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Abstract: A graph is symmetric if its automorphism group is transitive on the arcs of the graph.
Guo et al. determined all of the connected seven-valent symmetric graphs of order 8p for each prime
p. We shall generalize this result by determining all of the connected seven-valent symmetric graphs
of order 8pq with p and q to be distinct primes. As a result, we show that for each such graph of Γ, it
is isomorphic to one of seven graphs.
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1. Introduction

We assume that the graphs in this paper are finite, simple, connected and undirected.
For undefined terminologies of groups and graphs, we refer the reader to [1,2].

Let Γ be a graph. We denote VΓ, EΓ, AΓ and AutΓ as a vertex set, edge set, arc set
and full automorphism group of the graph Γ, respectively. We define that the graph Γ
is vertex-transitive if AutΓ is transitive on the vertex set VΓ of Γ, and Γ is an arc-transitive
graph if AutΓ is transitive on the arc set AΓ of Γ. An arc-transitive graph is also called a
symmetric graph.

Let G be a group, and let S be a subset of G such that S = S−1 := {s−1|s ∈ S} . The Cay-
ley graph Cay(G, S) is defined to have a vertex set G and edge set {{g, sg}∥g ∈ G, s ∈ S}.
Now, we denote the following Cayley graphs of dihedral groups by CDk

2pq.

Set CDk
2pq = Cay(G, {b, ab, ak+1b, . . . , ak5+k4+···+k+1b}), where G = ⟨a, b|apq = b2 = 1,

ab = a−1⟩ ∼= D2pq, and k is a solution of the equation x6 + x5 + · · ·+ x + 1 ≡ 0(mod pq).
There are many graph parameters to characterize the reliability and vulnerability of

an interconnection network, such as spectral characterization, main eigenvalues, distance
characteristic polynomials, and arc-transitivity. Among these parameters, the spectral
characterizations, main eigenvalues, and distance characteristic polynomials are the better
ones to measure the stability of a network; see [3–7], for example. For arc-transitivity,
see [8], as an example. In this paper, we study the arc-transitivity of graphs.

Let p and q be distinct primes. By [9–11], symmetric graphs of orders p, 2p, and 3p
have been classified. Furthermore, Praeger et al. determined symmetric graphs of order pq
in [12,13].

Recently, the classification of symmetric graphs with certain valency and with a
restricted order has attracted much attention. For example, all cubic symmetric graphs
of an order up to 768 have been determined by Conder and Dobcsa ń yi [14]. Tetravalent
s-transitive graphs of order 6p, 6p2, 8p, 8p2, 10p or 10p2 were classified in [15–17]. More
recently, a large number of papers on seven-valent symmetric graphs have been published.
The classification of seven-valent symmetric graphs of order 8p, 12p, 16p, 24p or 2pq
were presented in [18–22]. We shall generalize these results by determining all connected
seven-valent symmetric graphs of the order 8pq.

In this paper, the main result we obtain is the following theorem.

Mathematics 2024, 12, 787. https://doi.org/10.3390/math12060787 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12060787
https://doi.org/10.3390/math12060787
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9816-3411
https://doi.org/10.3390/math12060787
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12060787?type=check_update&version=1


Mathematics 2024, 12, 787 2 of 10

Theorem 1. Let p < q be primes and let Γ be a seven-valent symmetric graph of the order 8pq.
Then, Γ is isomorphic to one of the graphs in Table 1.

Table 1. seven-valent symmetric graphs of order 8pq.

Γ AutΓ (p, q)

C48 PGL(2, 7)× D8 (2,3)
C112 (Z3

2×D14):F21 (2,7)
C120 S7 (3,5)
C i

312 PGL(2, 13)×Z2 (3, 13), i = 1, 2, 3, 4
C5

312 (PSL(2, 13)×Z2):Z2 (3,13)
C6

312 PSL(2, 13):D8 (3,13)
C(23,2q) (Z3

2 × D2q):Z7 (2, 7
∣∣ q − 1)

Some of the properties in Table 1 are obtained with the help of the Magma system [23].
The method of proving Theorem 1 is to reduce the automorphism groups of the graphs
to some nonabelian simple groups. To make this method effective, we need to know the
classification result of stabilizers of symmetric graphs. If the valency is a prime p, the
method may still work. However, we need information about the stabilizers of prime-
valent symmetric graphs and a more detailed discussion. Additionally, the term symmetric
graph that is used in this paper has been also used for a different type of symmetry in
other research works; see [24], for example. It studied the symmetry of graphs through
characteristic polynomials, which is more interesting and detailed.

