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Abstract: A zero–one-inflated Poisson Lindley distribution has been introduced recently as an
alternative to the zero–one-inflated Poisson distribution for describing count data with a substantial
number of zeros and ones. Several stochastic representations of the zero–one-inflated Poisson Lindley
distribution and their equivalence to some well-known distributions under some conditions are
presented. Using these stochastic representations, the distributional properties such as the nth
moments, as well as the conditional distributions are discussed. These stochastic representations can
be used to explain the relationship between two or more distributions. Several likelihood ratio tests
are developed and examined for the presence of one-inflation and fixed rate parameters. The likelihood
ratio tests are found to be powerful and have ability to control the error rates as the sample size increases.
A sample size of 1000 is acceptable and sufficient for the likelihood ratio tests to be useful.
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1. Introduction

One common phenomenon in statistics is the presence of excess zeroes only. This
phenomenon happens when there are more zero-valued observations than explained by
the Poisson distribution. There have been numerous studies conducted in analysing count
data with zero-inflation such as zero-inflated models [1–4], hurdle models [4], zero-altered
models [3] and others. Young et al. [5] has provided a comprehensive review on the use of
the zero-inflated models and its associated regression models. The zero-inflated models are
commonly used to explain the excess zeroes by introducing an inflation parameter known
as zero-inflation parameter.

Recently, the presence of excess zeros and ones in count data have been gaining
attraction by researchers as they are also common in statistics. This phenomenon happens
when there is an abundance of observed events that are not happening and happening only
once. This phenomenon arises quite naturally depending on the questions we would like
to answer. Lin and Tsai [6] have provided a list of questions that will ultimately give the
observations inflated at zero and non-zero. For inflation at zero and one, asking questions
about a memorable event that happened in one’s life such as the number of marriages [6]
will certainly yield results that have a huge spike at zero and one because it is natural and
common across time for mankind to either stay single or get married to one person at a
time or in life. The phenomenon of excess zeros and ones can also be found in various
fields such as medicine [6] as well as quantitative criminology [7,8].

Introducing two inflation parameters into an existing distribution to describe ex-
cess zeros and ones, respectively, is normal and extensively researched [6–10]. Although
the zero–one-inflated Poisson distribution (ZOIP) was introduced in the late 20th cen-
tury by Melkersson and Olsson [9], its stochastic representations were not explored until
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17 years later by Zhang et al. [10]. The study by Zhang et al. [10] interrelates the ZOIP
distribution with other known Poisson distributions such as the zero-inflated Poisson,
the zero-truncated Poisson and the one-truncated Poisson distributions. Following the
idea of Zhang et al. [10], this paper examines and discusses some notes on the stochastic
representations for the zero–one-inflated Poisson Lindley distribution (ZOIPL) developed
by Tajuddin et al. [8]. Likelihood ratio tests are also developed to investigate whether the
presence of one-inflation and fixed parameters is significant.

The probability mass function (pmf) for a random variable Y following the ZOIPL
distribution [8] is given as:

Pr(Y = y) =



ω0 + (1−ω0 −ω1)
θ2(θ+2)
(θ+1)3 ; y = 0

ω1 + (1−ω0 −ω1)
θ2(θ+3)
(θ+1)4 ; y = 1

(1−ω0 −ω1)
θ2(θ+y+2)
(θ+1)y+3 ; y ≥ 2

, (1)

where ω0 and ω1 explain the excess zeroes and ones, respectively, and θ is the parameter of
the Poisson Lindley, PL distribution [11]. The PL distribution has been shown to provide
a better fit than the Poisson distribution due to its ability to handle overdispersion in the
data [11,12]. The parameter θ in the PL distribution plays a crucial role in determining the
variation in the distribution. As θ increases, the variance and the mean of the PL distribution
approach to an identical value, a phenomenon known as equidispersion (see [12], 2009 for
further explanation). Similarly, the ZOIPL distribution has also been shown to provide
better model fittings over the ZOIP distribution due to its ability to handle extra dispersion,
of which cannot be single-handedly described by the inflation parameters in the ZOIP
distribution [8].

Note that, if ω0 = 0, the ZOIPL distribution reduces to a one-inflated Poisson Lindley,
OIPL distribution with parameters ω1 and θ, which have not been studied yet. Readers
are advised to not be confused with a one-inflated-positive Poisson Lindley distribution,
which was developed to cater for inflation in one-valued data in positive count data [13]. If
ω1 = 0, the ZOIPL distribution reduces to the zero-inflated Poisson Lindley distribution
(ZIPL) with parameters ω0 and θ [14]. If both ω0, ω1 = 0, the ZOIPL distribution reduces
to the standard PL distribution with parameter θ. From the special cases, we can already
identify the relationship between these distributions. Based on this idea, the stochastic
representations of the ZOIPL distribution can be studied.

