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Abstract: The aim of this work is to use an efficient and accurate numerical technique based on
non-polynomial spline for the solution of the PHI-Four and Allen–Cahn equations. A recent discovery
suggests that the PHI-Four equation focuses on its implications for particle physics and the behavior
of scalar fields in the quantum realm. In materials science, ongoing research involves using the
Allen–Cahn equation to understand and predict the evolution of microstructures in various materials
as well as in biophysics. It depicts pattern formation in biological systems and the dynamics of spatial
organization in tissues. To obtain an approximate solution of both equations, this technique uses
forward differences for the time and cubic non-polynomial spline function for spatial descretization.
The stability of the suggested technique is addressed using the von Neumann technique. Convergence
test is carried out theoretically to show the order of convergence of the scheme. Some numerical
tests are carried out to confirm accuracy and efficiency in terms of absolute error LR. Convergence
rates for different test problems are also computed numerically. Numerical results and simulations
obtained are compared with the existing methods.

Keywords: non-polynomial splines; Allen–Cahn equation; PHI-four equation; finite differences; von
Neumann stability

MSC: 65D07

1. Introduction

Partial differential equations (PDEs) serve as a valuable tool for modeling a wide range
of phenomena encountered in science and engineering. Their significance is evident in
diverse fields including fluid dynamics, quantum theory and plasma physics [1].

We consider the following PDE [2]:

put(x, t) + qutt(x, t) + ruxx(x, t) + su(x, t) = f (u(x, t)), a < x < b and t > 0, (1)

with boundary and initial conditions

u(x, 0) = g1(x), ut(x, 0) = qg2(x), a ≤ x ≤ b (2)

u(a, t) = l1(t), u(b, t) = l2(t). (3)
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In the above equation, u denotes wave displacement at particular position x with time
t. Constants p, q, r, s are known parameters. The force term f (u(x, t)) characterizes external
influences on the system.

Numerous types of equations may be constructed by altering the values of involved
constants and force term in Equation (1). As an example, if we set p = 0, q = 1,
r = −1, s = −1 and f (u(x, t)) = −u3, then (1) becomes a PHI-Four equation. This
equation holds significant importance in the field of mathematical physics and Cosmology.
Triki and Wazwaz investigated the exact solution for bright and dark solitons and they
also used the technique “sine–cosine ansatz” to find the solutions of more than one type of
PHI-Four equations [1]. The authors in [3] explored a novel set of solutions for a generalized
Fitzhugh Nagumo model using ansatz and tanh methods.

Furthermore, by taking the values of parameters p = 1, q = 0, r = −1, s = −1 and
f (u(x, t)) = −u3, Equation (1) transforms to an Allen–Cahn equation. The Allen–Cahn
equation serves as a versatile model with applications across diverse fields, including bio-
mathematics, plasma-physics, quantum mechanics and image processing [4–6]. The authors
in [7] studied the Jacobi Gauss Lobatto technique to solve the PHI-Four model. Ehsani et al. [8]
applied the homotopy perturbation method to solve a PHI-Four equation. The authors
employed the solitary wave ansatz method to derive soliton solutions for a PHI-Four
model with non-topological and topological nature in [9]. Alofi introduced a generalized
tanh method to obtain solutions of both the Drinfeld–Sokolov system and the PHI-Four
model in [10]. The authors in [11] formulated the latest solutions for Boussinesq, RLW
and PHI-Four models. Sassaman and Biswas employed the soliton perturbation theory to
explore solutions for both the Klein–Gordon and PHI-Four equations. Najafi investigated
the soliton solution of the aforementioned equation utilizing He’s variational method [12].

The PHI-Four model is used in Cosmology, helping in understanding the evolution
of the universe and the formation of cosmic structures. This model has also been used in
statistical physics to study critical phenomena such as the behavior of a system near its
critical point. The authors in [4–6] studied a wavelet-based method for solving Newell–
Whitehead and Allen–Cahn equations. Considering non-periodic boundary conditions, the
Allen–Cahn equation was solved by Ishtiaq et al. [13]. In condensed matter physics, the
Allen–Cahn equation finds application in depicting phase transitions within materials. It
has been applied in image processing for denoising and image segmentation in computer
science. The Allen–Cahn equation has also been applied to model pattern formation in
biological systems, such as formation of spatial patterns in the animal coat. Both equations
are applied to study the dynamics of defects in materials.

