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Abstract: We consider an investor, whose capital is divided into an industrial investment xt and cash
yt, and satisfy a nonlinear deterministic dynamical system. The investor fixes fractions of capital to
be invested, withdrawn, and consumed, and also the production factor parameter. The government
fixes a subsidy fraction for industrial investments and a tax fraction for the capital outflow. We study
a Stackelberg game, corresponding to the asymptotically stable equilibrium (x∗, y∗) of the mentioned
dynamical system. In this game, the government (the leader) uses subsidies to make incentives for
the investor (the follower) to maintain the desired level of x∗, and uses taxes to achieve this with the
minimal cost. The investor’s aim is to maximize the difference between the consumption and the
price of the production factor at equilibrium. We present an explicit analytical solution of the specified
Stackelberg game. Based on this solution, we introduce the notion of a fair industrial investment
level, which is costless for the government, and show that it can produce realistic results using a case
study of water production in Lahore.

Keywords: taxes; subsidies; industrial investment level; equilibrium; Stackelberg game
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1. Introduction

In this paper, we introduce and study a simple model for targeting industrial invest-
ments with subsidies and taxes. In this model, there are two players: a government, and an
investor, who at the same time is the owner of an industrial enterprise (e.g., a farm). The
aim of the government is to make incentives for the investor to maintain a specified level
of industrial investments. The government cost is the difference between the subsidies on
industrial investments and the taxes on the capital outflow from production assets. The
aim of the follower is to maximize the difference between the consumption and the price
of the production factor (e.g., the labor). The amount of this factor is related to the size of
the enterprise.

The described problem can be related to the “targeted economic development” ap-
proach [1–4]. Within this approach, which may be opposed to “economic freedom”, policy-
makers can use different instruments to “promote the development of particular firms and
industries” [4]. We focus on government targeting policies, assuming that there are two
instruments, subsidies and taxes, and on mathematical modeling within the Stackelberg
game paradigm. Thus, we regard the government as a leader, and the investor as a follower.

There are various targets that can be the aim of a government. By using subsidies
and taxes, it can make incentives for adoption of a new technology [5], renewable energy
generation and transmission [6], bioelectricity generation [7], product recovery and en-
vironmental performance [8], green technology adoption, green production and product
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development [9–11], new drug R&D [12], R&D investment [13], etc. The problem of target-
ing a monopoly at a desired output level was considered in [14]. The case of agricultural
industry was considered in [15]. We also mention a recent survey concerning circular econ-
omy systems [16]. In general, the role of subsidies and taxes is important for sustainable
development [17,18]. Moreover, the impact of different forms of incentives on the modern
economy is so essential that some authoritative economists argue that it is necessary to
tame them [19].

There are various possibilities for formalizing the targeting of financial investments
problem. We assume that the investor’s capital is divided into an industrial investment
xt and cash yt, and satisfy a nonlinear deterministic dynamical system. The non-linearity
concerns the dynamics of xt and is related to the production function of the enterprise.
Furthermore, we assume that the investor fixes fractions of capital to be invested, with-
drawn, and consumed. The reason for this assumption is that such fixed fraction strategies
appear to be optimal in simplified financial problems concerning investment and consump-
tion [20,21]. Constant rebalancing strategies are also used as benchmarks in the theory of
online portfolio selection [22]. Similarly, we assume that the government fixes a subsidy
fraction for industrial investments and a tax fraction for the capital outflow. This is a basic
form of subsidy/tax strategy [23]. The special feature of our model is the utilization of
the Cobb–Douglas production function for modeling the dynamics of xt. This function
contains a parameter L (the production factor), selected by the investor by paying the price
p per unit of L.

Assuming non-zero consumption, we prove that the mentioned dynamical system has
a unique globally asymptotically stable equilibrium (x∗, y∗): Theorem 1. The main part
of this paper is devoted to the study of a Stackelberg game, corresponding to (x∗, y∗). In
this game, the government (the leader) uses subsidies to make incentives for the investor
(the follower) to maintain the desired level x of x∗, and uses taxes to achieve this with the
minimal cost. The investor’s aim is to maximize the difference between the consumption
and the price of the production factor at the equilibrium. The precise formulation of this
problem is given in Section 2.

In Sections 3 and 4, we find optimal investor reactions for fixed subsidy and tax
fractions. These reactions are qualitatively different in the two cases where the taxes can be
conventionally called large and small, respectively. Using these results, in Section 5, we
find the solution to the government optimization problem. It appears that there are three
basic cases, depending on the specified level of the desired amount of industrial investment.
(1) For small values of x, subsidies are not required and the government obtains a positive
revenue due to the taxation. There are no industrial investments in this case. (2) For middle
values of x, positive subsidies and taxes coexist. (3) For large values of x, it is optimal to
use pure subsidies without taxes. The investor revenue is increasing in x in all three cases.
Our findings are summarized in Theorems 2 and 3.

Based on the obtained solutions, we introduce the notions of basic and fair industrial
investment levels. The basic level is optimal for the government if it does not want to
achieve a higher target. The levels below the basic one are not Pareto optimal: they are less
favorable for both players. The fair industrial investment level induces neither a cost nor
revenue for the government. It plays a key role in Section 6, where we apply our results
to the analysis of water production in Lahore, considered in [24], and show that the fair
industrial investment level can produce realistic results.

2. Problem Formulation

Consider an investor whose capital is divided into an industrial investment xt and
cash yt. We propose the following model for the dynamics of these components:

xt+1 = ALµ((1 − β)xt + (1 + δ)αyt)
ν, (1)

yt+1 = (1 − α − c)yt + (1 − σ)βxt, (2)

x0 = x0, y0 = y0. (3)
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Here,
(α, β, c) ∈ [0, 1]3, α + c ≤ 1, L ≥ 0, (4)

are the parameters selected by the investor: α is the fraction of cash, intended for industrial
investments, β is the withdrawn fraction of industrial investments, c is the fraction of
consumed capital, and L is the production factor, which we will call “labor” for simplicity.
The parameters

δ ≥ 0, σ ∈ [0, 1] (5)

are selected by the government: δ is the fraction of industrial investments paid to the
investor as a subsidy, and σ is the fraction of withdrawn industrial capital paid by the
investor to the government due to the taxation. Finally, the positive constants A, µ, and ν
are the parameters of the Cobb–Douglas production function

Φ(L, Z) = ALµZν.