Before proceeding with the stochastic representations, we first adopt the definition of
a degenerate distribution from Zhang et al. [10] to obtain an identical but compact repre-
sentation for the pmf of the ZOIPL distribution. Let ξc ∼ Degen(c) be a random variable
which follows a degenerate distribution at a single constant point c with Pr(ξc = c) = 1.
Let ξ0 ∼ Degen(0), ξ1 ∼ Degen(1) and X ∼ PL(θ) be mutually independent. Therefore,
the pmf of the ZOIPL can be written as

Pr(Y = y) = ω0Pr(ξ0 = y) + ω1Pr(ξ1 = y) + ω2Pr(X = y)

=

[
ω0 + ω2

θ2(θ+2)
(θ+1)3

]
I(y=0) +

[
ω1 + ω2

θ2(θ+3)
(θ+1)4

]
I(y=1) +

[
ω2

θ2(θ+y+2)
(θ+1)y+3

]
I(y≥2),

(2)

where I(·) refers to the indicator function, 0 ≤ ω0, ω1, ω2 < 1, ω2 = 1− ω0 − ω1 and
ω0, ω1 refers to the inflation parameters for excess zeroes and ones, respectively.

The paper is organized as follows: Section 2 describes various stochastic representa-
tions of the ZOIPL distribution. Section 3 describes the derivations of nth moments based
on the different stochastic representations. Section 4 describes the derivations of conditional
distributions for selected stochastic representations. Section 5 presents several likelihood
ratio tests to assess the presence of inflating parameters as well as fixed θ. Section 6 ex-
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amines the performance of the likelihood ratio tests through a simulation study. Section 7
concludes the study.

2. Stochastic Representation (SR)

Several stochastic representations are discussed to highlight the relationship between
the ZOIPL distribution with the zero-inflated Poisson Lindley (ZIPL), the zero-truncated
Poisson Lindley ( ZTPL) and the Poisson Lindley, PL distributions. Table 1 provides the
probability mass functions for the remaining three distributions.

Table 1. The probability mass functions for the ZIPL, PL and the ZTPL distributions.

Distribution Probability Mass Function

ZIPL
Pr(Y∗ = y|ω0, ω1, θ) =


ω0 + ω1

θ2(θ+2)
(θ+1)3 ; y∗ = 0

ω1
θ2(θ+y∗+2)
(θ+1)y∗+3 ; y∗ ≥ 1

where ω1 = 1−ω0 and ω0 refers to the inflation parameter for
the excess zeroes.

PL Pr(X = y∗|θ) = θ2(θ+y∗+2)
(θ+1)y∗+3 ; y∗ ≥ 0

ZTPL Pr(V = v|θ) = θ2(θ+v+2)
(θ2+3θ+1)(θ+1)v ; v ≥ 1

Before the stochastic representations for the ZOIPL distribution is discussed, we
adapt some notations from Zhang et al. [10] and present them in Table 2 to facilitate the
understanding of the stochastic representations.

Table 2. Notations and their descriptions.

Notation Description

A ∼ Q(τ) Random variable A follows a Q distribution with parameter τ.
A Vector A.

AT Transpose of vector A.
A
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0

1

2

0;  with probability 
.1;  with probability 

;  with probability 
Y

X

ω
ω
ω


= 



  Since 𝑍 + 𝑍ଵ + 𝑍ଶ = 1  with Pr(𝑍 = 1) = 𝜔  where 

𝑖 = 1,2,3, the pmf of 𝑌 can be written as: 

B
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0

1

2

0;  with probability 
.1;  with probability 

;  with probability 
Y

X

ω
ω
ω


= 



  Since 𝑍 + 𝑍ଵ + 𝑍ଶ = 1  with Pr(𝑍 = 1) = 𝜔  where 

𝑖 = 1,2,3, the pmf of 𝑌 can be written as: 

C Random variables A, B and C are mutually independent.

A d
= B + C Random variables A and B + C have the same distribution.

2.1. First Stochastic Representation (SR1)

Let Z = (Z0, Z1, Z2)
T ∼ Multinomial(1; ω0, ω1, ω2) and X ∼ PL(θ), such that Z
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1

2

0;  with probability 
.1;  with probability 

;  with probability 
Y

X

ω
ω
ω


= 
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X.

The first SR for random variable Y ∼ ZOIPL(ω0, ω1, θ) is given as Y d
= Z0(0) + Z1(1) +

Z2X = Z1 + Z2X, or equivalently, Y =


0; with probability ω0
1; with probability ω1
X; with probability ω2

. Since Z0 + Z1 + Z2 = 1

with Pr(Zi = 1) = ωi where i = 1, 2, 3, the pmf of Y can be written as:

Pr(Y = 0) = Pr(Z0 = 1) + Pr(Z2 = 1, X = 0) = ω0 + ω2
θ2(θ+2)
(θ+1)3

Pr(Y = 1) = Pr(Z1 = 1) + Pr(Z2 = 1, X = 1) = ω1 + ω2
θ2(θ+3)
(θ+1)4

Pr(Y = y) = Pr(Z2 = 1, X = y) = ω2
θ2(θ+y+2)
(θ+1)y+3 , y ≥ 2.

