirs. In this
approach, a deep artificial neural network (ANN) model was utilized to capture the
features of the complete geometry parameters of the fracture network. Chen et al. [10]
adopted the variational auto-encoder and generative adversarial network to reduce the
high-dimensional parameters of the fracture network to low-dimensional continuous
parameters for the inversion modeling of fracture network. In their model, the geometric
parameters of each fracture are combined into vector data for feature learning. Yan et al. [11]
developed a CNN-based surrogate model for enhanced geothermal systems, and it can
predict the temperature field and produced fluid temperature by using the continuous
fracture permeability field. Kim and Durlofsky [12] proposed an DL-based surrogate
model for production optimization of fractured reservoirs, in which they utilized the single-
phase steady-state solution of the pressure equation to replace fracture network input
into the CNN model. These studies have successfully applied deep learning methods to
the inverse modeling or production optimization of fractured reservoirs with a complex
fracture network. However, these methods need to transform the fracture network into
continuous parameters or parameter fields for feature learning and ignore the discrete
characteristics of fractures.

In this paper, we propose a deep graph learning-based surrogate model for the nu-
merical simulation of fractured reservoirs with a multi-scale fracture network. The nu-
merical simulation model adopted in this work is the embedded discrete fracture model
(EDFM) [13,14], which is popular due to its ability to strike a balance between computa-
tional efficiency and accuracy. This new surrogate model is referred to as the GAT-LSTM,
in which a graph attention (GAT) model [15,16] and an LSTM model [17,18] cooperatively
emulate the EDFM simulation process. This surrogate model structure is similar to the con-
volutional recurrent neural network for the history matching of reservoirs [12,19]. Recently,
deep graph learning methods [20-22] have garnered significant attention and research in
the DL community. This is because deep graph learning methods can effectively address
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the challenge of feature learning in unstructured data, encompassing domains such as
knowledge graphs [23], social networks [24], and protein structure prediction [25].
In summary, this work makes the following contributions:

(1) A novel deep graph learning-based feature learning method for the complex multi-
scale fracture network is proposed. In this approach, the fracture network is repre-
sented as graph data, and the feature learning is performed based on parameters of
each discrete fracture, which can effectively retain the discrete characteristics and
geometric information of the fracture network. To the best of our knowledge, no
work has reported using the deep graph learning method for the feature learning of a
fracture network.

(2) Based on the deep graph learning and multi-layer recurrent neural networks, a surro-
gate model for the embedded fracture numerical simulation was developed for the
inversion of fracture distribution. This surrogate model can predict the production
dynamics of wells under different fracture distribution conditions. Compared with
EDFM simulation, the proposed surrogate model significantly reduces the computa-
tion cost of production prediction.

(3) An effective surrogate-based inverse modeling framework was designed, which inte-
grates the population-based differential evolution (DE) algorithm with the proposed
surrogate model. Because of the cheap computational cost of the surrogate model,
the search performance of the DE algorithm can be fully released and improve the
solving efficiency of the inversion.

The remainder of the paper is organized as follows: Section 2 introduces the methods
used in this study, including the generation method of the 2D multi-scale fracture network,
the proposed GAT-LSTM surrogate model, and the surrogate-based inverse modeling
workflow. Then, the surrogate model performance and inverse modeling results of a
2D fractured reservoir case are provided in Section 3. Finally, we conclude this work in
Section 4 with a summary and mention of potential future work.

2. Methods
2.1. Generation of 2D Multi-Scale Fracture Network

Based on our previous work [26], a parameterization method integrating large-scale
and small-scale fractures hierarchically was used to generate the 2D fracture network. First,
the large fractures were characterized with the fracture length, orientation, and coordinates
of the fracture center, while the small fractures were generated by using statistical modeling
methods. The parameters of large fractures are characterized as:

m; = {xi/ Vi, 91‘, Zi}i:1,2,~~-/Nl (1)

where m; is the parameter vector of large fractures, (x;,y;) is the midpoint coordinate of
the ith large fracture, 6; is the fracture orientation, /; is the fracture length, and N; is the
number of large fractures. For naturally fractured reservoirs, the prior information of large
fractures can be obtained by using measurements such as petrophysical interpretation, in
situ stress data analysis, log data, and so forth [27].

Then, the small-scale fractures can be generated by using the statistical method. Specif-
ically, we use the fractal-scaling law to generate the length, a normal distribution to generate
the orientation, and a uniform distribution to generate the midpoint coordinates. The frac-
ture network usually consists of multiple fracture sets with different statistical properties,
assuming that there are N, fracture sets and the intensity D; of ith set. The intensity is
defined as the ratio of the fracture number of the ith set to the total fracture number. The
total number of small-scale fractures can be obtained by the fractal-scaling law. In order
to describe the heterogeneity of fracture distribution in the reservoir area, we partitioned
the reservoir into four sub-regions and established the proportion of the fracture number
for each sub-region. This proportion is defined as the ratio of the fracture number in a
sub-region to the total fracture number in the entire region. To facilitate the inversion,
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the proportional score P; € [0.1,1] was used as the parameter, and the proportion can be
computed by using the normalization of proportion scores. In conclusion, the small-scale
fractures can be parameterized by using statistical parameters as follows:

ms = {Dy, D;,0;, 0, Pf}izl,‘..,l\lm; j=1,....Ne (2)
where m; is the parameter vector of small fractures, D; is the fractal dimension of small
fractures length, 6; and o; are the mean and standard deviation of orientation of ith fracture
set, P; is the proportion score of the jth sub-region.

The fracture network can be generated based on the parameter vectors m; and m;.
Meanwhile, the parameters m; and m; are used as uncertainty parameters in history
matching to estimate the fracture distribution. Besides these parameters, the aperture and
permeability of the fracture is also significant for fluid flow. According to the cubic law, we
can calculate the permeability of the fracture with the aperture. The aperture of the fracture
is related to the length. Equations (3) and (4) show the relation of the fracture permeability
k 'z the aperture 4, and the length I. The coefficient ¢, can be set between 10~1 and 1073 [28].

a=-cy-1 (3)
ke =a*/12 (4)

2.2. GAT-LSTM Surrogate Model

Given that uncertainty in the numerical model mainly arises from the geometry
distribution of fractures, the relationship between the input and output in the EDFM
simulation for history matching can be described as follows:

f:G—Ye RPN (5)

where G is the fracture network, Y is the flow response of simulation, T is the number of
the time-step in the simulation, and Nj is the number of observation indicators, such as
the water or oil production rate of different wells. The fracture network G consists of Ny
fractures with geometry and flow parameters.