2. Preliminary Results

In this section, we will provide some necessary preliminary results to be used in
later discussions.

For a graph Γ and its full automorphism group AutΓ, let G be a vertex-transitive
subgroup of AutΓ and let N be an intransitive normal subgroup of G on VΓ. We use VN
to denote the set of N-orbits in VΓ. The normal quotient graph ΓN is a graph that satisfies
the vertex set of VN and two N-orbits B, and C ∈ VN are adjacent in ΓN if and only if some
vertex of B is adjacent in Γ to some vertex of C. The following Lemma ([25] Theorem 9)
provides a basic method for studying our seven-valent symmetric graphs.

Lemma 1. Let Γ be an G-arc-transitive graph of the prime valency p, where p > 2 and G ≤ AutΓ,
and let N be a normal subgroup of G and have at least three orbits on VΓ. Then, the following
statements hold.

(i) N is semi-regular on VΓ and G/N ≤ AutΓN , and Γ is a normal cover of ΓN ;
(ii) Γ is (G, s)-transitive if and only if ΓN is (G/N, s)-transitive, where 1 ≤ s ≤ 5 or s = 7.

By ([26] Theorem 3.4) and ([27] Theorem 1.1), we have the following lemma, which
describes the vertex stabilizers of symmetric seven-valent graphs.

Lemma 2. Let Γ be a seven-valent (G, s)-transitive graph, where G ≤ AutΓ and s ≥ 1 are integers.
Let α ∈ VΓ. Then, s ≤ 3 and one of the following holds, where F14, F21 and F42 denote the
Frobenius group of order 14, 21 and 42, respectively.

(i) If Gα is soluble, then |Gα|
∣∣ 22 · 32 · 7. Further, the couple (s, Gα) lie in the following table.

s 1 2 3

Gα Z7, F14, F21, F14 ×Z2, F21 ×Z3 F42, F42 ×Z2, F42 ×Z3 F42 ×Z6

(ii) If Gα is insoluble, then |Gα|
∣∣ 224 · 34 · 52 · 7. Further, the couple (s, Gα) lie in the following table.
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s 2 3

Gα

PSL(3, 2), ASL(3, 2),
ASL(3, 2)×Z2,

A7, S7

PSL(3, 2)× S4, A7 × A6,
S7 × S6, (A7 × A6) : Z2,

Z6
2 : (SL(2, 2)× SL(3, 2)), [220] :

(SL(2, 2)× SL(3, 2))

|Gα|
23 · 3 · 7, 26 · 3 · 7, 27 · 3 · 7,
23 · 32 · 5 · 7, 24 · 32 · 5 · 7

26 · 32 · 7, 26 · 34 · 52 · 7, 28 · 34 · 52 · 7,
27 · 34 · 52 · 7, 210 · 32 · 7, 224 · 32 · 7

To construct seven-valent symmetric graphs, we need to introduce the Sabidussi coset
graph. Let G be a finite group, and H is a core-free subgroup of G. Suppose D is a union of
some double cosets of H in G, such that D−1 = D. The Sabidussi coset graph Cos(G, H, D)
of G with respect to H and D is defined to have a vertex set VΓ = [G : H] (the set of right
cosets of H in G), and the edge set EΓ = {{Hg, Hdg}|g ∈ G, d ∈ D} [28,29].

Proposition 1 ([30] Proposition 2.9). Let Γ be a graph and let G be a vertex-transitive subgroup
of Aut(Γ). Then, Γ is isomorphic to a Sabidussi coset graph Cos(G, H, D), where H = Gα is the
stabilizer of α ∈ VΓ in G and D consists of all elements of G with a map of α to one of its neighbors.
Further,

(i) Γ is connected if and only if D generates the group G;
(ii) Γ is G-arc-transitive if and only if D is a single double coset. In particular, if g ∈ G

interchanges α and one of its neighbors, then g2 ∈ H and D = HgH;
(iii) The valency of the graph Γ is equal to |D|/|H| = |H : H ∩ Hg|.

In the following lemmas, we provide classification information of seven-valent sym-
metric graphs of order 8p and 2pq, where p and q are two distinct primes. By [19], we
obtain the classification of seven-valent symmetric graphs of order 8p.

Lemma 3. Let Γ be a seven-valent symmetric graph of order 8p. Then Γ ∼= K8,8 − 8K2 or C24.

By [22], we can describe seven-valent symmetric graphs of order 2pq.