(3)

From the first SR, the pmf is identical as the pmf of the ZOIPL distribution. There-
fore, the random variable Y ∼ ZOIPL(ω0, ω1, θ) can be denoted as the mixture of
ξ0 ∼ Degen(0), ξ1 ∼ Degen(1) and X ∼ PL(θ) distributions.
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2.2. Second Stochastic Representation (SR2)

Let Z ∼ Bernoulli(1− w), H ∼ Bernoulli(p) and X ∼ PL(θ), such that Z
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  Since 𝑍 + 𝑍ଵ + 𝑍ଶ = 1  with Pr(𝑍 = 1) = 𝜔  where 

𝑖 = 1,2,3, the pmf of 𝑌 can be written as: 

H
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0;  with probability 
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;  with probability 
Y

X
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  Since 𝑍 + 𝑍ଵ + 𝑍ଶ = 1  with Pr(𝑍 = 1) = 𝜔  where 

𝑖 = 1,2,3, the pmf of 𝑌 can be written as: 

X. The

second SR for random variable Y ∼ ZOIPL(ω0, ω1, θ) is given as Y d
= (1− Z)H + ZX, or

equivalently,

Y =

{
H; with probability w
X; with probability 1− w

.

Thus, the pmf of Y is given as

Pr(Y = 0) = Pr(Z = 0, Y = 0) + Pr(Z = 1, Y = 0) = Pr(Z = 0, H = 0) + Pr(Z = 1, X = 0)

= w(1− p) + (1− w)
θ2(θ+2)
(θ+1)3

Pr(Y = 1) = Pr(Z = 0, Y = 1) + Pr(Z = 1, Y = 1) = Pr(Z = 0, H = 1) + Pr(Z = 1, X = 1)

= wp + (1− w)
θ2(θ+3)
(θ+1)4

Pr(Y = y) = Pr(Z = 1, X = y) = (1− w)
θ2(θ+y+2)
(θ+1)y+3 ; y ≥ 2

(4)

Using the reparameterizations ω0 = w(1− p) and ω1 = wp, it can be obtained that
w = ω0 + ω1 and p = ω1/(ω0 + ω1). In other words, the random variable
Y ∼ ZOIPL(ω0, ω1, θ) can be denoted as the mixture of Bernoulli(ω1/(ω0 + ω1)) and
PL(θ).

2.3. Third Stochastic Representation (SR3)

Let Z ∼ Bernoulli(1− w), ξ1 ∼ Degen(1) and Y* ∼ ZIPL
(
w*, θ

)
, such that Z
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Y

X
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  Since 𝑍 + 𝑍ଵ + 𝑍ଶ = 1  with Pr(𝑍 = 1) = 𝜔  where 

𝑖 = 1,2,3, the pmf of 𝑌 can be written as: 

ξ1
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0;  with probability 
.1;  with probability 

;  with probability 
Y

X

ω
ω
ω


= 



  Since 𝑍 + 𝑍ଵ + 𝑍ଶ = 1  with Pr(𝑍 = 1) = 𝜔  where 

𝑖 = 1,2,3, the pmf of 𝑌 can be written as: 

Y*.

The third SR for random variable Y ∼ ZOIPL(ω0, ω1, θ) is given as Y d
= (1− Z)ξ1 + ZY*,

or equivalently,

Y =

{
1; with probability w
Y∗; with probability 1− w

.

Thus, the pmf of Y is given as

Pr(Y = 0) = Pr(Z = 1, Y∗ = 0)

= (1− w)

[
w∗ + (1− w∗) θ2(θ+2)

(θ+1)3

]
= w∗(1− w) + (1− w)(1− w∗) θ2(θ+2)

(θ+1)3

(5)

Pr(Y = 1) = Pr(Z = 0) + Pr(Z = 1, Y∗ = 1)

= w + (1− w)(1− w∗) θ2(θ+3)
(θ+1)4

(6)

Pr(Y = y) = Pr(Z = 1, Y∗ = y) = (1− w)(1− w∗)
θ2(θ + y + 2)

(θ + 1)y+3 ; y ≥ 2 (7)

Using the reparameterizations ω0 = w∗(1− w), ω1 = w and ω2 = (1− w)(1− w∗),
one can obtain that w = ω1 and w∗ = ω0/(1−ω1). In other words, the random variable
Y ∼ ZOIPL(ω0, ω1, θ) can be denoted as the mixture of Degen(1) and ZIPL(ω0/(1−ω1), θ).
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2.4. Fourth Stochastic Representation (SR4)

Let V ∼ ZTPL(θ), Z* =
(
Z*

0, Z*
1, Z*

2
)T ∼ Multinomial

(
1; ω*

0, ω*
1, ω*

2
)
, such that V
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0

1
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0;  with probability 
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;  with probability 
Y

X

ω
ω
ω


= 



  Since 𝑍 + 𝑍ଵ + 𝑍ଶ = 1  with Pr(𝑍 = 1) = 𝜔  where 

𝑖 = 1,2,3, the pmf of 𝑌 can be written as: 

Z*.