The characterization of the fracture network G is based on properties of each fracture.
Fractures are discontinuous in reservoir space. Therefore, the characterization of the
fracture network is non-structural. Graph learning is an effective method to deal with
unstructured data. For graph learning, we first need to represent the fracture network to
the graph data G = (V, E, A). As shown in Figure 1, there are 2N¢ nodes and Ny edges
due to each fracture having two nodes (the endpoints of the fracture) and one edge, where
the node set V includes the end coordinates of all fractures {v; = (xi'yi)}izl,...,ZNf/ the

edge set E includes the edge attribute {e; = (1;,6;, a;, ki)}i:Lz,...,fo and A € R¥*2f jg

the adjacency matrix, A;; = 1 denotes the existing edge from node j to node 7, otherwise,
Aji = 0.
]

2D Fracture "N Node 2

Graph data
G={(v,v,). e, A, )

o} X

Figure 1. The schematic diagram of a fracture and its graph representation.
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Fracture Network

The surrogate model used to approximate such an input—output relationship can be
transformed to a graph-to-sequence regression problem. Based on these findings, this paper
introduces a deep graph learning-based surrogate model, termed GAT-LSTM. It integrates
two key components: a graph representation learning block and a time series regression
block, as illustrated in Figure 2. In the first block, based on the graph representation
learning, we wish to learn an encoder to extract the high-level feature vector z from the
fracture network G by using the GAT model. In the second block, the LSTM model is
adopted to predict the flow response Y by using the feature vector z.

Production data

Surrogate Model Y -
************************** : « 0 5 B
GAT  GAT GAT R = e | -
) ° ° ° B! | ' = i
2 o I e g | : 1 I y i E
5 o e o e o e AR 5 : JEI El | ©
g 110 ot AEIENEIER 'y a2k
'E [ o [ i [ i o : g : i : E
A e e L e R B el = ‘ _ ‘
< o1 o 1 i
S 2 : % ' 1
o ° ° ° o | X : i
(O} [} * [} * [} ° o I 1 b zh i
. . ° o | : I | I i
— e e o e o e ) 20 eI ' ‘ —iE s )
o T 1 ! o{l) By T
Fusing edge ‘ e — =7

features into ~ Node features

. /! high-level
node features aggrega“on ) /// featugre vector z MU“I Iayer LSTM Block

Multi-layer GAT Block
Figure 2. Framework of the proposed GAT-LSTM surrogate model.

In order to obtain sufficient expressive power for transforming the fracture network
G into high-level features, the graph representation learning block comprises a feature
embedding layer and a multi-layer GAT model. The node and edge features consist
of the location, length, angle, aperture, and permeability of the fracture;. these input
features have different distributions and semantics. By using the embedding layer, the
input information can map from a lower-dimensional heterogeneous space to a higher-
dimensional homogeneous space, allowing the network to learn more about the relationship
between inputs. In our model, the embedding layer is a single-layer feedforward neural
network, parametrized by a weight matrix and applying the rectified linear unit (ReLU)
activation function [29], as follows:

K = ReLU(W, - v; + by) 6)

= ReLU(W, - ex + b,) ()

where h} € R? is the embedding features of node i, h € R? is the embedding features of
edge k, d is the dimension of embedding features, which is a hyperparameters, W, and b,
represent the weight parameters and bias term for node features. W, and b, represent the
weight parameters and bias term for edge features.

Afterward, a multi-layer GAT model is constructed to learn the graph-level repre-
sentation of fracture network from the node and edge embedding features. As shown in
Figure 3, the single GAT layer consists of a learnable linear transformation parameterized
by the weight matrix and a self-attention operation on nodes, which computes a learned
weighted average of all of the neighbors’ features.
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@ Feature of node i
O Feature of node j

Figure 3. Illustration of the attention operator by node 7 on its neighborhood.

For the mth GAT layer, the attention score s between node i and its neighbor node

j € N;is computed by using a multi-layer perceptron layer as follows:
s(hf', hY,,) = " LeakyReLU(Ws - [1f,,, || 1)) (8)
where -T represents transposition and | is the concatenation operation, ¢ € R and
W, € R are learned weight parameters, LeakyReLU [29] is the activation function,
d and d’ are the dimensions of the inputs and outputs of the layer. These attention

scores are normalized across all of j € N using the SoftMax function to compute the
attention coefficient:

exp(s (hzr'fm’ h;l,m))

= )
Zj’ej\fi exp(s(hzm,hjrf/m))

a;; = SoftMax(s(h;,,, h?,m))

Then, the GAT layer computes a weighted average of the transformed features of
the neighbor nodes as the new representation of node i, using the normalized attention
coefficients:

Mimi1 = (Y jen; %ij - Wilti) (10)

where W, € R %4 is the weight parameters, and ¢ is the activation function. Equations
(8)—(10) are one-time attention calculations and the multi-head attention is repeated w times.
Hyperparameters of the GAT layer consists of dimension of output features 4, number of
heads w, and the activation function o.

As shown in Figure 2, the multi-layer GAT block includes three steps: fusing the edge
features into nodes, node features aggregation, and node-level global pool. The GAT layer
mainly transforms node features through the connection relationship between nodes, so
it is necessary to fuse edge features into nodes first. The feature fusion can be realized by
propagating the features of edge ¢; ; to the corresponding nodes i and j, and performing
the GAT transformation. After that, GAT layers only need to aggregate the node features.
Finally, all transformed node features are globally pooled to obtain the high-level feature
vector z of the fracture network.