Lemma 4. Let 3 ≤ p < q be primes and let Γ be a seven-valent symmetric graph of order 2pq.
Then, the following statements hold:

(i) Γ ∼= CDk
2pq, where k is a solution of the equation x6 + x5 + · · ·+ x + 1 ≡ 0(mod pq), and

AutΓ ∼= D2pq : Z7, where p
∣∣ q − 1.

(ii) Γ lies in Table 2.

Table 2. Seven-valent symmetric graphs of order 2pq.

Γ AutΓ (p, q)

C1
78 PGL(2, 13) (3, 13)

C2
78 PSL(2, 13) (3, 13)

C310 PSL(5, 2).Z2 (5, 31)
C30 S8 (3, 5)

Next, we need some information about nonabelian simple groups. The first one has
information about maximal subgroups of PSL(2, t) and PGL(2, t), where t is an odd prime;
refer to ([31] Section 239) and ([32] Theorem 2) .

Lemma 5. Let G = PSL(2, t) or PGL(2, t), where t ≥ 5 is a prime, and let M be a maximal
subgroup of G.

(i) If G = PSL(2, t), then M ∈ {Dt−1, Dt+1, Z2 : Z(t−1)/2, A4, S4, A5};
(ii) If G = PGL(2, t), then M ∈ {D2(t−1), D2(t+1), Z2 : Zt−1, S4, PSL(2, t)}.
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The next proposition is about nonabelian simple groups of order that are divisible by
at most seven primes. By [2] (pp. 134–136), we have the following proposition.

Proposition 2. Let T be a nonabelian simple group, such that 28pq
∣∣ |T| and |T|

∣∣ 227 · 34 · 52 · 7
·p · q, where 5 ≤ p < q are primes. Then, T is one of the groups in Table 3.

Table 3. Simple group T with order dividing 227 · 34 · 52 · 7 · p · q.

T |T| (p, q) T |T| (p, q)

M22 27 · 32 · 5 · 7 · 11 (5, 11) PSL(3, 8) 29 · 32 · 72 · 73 (7, 73)
M23 27 · 32 · 5 · 7 · 11 · 23 (11, 23) PSL(3, 16) 212 · 32 · 52 · 7 · 13 · 17 (13, 17)
M24 210 · 33 · 5 · 7 · 11 · 23 (11, 23) PSL(2, 53) 22 · 32 · 53 · 7 · 31 (5, 31)
J1 23 · 3 · 5 · 7 · 11 · 19 (11, 19) PSL(2, 72) 24 · 3 · 52 · 72 (5, 7)
HS 29 · 32 · 53 · 7 · 11 (5, 11) PSL(4, 4) 212 · 34 · 52 · 7 · 17 · 17 (5, 17)
A11 27 · 34 · 52 · 7 · 11 (5, 11) PSL(5, 2) 210 · 32 · 5 · 7 · 31 (5, 31)
Sz(8) 26 · 5 · 7 · 13 (5, 13) PSL(6, 2) 215 · 34 · 5 · 72 · 31 (7, 31)
PSp(4, 8) 212 · 34 · 5 · 72 · 13 (7, 13) 3D4(2) 212 · 34 · 72 · 13 (7, 13)
PSL(2, 26) 26 · 32 · 5 · 7 · 13 (5, 13) 2D4(2) 212 · 34 · 5 · 7 · 17 (5, 17)
PSL(2, 29) 29 · 32 · 7 · 19 · 73 (19, 73) G2(4) 212 · 33 · 52 · 7 · 13 (5, 13)
PSL(2, q) q(q+1)(q−1)

2

Proof. Suppose T is a sporadic simple group, by [2] (pp.135–136), T = M22, M23, M24, J1,
or HS. Suppose T = An is an alternating group. Then, T = A11 is the limitation of |T|.

Let X be one type of the Lie group, and let t = r f be a prime power. Now, suppose
that T = X(t) is a simple group of the Lie type, as T contains at most four 3-factors, three
5-factors, and two 7-factors [2] (p.135), and T = PSL(2, q), PSL(2, 53) or PSL(2, 72).

Similarly, if r = 2, then T = Sz(8), PSp(4, 8), PSL(2, 26), PSL(2, 29), PSL(3, 8), PSL(3, 16),
PSL(4, 4), PSL(5, 2), PSL(6, 2), 3D4(2), 2D4(2) or G4(2).

3. The Proof of Theorem 1

We will prove Theorem 1 through a series of lemmas in this section. To prove
Theorem 1, we need information on seven-valent symmetric graphs of order 4pq. Therefore,
we first prove the following lemma.