The fourth SR for random variable Y ∼ ZOIPL(ω0, ω1, θ) is given as Y d
= Z*

0(0) + Z*
1(1) +

Z*
2V = Z*

1 + Z*
2V, or equivalently,

Y =


0; with probability ω∗0
1; with probability ω∗1
V; with probability ω∗2

.

Thus, the pmf of Y is given as

Pr(Y = 0) = Pr(Z∗0 = 1) = ω∗0

Pr(Y = 1) = Pr
(
Z∗1 = 1

)
+ Pr(Z∗2 = 1, V = 1)

= ω∗1 + ω∗2
θ2(θ+3)

(θ2+3θ+1)(θ+1)4

Pr(Y = y) = Pr(Z∗2 = 1, V = y) = ω∗2
θ2(θ+y+2)

(θ2+3θ+1)(θ+1)y+3 ; y ≥ 2

(8)

Using the reparameterizations ω*
0 = ω0 + ω2θ2(θ + 2)/(θ + 1)3, ω*

1 = ω1 and
ω*

2 = ω2
(
θ2 + 3θ + 1

)
, one can obtain that ω1 = ω*

1, ω2 = ω*
2/
(
θ2 + 3θ + 1

)
and

ω0 = ω*
0−ω*

2θ2(θ + 2)/
[(

θ2 + 3θ + 1
)
(θ + 1)3

]
. Therefore, Y ∼ ZOIPL(ω0, ω1, θ) can be

denoted as the mixture of Degen(0), Degen(1) and ZTPL(θ).

3. The nth Moments

In this section, the nth moments for the ZOIPL distribution using the four stochastic
representations, explained in Section 2, will be utilized. Usually, the nth moments for any
zero–one-inflated distributions are obtained directly as

E(Yn) =
∞

∑
y=0

ynPr(Y = y) = Pr(Y = 1) +
∞

∑
y=2

ynPr(Y = y). (9)

With the help from the four stochastic representations, new forms of the nth moments
will be developed. The nth moments are important in obtaining the mean, variance,
skewness, and kurtosis of the distribution. Here, we only show the derivation of the nth
moments using different stochastic representations.

3.1. First Stochastic Representation

Referring to SR1, Y d
= Z1 + Z2X. Therefore, the nth moment of Y is derived as follows:

E(Yn) = E
[
(Z1 + Z2X)n] = E

[
n

∑
k=0

(
n
k

)(
Z1

kZ2
n−k
)

Xn−k

]
. (10)

Zhang et al. [10] has mentioned that for any integers i and j, Zi
kZj

n−k ∼ Degen(0) for
i 6= j. Furthermore, it is trivial to show that E(Zi

n) = E(Zi). Therefore, the nth moment of
Y can be simplified as

E(Yn) =
n
∑

k=0

(
n
k

)
E
(

Z1
kZ2

n−k
)

E
(

Xn−k
)

= E(Z2
n)E(Xn) +

n−1
∑

k=1

(
n
k

)
E
(

Z1
kZ2

n−k
)

E
(

Xn−k
)
+ E(Z1

n)

= ω1 + ω2E(Xn).

(11)
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3.2. Second Stochastic Representation

Referring to SR2, Y d
= (1− Z)H + ZX. Therefore, the nth moment of Y is derived as

follows:

E(Yn) = E
{
[(1− Z)H + ZX]n

}
= E

{
n

∑
k=0

(
n
k

)[
(1− Z)kZn−k

]
HkXn−k

}
. (12)

The nth moment of Y can be simplified as

E(Yn) =
n
∑

k=0

(
n
k

)
E
[
(1− Z)kZn−k

]
E
(

Hk
)

E
(

Xn−k
)

= E(Zn)E(Xn) +
n−1
∑

k=1

(
n
k

)
E
[
(1− Z)kZn−k

]
E
(

Hk
)

E
(

Xn−k
)
+ E

[
(1− Z)n]E(Hn)

= wp + (1− w)E(Xn).

3.3. Third Stochastic Representation

Referring to SR3, Y d
= (1− Z)ξ + ZY∗. Therefore, the nth moment of Y is derived as

follows:

E(Yn) = E
{
[(1− Z)ξ + ZY∗]n

}
= E

{
n

∑
k=0

(
n
k

)[
(1− Z)kZn−k

]
ξkY∗n−k

}
. (13)

The nth moment of Y can be simplified as

E(Yn) =
n
∑

k=0

(
n
k

)
E
[
(1− Z)kZn−k

]
E
(

ξk
)

E
(

Y∗n−k
)

= E(Zn)E(Y∗n) +
n−1
∑

k=1

(
n
k

)
E
[
(1− Z)kZn−k

]
E
(

ξk
)

E
(

Y∗n−k
)
+ E

[
(1− Z)n]E(ξn)

= w + (1− w)E(Y∗n).