The extracted high-level feature vector z is utilized to predict the flow response data,
which can be used as the input for each time-step of the multi-layer LSTM. The prediction of
production data is a typical time series regression problem, the LSTM model can effectively
solve this problem because of its recursive nature. For the time-series regression problem
with T time-steps, the LSTM model requires T basic units. To predict the observation data
Y = {y1,vy2,...,yr}, a stacked multilayer LSTM model is adopted in this work, as shown
in Figure 2. The first LSTM layer receives input from extracted features of fracture network.
Then, the input of the LSTM layer is the hidden state & from the layer. Generally, an LSTM
model with 1 to 4 layers is recommended. Afterward, a time-distributed fully connected
layer (the dense layer) is used to predict the production data. More details on multi-layer
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LSTMs can be found in our previous work [30]. To train the GAT-LSTM model, the mean
absolute error (MAE) is used as the loss function, as follows:

1N
Jp = NZ':]
where N is the size of evaluated samples, y§" and yf " are the numerical simulation results
and surrogate prediction values, respectively. To evaluate the prediction performance of
surrogate model, the coefficient of determination R?is adopted, which is defined as follows:

sim pre

Vi —Y; (11)

sim pre 2

Zil\il Vi Y
Zf\il ‘yzs'im — Ym

R?=1 (12)

’ 2

where y,, is the mean value of the numerical simulation results. The R? score provides a
general estimate of the prediction performance. When the predicted result closely aligns
with the simulation result, the R? score approaches 1.

Figure 4 summarizes the flowchart of the proposed GAT-LSTM model. In the first GAT
layer, edge features are transferred to node features to achieve the fusion of edge features.
The number of GAT layers Ng and the number of LSTM layers Nr are two hyperparameters
of the model, which are set according to the specific reservoir simulation problem.

|Graph ETbedding | ‘ Dense Layer |
| GAT Liayer 1 | ‘ LSTM Layer Nr |
| GAT Layer 2 | ¥
l ‘ LSTM Layer 2 |
' f
| GATLayerNg | [ LsTMLayer1 |
?
| Node-level global pool | |Feature vector for each time-step|

Figure 4. Flowchart of the proposed GAT-LSTM model.

2.3. The GAT-LSTM Surrogate-Based Inverse Modeling Workflow

Figure 5 presents the proposed surrogate-based inverse modeling workflow for nat-
urally fractured reservoirs, which consists of three phases. Firstly, initial realizations are
generated by utilizing prior information, and a dataset is constructed using the EDFM nu-
merical simulation for training the GAT-LSTM model. In this work, the EDFM simulation
is conducted using the MATLAB reservoir simulation toolbox [31,32]. Secondly, the trained
surrogate model is combined with the differential evolution (DE) algorithm to estimate
uncertainty parameters and EDFM simulation is not necessary for this process. The uncer-
tain parameters of the fracture network consist of geometry parameters, such as length,
direction, and location, as well as some statistical parameters. The distribution of these
uncertain parameters is non-Gaussian and high-dimensional, and the population-based
DE algorithm is well-suited to handle such problems. Finally, the solutions obtained by DE
are evaluated by EDFM simulation to obtain the final history-matched models. This step
requires a small number of numerical simulations. In the following, we present the details
of the history matching objective function and DE algorithm.
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Figure 5. The proposed surrogate-based inverse modeling workflow.

In order to estimate the fracture distribution, the history matching objective function
can be defined as follows:

O(m) = 3 [dops = §(m)]" Cy ! [dos — g(m)] (13)
where d,s is the observation data, g(-) is the forward simulation, m is the uncertainty
parameter, and C; is the covariance of observation error. The detailed derivation of the
objective function can be referred to previous studies [10,26]. In the surrogate-based inverse
modeling workflow, the forward simulation is replaced with the surrogate model.

To minimize the objective function O(m), the DE optimization algorithm is introduced.
DE algorithm [33] finds optimal solutions of the objective function by evolving the differ-
ences between solutions in a population, and it performs well in dealing with nonlinear
and high-dimensional optimization problems. The DE algorithm has three main operators:
mutation, crossover, and selection. The mutation and crossover operations generate new
solutions based on current solutions, as shown in Equations (14) and (15):

O = xf + F (X — x5) + - (2 — 1)) (14)

=1 % (15)

Xiir otherwise

S { vf’j, ifrand(0,1) < CR;orj = jr
where v;‘ represent the ith mutant vector in the kth iteration, xi-‘ is the ith solution vector in
current population, x’g »s¢ Tepresents the best solution found in the kth iteration, x’r‘1 and x’;Z
;‘, j represents
the jth dimension of the ith crossover vector u, and F; and CR; are the mutation factor and
crossover probability, respectively.

After generating new solutions based on the mutation and crossover, the current
population is updated through selection operations. For minimum problems, the selection

operation is given by:

are two distinct solutions randomly selected from the current population, u

k s k k
k1 _ [ ugifo(u) <o(xf) 1
%i { xﬁ.‘, otherwise (16)

where o(-) represents the objective function. The above procedure is repeated until the

terminal condition is satisfied, such as the maximum number of iterations being reached.

3. Case Studies

To investigate the prediction performance of the proposed GAT-LSTM surrogate
model, we perform case studies on a synthetic 2D naturally fractured reservoir. In order to
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verify the feature learning ability of the GAT method for fracture networks, an ANN-LSTM
surrogate model which uses the ANN model as feature extractor is compared. As a basic
machine learning method, the ANN model has been widely used in data processing and
surrogate modeling tasks. In this comparison, the ANN and GAT models use the same
fracture network parameters to learn and extract features. The difference is that the GAT
model can consider discrete characteristics and structure information of fracture network.
Specifically, parameters such as location and length of all fractures in a fracture network
are flattened into the input vector for the ANN model, and the zero-filling strategy is used
to solve the size change in the input vector caused by the different number of fractures
in a different fracture network. For the ANN-LSTM model, the maximum and minimum
normalization method is used for input parameters. For the GAT-LSTM model, the input
parameters are transformed by graph embedding, so no normalization is required. For
production data, the log-transformation-based normalization method [30] is used. Table 1
shows detailed configurations of the GAT-LSTM and ANN-LSTM models used in this
experiment. The neural network model is implemented on the TensorFlow platform [34],
and graph learning is realized using the TensorFlow Graph Neural Networks library [35].
All models are trained on a single NVIDIA GeForce RTX 3090 GPU with 24 GB memory.
The Adam algorithm [36] was employed as the optimizer, with an initial learning rate of
0.001. This learning rate was halved when the error plateaued, until it reached a minimum
of 0.0001. The number of epoch and batch size were set to 100 and 64, respectively.