Our standing assumption is
µ + ν < 1,

which corresponds to the decreasing returns to scale [25]. Note that we use the Cobb–
Douglas production function in a non-traditional way: to model the dynamics of the
industrial capital.

To obtain a more intuitive view of the model (1)–(3) consider the case where there are
no investments and capital outflow: α = β = 0. Then, the industrial capital xt will tend to
the equilibrium x̃, determined by the positive solution equation

x̌ = ALµ x̌ν,

irrespective of x0 > 0. The value x̌ depends on the amount of labor L and the parameters
A, µ, and ν of the model. In fact, when x̌ is invested, there is no gain or loss (the capital
does not change). If, for instance, the investor selects a larger value of x0, then he will suffer
a loss. This may correspond to buying a large amount of raw materials, which cannot be
fully processed by the enterprise.

Furthermore, we assume that the aim of the government is to ensure the target value
x of industrial investments. For small values of x, it may be possible to achieve this only
with taxes, determined by σ. Otherwise, subsidies, determined by δ, are also necessary. It is
not clear a priori if it is worth using taxes and subsidies simultaneously (but we will show
that usually this is the case). In fact, the situation is more complex, since we will also allow
the investor, whose aim is to maximize consumption, to select the amount of labor L at a
price p per unit.

The precise problem formulation is based on the asymptotic stability property of the
system (1)–(3). First rewrite this using the shorthand notation: zt = (xt, yt),

zt+1 = F(zt), z0 = z0. (6)

We say that an equilibrium z∗ ∈ R2
+ := {z ∈ R2 : z ≥ 0} of (6):

z∗ = F(z∗)

is globally asymptotically stable in R2
+\{0}, if limt→∞ zt = z∗ for any initial condition

z0 ∈ R2
+\{0}. By this definition, there can be no more than 1 globally asymptotically stable

equilibriums. Note also that the case z∗ = 0 is allowed by this definition.
The mapping F : R2

+ → R2
+ is monotone with regards to the natural partial order of

R2, generated by R2
+:

F(z) ≤ F(z′), if z ≤ z′.
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Moreover, this mapping F is subhomogeneous [26]:

F(λz) ≤ λF(z), z ∈ R2
+, λ ≥ 1.

Using these two properties, it is not difficult to prove the following result.

Theorem 1. Assume that c > 0 and the conditions (4) and (5) are satisfied. Then, there exists a
(unique) globally asymptotically stable equilibrium z∗ = (x∗, y∗) of (1) and (2),

x∗ = A1/(1−ν)Lµ/(1−ν)

(
1 − β + (1 + δ)(1 − σ)

αβ

α + c

)ν/(1−ν)

, (7)

y∗ =
(1 − σ)β

α + c
x∗ (8)

in R2
+\{0}.

Proof. Solving the equation z = F(z), we can easily conclude that there are two equilibrium
points in R2

+: the origin (0, 0) and z∗ = (x∗, y∗), defined by (7) and (8). Assume that

σ < 1, 1 − β + α > 0, L > 0. (9)

Then, the components x∗, y∗ are strictly positive. Hence, for any z0 ∈ R2
+, there exists λ ≥ 1

such that z0 ≤ λz∗. As was mentioned, the mapping F is monotone and subhomogeneous,
and it is easy to see that its powers Ft inherit these properties. Thus,

zt = Ft(z0) ≤ Ft(λz∗) ≤ λFt(z∗) = λz∗.

In particular, the sequence zt is bounded. Consider any convergent subsequence ztk of zt. If
ztk → z, then ztk+1 = F(ztk ) converges to F(z). Hence, z ∈ R2

+ is an equilibrium. It remains
to been shown that z ̸= 0. Indeed, if this case z coincides with z∗, and if any convergent
subsequence of zt converges to z∗, then zt itself converges to z∗.

Assume first that β < 1 and consider the one-dimensional sequence

x̃t+1 = ALµ((1 − β)x̃t)
ν, x̃0 = x0 > 0.

If x̃t ≤ xt, then
x̃t+1 ≤ ALµ((1 − β)xt + (1 + δ)αyt)

ν = xt+1.

Thus, x̃t ≤ xt for all t. Furthermore,

x̃t+1 = ALµ(1 − β)ν x̃ν
t = (ALµ(1 − β)ν)1+ν x̃ν2

t−1

= (ALµ(1 − β)ν)1+ν+···+νt
x̃νt+1

0 → (ALµ(1 − β)ν)1/(1−ν) > 0

as t → ∞. Thus, limk→∞ xtk ≥ limk→∞ x̃tk > 0.
Now, let β = 1. Then, α > 0, xt+1 = ALµ(1 + δ)νανyν

t ,

yt+1 = (1 − α − c)yt + (1 − σ)ALµ(1 + δ)νανyν
t−1, t ≥ 2.

Consider the one-dimensional sequence

ỹt+2 = Cỹν
t , ỹ0 = y0

with C = ALµ(1 − σ)(1 + δ)ναν. If ỹt ≤ yt, then

ỹt+2 ≤ (1 − α − c)yt+1 + Cỹν
t ≤ yt+2.
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Thus, ỹt ≤ yt for all even indexes: t = 2n, n ∈ Z+. Since,

ỹ2n = Cỹν
2n−2 = C1+νỹν2

2n−2·2 = C1+ν+···+νn−1
ỹνn

0 → C1/(1−ν) > 0

as n → ∞, it follows that if ytk → 0, then we can assume that the indexes tk are odd. If
also xtk → 0, then from (2) it follows that ytk+1 → 0. But this is a contradiction, since the
indexes tk + 1 are even in this case. This finishes the proof under the assumption (9).