3.4. Fourth Stochastic Representation

Referring to SR4, Y d
= Z1

∗ + Z1
∗V. Therefore, the nth moment of Y is derived as

follows:

E(Yn) = E
[
(Z1
∗ + Z2

∗V)n] = E

{
n

∑
k=0

(
n
k

)[
Z1
∗kZ2

∗n−k
]
Vn−k

}
. (14)

The nth moment of Y can be simplified as

E(Yn) =
n
∑

k=0

(
n
k

)
E
[

Z1
∗kZ2

∗n−k
]

E
(

Vn−k
)

= E(Z2
∗n)E(Vn) +

n−1
∑

k=1

(
n
k

)
E
[

Z1
∗kZ2

∗n−k
]

E
(

Vn−k
)
+ E(Z1

∗n)

= ω1
∗ + ω2

∗E(Vn).

4. Conditional Distributions

In this section, the conditional distributions based on the first two stochastic represen-
tations will be discussed.

4.1. First Stochastic Representation

Recall that in SR1, Y d
= Z1 +Z2X where Z = (Z0, Z1, Z2)

T ∼ Multinomial(1; ω0, ω1, ω2)
and X ∼ PL(θ), such that Z
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X

ω
ω
ω


= 



  Since 𝑍 + 𝑍ଵ + 𝑍ଶ = 1  with Pr(𝑍 = 1) = 𝜔  where 

𝑖 = 1,2,3, the pmf of 𝑌 can be written as: 

X. We would like to find the conditional distribution for Z|Y
and X|Y . The conditional distributions are given in the following theorems.
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Theorem 1. The joint conditional distribution for Z|Y is given as

Z|(Y = y) ∼


Multinomial(1; β1, 0, 1− β1) ; if y = 0,
Multinomial(1; 0, β2, 1− β2) ; if y = 1,
Multinomial(1; 0, 0, 1) ; if y ≥ 2,

(15)

where
β1 =

ω0

ω0 + ω2
θ2(θ+2)
(θ+1)3

and β2 =
ω1

ω1 + ω2
θ2(θ+3)
(θ+1)4

.

Proof. Recall that Z can take on (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T and Pr(Z = z|Y = y) =
Pr(Z0 = z0, Z1 = z1, Z2 = z2, Y = y)/Pr(Y = y). For Y = 0,

Pr
(

z = (1, 0, 0)T
∣∣∣Y = 0

)
= β1,

Pr
(

z = (0, 1, 0)T
∣∣∣Y = 0

)
= 0,

Pr
(

z = (0, 0, 1)T
∣∣∣Y = 0

)
= 1− β1.

(16)

Therefore, Z|(Y = 0) ∼ Multinomial(1; β1, 0, 1− β1). For Y = 1,

Pr
(

z = (1, 0, 0)T
∣∣∣Y = 1

)
= 0,

Pr
(

z = (0, 1, 0)T
∣∣∣Y = 1

)
= β2,

Pr
(

z = (0, 0, 1)T
∣∣∣Y = 1

)
= 1− β2.

(17)

Therefore, Z|(Y = 1) = Multinomial(1; 0, β2, 1− β2) . Finally, for Y ≥ 2,

Pr
(

z = (1, 0, 0)T
∣∣∣Y = 1

)
= 0,

Pr
(

z = (0, 1, 0)T
∣∣∣Y = 1

)
= 0,

Pr
(

z = (0, 0, 1)T
∣∣∣Y = 1

)
= 1.

(18)

Therefore, Z|(Y = y) = Multinomial(1; 0, 0, 1) for y ≥ 2. �

Corollary 1. The marginal conditional distribution Zi|Y based on SR1 is

Z0|(Y = y) ∼
{

Bernoulli(β1) ; y = 0,
Degen(0) ; y 6= 0,

Z1|(Y = y) ∼
{

Bernoulli(β2) ; y = 1,
Degen(0) ; y 6= 1,

Z2|(Y = y) ∼


Bernoulli(1− β1) ; y = 0,
Bernoulli(1− β2) ; y = 1,
Degen(1) ; y ≥ 2.

(19)

Theorem 2. The conditional distribution for X|Y is given as

X|(Y = y) ∼


ZIPL(1− β1, θ) ; if y = 0,
OIPL(1− β2, θ) ; if y = 1,
Degen(y) ; if y ≥ 2.

(20)
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Proof. Recall that X ∼ PL(θ) and Pr(X|Y = y) = Pr(X = x, Y = y)/Pr(Y = y). For Y = 0,

Pr(X=x,Y=0)
Pr(Y=0) = Pr(X=0,Z1=0)

Pr(Y=0) I(X=0) +
Pr(X=x,Z0=1)

Pr(Y=0) I(X 6=0)

=

θ2(θ+2)
(θ+1)3

(1−ω1)

ω0+ω2
θ2(θ+2)
(θ+1)3

I(X=0) +

θ2(θ+x+2)
(θ+1)x+3 ω0

ω0+ω2
θ2(θ+2)
(θ+1)3

I(X 6=0)

=

[
1− β1 + β1

θ2(θ+2)
(θ+1)3

]
I(X=0) +

[
β1

θ2(θ+x+2)
(θ+1)x+3

]
I(X 6=0).