Lemma 6. Let p < q be primes and let Γ be a seven-valent symmetric graph of order 4pq. Then,
Γ ∼= C24, C60, SG i

156 or CG j
156, where i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4.

Proof. Let Γ be a seven-valent symmetric graph of the order 4pq, where p < q are primes.
Let A = AutΓ. In Lemma 2, |A|

∣∣ 226 · 34 · 52 · 7 · p · q is |Aα|
∣∣ 224 · 34 · 52 · 7, where α ∈ VΓ.

If p = 2, then Γ has the order 8q; in Lemma 3, we have q = 3 and Γ ∼= C24. If p = 3,
then Γ has the order 12q, and in [18,33], we have q = 5 or 13 and Γ ∼= C60, SG i

156 or CG j
156,

where i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4. Therefore, we only need to prove that there is no
seven-valent symmetric graph of order 4pq for 5 ≤ p < q, and the Lemma 6 is proved.

Now, we assume 5 ≤ p < q. By ([33] Theorem 1.1), we have A ∼= PSL(2, r) × Z2,
PGL(2, r)×Z2, PSL(2, r) or PGL(2, r), where r ≡ ±1(mod 7) is a prime. If A ∼= PSL(2, r)×Z2
or PGL(2, r)× Z2, then A has a normal subgroup N ∼= Z2. It follows that ΓN is a seven-
valent symmetric graph of order 2pq and A/N ≤ AutΓN . Since A/N is isomorphic to
PSL(2, r) or PGL(2, r) for 5 ≤ p < q, there exists no such graph in Lemma 4. Hence, A is
not isomorphic to PSL(2, r)×Z2 or PGL(2, r)×Z2.

If A ∼= PSL(2, r) or PGL(2, r), then A has a normal subgroup N ∼= PSL(2, r). Assume
that N has t orbits on the vertex set of Γ, t ≥ 3. Then, N is semi-regular on VΓ in Lemma 1
and thus |N| divides 4pq, contradicting with N ∼= PSL(2, r) and 5 ≤ p < q. Hence, Nα ̸= 1,
N has, at most, two orbits on VΓ and 2pq

∣∣ |N : Nα|. Note that Γ is connected, N � A,

and Nα ̸= 1. Then, we have 1 ̸= NΓ(α)
α � AΓ(α)

α . This implies that 7
∣∣ |Nα|; thus, we have

that 14pq
∣∣ |N|. And, |N|

∣∣ 226 · 34 · 52 · 7 · p · q is |N|
∣∣ |A|. Since |A : N| ≤ 2, we have
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|Aα : Nα| ≤ 2. If Aα is insoluble, then Nα is also insoluble as |Aα : Nα| ≤ 2. In Lemma 5,
Nα = A5 (the alternating group on {1, 2, 3, 4, 5}), which contradicts with 7

∣∣ |Nα|. Therefore,
Aα is soluble. It follows that |Aα|

∣∣ 252 in Lemma 2; thus, |Nα| divides 252. This implies
that |N|

∣∣ 1008 · p · q.
We claim that r = q, since |VΓ| = |A|/|Aα| = 4pq and |Aα|

∣∣ 252. Then, we have

4pq =
r(r − 1)(r + 1)

2|Aα|
or

r(r − 1)(r + 1)
|Aα|

. Since r ≡ ±1(mod 7) is a prime and |Aα|
∣∣ 252,

we have r = p or q. Assume that r = p. Then, 4q =
(r − 1)(r + 1)

2|Aα|
or

(r − 1)(r + 1)
|Aα|

. This

implies that q = r + 1 as q > p, which is impossible because r + 1 is not a prime. Thus,

r = q and |N| = q(q − 1)(q + 1)
2

. Note that (
q + 1

2
,

q − 1
2

) = 1. Assume that p
∣∣ q − 1

2
.

Then, q + 1
∣∣ 1008. And then, we have q = 7, 11, 13, 17, 23, 41, 47, 71, 83, 167, 251 or 503.