The inception of spline approximation, in its current manifestation, can be traced
back to the pioneering work of Schoenberg in 1946 [14]. Up to 1960, there was some
research that mentioned spline functions. A few of the major figures in the development of
spline are Ahlberg and Nilson [15], Birkhoff and Garabedian [16], Loscalzo and Talbot [17],
Malaren [18], Rubin and Khosla [19] and Schoenberg [20]. Sokolnikoff (1956) offered a suc-
cinct but highly readable history of the evolution of beam theory. Some of the pioneers in the
utilization of spline functions for achieving smooth numerical solutions to ordinary differ-
ential equations (ODEs) and partial differential equations (PDEs) are presented in [21–28].
The non-polynomial spline approach has been used more often recently to solve partial and
ordinary differential equations. The work in [29–34] explains the numerical solutions of a
system of second-order differential equations using non-polynomial splines, fourth-order
problems using B splines and singular boundary value problems. Research on the fifth
order can be found in Islam et al. [35], Siddiqi and Akram [36] and Siddiqi et al. [37]. The
work of Akram and Siddiqi [38] yields sixth-order BVPs. According to Ramadan et al. [39],
Rashidinia and Mahmoodi [40], non-polynomial splines can be used to solve parabolic
equations numerically. For the solution of fifth-order boundary value problems, Kasi and
Ballem [41] employed the finite element approach incorporating the Galerkin method with
the quartic B spline as the basis function. Alam et al. [42] studied the RBF approximation
method for the time-fractional FitzHugh–Nagumo equation. Radmanesh and Ebadi [43]
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used the local RBF method for solving fractional integral equations. The authors in [44]
solved the fractional fascioliasis disease model by Fibonacci polynomials.

The spline method stands out due to its numerous advantages in comparison to other
numerical approaches. It provides a complete description of both function and its rate
of change throughout the entire interval. In contrast, the finite difference method only
provides functional values at specified knots, while the finite element method necessitates
the computation of quadrature, which is not a requirement in the spline method. However,
undesirable oscillations of these functions may be expected between the data points. It
is important to note that splines of lower orders may result in reduced accuracy, while
higher-order splines can lead to an increase in computational cost. The addition of tension
to the polynomial splines overcomes this problem. Non-polynomial or tension splines were
first introduced by Daniel G. Schweikert [45]. These splines were designed to get rid of
extraneous inflection points in curve fitting [46]. The desirable scheme could be derived
by choosing various tension parameter values over the domain. Finally, by applying non-
polynomial splines, we can increase accuracy while using the same computing effort [47].
The paper’s outline is as follows. In Section 2, derivation and discretization of the proposed
method is provided. In Section 3, stability of the method is explained using the von Neu-
mann technique, and convergence analysis is discussed in detail. Accuracy and efficiency
of the suggested methodology is shown by studying several mathematical problems in
Section 4. Lastly, Section 5 includes the concluding remarks of the study.

2. The Proposed Methodology

In this portion, the proposed method is discussed, utilized to study the approximate
solution of the hyperbolic telegraph equation. For this purpose, first, we transform (1) into
the system of equations given below:

v(x, t) = ut(x, t), (4)

qvt(x, t) + pv(x, t) + su = −ruxx + f (u(x, t)), (5)

with conditions
u(x, 0) = g1(x), ut(x, 0) = qg2(x), (6)

u(a, t) = l1(t), u(b, t) = l2(t). (7)

Using finite difference for the temporal part and a θ-weighted scheme for the spatial part
of Systems (4) and (5), the following equations can be derived:

un+1 − un

k
= θvn+1 + (1 − θ)vn, (8)

q
vn+1 − vn

k
+ θ[pvn+1 + sun+1 + run+1

xx ] + (1− θ)[pvn + sun + run
xx]− f (u(x, tn)) = 0, (9)

where vn = v(x, tn), un = u(x, tn), tn+1 = tn + k and k is the time step. Substituting θ = 1
2 ,

we can obtain

q
vn+1 − vn

k
+ p

vn+1 + vn

2
+ s

un+1 + un

2
+ r

un+1
xx + un

xx
2

− f (u(x, tn)) = 0.

Equivalently, the above equation can be written as

un+1
xx + un

xx =
2q
rk

(vn+1 − vn)− p
r
(vn+1 + vn)− s

r
(un+1 + un) +

2
rk

f (u(x, tn)). (10)

In order to find the approximate solution of the system under consideration, the technique
of non-polynomial splines is implemented.
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For this goal, first, we define a partition in [a, b] given by Ω : a = x0 < x1 < x2 < ... <
xN−1 < xN = b, where xj = a + jh, j = 0, 1, 2, . . . , N and h is the step size.