If any of the conditions (9) are violated, then from (1) and (2) it follows quite easily
that zt → z∗, t → ∞.

The optimization problems of the agents are formulated within the framework of the
Stackelberg games. We assume that the government (the leader) selects δ, σ, the investor
(the follower) selects α, β, c, L, and the system (1)–(3) generates the equilibrium (7) and (8).
For this equilibrium, the follower computes the revenue

cy∗ − pL, (10)

and the leader computes the cost
δαy∗ − σβx∗. (11)

Here, (10) is the difference between the follower consumption and the total cost of labor
at the equilibrium, and (11) is the difference between the amount of subsidies and taxes.
In the following, we will use the names “leader” and “follower” instead of “government”
and “investor”.

According to the protocol of the Stackelberg game, for a given δ, σ the follower finds α̂,
β̂, ĉ, L̂, which maximize (10) under the constraints (4). These values are substituted in (11)
and the leader finds optimal δ∗, σ∗ by minimizing (11) over the parameters (5) under an
additional constraint

x∗ ≥ x, (12)

reflecting the main goal of the leader: to ensure the required level x of industrial investments.
The case c = 0 corresponds to zero consumption, and is not interesting for us. So, we

will assume that the condition c > 0 of Theorem 1 is satisfied. Put

γ = α/c, ρ = (1 + δ)(1 − σ).

It is natural to call γ the investment-to-consumption ratio. From (7) and (8) we obtain

x∗ = A1/(1−ν)Lµ/(1−ν)

(
1 − β + ρ

γβ

1 + γ

)ν/(1−ν)

.

cy∗ =
(1 − σ)β

1 + γ
x∗, (13)

and the optimization problem (4) and (10) of the follower takes the form

maximize
γ,β,L

f (γ, β, L) =
(1 − σ)β

1 + γ
x∗ − pL

=
(1 − σ)β

1 + γ
A1/(1−ν)Lµ/(1−ν)

(
1 −

(
1 − ρ

γ

1 + γ

)
β

)ν/(1−ν)

− pL, (14)

subject to γ ∈ [0, ∞), β ∈ [0, 1], L ∈ [0, ∞). (15)

Note, that the follower’s actions will only determine the product of the capital level y∗ and
the consumption fraction c, see (13), and not y∗ and c individually.

Similarly,

αy∗ = γcy∗ =
(1 − σ)βγ

1 + γ
x∗ (16)
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and the leader problem (5) and (10), (12) can be rewritten as

minimize
δ,σ

g(δ, σ) =

[
(1 − σ)δ

γ

1 + γ
− σ

]
βx∗, (17)

subject to x∗ ≥ x, δ ∈ [0, ∞), σ ∈ [0, 1]. (18)

We hide the dependence of f on the parameters of the leader δ, σ, and the dependence
of g on the parameters γ, β, L of the follower. We repeat that, according to the protocol
of the Stackelberg game, the leader looks for the parameters δ∗, σ∗, solving (17) and (18),
where the parameters γ, β, L are substituted by the optimal reactions γ̂(δ, σ), β̂(δ, σ), L̂(δ, σ)
of the follower, obtained from (14) and (15).

Although the described Stackelberg game looks cumbersome, we were able to find its
explicit solution. The optimal behavior of the agents is described in Theorems 2 and 3. For
the follower problem (14) and (15), it appears that the parameter ρ plays a key role and its
critical value is 1. For brevity, we can say that the taxes (for the capital outflow) are large if
ρ ≤ 1, and small if ρ > 1. The analysis of this problem is performed in Sections 3 and 4.
For the leader problem, a key role is played by the level x. This problem is considered in
Section 5.

3. Follower’s Problem in the Case of Large Taxes

In this section, we assume that ρ = (1 + δ)(1 − σ) ≤ 1. To solve (14) and (15) we
sequentially consider three one-dimensional optimization problems:

maximize
β∈[0,1]

f (γ, β, L), (19)

maximize
γ≥0

f (γ, β̂, L), (20)

maximize
L≥0

f (γ̂, β̂, L), (21)

where β̂ is the solution of (19), and γ̂ is the solution of (20). Note that β̂ can depend on
(γ, L), and γ̂ can depend on β̂, L. Certainly, the solution (β̂, γ̂, L̂) obtained in this sequential
manner coincides with the optimal solution of (14) and (15). Note that we do not explicitly
show the dependence on the parameters δ, σ.

To solve (19), consider the logarithm of the objective function and the related optimiza-
tion problem

maximize
β∈[0,1]

φ(β) = ln β +
ν

1 − ν
ln
(

1 −
(

1 − ρ
γ

1 + γ

)
β

)
.

Solving the equation φ′(β) = 0, we conclude that, being extended to (0, ∞), the concave
function φ attains its maximum at

β =
1 − ν

1 − ργ/(1 + γ)
.

If β ≤ 1, then β̂ = β. Otherwise, β̂ = 1:

β̂ =


1 − ν

1 − ργ/(1 + γ)
,

γ

1 + γ
≤ ν

ρ
,

1, otherwise.
(22)

Note that the second case appears only if ν/ρ < 1.
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The objective function (20) takes the form

f (γ, β̂, L) =

 f1(γ, L),
γ

1 + γ
≤ ν

ρ
,

f2(γ, L), otherwise.
(23)

f1(γ, L) =
(1 − σ)(1 − ν)

1 + (1 − ρ)γ
A1/(1−ν)Lµ/(1−ν)νν/(1−ν) − pL, (24)

f2(γ, L) = (1 − σ)A1/(1−ν)Lµ/(1−ν)ρν/(1−ν) γν/(1−ν)

(1 + γ)1/(1−ν)
− pL. (25)

The function (24) attains its maximum at γ = 0. If ρ = 1, then any other value of γ is also
optimal, but we will assume that the follower still picks γ = 0, since this is the most natural
choice: do not invest if the investment does not increase the objective function.