Assume that p
∣∣ q + 1

2
. Then, q − 1

∣∣ 1008. And then, we have q = 7, 13, 17, 19, 29, 37, 43,

73, 113, 127, 337 or 1009. Note that 14pq
∣∣ |N|, |N|

∣∣ 226 · 34 · 52 · 7 · p · q and 5 ≤ p < q.
Therefore, N is one of the groups in the following table:

N Order N Order

PSL(2, 29) 22 · 3 · 5 · 7 · 29 PSL(2, 41) 23 · 3 · 5 · 7 · 41
PSL(2, 43) 22 · 3 · 7 · 11 · 43 PSL(2, 71) 23 · 32 · 5 · 7 · 71
PSL(2, 83) 22 · 3 · 7 · 41 · 83 PSL(2, 113) 24 · 3 · 7 · 19 · 113
PSL(2, 167) 23 · 3 · 7 · 83 · 167 PSL(2, 251) 22 · 32 · 53 · 7 · 251
PSL(2, 337) 24 · 3 · 7 · 132 · 337 PSL(2, 503) 23 · 32 · 7 · 251 · 503
PSL(2, 1009) 24 · 32 · 5 · 7 · 101 · 1009

Assume that q = 29, 71, 113, 251 or 1009. Note that |N : Nα| = 2pq or 4pq. N has no
subgroup of index 2pq or 4pq in Lemma 5, which is a contradiction.

Assume that q = 337. Then, N = PSL(2, 337), contradicting with |N|
∣∣ 226 · 34 · 52 · 7 ·

p · q.
Assume that q = 41. Then, N = PSL(2, 41) and (p, q) = (5, 41). Since N has no

subgroup of index 2pq in Lemma 5, we have that N is transitive on VΓ, and thus |Nα| = 42.
Hence, Nα = F42 in Lemma 2. In Proposition 1, Γ = Cos(N, Nα, NαgNα), where g is a
2-element in N such that g2 ∈ Nα and ⟨Nα, g⟩ = N. In Magma [23], there is no such g ∈ N,
which is a contradiction.

Finally, assume that q = 43. Then, N = PSL(2, 43) and (p, q) = (11, 43). If N has
two orbits on VΓ, then A = PGL(2, 43) and Aα = F42 in Lemma 2. This is impossible, as
PGL(2, 41) has no subgroup isomorphic to F42. Therefore, N is transitive on VΓ and in
Lemma 2, Nα = F21. In Lemma 5, PSL(2, 41) has no subgroup isomorphic to F21, which is a
contradiction. Similarly, q ̸= 83, 167 or 503. This completes the proof.

Now, let Γ be a seven-valent symmetric graph of the order 8pq, where p < q are
primes. Let A := AutΓ. Take α ∈ VΓ. In Lemma 2, |Aα|

∣∣ 224 · 34 · 52 · 7, and hence
|A|

∣∣ 227 · 34 · 52 · 7 · p · q.
If p = 2, then Γ has the order 16q; by [20], we have q = 3, 7 or 7

∣∣ q − 1, and Γ is
isomorphic to C48, C112 or C(23,2q). If p = 3, then Γ has the order 24q; in [21], we have q = 5
or 13, and Γ is isomorphic to C120, C i

312 with i = 1, 2, 3, 4, C5
312 or C6

312. Therefore, we only
need to prove that there is no seven-valent symmetric graph of the order 8pq for 5 ≤ p < q,
and the Theorem 1 is proved. For the remainder of this paper, we let 5 ≤ p < q.

In the next lemma, we deal with the case where there is a soluble minimal normal
subgroup of A.

Lemma 7. Assume that A has a soluble minimal normal subgroup. Then, there exists no seven-
valent symmetric graph of order 8pq for 5 ≤ p < q.
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Proof. Assuming N is a soluble minimal normal subgroup of the full automorphism group
A. Then, N is an elementary abelian group. Since |VΓ| = 8pq, we have N ∼= Z2, Z2

2, Z3
2, Zp

or Zq. It is easy to prove that N has more than two orbits on VΓ; if not, we have 4pq
∣∣ |N|,

a contradiction. Therefore, in Lemma 1, |Nα| = 1, and the quotient graph ΓN of Γ relative
to N is a seven-valent symmetric graph, with A/N as an arc-transitive subgroup of the
automorphism of ΓN .

If N ∼= Z3
2, then ΓN is a seven-valent symmetric graph of the order pq (pq is an odd

number), which is a contradiction, as symmetric graphs of the odd order odd valent do not
exist. If N ∼= Z2, then ΓN is a seven-valent symmetric graph of the order 4pq. In Lemma 6,
we note that 5 ≤ p < q, ΓN does not exist, which is a contradiction. If N ∼= Zp, then ΓN is a
seven-valent symmetric graph of the order 8q. ΓN does not exist in Lemma 3, which is a
contradiction. Similarly, we obtain that N ≇ Zq.

If N ∼= Z2
2, then ΓN is a seven-valent symmetric graph of the order 2pq. In Lemma 4,

ΓN ∼= C310 or CDk
2pq, where k is a solution of the equation x6 + x5 + · · ·+ x + 1 ≡ 0(mod pq)

and p
∣∣ q − 1.