Table 1. GAT-LSTM and ANN-LSTM architecture for the case studies. The d is number of neural
units, t is number of time-steps, w is the number of heads.

Component Layers Hyper Parameters
Graph Embedding d =128, 0 = ReLU
Multi-layer GAT Block GAT Layer 1/2/3/4 d=128, w=3,0=RelLU
Node-level Global Pool Max pool
Dense Layer 1 d =256, 0 = ReLU
Multi-layer ANN Block Dense Layer 2 d =128, 0 = ReLU
Dense Layer 3 d =100, 0 = ReLU
Repeat Vector t=30
. LSTM Layer 1 d =100
Multi-layer LSTM Block LSTM Layer 2 4 =100
Dense Layer 4 d =8, 0 =tanh

3.1. Two-Dimensional Fractured Reservoir Model

As shown in Figure 6, a synthetic naturally fractured reservoir is defined as a
200 m x 200 m region and divided into 50 x 50 grids. The fracture network, gener-
ated by using the multi-scale parameterization method, contains five major fractures (red
lines) and two sets of minor fractures (gray lines). Tables 2 and 3 present the reference
values and prior range used to generate the major and minor fractures. The permeability
and porosity of the matrix are set as 3 md and 0.25, respectively. The fracture porosity is
set as 0.2, and the cubic law is used to model the permeability of fractures. There is one
water injector and four producers; the bottom hole pressure for the producers is set to 100
bars, and the water injection rate for the injectors is set to 30 m®/day. The 900 day historical
data of the well oil production rate (WOPR) and the well water production rate (WWPR)
are obtained by adding Gaussian noise to the numerical simulation data. The mean value
and standard deviation of the noise are set to 0 and 5% of the simulated data. During
the simulation, the interval of each time-step is set as 30 days. Therefore, the historical
observation data have 30 time-steps and 8 features (OPR and WPR of four producers).
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Figure 6. The reference model with major (red lines) and minor (gray lines) fractures.
Table 2. Initial range and true value of major fractures for the 2D case.
x-Coordinate (m) y-Coordinate (m) Length (m) Orientation (Degrees)
Fracture True Initial Range True Initial Range True Initial Range True Initial Range
1 109 90-130 121 100-140 140 130-150 120 80-130
2 113 90-130 76 70-100 125 100-130 20 1040
3 99 80-120 156 120-160 103 90-120 15 10-50
4 70 60-100 100 80-130 70 60- 80 50 30-80
5 155 130-160 90 70-120 65 50-70 120 100-150

Table 3. Initial range and true value of small-scale fracture parameters for the 2D case.

Parameters True Value Initial Range
Fractal Dimension 1.6 1.4-1.7
Intensity Dy (Set 1) 0.45 0.3-0.6
Intensity D, (Set 2) 1-D, -

Mean of Orientation (Set 1) 35 45-75
Sd of Orientation (Set 1) 10 8-15

Mean of Orientation (Set 2) 150 138-178
Sd of Orientation (Set 2) 10 8-15
Proportion Score of Region 1 0.1 0.1-1
Proportion Score of Region 2 0.3 0.1-1
Proportion Score of Region 3 0.1 0.1-1
Proportion Score of Region 4 0.3 0.1-1

Then, we generate 2000 prior realizations of the fracture network and perform EDFM
numerical simulation to obtain corresponding production data as the data set. The data
set is divided into a training set, a validation set, and a test set according to the ratio of
0.8:0.1:0.1 (1600:200:200). The validation set is used to adjust the hyperparameters of the
surrogate model, and the resulting model structure is shown in Table 1. Figure 7 shows
three prior realizations of fracture network and its production data of the Prol well. It can
be seen that with the change in the fracture distribution, the production dynamics are also
significantly different. This is consistent with the understanding that fracture distribution is
the main influencing factors of fluid flow in naturally fractured reservoirs. In the following
experiments, we investigate the ability of the proposed surrogate to model the mapping
relationship between these fracture distributions and production dynamics.
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Figure 7. Three prior realization of the fracture network and their corresponding production data. In
(a—c), the red lines represent large-scale fractures and the gray lines represent small-scale fractures.

3.2. Analysis of the Surrogate Model Performance

In order to illustrate the performance of the surrogate model with respect to the size
of training samples, we used five groups of training samples of different sizes and repeated
training for each group of samples three times to obtain the average R? score on the training
set and test set, as shown in Figure 8. It can be seen that the R? of the ANN-LSTM model on
the training set and the test set is very different, and the R? on the test set does not improve
significantly with the increase of the training sample. This indicates that the fracture
network features cannot be extracted effectively by using the ANN. In contrast, the R? of
the GAT-LSTM model on the test set has significantly improved with the increase of training
samples, with the average R? of 0.8380 and 0.9225 using 200 and 1000 training samples,
respectively. In addition, we see that after the number of training samples reaches 1000, the
R? of the GAT-LSTM model on the test set change smoothly. These results demonstrate that
the GAT model can extract the fracture network features effectively and the GAT-LSTM
model exhibits preferable generalization performance. In this experiment, both the ANN
and GAT learn from identical fracture network parameters. In the ANN model, all fractures
feature within a network are collectively transformed, whereas in the GAT model, the
transformation of each fracture feature remains independent, aligning with the discrete
characteristics inherent in the fracture network. Hence, the comparison of prediction results
using the ANN and GAT models reveals that retaining the fracture structure information
and discrete characteristics enhances the efficacy of learning features in fracture networks.