Assuming that ν/ρ < 1 and maximizing (25) over [0, ∞), we obtain the solution γ,
satisfying the equation γ/(1 + γ) = ν. But due to the constraint

γ

1 + γ
≥ ν

ρ
≥ ν,

we conclude that the maximum is attained at the solution of the equation

γ

1 + γ
=

ν

ρ
.

Hence, if ν/ρ ≥ 1, then γ̂ = 0. Otherwise, to solve the problem (20), we need to
compare the expressions

f1(0, L) = (1 − σ)(1 − ν)A1/(1−ν)Lµ/(1−ν)νν/(1−ν) − pL,

f2

(
ν/ρ

1 − ν/ρ
, L
)
= (1 − σ)A1/(1−ν)Lµ/(1−ν)ρν/(1−ν)

(
ν

ρ

)ν/(1−ν)

(1 − ν/ρ)− pL

= (1 − σ)(1 − ν/ρ)A1/(1−ν)Lµ/(1−ν)νν/(1−ν) − pL.

The first expression is larger, hence

γ̂ = 0, β̂ = 1 − ν. (26)

The problem (21) takes the form

maximize
L≥0

f (γ̂, β̂, L) = HLµ/(1−ν) − pL, (27)

where H = (1 − σ)(1 − ν)νν/(1−ν)A1/(1−ν).

Its optimal solution equals

L̂ =

(
µ

p
H

1 − ν

)(1−ν)/(1−(ν+µ))

. (28)

The optimal value of the objective function (27), which coincides with the optimal value of
the problem (14) and (15) for ρ ≤ 1, equals

f (γ̂, β̂, L̂) = C(1−ν)/(1−(ν+µ))

(
1
p

)µ/(1−(ν+µ))
[(

µ

1 − ν

) µ
1−(ν+µ)

−
(

µ

1 − ν

) 1−ν
1−(ν+µ)

]
= D(1 − σ)(1−ν)/(1−(ν+µ)), (29)
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D = (1 − ν)
1−ν

1−(ν+µ) ν
ν

1−ν+µ

[(
µ

1 − ν

) µ
1−(ν+µ)

−
(

µ

1 − ν

) 1−ν
1−(ν+µ)

]
A

1
1−(ν+µ)

(
1
p

) µ
1−(ν+µ)

.

The quantity (29) decreases in σ. It does not depend on δ, since γ̂ = 0; see (26).

4. Follower’s Problem in the Case of Small Taxes

In this section, we assume that ρ = (1 + δ)(1 − σ) > 1. We will again sequentially
solve the same optimization problems (19)–(21). It is easy to check that the solution of (19)
and the corresponding optimal value of the objective function are still given by (22)–(25).
Now the maximum of f1 is attained at the largest possible γ, which is determined by
the equation

γ′

1 + γ′ =
ν

ρ
.

The maximum of f2 is attained at the solution of the equation

γ

1 + γ
= ν >

ν

ρ
.

To solve the optimization problem (20), we need to compare

f1(γ
′, L) = f (γ′, 1, L) =

1 − σ

1 + γ′ A1/(1−ν)Lµ/(1−ν)νν/(1−ν) − pL,

f2(γ, L) = f (γ, 1, L) =
1 − σ

1 + γ
A1/(1−ν)Lµ/(1−ν)(ρν)ν/(1−ν) − pL.

We claim that the second of these expressions is larger:

1
1 + γ′ <

1
1 + γ

ρν/(1−ν), ρ > 1

and hence γ̂ = γ. To show this, consider an equivalent inequality:

1 − ν

ρ
< (1 − ν)ρν/(1−ν),

which is the same as

ψ(r) := (1 − r)rν/(1−ν) < (1 − ν)νν/(1−ν), r = ν/ρ < ν.

This inequality is true, since the function ψ is increasing on (0, ν):

(ln ψ(r))′ =
ν

1 − ν

1
r
− 1

1 − r
> 0, r ∈ (0, ν).

We have proved that

γ̂ =
ν

1 − ν
, β̂ = 1. (30)

The problem (21) takes the form

maximize
L≥0

f (γ̂, β̂, L) = ρν/(1−ν)HLµ/(1−ν) − pL,

which is quite similar to (27). Using the obtained Formulas (28) and (29), we can con-
clude that

L̂ = ρν/(1−(ν+µ))

(
µ

p
H

1 − ν

)(1−ν)/(1−(ν+µ))

, (31)
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and the optimal value of (14) and (15), under the assumption ρ > 1, equals

f (γ̂, β̂, L̂) = Dρν/(1−(ν+µ))(1 − σ)(1−ν)/(1−(ν+µ))

= D(1 + δ)ν/(1−(ν+µ))(1 − σ)1/(1−(ν+µ)).

5. Leader’s Problem and the Main Results

To write the leader problem, substitute the obtained optimal solution (γ̂, β̂, L̂) of
(14) and (15) into (17) and (18):

minimize
δ,σ

ĝ(δ, σ) :=
[
(1 − σ)δ

γ̂

1 + γ̂
− σ

]
β̂x∗, (32)

subject to x∗ ≥ x, δ ∈ [0, ∞), σ ∈ [0, 1], (33)

where

x∗ = A1/(1−ν) L̂µ/(1−ν)

(
1 −

(
1 − ρ

γ̂

1 + γ̂

)
β̂

)ν/(1−ν)

.

We will minimize ĝ over the sets ρ ≤ 1 and ρ > 1 separately. For brevity, in the following,
we do not mention the constraints σ ∈ [0, 1], δ ≥ 0, which always hold true.