Let ΓN ∼= C310. Then, A/N ≤ AutC310 = PSL(5, 2).Z2. Furthermore, A/N is arc-
transitive on VΓN . By Magma [23], AutΓN has a minimal arc-transitive subgroup, which is
isomorphic to PSL(5, 2). Thus, PSL(5, 2) ≤ A/N ≤ PSL(5, 2).Z2. Since the Schur Multiplier
of PSL(5, 2) is trivial, A = Z2

2 × PSL(5, 2) or (Z2
2 × PSL(5, 2)).Z2. For the former case, in

Proposition 1, Γ = Cos(A, Aα, AαgAα), where g is a 2-element in A such that g2 ∈ Aα and
⟨Aα, g⟩ = A. By Magma [23], there is no such g ∈ A, which is a contradiction. For the latter
case, A/N has a normal subgroup, M ∼= PSL(5, 2). It is obvious that M has at most two
orbits on VΓ. Since M has no subgroup of order 16128, M is transitive on VΓ, implying that
|Mα| = 8064; this is impossible in Lemma 2.

Let ΓN ∼= CDk
2pq, where k is a solution of the equation x6 + x5 + · · ·+ x + 1 ≡ 0(mod pq).

Note that A/N is an arc-transitive subgroup of Aut(ΓN) = D2pq : Z7. Hence, 2pq ·
7
∣∣ |A/N|. This implies that A/N = D2pq : Z7. Let H be a normal subgroup of the order

pq of D2pq and Q be a Sylow q-subgroup of H. Then, in the Sylow Theorem, Q char H
and thus Q � D2pq is H � D2pq. Note that Q is also a Sylow q-subgroup of D2pq. Then,
Q char D2pq and thus Q � A/N is D2pq � A/N. Then, 5 ≤ p < q and p

∣∣ q − 1. Then,
q ≥ 11. Hence, Q is also a Sylow q-subgroup of A/N. Let Q = G/N. Then, G/N ∼= Zq and
|G| = 22 · q. In the Sylow Theorem, the Sylow q-subgroup of G is normal, at say L. Then,
L ∼= Zq, and thus G = Z2

2 ×Zq = N × L. Hence, L � A is G � A. Then, the normal quotient
graph ΓL of Γ relative to L is a seven-valent symmetric graph of order 8p. In Lemma 3,
there exists no graph for this case, which is a contradiction.

Thus, we complete the proof of Lemma 7.

Now we move on to the case where there is no soluble minimal normal subgroup of
A. Then, we have the following lemma.

Lemma 8. Assume that A has no soluble minimal normal subgroup. Then, there exists no seven-
valent symmetric graph of order 8pq for 5 ≤ p < q.

Proof. Let N be an insoluble minimal normal subgroup of A, and let C = CA(N) be the
centralizer of N in A. Then, N is isomorphic to Td, where d ≥ 1 and T are non-abelian
simple groups. Assume that N has t orbits on the vertex set of Γ. If t ≥ 3, then Nα = 1 by
Lemma 1 and thus |N| = |T|d

∣∣ 8pq, since N is insoluble. Then, |N| = 4pq or 8pq. Thus, N
has two orbits or an orbit on VΓ, which is a contradiction. Hence, N has at most two orbits
on VΓ, and it follows that 4pq

∣∣ |N|.
If Nα = 1, then |N| = 4pq or 8pq, since q

∣∣ |N| and q2 ∤ |N|. Then, N = T. Note that
5 ≤ p < q [34]; no such simple group exists, and this is a contradiction. Hence, Nα ̸= 1.
Since Γ is connected to N � A and Nα ̸= 1, we have 1 ̸= NΓ(α)

α � AΓ(α)
α . It follows that 7

divides |Nα|. Then, we have that 28pq
∣∣ |N|.