For the solution of Equation (1), the unknown u(x, tn) is approximated by Un(x) using
the non-polynomial splines as follows:

Un(x) = Pn(x), xj ≤ x ≤ xj+1, j = 0, 1, 2, . . . , N − 1. (11)

In the above equation,

Pn(x) = Pj(x, tn) = dj(tn) + (x − xj)cj(tn) + sin ω(x − xj)aj(tn) + cos ω(x − xj)bj(tn), (12)

where aj, bj, cj, dj are unknowns to be determined. According to the definition of splines,

Un
j = Pj(xj, tn), Un

j+1 = Pj+1(xj+1, tn). (13)

From Equations (12) and (13), the following relations can be obtained:

bj + dj = Un
j , aj sin ωh + bj cos ωh + cjh + dj = Un

j+1, −bjω
2 = Sn

j , (14)

−ajω
2 sin θ − bjω

2 cos θ = Sn
j+1,

where Sn
j = Uxx(xj). Now, from Equation (14), we can obtain

bj = − 1
ω2 Sn

j , dj =
1

ω2 Sn
j + Un

j , cj =
Un

j+1 − Un
j

h
+

Sn
j+1 − Sn

j

ω2h2 , (15)

aj =
cos ωh

ω2 sin ωh
Sn

j −
1

ω2 sin ωh
Sn

j+1.

The use of condition P′
j−1(xj, tn) = P′

j (xj, tn) produces

ωaj + cj = ωaj−1 cos ωh − ωbj−1 sin ωh + cj−1, j = 1, 2, . . . , N − 1. (16)

Putting values from Equation (15) in Equation (16), the following recurrence relation can
be obtained:

Un
j+1 − 2Un

j + Un
j−1 = α1Sn

j+1 + 2β1Sn
j + α1Sn

j−1; j = 1, 2, ...N − 1, (17)

where
α1 =

h
ω sin ωh

− 1
ω2 , β1 =

2
ω2 − 2h cos ωh

ω sin ωh
.

Combining Equation (17) at time levels n and n + 1, a newly obtained equation is given by

(Un+1
j+1 + Un

j+1)− 2(Un+1
j + Un

j ) + (Un+1
j−1 + Un

j−1) = α1(Sn+1
j+1 + Sn

j+1) + 2β1(Sn+1
j + Sn

j )

+α1(Sn+1
j−1 + Sn

j−1); j = 1, 2, ...N − 1. (18)

Now, substituting values from (10) in (18), we can obtain

A1Un+1
j+1 + A2Un+1

j + A3Un+1
j−1 + A4Vn+1

j+1 + A5Vn+1
j + A6Vn+1

j−1 (19)

= B1Un
j+1 + B2Un

j + B3Un
j−1 + B4Vn

j+1 + B5Vn
j + B6Vn

j−1.

The coefficients involved in (19) are given as follows:

A1 = 1 + α1s
r , A2 = −2 + 2β1s

r , A3 = 1 + α1s
r ,

A4 = − 2α1q
rk + α1 p

r , A5 = − 4β1q
rk − 2β1 p

r , A6 = − 2α1q
rk + α1 p

r .
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B1 = −1 − α1s
r , B2 = 2 − 2β1s

r , B3 = −1 − α1s
r ,

B4 = − 2α1q
rk − α1 p

r , B5 = − 4β1q
rk − 2β1 p

r , B6 = − 2α1q
rk − α1 p

r .

For finding the solution of the system, Equations (8) and (19) along with conditions given
in Equations (6) and (7) are used.

3. Stability of the Method

In this section, the stability of the scheme is discussed using the von Neumann tech-
nique. For this purpose, let us assume

Un
j = Aηn exp(ijϕ), Vn

j = Bηn exp(ijϕ), W =
ηn+1

ηn , (20)

where A and B are harmonic amplitudes, ϕ = kh is the wave number, k is the mode number
and W is the amplification factor of the scheme. The use of Equation (20) in (19) gives
rise to

ηn+1

ηn =
B1 A exp(iϕ) + B2 A + B3 A exp(−iϕ) + B4B exp(iϕ) + B5B + B6B exp(−iϕ)

A1 A exp(iϕ) + A2 A + A3 A exp(−iϕ) + A4B exp(iϕ) + A5B + A6B exp(−iϕ)
. (21)

Substituting the values of Ak, k = 1, 2, . . . , 6 and Bk, k = 1, 2, . . . , 6 the above equation
takes the form

ηn+1
[
− 2A cos(ϕ)− 2Aα1s

r cos(ϕ) + 2A − 2Aβ1s
r − 4Bα1q

rk cos(ϕ)− 2Bα1 p
r cos(ϕ)

−4Bβ1q
rk

− 2Bβ1 p
r

]
= ηn+1

[
2A cos(ϕ) + 2Aα1s

r cos(ϕ)− 2A + 2Aβ1s
r − 4Bα1q

rk cos(ϕ) + 2Bα1 p
r cos(ϕ)

+
4Bβ1q

rk
− 2Bβ1 p

r

]
,

ηn+1
[

z1 + z2

]
= ηn

[
− z1 + z2

]
. (22)

where z1 = 2A cos(ϕ) + 2Aα1s
r cos(ϕ) − 2A + 2Aβ1s

r + 2Bα1 p
r cos(ϕ) + 4Bβ1q

rk , z2 = − 4Bα1q
rk

cos(ϕ)− 2Bβ1 p
r .