In the case of large taxes: ρ ≤ 1, we have γ̂ = 0, β̂ = 1 − ν,

minimize ĝ(δ, σ) = −σ(1 − ν)x∗,

x∗ = A1/(1−ν)νν/(1−ν) L̂µ/(1−ν) = A1/(1−ν)νν/(1−ν)

(
µ

p
H

1 − ν

)µ/(1−(ν+µ))

= A1/(1−(ν+µ))νν/(1−(ν+µ))

(
µ

p

)µ/(1−(ν+µ))

(1 − σ)µ/(1−(ν+µ)).

The condition x∗ ≥ x reduces to
σ ≤ 1 − B,

where

B =

(
1

Aνν

)1/µ p
µ

x(1−ν−µ)/µ. (34)

Thus, under the assumption ρ ≤ 1, the problem (32) and (33) is solvable if B ≤ 1. This
means that by using large taxes it is impossible to achieve an industrial investment level x
with a corresponding value of B greater than 1.

Assume that B ∈ [0, 1]. Then, under the assumption ρ ≤ 1, an optimal leader’s
strategy is

σ̂ = 1 − B, δ̂ = 0. (35)

Note that any δ ≤ 1/(1 − σ̂)− 1 is also optimal, but δ̂ = 0 is the most natural choice: if
subsidies do not decrease the cost, do not use them. The optimal cost equals

ĝ(δ̂, σ̂) = −(1 − ν)σ̂x = −(1 − ν)(1 − B)x. (36)

This cost is negative and its absolute value is the revenue of the leader.
Now consider the small taxes: ρ > 1. The objective function (32) takes the form

minimize ĝ(δ, σ) = [ν(1 − σ)δ − σ]x∗, (37)
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where

x∗ = A1/(1−ν) L̂µ/(1−ν)(ρν)ν/(1−ν)

= A1/(1−ν)ρν/(1−ν)ρνµ/((1−ν)(1−ν−µ))νν/(1−ν)

(
µ

p
H

1 − ν

)µ/(1−(ν+µ))

= A1/(1−ν−µ)νν/(1−ν−µ)

(
µ

p

)µ/(1−ν−µ)

ρν/(1−ν−µ)(1 − σ)µ/(1−(ν+µ))

= A1/(1−ν−µ)νν/(1−ν−µ)

(
µ

p

)µ/(1−ν−µ)

(1 − σ)(µ+ν)/(1−ν−µ)(1 + δ)ν/(1−ν−µ).

We can rewrite the constraint x∗ ≥ x as follows:

(1 − σ)(µ+ν)/µ(1 + δ)ν/µ ≥ B. (38)

We need also to take into account the condition

ρ = (1 − σ)(1 + δ) > 1. (39)

Inequalities (38) and (39) are equivalent to

1 + δ ≥ Bµ/ν

(1 − σ)(µ+ν)/ν
, 1 + δ >

1
1 − σ

,

respectively. Clearly, (38) is stronger then (39) if

σ > 1 − B.

This means that the function (37) should be minimized under constrains

σ ≤ 1 − B, 1 + δ >
1

1 − σ
, (40)

σ > 1 − B, 1 + δ ≥ Bµ/ν

(1 − σ)(µ+ν)/ν
. (41)

The case (40) is possible only if B < 1. Assume that this is the case and formally extend
ĝ, given by (37), to the set

σ ≤ 1 − B, 1 + δ ≥ 1
1 − σ

by the same formula. The optimal values δ, σ of the extended function satisfy the equalities

σ̂ = 1 − B, 1 + δ̂ =
1

1 − σ̂
,

since the function (37) is increasing in δ and decreasing in σ. The value

g(δ̂, σ̂) = νB(1/B − 1)− (1 − B) = −(1 − ν)(1 − B)x

coincides with (36). Thus, we need not further consider the set (40).
Consider the case σ ≥ 1 − B. Again, we formally extend ĝ, given by (37), to the set

σ ≥ 1 − B, 1 + δ ≥ Bµ/ν

(1 − σ)(µ+ν)/ν
. (42)
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Minimizing (37) over δ, we obtain

δ̂ =
Bµ/ν

(1 − σ)(µ+ν)/ν
− 1, (43)

g(δ̂, σ) =

(
ν

Bµ/ν

(1 − σ)µ/ν
− (1 − σ)ν − σ

)
x.

Formally minimizing this function over σ, we obtain

σ = 1 −
(

µ

1 − ν

)ν/(µ+ν)

Bµ/(µ+ν).

The condition σ ≥ 1 − B is equivalent to B ≥ µ/(1 − ν), while the condition σ ≥ 0 is
equivalent to

B ≤
(

1 − ν

µ

)ν/µ

.

Thus, the optimal solution of (37), (42) is given by

σ̂ =



1 − B, B ≤ µ

1 − ν
,

1 −
(

µ

1 − ν

)ν/(µ+ν)

Bµ/(µ+ν),
µ

1 − ν
≤ B ≤

(
1 − ν

µ

)ν/µ

,

0,
(

1 − ν

µ

)ν/µ

≤ B.

(44)

By substituting these values into (37) after simple calculations, we obtain the optimal values
of the extended function ĝ under the condition (41):

ĝ(δ̂, σ̂) =



−(1 − ν)(1 − B)x, B ≤ µ

1 − ν
,(

κ(µ, ν)Bµ/(µ+ν) − 1
)

x,
µ

1 − ν
≤ B ≤

(
1 − ν

µ

)ν/µ

,

ν(Bµ/ν − 1)x,
(

1 − ν

µ

)ν/µ

≤ B,

(45)

κ(µ, ν) = ν

(
1 − ν

µ

)µ/(µ+ν)

+ (1 − ν)

(
µ

1 − ν

)ν/(µ+ν)

= (µ + ν)

(
1 − ν

µ

)µ/(µ+ν)

. (46)

Note that
µ

1 − ν
< 1 <

(
1 − ν

µ

)ν/µ

.