(21)

Therefore, X|(Y = 0) ∼ ZIPL(1− β1, θ). For Y = 1,

Pr(X=x,Y=1)
Pr(Y=1) = Pr(X=1,Z0=0)

Pr(Y=1) I(X=1) +
Pr(X=x,Z1=1)

Pr(Y=1) I(X 6=1)

=

θ2(θ+3)
(θ+1)4

(1−ω0)

ω1+ω2
θ2(θ+3)
(θ+1)4

I(X=1) +

θ2(θ+x+2)
(θ+1)x+3 ω1

ω1+ω2
θ2(θ+2)
(θ+1)3

I(X 6=1)

=

[
1− β2 + β2

θ2(θ+3)
(θ+1)4

]
I(X=1) +

[
β2

θ2(θ+x+2)
(θ+1)x+3

]
I(X 6=1).

(22)

Therefore, X|(Y = 1) ∼ OIPL(1− β2, θ). Note that the OIPL distribution has not
been explored yet. For Y ≥ 2,

Pr(X = x, Y = y)
Pr(Y = y)

=
Pr(X = y, Z2 = 1)

Pr(Y = y)
= 1. (23)

Therefore, X|(Y = y) ∼ Degen(y) for y ≥ 2. �

4.2. Second Stochastic Representation

Recall that in SR2, Y d
= (1− Z)H+ZX where Z ∼ Bernoulli(1− w), H ∼ Bernoulli(p)

and X ∼ PL(θ), such that Z
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Y
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X.

Theorem 3. The conditional distribution Z|Y is given as

Pr(Z|Y = y) =


Bernoulli(λ1) ; if y = 0,
Bernoulli(λ2) ; if y = 1,
Degen(1) ; if y ≥ 2,

(24)

where

λ1 =
(1− w)

θ2(θ+2)
(θ+1)3

w(1− p) + (1− w)
θ2(θ+2)
(θ+1)3

and λ2 =
(1− w)

θ2(θ+3)
(θ+1)4

wp + (1− w)
θ2(θ+3)
(θ+1)4

,

or equivalently, λ1 = 1− β1 and λ2 = 1− β2.

Proof. Recall that Pr(Z = z|Y = y) = Pr(Z = z, Y = y)/Pr(Y = y) and Z can take on the
values of either 0 or 1. For Y = 0,

Pr(Z = z, Y = 0)
Pr(Y = 0)

=
Pr(Z = 1, X = 0)

Pr(Y = 0)
= λ1. (25)

Therefore, Z|(Y = 0) ∼ Bernoulli(λ1). For Y = 1,

Pr(Z = z, Y = 1)
Pr(Y = 1)

=
Pr(Z = 1, X = 1)

Pr(Y = 1)
= λ2.
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Therefore, Z|(Y = 1) ∼ Bernoulli(λ2). For Y ≥ 2,

Pr(Z = z, Y = y)
Pr(Y = y)

=
Pr(Z = 1, X = y)

Pr(Y = y)
= 1.

Therefore, Z|(Y = y) ∼ Degen(1) for y ≥ 2. Using the reparameterization in SR2, the
conditional distribution Z|Y can be written as

Pr(Z|Y = y) =


Bernoulli(1− β1) ; if y = 0,
Bernoulli(1− β2) ; if y = 1,
Degen(1) ; if y ≥ 2,

(26)

or equivalently,

Pr(Z|Y = y) =


Bernoulli(λ1) ; if y = 0,
Bernoulli(λ2) ; if y = 1,
Degen(1) ; if y ≥ 2.

�

Theorem 4. The conditional distribution H|Y is given as

Pr(H|Y = y ) =


Bernoulli(λ3) ; if y = 0,
Bernoulli(λ4) ; if y = 1,
Bernoulli(p) ; if y ≥ 2,

(27)

where

λ3 =
p(1− w)

θ2(θ+2)
(θ+1)3

w(1− p) + (1− w)
θ2(θ+2)
(θ+1)3

and λ4 =

p
[

w + (1− w)
θ2(θ+3)
(θ+1)4

]
wp + (1− w)

θ2(θ+3)
(θ+1)4

,

or equivalently, λ3 = pλ1 = p(1− β1) and λ4 = 1− (1− p)λ2 = 1− (1− p)(1− β2).

Proof. Recall that Pr(H = η|Y = y) = Pr(H = η, Y = y)/Pr(Y = y) and H = η can take
on the values of either 0 or 1. For Y = 0,

Pr(H = η, Y = 0)
Pr(Y = 0)

=
Pr(H = 1, Z = 1, X = 0)

Pr(Y = 0)
= λ3. (28)

Therefore, H|(Y = 0) ∼ Bernoulli(λ3). For Y = 1,

Pr(H = η, Y = 1)
Pr(Y = 1)

=
Pr(H = 1, Z = 1, X = 1) + Pr(H = 1, Z = 0)

Pr(Y = 1)
= λ4.

Therefore, H|(Y = 1) ∼ Bernoulli(λ4). For Y ≥ 2,

Pr(H = η, Y = y)
Pr(Y = y)

=
Pr(H = 1, Z = 1, X = y)

Pr(Y = y)
= p.