Therefore,

W =
w1 + ix1

w2 − ix2
, (23)

where

w1 = −z1 + z2,

w2 = z1 + z2,

x1 = x2 = 0.

From Equation (23), it can be observed that |W| ≤ 1, and hence the scheme is uncondition-
ally stable.

Convergence Test

The local truncation error for Scheme (17) is given by

Tj = yj+1 − 2yj + yj−1 − h2(α1y′′j+1 + 2β1y′′j + α1y′′j−1). (24)
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Expanding the terms by Taylor’s series, we obtain

yj+1 = yj + hy′j +
h2

2!
y′′j +

h3

3!
y′′′j +

h4

4!
y(4)j +

h5

5!
y(5)j +

h6

6!
y(6)j +

h7

7!
y(7)j +

h8

8!
y(8)j + . . . (25)

yj−1 = yj − hy′j +
h2

2!
y′′j −

h3

3!
y′′′j +

h4

4!
y(4)j − h5

5!
y(5)j +

h6

6!
y(6)j − h7

7!
y(7)j +

h8

8!
y(8)j − . . . (26)

y′′j+1 = y′′j + hy′′′j +
h2

2!
y(4)j +

h3

3!
y(5)j +

h4

4!
y(6)j +

h5

5!
y(7)j + . . . (27)

y′′j−1 = y′′j − hy′′′j +
h2

2!
y(4)j − h3

3!
y(5)j +

h4

4!
y(6)j − h5

5!
y(7)j + . . . (28)

By substituting the values from Equations (25)–(28) in Equation (24) after simplification,
we obtain

Tj = h2y′′j +
2h4

4!
y(4)j +

2h6

6!
y(6)j − h2

[
α1

(
y′j +

h2

2!
y(4)j +

h4

4!
y(6)j

)
+ 2β1y′′j (29)

+α1

(
y′j +

h2

2!
y(4)j +

h4

4!
y(6)j

)]
. (30)

After some algebraic manipulation, we have

Tj =

(
1 − 2α1 − 2β1

)
h2y′′j +

(
1
12

− α1

)
h4y(4)j +

(
1

360
− α1

12

)
h6y(6)j . (31)

When h = 0, the truncation error vanishes. The lowest power of h that makes the error
equal to zero is h2. Hence, this implies that the method is a second-order convergent O(h2).
To obtain the fourth-order convergent scheme, we equate the coefficient equations to zero
given below:

1 − 2α1 − 2β1 = 0,
1 − 12α1 = 0.

Upon solving for the values of α1, β1, we obtain α1 = 1
12 and β1 = 5

12 , which allows us to
deduce that the method is O(h4)-convergent. Similarly, we can derive the values of α1 = 1

30
and β1 = 7

15 , which shows the O(h6) convergence of the method.

4. Examples

In this section, three examples are studied to check efficiency and validity of the
suggested scheme. The results are tested via absolute error LR and L∞ defined as follows:

LR = |Xn
j − X∗n

j |,
L∞ = max|Xn

j − X∗n
j |. (32)

where X∗ and X are approximate and exact solutions, respectively, of the problem under
consideration, and n stands for the nth time level.

4.1. Example 1

We consider a particular case of (1) where p = 0, q = 1, r = −1, s = −1 and f (u(x, t)) =
−u3 in (0, 1) given by

utt(x, t)− uxx(x, t)− u(x, t) = −u3, (33)
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with initial conditions (ICs) and boundary conditions (BCs)

u(x, 0) = 0 and ut(x, 0) = x, 0 < x < 1,

u(0, t) = 0,

u(1, t) = t +
t3

6
− t5

20
+

t5

120
− t7

140
− t7

840
− t11

23760
+

t13

37440
− t15

168000
+

t17

2176000
, t ≥ 0.

The exact solution of Equation (33) is given in [8]

u(x, t) = xt +
xt3

6
− x3t5

20
+

xt5

120
− xt7

140
− x3t7

840
− x3t11

23760
+

x5t13

37440
− x7t15

168000
+

x9t17

2176000
.

In Table 1, we present absolute errors LR with h = 0.1, ∆t = 0.002. These error values
are compared with those given in [2] for different spatial values and time levels. Figure 1
provides a visual comparison between two solutions for time t = 0.01 and h = 0.1,
∆t = 0.002. In Figure 2, we plot a space–time graph up to t = 0.01 to depict how the
solution profile evolves over time. From the table, it can be noticed that the results obtained
using the proposed method are better and more accurate for t = 0.002 compared to the
results of the method available in the literature. Figure 3 exhibits the error plot between
exact and approximate solutions.