Mathematics 2024, 12, 787 7 of 10

Now, we claim that d = 1. Otherwise, d ≥ 2, and thus 72
∣∣ |N|. We have d = 2

as |N|
∣∣ 227 · 34 · 52 · 7 · p · q. So p = 7 or q = 7. If p = 7, then q > 7 and q2

∣∣ |T|2,
which contradicts with |N|

∣∣ 227 · 34 · 52 · 7 · p · q. If q = 7, then p = 5. This implies that
|T|

∣∣ 213 · 32 · 5 · 7. Note that 35
∣∣ |T|. By checking the nonabelian simple group of an order

less than 213 · 32 · 5 · 7, we have that T = A7, A8 or PSL(3, 4), and N = A7
2, A8

2 or PSL(3, 4)2

as d = 2. On the other side of the coin, C � A, C ∩ N = 1 and thus ⟨C, N⟩ = C × N. Because
|C × N|

∣∣ 227 · 34 · 52 · 7 · p · q and |N| = |T|2 = 26 · 34 · 52 · 72 or 212 · 34 · 52 · 72, C is a
{2, p}-group, and hence soluble, where p = 5. So, C = 1 as A contains no soluble minimal
normal subgroup. This implies A = A/C ≤ Aut(N) ∼= Aut(T)wrZ2. By Magma [23], no
such graph exists, which is a contradiction. Therefore, we have d = 1, and N = T � A is a
nonabelian simple group.

We next prove that C = 1. If C ̸= 1, then C is insoluble, as C � A and A contain
no soluble minimal normal subgroup. In the same argument as for the case N, we have
7 divides |Cα|. Because ⟨C, N⟩ = C × N and C, N � A, we have Cα × Nα ≤ Aα. Note
that 7 divides |Nα|; this concludes that 72

∣∣ |Aα|, which is a contradiction with Lemma 2.
Therefore, we have C = 1, and thus A ≤ Aut(T) is almost simple. It follows that T = soc(A)
is a nonabelian simple group and satisfies the following condition.

Condition(*): |T| lies in Table 3 such that 28pq
∣∣ |T| and |T|

∣∣ 227 · 34 · 52 · 7 · p · q.
Assume first that T ∼= M22, M23, J1, A11, PSL(2, 29), PSL(3, 16), PSL(2, 53), PSL(2, 72),

PSL(4, 4), PSL(6, 2), PSp(4, 8), HS, 2D4(2), 3D4(2), or G2(4). Note that |T : Tα| = 4pq or
8pq. T has no subgroup of index 4pq or 8pq by Atlas [35], which is a contradiction.

Assume that T ∼= M24. Since T has no subgroup of index 4pq, we show that T is
transitive on VΓ, and thus |Tα| = 120, 960. In Proposition 1, Γ = Cos(T, Tα, TαgTα), where g
is a 2-element in T such that g2 ∈ Tα and ⟨Tα, g⟩ = T. In Magma [23], there is no such g ∈ T,
which is a contradiction. Similarly, T is not isomorphic to Sz(8), PSL(2, 26) or PSL(5, 2).

Assume that T ∼= PSL(3, 8). If T has two orbits on VΓ, then Γ is bipartite and
|Tα| = 27 · 32 · 7. Recall that A is almost simple. Thus, A ≤ Aut(T). Since Aut(T) = PSL(3, 8).
Z6, we have A ∼= PSL(3, 8).Z2, PSL(3, 8).Z3 or PSL(3, 8).Z6, and thus |Aα| = 27 · 32 · 7,
26 · 33 · 7 or 27 · 33 · 7, which is impossible according to Lemma 2. Thus, T is transitive on
VΓ. In Proposition 1, Γ = Cos(T, Tα, TαgTα), where g is a 2-element in T such that g2 ∈ Tα

and ⟨Tα, g⟩ = T. By Magma [23], there is no such g ∈ T, which is a contradiction.
Finally, assume that T ∼= PSL(2, q). Then, T ≤ A ≤ Aut(T) = PGL(2, q) (PGL(2, q) =

PSL(2, q).Z2) and |A : T| ≤ 2. If Aα is insoluble, then Tα is also insoluble as |Aα : Tα| ≤ 2.
Tα = A5 in Lemma 5, contradicting with 7, divides |Tα|. Therefore, Aα is soluble, and
|Aα| divides by 252 in Lemma 2, and so |Tα| divides 252. This implies that |T|

∣∣ 2016 · p · q.

Note that |T| = q(q − 1)(q + 1)
2

and (
q + 1

2
,

q − 1
2

) = 1. If p
∣∣ q − 1

2
, then q + 1

∣∣ 2016. It

follows that q = 7, 11, 13, 17, 23, 31, 41, 47, 71, 83, 167, 223, 251 or 503. If p
∣∣ q + 1

2
, then

q − 1
∣∣ 2016. It follows that q = 7, 13, 17, 19, 29, 37, 43, 73, 97, 113, 127, 337, 673, 1009 or