Moreover, for a more detailed comparison, the ANN-LSTM and GAT-LSTM models,
trained with 1600 samples, are employed in the following experiments. Figure 9 presents
the change in the MAE loss function of the GAT-LSTM and ANN-LSTM models during
the training process. It can be seen that the ANN-LSTM model is overfitting, and the
loss function on the test set continues to rise after 20 epochs. For the GAT-LSTM model,
the loss function converges smoothly after 80 epochs. Then, we analyze the prediction
performance of the ANN-LSTM and GAT-LSTM models on the test set. Figure 10 shows
the R? distribution histograms of the ANN-LSTM model and the GAT-LSTM model across
200 test samples. It can be seen that the R? value of the ANN-LSTM model is negative for
certain samples, and the R? value of many test samples is below 0.8. In contrast, the GAT-
LSTM model shows a concentration of R? values between 0.8 and 1 for the test samples.
Table 4 summarizes the proportion of test samples in the validation set with R? values
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exceeding 0.8, 0.9, and 0.95, respectively. It can be seen that the prediction performance of
the GAT-LSTM model is significantly better than that of the ANN-LSTM model.
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Figure 8. The relationship between the R? and the size of training samples.
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Figure 9. The evolution of the loss function during the training process of the GAT-LSTM and
ANN-LSTM models.
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Figure 10. Comparison of R? score distribution histograms between the ANN-LSTM model and the
GAT-LSTM model.

Table 4. The ratio of R2 greater than 0.8, 0.9, and 0.95 in the validation set.

Surrogate Model R?>>0.8 R? > 0.85 R?>>09
ANN-LSTM 33% 15.5% 6%
GAT-LSTM 91% 81% 66.5%
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Figure 11 depicts the predicted results of production data for a selected test sample
with a negative R? predicted by the ANN-LSTM model. As observed in Figure 10, the
negative R?> of ANN-LSTM is attributed to its oil production predictions for producer
Pro2, which deviate from the trend of numerical simulation results. In the initial 300 days,
the WOPR of the numerical simulation rises and falls, whereas the WOPR predicted by
ANN-LSTM continues to decline. On the contrary, the GAT-LSTM model can predict the
production dynamics more accurately. Particularly for Pro2 and Pro3, the trends of WOPR
can be accurately predicted, although there is a large error in the production prediction
of Pro4.
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Figure 11. The predicted results of production data for the test sample with a negative R? predicted
by the ANN-LSTM model.

Then, the test sample corresponding to P50 of R? value of GAT-LSTM is selected to
compare the predicted production data with the numerical simulation results, as shown in
Figure 12. It is evident that the GAT-LSTM model can accurately predict the production
dynamics overall, aligning well with numerical simulation results. Particularly, it exhibits
precision in prediction of WOPR. However, there are errors in the prediction results for
water yield, attributed to the complexity introduced by the existence of fractures in the
waterflooding process. Future efforts should concentrate on enhancing the predictive
accuracy of water production.

Afterward, we evaluate the sensitivity of the GAT-LSTM model to input data vari-
ability. To keep the model structure unchanged, we designate the input parameters to be
masked with a value of 0. In this comparison, 1000 training samples were used. As shown
in Figure 13, we test the model performance with different combination of input data.
Taking the model performance obtained using all input parameters (All) as a reference
(dotted green line), it can be seen that the model trained using only edge features (Edge)
and ignoring the position features of the nodes cannot make the effective prediction. On
the contrary, better model performance can be obtained by using only the location features
of fractures (Node). This shows that the location of fracture is the key feature of the fracture
network. This is due to the location of fractures determining the spatial distribution pattern
of the fracture network. In addition, it can be seen that adding the length or angle features
to the node features can enhance the prediction performance of the model. In this case, the
aperture and permeability of fracture are proportional to the length, so no independent
testing was performed. The comparison results show that the prediction performance of
the model using all features is the best.



Mathematics 2024, 12, 754

14 of 20

— 6 =6
T4 & > ANN-LSTM
MQ RS ke =z - = GAT-LSTM
£ m§4 m§4 7 — Simulation
2
o /f ¥ o2
= ! = =
e 20 =4
0 300 600 900 0 300 600 900 0 300 600 900 0 300 600 900
Time (day) Time (day) Time (day) Time (day)
(a) WWPR of Pro1 (b) WWPR of Pro2 (¢) WWPR of Pro3 (d) WWPR of Pro4
%8 ;3\8 _§‘8 R%wisi™
mQ 6 N N 0.8347
S E6 E6
o -
% 4 : % 4 % 4 Recar-ismu™
C;) , C;) S >~ 0.9343
0 300 600 900 0 300 600 900 0 300 600 900 0 3(_)0 600 900
Time (day) Time (day) Time (day) Time (day)

(e) WOPR of Pro1

(f) WOPR of Pro2

(9) WOPR of Pro3

(h) WOPR of Pro4

Figure 12. Comparison of well rates from the numerical simulator and surrogate model for the P50-R?
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Figure 13. The sensitivity of the GAT-LSTM model to input data variability. The dotted green line is
the median value of R? obtained using all input parameters.

3.3. Test the Performance of the Model under Varying Operational Conditions

Furthermore, we test the prediction performance of the surrogate model under varying
operational conditions. Maintain the existing configurations of the 2D reservoir case
and only change the injection strategy for the injection well. The injection rate is set as
30 m?/day from days 0 to 330, 40 m3/day from days 330 to 630, and 60 m3/day from days
630 to 900. For this test, 1200 samples were generated, of which 1000 samples were used for
training the model and 200 samples were used for testing. The structure of the surrogate
model and the training strategy remain unchanged. Figure 14 shows the change in the loss
function during training process.

Figure 15 presents the distribution histogram of the prediction performance metrics
R? of the GAT-LSTM and ANN-LSTM model for the test samples. It can be seen that the
GAT-LSTM model obtains a good prediction performance, 71.5% of test samples with R?
greater than 0.9, and the P50 of R? reached 0.9422. On the contrary, the R? of the ANN-
LSTM model is dispersed, the samples with R? greater than 0.9 only account for 24.5%,
and the P50 of R? is 0.7959. Figure 16 shows the production prediction results of the test
sample corresponding to P50 of R? value of the GAT-LSTM model. It can be seen that the
GAT-LSTM model has a good consistency with the numerical simulation results, while
the ANN-LSTM model has a large prediction bias. In addition, it can be seen that both
the GAT-LSTM model and the ANN-LSTM model can capture the changes in production
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dynamics on day 330 and day 630. This is due to the use of the multi-layer recurrent
neural network. For comparison, we use one LSTM layer to obtain the GAT-LSTM-1 model,
keeping other hyperparameters unchanged. It can be seen that the overall prediction effect
of GAT-LSTM-1 is close to that of the GAT-LSTM model, but it fails to capture the change
om production dynamics on day 630.
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Figure 14. The evolution of the loss function during the training process of the GAT-LSTM and
ANN-LSTM models under varying operational conditions.
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Figure 15. Comparison of R? score distribution histograms between the ANN-LSTM model and
GAT-LSTM model under varying operational conditions.