Table 1. LR for Example 1, when h = 0.1, ∆t = 0.002.

x/t 0.002 0.004 0.006 0.008 0.01

0 0.00 0.00 0.00 0.00
0.1 1.43 × 10−16 1.83 × 10−9 8.42 × 10−9 2.12 × 10−8 4.32 × 10−8

0.2 2.86 × 10−16 3.64 × 10−9 1.67 × 10−8 4.22 × 10−8 8.58 × 10−8

0.3 4.36 × 10−16 5.35 × 10−9 2.46 × 10−8 6.21 × 10−8 1.26 × 10−7

0.4 5.41 × 10−16 6.86 × 10−9 3.16 × 10−8 7.96 × 10−8 1.62 × 10−7

[Present] 0.5 5.81 × 10−16 8.02 × 10−9 3.69 × 10−8 9.30 × 10−8 1.89 × 10−7

0.6 6.12 × 10−16 8.62 × 10−9 3.97 × 10−8 1.00 × 10−7 2.04 × 10−7

0.7 5.48 × 10−16 8.43 × 10−9 3.88 × 10−8 9.78 × 10−8 1.99 × 10−7

0.8 5.52 × 10−16 7.16 × 10−9 3.29 × 10−8 8.30 × 10−8 1.69 × 10−7

0.9 2.61 × 10−16 4.47 × 10−9 2.06 × 10−8 5.19 × 10−8 1.06 × 10−7

1 0.00 0.00 0.00 0.00 0.00

0 0.00 0.00 0.00 0.00 0.00
0.1 1.28 × 10−10 6.75 × 10−10 1.63 × 10−9 2.98 × 10−9 4.75 × 10−9

0.2 9.38 × 10−10 2.70 × 10−9 5.24 × 10−9 8.55 × 10−9 1.26 × 10−8

0.3 6.94 × 10−10 1.08 × 10−10 1.73 × 10−9 4.83 × 10−9 9.22 × 10−9

0.4 5.61 × 10−9 1.28 × 10−8 2.14 × 10−8 3.15 × 10−8 4.29 × 10−8

[2] 0.5 1.31 × 10−8 2.39 × 10−8 3.23 × 10−8 3.82 × 10−8 4.15 × 10−8

0.6 4.43 × 10−8 9.06 × 10−8 1.38 × 10−7 1.87 × 10−7 2.37 × 10−7

0.7 1.18 × 10−7 2.32 × 10−7 3.41 × 10−7 4.45 × 10−7 5.43 × 10−7

0.8 3.00 × 10−7 6.01 × 10−7 9.02 × 10−7 1.20 × 10−6 1.50 × 10−6

0.9 5.53 × 10−7 1.10 × 10−6 1.64 × 10−6 2.17 × 10−6 2.69 × 10−6

1 0.00 0.00 0.00 0.00 0.00
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Domain

0

0.002

0.004

0.006

0.008

0.01

0.012

S
o

lu
ti
o

n

exact

approx

Figure 1. Approximate and exact solutions of Example 1 at various time levels when ∆t = 0.002 and
h = 0.1.

(a) (b)

Figure 2. (a) Surface graph for approximate solution of Problem 1, when t = 0.01, h = 0.1. (b) Surface
graph of the exact solution with t = 0.01 and h = 0.1.

Figure 3. Absolute error of Example 1 when ∆t = 0.002 and h = 0.1.
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4.2. Example 2

Here, we consider Equation (1) with parameters p = 1, q = 0, r = −1,
s = −1 and f (u(x, t)) = −u3. The equation is defined in domain 0 < x < 1 and
t > 0 given by

ut(x, t)− uxx(x, t)− u(x, t) = −u3, (34)

with the following conditions:

u(x, 0) = −1
2
+

1
2

tanh(0.3536x), (35)

u(0, t) = −1
2
+

1
2

tanh(−0.75t), (36)

u(1, t) = −1
2
+

1
2

tanh(0.3536 − 0.75t). (37)

The exact solution for the model equation is taken from [4]:

u(x, t) = −1
2
+

1
2

tanh(0.3536x − 0.75t). (38)

To find the solution of this problem, we take h = 0.1, ∆t = 0.001. In Table 2, we document
the LR norm for ∆t = 0.001, h = 0.1 at various spatial and time values. Additionally, we
perform a comparison with the results of [2] at different time levels. Figure 4 illustrates the
graphical representation of absolute error. In Figure 5, a surface graph for solutions up
to t = 0.01 is presented. After comparison with the existing method in the literature, we
deduce that the proposed scheme performs much better for the aforementioned values.