2017. Note that T meets the condition (*) and 5 ≤ p < q. Therefore, T is one of the groups
in the following table:

T Order T Order

PSL(2, 29) 22 · 3 · 5 · 7 · 29 PSL(2, 41) 23 · 3 · 5 · 7 · 41
PSL(2, 43) 22 · 3 · 7 · 11 · 43 PSL(2, 71) 23 · 32 · 5 · 7 · 71
PSL(2, 83) 22 · 3 · 7 · 41 · 83 PSL(2, 97) 25 · 3 · 72 · 97
PSL(2, 113) 24 · 3 · 7 · 19 · 113 PSL(2, 167) 23 · 3 · 7 · 83 · 167
PSL(2, 223) 25 · 3 · 7 · 37 · 223 PSL(2, 251) 22 · 32 · 53 · 7 · 251
PSL(2, 337) 24 · 3 · 7 · 132 · 337 PSL(2, 503) 23 · 32 · 7 · 251 · 503
PSL(2, 673) 25 · 3 · 7 · 337 · 673 PSL(2, 1009) 24 · 32 · 5 · 7 · 101 · 1009
PSL(2, 2017) 25 · 32 · 7 · 1009 · 2017

Assume that q = 29, 71, 97, 113, 223, 251, 337 or 1009. Note that |T : Tα| = 4pq or 8pq.
T has no subgroup of index 4pq or 8pq in Lemma 5, which is a contradiction.
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Assume that q = 337. Then, T = PSL(2, 337), which contradicts with |T|
∣∣ 227 · 34 · 52 ·

7 · p · q.
Assume that q = 43. Then, T = PSL(2, 43) and (p, q) = (11, 43), since T has no

subgroup of index 8pq. Then, T is not transitive to VΓ. If T has two orbits on VΓ, then
|Tα| = 21. As A is almost simple, A = PGL(2, 43), and Aα = F21 in Lemma 2. In
Proposition 1, Γ = Cos(A, Aα, AαgAα), where g is a 2-element in A such that g2 ∈ Aα and
⟨Aα, g⟩ = A. In Magma [23], there is no such g ∈ A, which is a contradiction.

Finally, assume that q = 41. Then, T = PSL(2, 41) and (p, q) = (5, 11). If T has two
orbits on VΓ, then |Tα| = 42. As A is almost simple, A = PGL(2, 41), and Aα = F42 in
Lemma 2. This is impossible, as PGL(2, 41) has no subgroup isomorphic to F42. Therefore,
T is transitive to VΓ and in Lemma 2, Tα = F21. In Lemma 5, PSL(2, 41) has no subgroup
isomorphic to F21, which is a contradiction. Similarly, q ̸= 167, 503, 673 or 2017.

Thus, we complete the proof of Lemma 8.

By combining Lemma 6, 7 and 8, we have completed the proof of Theorem 1.

4. Conclusions

Through the classification of seven-valent symmetric graphs of the order 8pq, we
obtain many highly symmetric graphs in Table 1. These graphs can be applied to the design
of the interconnection network. With induction, we may further classify seven-valent
symmetric graphs of the order 8n, where n is an odd square-free integer. We can even
classify p-valent symmetric graphs of the order 2kn, where k is a positive integer and n is
an odd square-free integer.
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Nomenclature

G, H, . . . Groups
a, b, . . . Elements o f groups
ab b−1ab
Dn Dihedral group o f order n
Sn, An Symmetric, alternating groups o f degree n
Z Sets o f integers
Zn Z/nZ
M22, M23, M24 Mathieu groups
ASL(n, R) A f f ine group over R
Sz(2n) Suzuki group
SL(n, R) Linear groups over R
J1 Janko group
HS Higman, Sims group
PSp(4, 8) Symplectic group
2D4(2) Orthogonal group
3D4(2) Triality twisted group
G2(4) Chevalley group
PGL(n, R), PSL(n, R) Projective general linear and projective special linear groups
Γ Graph
VΓ, EΓ, AΓ Vertex set, edge set, arc set o f Γ
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ΓN Quotient graph
α Element o f graph
Aut(Γ),Aut(ΓN) Automorphism group o f Γ and ΓN
Cn Symmetric graph o f order n
Gα Stabilizer o f α in G
G × H, Gn Direct product, direct power
GwrH Wreath product
G.H An extension o f G by H
|G| Cardinality o f the group G
G/N Quotient group
Fn Frobenius group o f order n
H ∼= G H is isomorphic with G
⟨Nα, g⟩ Group generated by Nα and g
G � A G is a normal subgroup o f A
Aut(T) Automorphism group o f T
soc(A) Socle o f G
CA(N) Centralizer o f N in G
|A : N| Index o f the subgroup N in A
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