The values in the first line of (45) correspond to the artificial extension of ĝ to the set
where σ = 1 − B. Fortunately, this value is the same as (36), which is attained on the set
ρ ≤ 1; see (35) for the correspondent optimal solution. Thus, according to (35), we can put
δ̂ = 0 in this case. Furthermore, formally the first lines in (44) and (45) correctly describe
the optimal action of the leader and the optimal value of the objective function.

We claim that the same is true in the remaining two cases in (44) and (45). This is
evident for B ≥ ((1 − ν)/µ)ν/µ > 1 since this case is possible for ρ > 1 only. To prove
the claim for the intermediate values of B, we need to show that the expression in the
middle line of (45) is smaller than (36) for B ∈ [µ/(1 − ν), 1]. But this result follows from
the concavity of the function χ(B) = κBµ/(µ+ν) − 1:
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χ(B) ≤ χ

(
µ

1 − ν

)
+ χ′

(
µ

1 − ν

)(
B − µ

1 − ν

)
= ν + µ − 1 + (1 − ν)

(
B − µ

1 − ν

)
= −(1 − ν)(1 − B).

Note, that δ̂ is determined by (43) in these cases.
The above argumentation shows that the optimal value of the leader objective func-

tion is given by (45), the optimal tax fraction is given by (44), while an optimal subsidy
fraction equals

δ̂ =



0, B ≤ µ

1 − ν
,

(1 − ν)/µ − 1,
µ

1 − ν
< B ≤

(
1 − ν

µ

)ν/µ

,

Bµ/ν − 1,
(

1 − ν

µ

)ν/µ

≤ B.

(47)

These results are summarized in the next theorem, where we also substitute B with its
expression (34), to obtain a more clear answer in terms of the industrial investment level x.

Theorem 2 (leader’s optimal strategy). Put

ℓ1 = (Aνν)1/(1−ν−µ)
(

µ

p

)µ/(1−ν−µ)( µ

1 − ν

)µ/(1−ν−µ)

,

ℓ2 = (Aνν)1/(1−ν−µ)

(
µ

p

)µ/(1−µ−ν)(1 − ν

µ

)ν/(1−ν−µ)

.

The leader’s optimal cost g∗, optimal tax fraction σ∗ and optimal subsidy fraction δ∗ are given by

g∗ =



(1 − ν)

((
1

Aνν

)1/µ p
µ

x(1−ν)/µ − x

)
, x ≤ ℓ1,

κ(µ, ν)

(
1

Aνν

)1/(µ+ν)( p
µ

)µ/(µ+ν)

x1/(µ+ν) − x, ℓ1 ≤ x ≤ ℓ2,

ν

((
1

Aνν

)1/ν( p
µ

)µ/ν

x(1−µ)/ν − x

)
, ℓ2 ≤ x,

(48)

σ∗ =


1 −

(
1

Aνν

)1/µ p
µ

x(1−ν−µ)/µ, x ≤ ℓ1,

1 −
(

1
Aνν

)1/(µ+ν)( p
µ

)µ/(µ+ν)( µ

1 − ν

)ν/(µ+ν)

x(1−µ−ν)/(µ+ν), ℓ1 ≤ x ≤ ℓ2,

0, ℓ2 ≤ x,

δ∗ =


0, x ≤ ℓ1,
1 − ν

µ
− 1, ℓ1 < x ≤ ℓ2,(

1
Aνν

)1/ν( p
µ

)µ/ν

x(1−µ−ν)/ν − 1, ℓ2 ≤ x,

where κ is defined by (46).

Proof. All formulas are obtained from (44), (45) and (47) by substituting the expression (34)
for B. We omit the corresponding elementary calculations.
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Now, we can describe the optimal follower strategy by substituting δ∗, σ∗ into the
expressions for γ̂, β̂, L̂, obtained in Sections 3 and 4. We present the components of the
optimal follower strategy in the feedback form; that is, as functions of δ∗, σ∗, and in a more
explicit form, as functions of x.

Theorem 3 (follower’s optimal strategy). Put ρ∗ = (1 + δ∗)(1 − σ∗). The optimal fraction of
industrial capital outflow β∗, the optimal fraction of the investment-to-consumption ratio γ∗, and
the optimal amount of labor L∗ are given by

β∗ =

{
1 − ν, ρ∗ ≤ 1
1, ρ∗ > 1

=

{
1 − ν, x ≤ ℓ1

1, x > ℓ1,

γ∗ =

0, ρ∗ ≤ 1
ν

1 − ν
, ρ∗ > 1

=

0, x ≤ ℓ1
ν

1 − ν
, x > ℓ1,

L∗ =


(Aνν)1/(1−ν−µ)

(
µ

p

)(1−ν)/(1−ν−µ)

(1 − σ∗)(1−ν)/(1−ν−µ), ρ∗ ≤ 1,

(Aνν)1/(1−ν−µ)

(
µ

p

)(1−ν)/(1−ν−µ)

(1 + δ∗)ν/(1−ν−µ)(1 − σ∗)1/(1−ν−µ), ρ∗ > 1

=



(
1

Aνν

)1/µ

x(1−ν)/µ, x ≤ ℓ1,(
1

Aνν

)1/(µ+ν)(µ

p

)ν/(µ+ν)( µ

1 − ν

)ν/(µ+ν)

x1/(µ+ν), ℓ1 ≤ x ≤ ℓ2,
µ

p
x, ℓ2 ≤ x.

(49)

The follower’s optimal revenue equals

f ∗ =
(1 − σ∗)β∗

1 + γ∗ x − pL∗

=


(1 − µ − ν)

(
1

Aνν

)1/µ p
µ

x(1−ν)/µ, x ≤ ℓ1,

(1 − µ − ν)

(
1

Aνν

)1/(µ+ν)( p
µ

)µ/(µ+ν)( µ

1 − ν

)ν/(µ+ν)

x1/(µ+ν), ℓ1 ≤ x ≤ ℓ2,

(1 − µ − ν)x, ℓ2 ≤ x.