3.4. Results of Surrogate-Based Inverse Modeling

Afterward, we conducted inverse modeling utilizing the GAT-LSTM model. In this
experiment, the population size and the number of iterations for the DE algorithm were
configured as 100 and 200, respectively. Employing a large population size is beneficial
for preserving diversity within the optimization process. This setup entails a total of
20,000 function evaluations. The values of mutation factor F and crossover probability
CR of the DE algorithm were set to 0.5 and 0.5, respectively. Figure 17 shows the change
process of the objective function during the solution process of the history matching
problem utilizing the trained GAT-LSTM surrogate model. It can be seen that the history
matching objective function continues to decline with the surrogate-based optimization
process and gradually converges after 145 iterations. After the surrogate-based inverse
modeling, we use numerical simulation to verify the obtained solutions and 31 solutions
with good fitting results are selected. As depicted in Figure 18, the gray curves represent
the production data corresponding to 100 prior realizations, the blue curves represent the
production data corresponding to the 31 history-matched models, and the red dot signifies
the observation data. It can be observed that, in comparison with prior realizations, the
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discrepancy between the production data and the observed data of history-matched models
is significantly reduced.

| ANN-LSTM - - = = GAT-LSTM-1 - - - = GAT-LSTM Simulation|
= =10 =10
™ e et
3 - E .
r ° x ° x
o o o
= = =
=0 2 ola = ol—£
0 300 600 900 0 300 600 900 0 300 600 900 ~ O 300 600 900
Time (day) Time (day) Time (day) Time (day)
(a) WWPR of Pro1 (b) WWPR of Pro2 (c) WWPR of Pro3 (d) WWPR of Pro4
8 8 8

WOPR (m°/day)
o

WOPR (m°®/day)
(o))

N

WOPR (m°®/day)
o

N

4

0 300 600 900 0 300 600 900 0 300 600 900 0 300 600 900
Time (day) Time (day) Time (day) Time (day)
(e) WOPR of Pro1 (f) WOPR of Pro2 (9) WOPR of Pro3 (h) WOPR of Pro4

Figure 16. Comparison of well rates prediction under varying operational conditions for the P50 test
samples of GAT-LSTM model.
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Figure 17. The optimization process of surrogate-based inverse modeling.

Finally, Figure 19 compares the fracture distribution probability plot of prior realiza-
tions with that of the history-matched models. It can be seen that the fractures of prior
realizations (Figure 19a) are distributed throughout the reservoir region due to the large
prior range of the uncertainty parameters. After the surrogate-based inverse modeling,
the distribution of major fractures is corrected (Figure 19b), and four of the major fracture
distributions are accurately predicted, but the predicted results of one major fracture distri-
butions between well Pro3 and Pro4 are significantly different from the true model. This is
due to the multiple solutions of history matching. By this comparison, it can be seen that
the uncertainty of fracture distribution decreases significantly after inverse modeling.
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Figure 18. The matching results of the observation data.
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Figure 19. The inversion results of the fracture distribution.

The results above demonstrate the effectiveness of the proposed GAT-LSTM surrogate
model in the application of inverse modeling for naturally fractured reservoirs. In this
study, we did not perform the comparison between surrogate-based inverse modeling
and simulation-based inverse modeling. The 20,000 evaluations of the history matching
objective function based on the EDFM numerical simulation are time-consuming, taking
about 1~2 min per simulation for the 2D fractured reservoir model, and even tens of
minutes in some cases due to convergence difficulties. As shown in Table 5, we compare
the computation times between the surrogate- and simulation-based inversion modeling
methods. As depicted in Figure 7, it can be observed that only 1000 to 1500 numerical
simulations are needed to train the surrogate model, achieving acceptable prediction
performance. Therefore, we use the dataset with 1500 samples for comparison. For this
2D reservoir case, building a dataset with 1500 samples takes about 150 min to run the
simulations in parallel on a 16-core Intel i9-12900 processor. Training the surrogate model
takes about 2 min, the surrogate-based DE optimization takes about 10 min, and the
evaluation of obtained solutions takes about 10 min. The total time of surrogate-based
inversion is 172 min. If the simulation-based inversion modeling was performed with
the same DE settings, the total runs of simulations required would be 20,000, which takes
about 2000 min in the same parallel computing environment. Thus, the overall speedup
achieved is over a factor of 10. The timings provided here will vary depending on the
optimization algorithm and its configuration, the specifics of the computing device, and
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the complexity of the reservoir numerical model. In addition, the surrogate model can
facilitate the decoupling of numerical simulation and the optimization algorithm in inverse
modeling. Numerical simulation is solely utilized for dataset construction and final result
evaluation. As a result, large-scale parallel computation can be easily employed and can
allow for the termination and regeneration of samples that are difficult to converge in
numerical simulation.

Table 5. Comparison of computation time between surrogate-based and simulation-based inversion
methods, the unit of time is minutes.

Inversion Building the  Training the DE Evaluation of  Total

Method Data Set Model Optimization the Solutions  Time
Surrogate-based 150 2 10 10 172
Simulation Based - - 2000 - 2000

4. Conclusions

In this paper, we propose a novel deep graph learning-based surrogate model for
inverse modeling of naturally fractured reservoirs with multi-scale fracture network. The
proposed GAT-LSTM surrogate model can be trained to predict the production response of
a fracture network based on the samples obtained from the 2D EDFM simulation. Firstly,
the fracture network is represented as graph data, where the fracture endpoint serves as a
graph node, and the coordinates are assigned as node attributes. The fractures themselves
constitute the graph edges, with associated properties such as fracture length, orientation,
aperture, and permeability serving as edge attributes. Then, the multi-layer GAT block
in the GAT-LSTM model is employed to capture the high-level features of the fracture
network through three phases: graph embedding, fusion of node and edge features, and
aggregation of node features. Subsequently, the extracted features are utilized as inputs
for the multi-layer LSTM block to predict the production data. Based on the proposed
surrogate model, a surrogate-based inverse modeling workflow was developed for the
estimation of fracture distribution, integrating the DE algorithm to optimize the objective
function of inversion.