Table 2. LR for Example 2, when h = 0.1, ∆t = 0.001.

x/t 0.001 0.003 0.005 0.007 0.009 0.01

0 0.00 0.00 0.00 0.00 0.00 0.00
0.1 1.35 × 10−4 3.79 × 10−4 5.96 × 10−4 7.92 × 10−4 9.73 × 10−4 1.06 × 10−3

0.2 9.12 × 10−5 2.81 × 10−4 4.74 × 10−4 6.69 × 10−4 8.63 × 10−4 9.59 × 10−4

0.3 6.28 × 10−5 1.91 × 10−4 3.24 × 10−4 4.61 × 10−4 6.03 × 10−4 6.75 × 10−4

0.4 3.64 × 10−5 1.12 × 10−4 1.91 × 10−4 2.74 × 10−4 3.61 × 10−4 4.06 × 10−4

[Present] 0.5 1.30 × 10−5 4.14 × 10−5 7.28 × 10−5 1.07 × 10−4 1.45 × 10−4 1.65 × 10−4

0.6 7.69 × 10−6 2.11 × 10−5 3.18 × 10−5 3.99 × 10−5 4.52 × 10−5 4.69 × 10−5

0.7 2.58 × 10−5 7.57 × 10−5 1.23 × 10−4 1.69 × 10−4 2.12 × 10−4 2.33 × 10−4

0.8 4.12 × 10−5 1.23 × 10−4 2.04 × 10−4 2.80 × 10−4 3.53 × 10−4 3.87 × 10−4

0.9 5.92 × 10−5 1.64 × 10−4 2.54 × 10−4 3.32 × 10−4 4.01 × 10−4 4.32 × 10−4

1 0.00 0.00 0.00 0.00 0.00 0.00

0 0.00 0.00 1.11 × 10−16 1.11 × 10−16 0.00 0.00
0.1 2.45 × 10−4 6.44 × 10−4 9.69 × 10−4 1.25 × 10−3 1.49 × 10−3 1.61 × 10−3

0.2 2.00 × 10−4 6.13 × 10−4 1.02 × 10−3 1.40 × 10−3 1.76 × 10−3 1.94 × 10−3

0.3 1.80 × 10−4 5.41 × 10−4 9.08 × 10−4 1.28 × 10−3 1.64 × 10−3 1.83 × 10−3

0.4 1.59 × 10−4 4.81 × 10−4 8.05 × 10−4 1.13 × 10−3 1.47 × 10−3 1.63 × 10−3

[2] 0.5 1.41 × 10−4 4.25 × 10−4 7.12 × 10−4 1.00 × 10−3 1.30 × 10−3 1.44 × 10−3

0.6 1.24 × 10−4 3.75 × 10−4 6.28 × 10−4 8.84 × 10−4 1.14 × 10−3 1.27 × 10−3

0.7 1.09 × 10−4 3.29 × 10−4 5.52 × 10−4 7.77 × 10−4 1.00 × 10−3 1.12 × 10−3

0.8 9.50 × 10−5 2.90 × 10−4 4.82 × 10−4 6.71 × 10−4 8.54 × 10−4 9.43 × 10−4

0.9 8.89 × 10−5 2.41 × 10−4 3.73 × 10−4 4.91 × 10−4 6.01 × 10−4 6.53 × 10−4

1 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 4. Absolute error of Problem 2 when ∆t = 0.001 and h = 0.1.

(a) (b)

Figure 5. (a) Surface plot for numerical solution of Problem 2, when h = 0.1, t = 0.01. (b) Surface
plot for the exact solution when t = 0.01, h = 0.1.

4.3. Example 3

In this example, we solve Equation (1), taking parameters p = 1, q = 0,
r = −1, s = −1 and f (u(x, t)) = −u3. The equation is defined within domain 0 < x < 1
and t > 0 and is governed by the following ICs and BCs, respectively, given by

ut(x, t)− uxx(x, t)− u(x, t) = −u3, (39)

u(x, 0) =

(
1 + e−(

√
2

2 )x
)−1

, (40)

u(0, t) =
(

1 + e−( 3
2 )t

)−1
, (41)

u(1, t) =

(
1 + e−(

√
2

2 )(1+ 3
√

2
2 t)

)−1
. (42)

The exact solution for the model equation is taken from [4]:

u(x, t) =
(

1 + e−(
√

2
2 )(x+ 3

√
2

2 t)
)−1

. (43)

Table 3 presents the LR for the selected values of h = 0.1 and ∆t = 0.001. The obtained
results are compared with the results of [2]. The table clearly indicates that the solutions
obtained using the proposed method are in good accord with the existing methods in
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the literature. Figure 6 displays the graphical representation of absolute error between
both numerical and exact solutions at time t = 0.01. In Figure 7, we provide surface plots
depicting the behavior of the numerical solution when t = 0.01.