Proof. The representations of β∗, γ∗ and L∗ in the feedback form are given by (26) and (28)
for ρ∗ ≤ 1, and by (30) and (31) for ρ∗ > 1. Their representation as functions of x then
follows from the formulas for δ∗, σ∗ given in Theorem 2. The optimal value f ∗ of the
follower objective function is obtained by substituting the obtained optimal strategies of
both players into (14). Again, we omit long but elementary calculations.

Let us mention some aspects of the obtained solution. We see that the leader’s cost g∗

and follower’s f ∗ revenue are increasing functions of x. For large values of x, the cost g∗

tends to infinity faster then x, and the revenue f ∗ is linear in x. Furthermore, the optimal
tax fraction σ∗ is non-increasing in x, and equals zero for x ≥ ℓ2. The optimal subsidy
fraction is non-decreasing in x and equals a positive constant for intermediate values of
the desired level of industrial investments: x ∈ (ℓ1, ℓ2]. Note also that the labor factor L∗ is
increasing in x.

Furthermore, it is not difficult to check that the derivative of g∗ is continuous at the
points ℓ1, ℓ2, and

(g∗)′(ℓ1 − 0) = (g∗)′(ℓ1 + 0) = 0,



Mathematics 2024, 12, 822 14 of 18

(g∗)′(ℓ2 − 0) = (g∗)′(ℓ2 + 0) =
1 − µ − ν

µ
> 0.

It follows that g decreases on (0, ℓ1) and increases on (ℓ1, ∞). Since f ∗ is increasing, it
becomes clear that the levels x at the interval (0, ℓ1) are not Pareto optimal. That is, by
decreasing taxes, the leader can increase his revenue (decrease his negative cost), while at
the same time increasing the revenue of the follower and the level of industrial investments.

Let us call ℓ1 the basic industrial investment level. The leader cost g∗ attains its minimum
at this point. So x = ℓ1 is the most favorable for the leader if he does not want to target
a larger industrial investment level. As was preciously mentioned, lower levels are less
favorable for both players.

Finally, denote by x◦ the positive solution of the equation g∗(x) = 0. Let us call x◦ the
fair industrial investment level. This name is related to the fact that the leader obtains neither
losses nor revenues at this level. Since

g∗(ℓ1) < 0, g∗(ℓ2) =
ν

µ
(1 − µ − ν)ℓ2 > 0,

we conclude that x◦ ∈ (ℓ1, ℓ2), and its explicit expression follows from the middle line
in (48):

x◦ =
(

1
κ

)(µ+ν)/(1−µ−ν)

(Aνν)1/(1−µ−ν)

(
µ

p

)µ/(1−µ−ν)

. (50)

Interestingly, the tax and subsidy fractions, inducing x◦, only depend on µ and ν:

σ∗(x◦) = 1 − 1
κ

(
µ

1 − ν

)ν/(µ+ν)

=
ν

1 − ν

1 − µ − ν

µ + ν
, δ∗(x◦) =

1 − ν − µ

µ
, (51)

ρ(x◦) = (1 + δ(x◦))(1 − σ(x◦)) =
1

µ + ν
. (52)

For an illustration, consider the following parameter values:

A = 1.8, µ = 0.3, ν = 0.5, p = 1.

Here, ℓ1 ≈ 0.255, x◦ ≈ 0.622, ℓ2 ≈ 1.968. The functional dependencies of f ∗, g∗, δ∗, σ∗

on the industrial investment level x are shown in Figure 1. A more realistic example is
presented in the next section.

`1 x◦ `2 x

0.0

0.2

0.4

0.6

0.8

1.0

(a)

g∗

f∗

`1 x◦ `2 x

0.0

0.2

0.4

0.6

0.8

1.0

(b)

σ∗

δ∗

Figure 1. (a) Follower’s optimal revenue f ∗, and optimal leader’s cost g∗. (b) Optimal subsidy
fraction δ∗, and optimal tax fraction σ∗.
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6. Case Study: Water Production in Lahore

In a recent paper [24], the authors used the Cobb–Douglas production function to
model a local water company in Pakistan. The water processing process includes filtering,
adding chemicals, packing, and selling at the market. The amount P of produced water
(measured in liters: l) in [24] was modeled as

P = ALµ Mν, (53)

where L is the number of labor hours, and M is the amount of raw materials, measured in
kg. The parameter values

A = 3212.468, µ = 0.3568, ν = 0.0542

were estimated in [24] for the real data related to local branches of Chemtronics Water
Services in Lahore, Pakistan. These estimates were based on the samples of P, L, M with
the following means (we show the standard deviations in brackets):

P = 35.7 · 103(±1.25 · 103), L = 304.5(±25.7), M = 903.4(±36.7). (54)

According to [24], the price of raw materials pm and the price of labor p are given by

pm = 100 PKR/kg, p = 1400 PKR/hr,

where PKR is the abbreviation for Pakistan rupees. The price of processed water was not
given in [24]. In fact, it can depend on the quantity sold, the brand, and other factors. A
google query like “the price of pure (drinking) water in Lahore” gives the range from 30 to
50 rupees per liter. Let us take the lowest of these values

pw = 30 PKR/l

as a rough approximation, since we are on the wholesale manufacturer’s side.
Instead of (53), for our model we need the dependence between the current and future

amount of industrial investments; see (1). In view of (53), Formula (1) should be rewritten
as follows:

xt+1 = pwPt+1 = pwALµ
(
(1−β)xt+(1+δ)αyt

pm

)ν
= ALµ((1 − β)xt + (1 + δ)αyt)ν,

A =
pw

pν
m
A ≈ 75086. (55)

The model and the problem formulated in [24] are quite different from ours. For
instance, the former did not take into account taxes, subsidies, and the market price of
water. Thus, it would be interesting if our model can produce realistic results concerning,
e.g., water production. Let us compute this quantity for the critical values ℓ1, ℓ2 of the
industrial investments:

w1 := ℓ1/pw ≈ 17808, w2 := ℓ2/pw ≈ 35161,

and the fair production level w◦, corresponding to the fair industrial investment level (50):

w◦ = x◦/pw ≈ 33120.