To validate the effectiveness of the proposed surrogate model, numerical experiments
were conducted on a 2D naturally fractured reservoir. The results demonstrate that the GAT
model can extract the fracture network features effectively and the GAT-LSTM model ex-
hibits preferable generalization performance. The ability of GAT to retain fracture structure
information and discrete characteristics enhances the efficacy of learning features in fracture
networks. Additionally, the proposed surrogate-based inverse modeling workflow shows
promising performance in estimating the fracture distribution. Based on the proposed
surrogate-based inverse modeling framework, the estimation of fracture distribution can
be quickly realized based on parallel computing facilities, which can promote the real-time
management of reservoirs. Although the proposed model shows promising prediction
performance in the case studies, we observe that the proposed model has some limitations.
Firstly, the GAT-LSTM model is a data-driven model, and effectively collecting data sam-
ples to reduce model prediction bias plays an important role in the solution of inverse
modeling. Secondly, the current research only focuses on 2D fractured reservoir models,
and learning the features of 3D fracture network needs to be further studied. Third, the
proposed GAT-LSTM model needs to be further studied in real fractured reservoir cases in
future work.

Author Contributions: Methodology, X.M.; Validation, J.Z. and K.Z.; Formal analysis, D.Z.; Investi-
gation, Y.T.; Writing—original draft, X.M. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Shaanxi Province Postdoctoral Research Project Funding grant
number 2023BSHEDZZ323 and 2023BSHEDZZ321, the Natural Science Basic Research Program of



Mathematics 2024, 12, 754 19 of 20

Shaanxi grant number 2024]JC-YBQN-0506, and the National Natural Science Foundation of China
grant number 52174031, 51934005, and U23B2089. And the APC was funded by 2023BSHDZZ323.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Abbasi, M.; Sharifi, M.; Kazemi, A. Fluid flow in fractured reservoirs: Estimation of fracture intensity distribution, capillary
diffusion coefficient and shape factor from saturation data. J. Hydrol. 2020, 582, 124461. [CrossRef]

2. Ghorbanidehno, H.; Kokkinaki, A.; Lee, J.; Darve, E. Recent developments in fast and scalable inverse modeling and data
assimilation methods in hydrology. J. Hydrol. 2020, 591, 125266. [CrossRef]

3. Tang, M,; Liu, Y.; Durlofsky, L.J. A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow
problems. J. Comput. Phys. 2020, 413, 109456. [CrossRef]

4. Hamdi, H.; Couckuyt, I; Sousa, M.C.; Dhaene, T. Gaussian Processes for history-matching: Application to an unconventional gas
reservoir. Comput. Geosci. 2017, 21, 267-287. [CrossRef]

5. Dachanuwattana, S.; Yu, W.; Sepehrnoori, K. An efficient MCMC history matching workflow using fit-for-purpose proxies applied
in unconventional oil reservoirs. J. Pet. Sci. Eng. 2019, 176, 381-395. [CrossRef]

6.  Zhang, H.; Sheng, ].]. Surrogate-Assisted Multiobjective Optimization of a Hydraulically Fractured Well in a Naturally Fractured
Shale Reservoir with Geological Uncertainty. SPE J. 2022, 27, 307-328. [CrossRef]

7. Zhang, D.; Li, H. Efficient Surrogate Modeling Based on Improved Vision Transformer Neural Network for History Matching.
SPE J. 2023, 28, 3046-3062. [CrossRef]

8. Zhong, Z.; Sun, A.Y.; Ren, B.; Wang, Y. A Deep-Learning-Based Approach for Reservoir Production Forecast under Uncertainty.
SPE J. 2021, 26, 1314-1340. [CrossRef]

9. Zhang, K.; Zhang, J.; Ma, X; Yao, C.; Zhang, L.; Yang, Y.; Wang, J.; Yao, J.; Zhao, H. History Matching of Naturally Fractured
Reservoirs Using a Deep Sparse Autoencoder. SPE J. 2021, 26, 1700-1721. [CrossRef]

10. Chen, G,; Luo, X,; Jiao, ].J.; Jiang, C. Fracture network characterization with deep generative model based stochastic inversion.
Energy 2023, 273, 127302. [CrossRef]

11.  Yan, B;; Xu, Z.; Gudala, M.; Tariq, Z.; Finkbeiner, T. Reservoir Modeling and Optimization Based on Deep Learning with
Application to Enhanced Geothermal Systems. In Proceedings of the SPE Reservoir Characterisation and Simulation Conference
and Exhibition, Abu Dhabi, United Arab Emirates, 24-26 January 2023.

12.  Kim, Y.D.; Durlofsky, L.J. Neural network surrogate for flow prediction and robust optimization in fractured reservoir systems.
Fuel 2023, 351, 128756. [CrossRef]

13.  Rao, X. A generic workflow of projection-based embedded discrete fracture model for flow simulation in porous media. Comput.
Geosci. 2023, 27, 561-590. [CrossRef]

14.  Xu, Y,; Sepehrnoori, K. Modeling fracture transient flow using the Embedded Discrete Fracture Model with nested local grid
refinement. J. Pet. Sci. Eng. 2022, 218, 110882. [CrossRef]

15. Shaked, B.; Uri, A.; Eran, Y. How Attentive are Graph Attention Networks? In Proceedings of the International Conference on
Learning Representations, Virtual Event, 25-29 April 2022.

16.  Veli¢kovi¢, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P; Youshua, B. Graph Attention Networks. In Proceedings of the 6th
International Conference on Learning Representations, Toulon, France, 24-26 April 2017.

17.  Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef] [PubMed]

18.  Yang, S.; Yu, X.; Zhou, Y. Lstm and gru neural network performance comparison study: Taking yelp review dataset as an example.
In Proceedings of the 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI), Shanghai,
China, 12-14 June 2020; pp. 98-101.