Therefore, H|(Y = y) ∼ Bernoulli(p). Using the reparameterization in SR2 and from
Theorem 3, the conditional distribution H|Y can be written as

Pr(H|Y = y ) =


Bernoulli(p(1− β1)) ; if y = 0,
Bernoulli(1− (1− p)(1− β2)) ; if y = 1,
Bernoulli(p) ; if y ≥ 2,

(29)
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or equivalently,

Pr(H|Y = y ) =


Bernoulli(pλ1) ; if y = 0,
Bernoulli(1− (1− p)λ2) ; if y = 1,
Bernoulli(p) ; if y ≥ 2,

or equivalently,

Pr(H|Y = y ) =


Bernoulli(λ3) ; if y = 0,
Bernoulli(λ4) ; if y = 1,
Bernoulli(p) ; if y ≥ 2.

�

Theorem 5. The conditional distribution for X|Y is given as

X|(Y = y) ∼


ZIPL(1− β1, θ) ; if y = 0,
OIPL(1− β2, θ) ; if y = 1,
Degen(y) ; if y ≥ 2.

Proof. Similar to the proof for Theorem 2. �

5. Hypotheses Testing

This section presents two hypotheses involving the presence of one-inflation and a
fixed θ. The hypothesis about the presence of one-inflation is examined using a likelihood
ratio test, while the hypothesis about a fixed θ involves a two-sided test. The hypothesis
about the presence of zero–one-inflation cannot be examined with the likelihood ratio
test because the parameter values are situated at the boundary of the confined parameter
space [10].

5.1. The Presence of One-Inflation

To investigate the existence of excess ones in the observations, the following null and
alternative hypotheses are considered.

H0 : ω1 = 0 vs H1 : ω1 > 0.

The likelihood ratio (LR) test statistics is given as

S1 = −2
{

l
(
ω̂0,H0 , 0, θ̂H0

)
− l
(
ω̂0, ω̂1, θ̂

)}
,

where l(·) refers to the log-likelihood function. This hypothesis tests whether the ZIPL
distribution is sufficient to describe the data compared to the ZOIPL distribution. Zhang
et al. [10] investigated a similar test, but their study refers to the zero–one-inflated Poisson
distribution. The authors mentioned that H0 results in ω0 being on the edge of the parame-
ter space. Moreover, the appropriate null distribution is a mixture of Degen(0) and χ2

(1)
with equal proportion [10,15]. The same conclusion can be drawn for this distribution since
the nature of Poisson and ZOIPL distributions is similar to that of the zero–one-inflated
Poisson distribution. Therefore, H0 is rejected if Pr(S1 > s1) =

1
2 Pr
(

χ2
(1) > s1

)
is smaller

than the significance level, which is set at α = 0.05. For more information on the asymptotic
properties of likelihood ratio tests, see [16].
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5.2. For Fixed θ = θ0

To investigate the existence of excess ones in the observations, the following null and
alternative hypotheses are considered.

H0 : θ = θ0 vs H1 : θ 6= θ0.

The likelihood ratio (LR) test statistics is given as

S2 = −2
{

l
(
ω̂0,H0 , ω̂1,H0 , θ0

)
− l
(
ω̂0, ω̂1, θ̂

)}
.

This hypothesis investigates if a fixed θ0 but varying ω0 and ω1 are adequate in de-
scribing the data with comparison to the ZOIPL distribution with three varying parameters.
The H0 is rejected if Pr(S2 > s2) = Pr

(
χ2

(1) > s2

)
is less than the significant level, which

is set at α = 0.05.

6. Simulation Studies

In this section, the hypotheses and its corresponding likelihood ratio tests will be
investigated via simulation studies. The simulation studies aim to compare the type I error
rates under H0 and the powers under H1.

6.1. Data Generation

To generate random data which follow the ZOIPL distribution, first, recall the SR1.
We independently draw z(m)

1 , . . . , z(m)
n ∼ Multinomial(1; ω0, ω1, ω2) for m = 1, 2, . . . , M,

where z(m)
i =

(
Z(m)

0i , Z(m)
1i , Z(m)

2i

)T
for i = 1, 2, . . . , n. We also draw X(m)

1 , . . . , X(m)
n ∼ PL(θ)

independently. Then, we set Y(m)
i = Z(m)

1i + Z(m)
2i × X(m)

i for i = 1, 2, . . . , n and
m = 1, 2, . . . , M, where M = 1000.

6.2. General Algorithm for Hypothesis Testing

Let r be the number of rejecting the H0. The type I error rate is obtained by computing
r/M when H0 is true, whereas the power of the test is obtained by computing r/M when
we fail to reject H0. For the type I error and the power of the test, the sample sizes are set
to be n = 200 (200) 1000. The procedure to determine the type I error rate and the power
of the test is repeated 1000 times. The adjusted Wald technique [17] is used to obtain the
95% confidence interval for the type I error rates. Bradley’s liberal criterion [18] has outlined
that if the type I error rates are in the interval α± 0.05α, the test is robust. In this case, α = 0.05,
so the test is considered robust when type I error rates are between 0.025 and 0.075.