Table 3. LR for Example 3, when h = 0.1, ∆t = 0.001.

x/t 0.001 0.003 0.005 0.007 0.009 0.01

0 3.75 × 10−4 3.75 × 10−4 3.75 × 10−4 3.75 × 10−4 3.75 × 10−4 3.75 × 10−4

0.1 1.35 × 10−5 6.31 × 10−5 1.11 × 10−4 1.43 × 10−4 1.66 × 10−4 1.75 × 10−4

0.2 4.01 × 10−7 2.54 × 10−7 1.30 × 10−5 2.99 × 10−5 4.68 × 10−5 5.48 × 10−5

0.3 9.50 × 10−8 4.91 × 10−7 3.56 × 10−7 2.37 × 10−6 7.31 × 10−6 1.04 × 10−5

0.4 7.57 × 10−8 2.04 × 10−7 4.42 × 10−7 5.38 × 10−7 4.76 × 10−8 4.85 × 10−7

[Present] 0.5 7.41 × 10−8 2.24 × 10−7 3.66 × 10−7 5.30 × 10−7 6.69 × 10−7 6.94 × 10−7

0.6 7.12 × 10−8 2.13 × 10−7 3.55 × 10−7 4.95 × 10−7 6.39 × 10−7 7.10 × 10−7

0.7 6.77 × 10−8 2.03 × 10−7 3.37 × 10−7 4.70 × 10−7 6.01 × 10−7 6.66 × 10−7

0.8 6.35 × 10−8 1.91 × 10−7 3.14 × 10−7 4.32 × 10−7 5.44 × 10−7 5.98 × 10−7

0.9 6.09 × 10−8 1.65 × 10−7 2.53 × 10−7 3.30 × 10−7 4.00 × 10−7 4.33 × 10−7

1 0.00 0.00 0.00 0.00 0.00 0.00

0 0.00 0.00 0.00 0.00 0.00 0.00
0.1 2.51 × 10−4 7.07 × 10−4 1.13 × 10−3 1.53 × 10−3 1.92 × 10−3 2.11 × 10−3

0.2 3.35 × 10−4 1.02 × 10−3 1.72 × 10−3 2.41 × 10−3 3.10 × 10−3 3.45 × 10−3

0.3 4.39 × 10−4 1.33 × 10−3 2.23 × 10−3 3.15 × 10−3 4.09 × 10−3 4.56 × 10−3

0.4 5.46 × 10−4 1.65 × 10−3 2.77 × 10−3 3.91 × 10−3 5.06 × 10−3 5.64 × 10−3

[2] 0.5 6.54 × 10−4 1.98 × 10−3 3.31 × 10−3 4.67 × 10−3 6.04 × 10−3 6.74 × 10−3

0.6 7.63 × 10−4 2.30 × 10−3 3.86 × 10−3 5.43 × 10−3 7.03 × 10−3 7.83 × 10−3

0.7 8.70 × 10−4 2.62 × 10−3 4.40 × 10−3 6.19 × 10−3 7.97 × 10−3 8.85 × 10−3

0.8 9.65 × 10−4 2.96 × 10−3 4.90 × 10−3 6.76 × 10−3 8.51 × 10−3 9.35 × 10−3

0.9 1.16 × 10−3 3.06 × 10−3 4.62 × 10−3 5.95 × 10−3 7.14 × 10−3 7.69 × 10−3

1 0.00 0.00 0.00 0.00 0.00 0.00

Figure 6. Absolute error of Problem 3 when ∆t = 0.001 and h = 0.1.

The Tables 4 and 5 represent the convergence rate, i.e., C.R =
L∞(∆ti+1)

L∞(∆ti)
for the above

Examples 2 and 3, respectively. In the aforementioned tables, we see the convergence
rate with respect to time step size. Table 6 shows the values of LR for Problem 3 when
t = 10, ∆t = 0.1 and step size h = 0.1. By examining the aforementioned table, we can see
the performance of the method for higher time values. So we deduce that the method is
working very well for much longer time, that is, t >> 0. The surface plots for error and
two solutions are simulated and shown in Figures 8 and 9, respectively.
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(a) (b)

Figure 7. (a) Surface plot of approximate solution corresponding to Problem 3, when t = 0.01 and
h = 0.1 (b) Surface plot of the exact solution with t = 0.01, h = 0.1.

Table 4. Convergence rates (CRs) for Example 2.