19. Wang, N.; Chang, H.; Kong, X.-Z.; Zhang, D. Deep learning based closed-loop well control optimization of geothermal reservoir
with uncertain permeability. Renew. Energy 2023, 211, 379-394. [CrossRef]

20. Bhatti, U.A.; Tang, H.; Wu, G.; Marjan, S.; Hussain, A. Deep learning with graph convolutional networks: An overview and latest
applications in computational intelligence. Int. ]. Intell. Syst. 2023, 2023, 8342104. [CrossRef]

21. Chen, Y.; Wu, L.; Zaki, M. Iterative deep graph learning for graph neural networks: Better and robust node embeddings. Adv.
Neural Inf. Process. Syst. 2020, 33, 19314-19326.

22. Xia, F; Sun, K; Yu, S.; Aziz, A.; Wan, L.; Pan, S.; Liu, H. Graph learning: A survey. IEEE Trans. Artif. Intell. 2021, 2, 109-127.
[CrossRef]

23. Mohamed, H.A.; Pilutti, D.; James, S.; Del Bue, A.; Pelillo, M.; Vascon, S. Locality-aware subgraphs for inductive link prediction
in knowledge graphs. Pattern Recognit. Lett. 2023, 167, 90-97. [CrossRef]

24. Ling, C;Jiang, J.; Wang, J.; Thai, M.T.; Xue, R.; Song, ].; Qiu, M.; Zhao, L. Deep graph representation learning and optimization
for influence maximization. In Proceedings of the International Conference on Machine Learning, Sanya, China, 27-29 December
2023; pp- 21350-21361.

25. Gligorijevi¢, V.; Renfrew, P.D.; Kosciolek, T.; Leman, ].K.; Berenberg, D.; Vatanen, T.; Chandler, C.; Taylor, B.C.; Fisk, LM.; Vlamakis,

H. Structure-based protein function prediction using graph convolutional networks. Nat. Commun. 2021, 12, 3168. [CrossRef]


https://doi.org/10.1016/j.jhydrol.2019.124461
https://doi.org/10.1016/j.jhydrol.2020.125266
https://doi.org/10.1016/j.jcp.2020.109456
https://doi.org/10.1007/s10596-016-9611-2
https://doi.org/10.1016/j.petrol.2019.01.070
https://doi.org/10.2118/206755-PA
https://doi.org/10.2118/215856-PA
https://doi.org/10.2118/205000-PA
https://doi.org/10.2118/205340-PA
https://doi.org/10.1016/j.energy.2023.127302
https://doi.org/10.1016/j.fuel.2023.128756
https://doi.org/10.1007/s10596-023-10212-7
https://doi.org/10.1016/j.petrol.2022.110882
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1016/j.renene.2023.04.088
https://doi.org/10.1155/2023/8342104
https://doi.org/10.1109/TAI.2021.3076021
https://doi.org/10.1016/j.patrec.2023.02.004
https://doi.org/10.1038/s41467-021-23303-9

Mathematics 2024, 12, 754 20 of 20

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Ma, X.; Zhang, K.; Yao, C.; Zhang, L.; Wang, J.; Yang, Y.; Yao, ]. Multiscale-Network Structure Inversion of Fractured Media Based
on a Hierarchical-Parameterization and Data-Driven Evolutionary-Optimization Method. SPE J. 2020, 25, 2729-2748. [CrossRef]
Aghli, G.; Moussavi-Harami, R.; Mohammadian, R. Reservoir heterogeneity and fracture parameter determination using electrical
image logs and petrophysical data (a case study, carbonate Asmari Formation, Zagros Basin, SW Iran). Pet. Sci. 2020, 17, 51-69.
[CrossRef]

Klimczak, C.; Schultz, R.; Parashar, R.; Reeves, D. Cubic law with aperture-length correlation: Implications for network scale
fluid flow. Hydrogeol. J. 2010, 18, 851-862. [CrossRef]

Xu, J.; Li, Z.; Du, B.; Zhang, M.; Liu, ]. Reluplex made more practical: Leaky ReLU. In Proceedings of the 2020 IEEE Symposium
on Computers and Communications (ISCC), Rennes, France, 7-10 July 2020; pp. 1-7.

Ma, X.; Zhang, K.; Zhao, H.; Zhang, L.; Wang, J.; Zhang, H.; Liu, P; Yan, X.; Yang, Y. A vector-to-sequence based multilayer
recurrent network surrogate model for history matching of large-scale reservoir. J. Pet. Sci. Eng. 2022, 214, 110548. [CrossRef]
Bao, K; Lie, K.-A.; Mayner, O.; Liu, M. Fully implicit simulation of polymer flooding with MRST. Comput. Geosci. 2017, 21,
1219-1244. [CrossRef]

Shah, S.; Meyner, O.; Tene, M.; Lie, K.-A.; Hajibeygi, H. The multiscale restriction smoothed basis method for fractured porous
media (F-MsRSB). J. Comput. Phys. 2016, 318, 36-57. [CrossRef]

Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces.
J. Glob. Optim. 1997, 11, 341-359. [CrossRef]

Abadi, M.; Agarwal, A.; Barham, P.; Eugene, B. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. arXiv 2016, arXiv:1603.04467.

Ferludin, O.; Eigenwillig, A.; Blais, M.; Zelle, D.; Pfeifer, J.; Sanchez-Gonzalez, A.; Li, W.L.S.; Abu-El-Haija, S.; Battaglia, P.; Bulut,
N. Tf-gnn: Graph neural networks in tensorflow. arXiv 2022, arXiv:2207.03522.

Kingma, D.P; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.2118/201237-PA
https://doi.org/10.1007/s12182-019-00413-0
https://doi.org/10.1007/s10040-009-0572-6
https://doi.org/10.1016/j.petrol.2022.110548
https://doi.org/10.1007/s10596-017-9624-5
https://doi.org/10.1016/j.jcp.2016.05.001
https://doi.org/10.1023/A:1008202821328

	Introduction 
	Methods 
	Generation of 2D Multi-Scale Fracture Network 
	GAT-LSTM Surrogate Model 
	The GAT-LSTM Surrogate-Based Inverse Modeling Workflow 

	Case Studies 
	Two-Dimensional Fractured Reservoir Model 
	Analysis of the Surrogate Model Performance 
	Test the Performance of the Model under Varying Operational Conditions 
	Results of Surrogate-Based Inverse Modeling 

	Conclusions 
	References