Surprisingly, this value is not far from the true average production value P given by (54),
while the basic production level w1 is almost twice as small. The functional dependence of
f ∗, g∗, δ∗, σ∗ on the production level w := x/pw is given in Figure 2. The tax and subsidy
fractions (51) in our case equal

σ∗(x◦) ≈ 0.08, δ∗(x◦) ≈ 1.65.
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Note that the subsidy amount is quite large.

w1 w◦w2 w

−2

0

2

4

6

×105 (a)

g∗

f∗

w1 w◦w2 w

0

1

2

3

(b)

σ∗

δ∗

Figure 2. Prediction of the dependence of basic quantities on the amount w of water produced in
Lahore. (a) The follower’s optimal revenue f ∗, and the leader’s optimal cost g∗. (b) Optimal subsidy
fraction δ∗, and optimal tax fraction σ∗.

As was mentioned, our guess concerning the price of water pw = 30 PKR/l was
rather rough. Let us compute the production level, the amount of raw materials and labor,
corresponding to x◦, for pw in a certain range. The amount of production equals

P∗(x◦) :=
x◦

pw
=

(
A
(

ν

pm

)ν)1/(1−µ−ν)(
µ

p

)µ/(1−µ−ν)( pw

κ

)(µ+ν)/(1−µ−ν)
. (56)

To compute L∗(x◦), we use the middle line in (49), and Formulas (46), (50) and (55):

L∗(x◦) =
(

1
Aνν

)1/(µ+ν)(µ

p

)ν/(µ+ν)( µ

1 − ν

)ν/(µ+ν)

(x◦)1/(µ+ν)

=

( A
µ + ν

(
ν

pm

)ν)1/(1−µ−ν)(
µ

p

)(1−ν)/(1−µ−ν)( µ

1 − ν

)(1−ν)/(1−µ−ν)

p1/(1−µ−ν)
w . (57)

The amount of raw materials used in production at equilibrium (x∗, y∗) is given by

M∗ =
(1 − β)x∗ + (1 + δ)αy∗

pm
=

1
pm

(
1 − β + ρβ

γ

1 + γ

)
x∗,

where we used (16). But for x∗ = x◦, using Theorem 3 and Formula (52), we have

β∗(x◦) = 1,
γ∗(x◦)

1 + γ∗(x◦)
= ν, ρ(x◦) =

1
µ + ν

.

Thus,

M∗(x◦) =
ν

ν + µ

x◦

pm
=

ν

ν + µ

pw

pm
P∗(x◦). (58)

Table 1 shows the dependence of P∗(x◦), L∗(x◦), M∗(x◦), given by (56)–(58) on the water
price pw in the range [25, 40] (per liter).

To compare the results predicted by Table 1 with the true average values (54), consider
two lines corresponding to the production amounts of 35,398 and 36,143 L. We see that the
predicted optimal amount of labor is lower than L, and the predicted optimal amount of
raw materials is higher than M. Interestingly, in [24], the obtained optimal values of labor
and raw materials (for the production level 36,000) of 334 and 688, respectively, shifted in
the opposite direction.
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Table 1. Predicted dependence of the optimal amounts of production, labor, and raw materials on the
price pw of processed water at the fair industrial investment level x◦ (the case of Lahore, Pakistan).

Water Price, PKR/l
pw

Production, l
P∗(x◦)

Labor, hr
L∗(x◦)

Raw Materials, kg
M∗(x◦)

25 29,164 171 961
26 29,973 182 1028
27 30,773 194 1096
28 31,564 207 1165
29 32,346 219 1237
30 33,120 232 1310
31 33,887 246 1385
32 34,646 259 1462
33 35,398 273 1540
34 36,143 287 1621
35 36,882 302 1702
36 37,614 317 1786
37 38,340 332 1871
38 39,060 347 1957
39 39,774 363 2046
40 40,483 379 2135

Note that it is also possible to predict the price of water using Table 1. If we calibrate
the production amount according to the average value P, given in (54), then the predicted
price of water will be approximately 33.5 PKR/l.

7. Conclusions

We introduced and studied a model for targeting industrial investments by using
subsidies and taxes. We analyzed a Stackelberg game corresponding to the equilibrium
of the dynamical system that governs the components of investor’s capital. The obtained
explicit solution transparently described the strategies of the government and the investor.
Based on this solution, we introduced the notion of a fair industrial investment level x◦,
which is costless for the government. Using a case study of water production in Lahore, we
showed that x◦ can produce realistic values for the amounts of production, labor, and raw
materials. This result appears encouraging.

This paper may serve as a baseline for further development of the proposed model.
Let us mention a few possible research directions.

Adding randomness, which preserves a form of asymptotic stability of the correspond-
ing dynamical system, in principle allows stating a problem in a similar manner. However,
such a problem will be much more complex, and its analysis will certainly require numeri-
cal methods to obtain quantitative results. The obtained exact solution in the deterministic
case may be useful for testing such methods. A more simple case arises when only the
parameters of the Cobb–Douglas production functions are randomized.

Another possibility would be to consider several investors for the same enterprise.
Here, an additional problem concerns the capital sharing, and this is related to game
theory. A distinct problem concerns a game between different enterprises producing the
same good.

Finally, it is possible to allow the investor and/or the government to use more complex
strategies. This should result in a dynamic game over a finite or infinite horizon. In addition
to the inevitability of numerical methods, here, an additional significant difficulty arises:
one needs to take into account the initial conditions and the horizon, if it is finite.
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