∆t L∞ C.R

1/100 1.06 × 10−3 —
1/200 1.05 × 10−3 9.91 × 10−1

1/400 0.001054541 1.00
1/600 0.00105635 1.00
1/700 0.001056934 1.00

1/1000 0.001058059 1.00

Table 5. Convergence rates (CRs) for Example 3.

∆t L∞ C.R

1/100 3.75 × 10−3 —
1/200 1.87 × 10−3 5.00 × 10−1

1/400 9.37 × 10−4 5.00 × 10−1

1/600 6.25 × 10−4 6.67 × 10−1

1/700 5.36 × 10−4 8.57 × 10−1

1/1000 3.75 × 10−4 7.00 × 10−1

Figure 8. Error plot of Problem 3 at ∆t = 0.1, h = 0.1, t = 10.
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Table 6. LR values for Example 3, when N = 10, ∆t = 0.1, t = 10.

x/t 1 2 3 4 5 6 7

0 3.74 × 10−2 7.26 × 10−3 1.76 × 10−3 3.99 × 10−4 8.94 × 10−5 2.00 × 10−5 4.46 × 10−6

0.2 1.53 × 10−2 5.61 × 10−3 1.34 × 10−3 3.00 × 10−4 6.53 × 10−5 1.37 × 10−5 2.63 × 10−6

0.3 9.74 × 10−3 4.89 × 10−3 1.18 × 10−3 2.72 × 10−4 6.25 × 10−5 1.47 × 10−5 3.65 × 10−6

0.4 6.18 × 10−3 4.17 × 10−3 1.00 × 10−3 2.27 × 10−4 5.02 × 10−5 1.08 × 10−5 2.21 × 10−6

0.5 3.89 × 10−3 3.44 × 10−3 8.24 × 10−4 1.87 × 10−4 4.18 × 10−5 9.40 × 10−6 2.16 × 10−6

0.6 2.42 × 10−3 2.73 × 10−3 6.55 × 10−4 1.49 × 10−4 3.34 × 10−5 7.50 × 10−6 1.68 × 10−6

0.7 1.46 × 10−3 2.03 × 10−3 4.89 × 10−4 1.11 × 10−4 2.48 × 10−5 5.53 × 10−6 1.22 × 10−6

0.8 8.16 × 10−4 1.35 × 10−3 3.24 × 10−4 7.35 × 10−5 1.64 × 10−5 3.67 × 10−6 8.20 × 10−7

0.9 3.61 × 10−4 6.73 × 10−4 1.62 × 10−4 3.66 × 10−5 8.21 × 10−6 1.84 × 10−6 4.13 × 10−7

1 0.00 0.00 0.00 0.000 0.00 0.00 0.00

x/t 8 9 10

0 9.94 × 10−7 2.22 × 10−7 4.95 × 10−8

0.2 3.88 × 10−7 7.20 × 10−9 4.63 × 10−8

0.3 9.96 × 10−7 3.12 × 10−7 1.14 × 10−7

0.4 3.79 × 10−7 2.32 × 10−8 2.71 × 10−8

0.5 5.29 × 10−7 1.47 × 10−7 4.99 × 10−8

0.6 3.67 × 10−7 7.40 × 10−8 1.05 × 10−8

0.7 2.69 × 10−7 5.98 × 10−8 1.41 × 10−8

0.8 1.85 × 10−7 4.23 × 10−8 9.90 × 10−9

0.9 9.20 × 10−8 2.04 × 10−8 4.30 × 10−9

1 0.00 0.00 0.00

(a) (b)

Figure 9. (a) Surface plot for the numerical solution of Problem 3, when h = 0.1, t = 10 (b) Surface
plot for the exact solution when t = 10, h = 0.1.

5. Conclusions

In this work, a time-dependent equation involving the Allen–Cahn and PHI-Four
models is studied and solved numerically, implementing the non-polynomial spline tech-
nique. The numerical results for three test problems are obtained to show efficiency of the
suggested scheme. The approach involves the transformation of the PHI-Four equation
into a coupled system of equations and finding a numerical solution for the aforemen-
tioned system. To achieve this, we employ the non-polynomial spline function for the
spatial descretization and finite difference for time distribution. The results obtained clearly
demonstrate that the current technique is viable and effective, providing accurate approx-
imations to the solution. The obtained results with the suggested method show better
accuracy than those obtained using the existing methods. The stability of the proposed
scheme is discussed by way of von Neumann stability which indicates that the suggested
method is unconditionally stable. A convergence test is carried out, and different orders of
convergences for the scheme are obtained. The method is also tested for longer time t >> 0
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to show the effectiveness and viability of the suggested method at greater time values. We
can conclude that the non-polynomial splines can be used as basis functions for different
numerical techniques.
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