6.3. The Presence of One-Inflation

Recall that the H0 : ω1 = 0 and H1 : ω1 > 0. For this simulation study, the value of θ
is fixed at 1.0, while the value of ω0 varies: ω0 = 0.6, 0.7, 0.8, 0.9. These different values
of ω0 were selected based on previous studies [8] for the ZOIPL distribution. These ω0s
are used to study the type I error rates. The results of the simulation studies are shown
in Figure 1. Figure 1 shows the type I error rate plots for varying ω0. When ω0 = 0.60, a
sample size of 400 is sufficient to make the type I error rate fall below 0.05. On the other
hand, when ω0 = 0.70, 0.90, at least a sample size of 800 is needed to make a type I error
rate fall below 0.05. Surprisingly, when ω0 = 0.80, even 200 samples are sufficient. It can be
observed that for each value of ω0, the type I error rates decrease with increasing sample
size n and fall below 0.05. Zhang et al. [10] mentioned that the smaller the type I error rate,
the better the performance of the likelihood ratio test in controlling the error rates.
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To assess the power of the test, the values of ω1 under H1 are set at 0.02, 0.04, 0.06, 0.08,
0.10, 0.12 with θ = 1.0. Let r be the number of rejections of H0. The power of the test
is obtained by calculating r/M when ω1 > 0. The results of the simulation studies are
shown in Figure 2. Figure 2 shows the plots for the power of the test when ω1 varies. It can
be observed that the power of the test increases when ω1 and the sample size n increase.
Achieving at least 80% power can be carried out for ω1 ≥ 0.06 with at least a sample size
of 800. For ω1 < 0.06, a large sample size is required for the test to obtain 80% power.
This means that when ω1 is small and close to zero, the test cannot accurately identify the
existence of excess ones in the data. Generally, the larger the value of ω1, the quicker the
power of the test increases as the sample size increases.

6.4. Fixed θ = θ0

Recall that the H0 : θ = θ0 and H1 : θ 6= θ0. For this simulation study, the value of θ0
varies: θ0 = 0.5, 1.0, 1.5, 2.0 for the study of Type I error rates. The values for ω0 = 0.75
and ω1 = 0.10 are fixed. Figure 3 shows the simulation results of the test. From Figure 3,
when θ = 0.5, 1.0, a sample size of 600 is sufficient to make a type I error rate fall below
0.05. When θ = 1.5, at least a sample size of 800 is needed to make a type I error rate fall
below 0.05. Furthermore, a total of 1000 samples are required when θ = 2.0. Generally, the
larger the value of θ, the larger the sample size required so that the type I error becomes
smaller than 0.05.
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To investigate the power of the test, data are generated assuming that θ = 1.5, 2.0, 2.5,
3.0, and let θ0 = 1.0. Figure 4 shows the simulation results of the test. From Figure 4, it can
be noted that as the sample size increases, the power of the test increases. The further the
distance between the assumed θ0 = 1.0 from the true θ, the more powerful the test becomes.
To achieve 80% power with 1000 samples, the true θ must be at least equal to 3.0 when
θ0 = 1.0.



Mathematics 2024, 12, 778 14 of 16Mathematics 2023, 11, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 3. Type I error rates for different values of 𝜃 and 𝑁. 

 
Figure 4. Power of the likelihood ratio test for different values of 𝜃 and 𝑁. 

Figure 3. Type I error rates for different values of θ and N.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 3. Type I error rates for different values of 𝜃 and 𝑁. 

 
Figure 4. Power of the likelihood ratio test for different values of 𝜃 and 𝑁. Figure 4. Power of the likelihood ratio test for different values of θ and N.



Mathematics 2024, 12, 778 15 of 16

7. Conclusions

In this paper, various stochastic representations for the zero–one-inflated Poisson
Lindley distribution have been studied extensively. The stochastic representations allow
for us to view the zero–one-inflated Poisson Lindley distribution in different ways by
combining several established distributions such as multinomial, degenerate, Poisson
Lindley and other distributions. When handling data with excess zeroes and ones, as
well as dispersion, these stochastic representations can be exploited. For example, if
we are interested in studying positive count data distributions (observed) but we are
presented with a full set of data containing both observed and unobserved values, instead
of separating the full set of data into both observed and unobserved values, which may
incur unnecessary costs, one may use the full set of data and use the fourth stochastic
representation to identify the estimated parameter which describes the distribution of the
unobserved data.

Besides that, some hypothesis tests have been conducted to investigate the presence
of one-inflation in addition to fixed-rate parameters. The extensive simulation studies
conducted investigate the ability of the test to handle both type I error and type II error
rates in terms of errors as well as powers. All tests, which involve likelihood ratios, are
found to be able to handle type I error rates and are found to be powerful as the sample
sizes increases; hence, are found to be useful. It is suggested that a sample size of at least
1000 is sufficient for the tests to be useful.
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