Exploring Thermoelastic Effects in Damped Bresse Systems with Distributed Delay
Abstract
:1. Introduction and Relevance of Subject
2. Main Result
3. Proof of Main Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bresse, J.A.C. Cours de Mecanique Appliqueee; Mallet Bachelier: Paris, France, 1859. [Google Scholar]
- Feng, B.; Xin-Guang, Y. Long-time dynamics for a nonlinear Timoshenko system with delay. Appl. Anal. 2017, 96, 606–625. [Google Scholar] [CrossRef]
- Houasni, M.; Zitouni, S.; Amiar, R. General decay for a viscoelastic damped Timoshenko system of second sound with distributed delay. Math. Emgine. Sci. Aero. 2019, 10, 323–340. [Google Scholar]
- Hao, J.; Wang, F. Energy decay in a Timoshenko-type system for thermoelasticity of type III with distributed delay and past history. Elect. J. Differ. Equ. 2018, 208, 1–27. [Google Scholar]
- Keddi, A.; Apalara, T.A.; Messaoudi, S.A. Exponential and Polynomial Decay in a Thermoelastic-Bresse System with Second Sound. Appl. Math. Opti. 2018, 77, 315–341. [Google Scholar] [CrossRef]
- Timoshenko, S.P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 1921, 6, 744–746. [Google Scholar] [CrossRef]
- Dimplekumar, C.; Austin, S.; Brad, L. On Applications of Generalized Functions in the Discontinuous Beam Bending Differential Equations. Appl. Math. 2016, 7, 1943–1970. [Google Scholar]
- Benaissa, A.; Miloudi, M.; Mokhtari, M. Global existence and energy decay of solutions to a Bresse system with delay terms. Comment. Math. Univ. Carolin. 2015, 56, 169–186. [Google Scholar] [CrossRef]
- Bouzettouta, L.; Zitouni, S.; Zennir, K.; Guesmia, A. Stability of Bresse system with internal distributed delay. J. Math. Comput. Sci. 2017, 7, 92–118. [Google Scholar]
- Elhindi, M.; Zennir, K.; Ouchenane, D.; Choucha, A.; El Arwadi, T. Bresse-Timoshenko type systems with thermodiffusion effects: Well-possedness, stability and numerical results. Rend. Circ. Mat. Palermo II. Ser 2023, 72, 169–194. [Google Scholar] [CrossRef]
- Guesmia, A.; Kafini, M. Bresse system with infinite memories. Math. Meth. Appl. Sci. 2015, 38, 2389–2402. [Google Scholar] [CrossRef]
- Zitouni, S.; Bouzattoota, L.; Zennir, K.; Ouchenane, D. Exponential decay of thermo-elastic Bresse system with distributed delay term. Hacettepe. J. Math. Stat. 2018, 47, 1216–1230. [Google Scholar] [CrossRef]
- Dimplekumar, C.; Ravikumar, K.; Ramkumar, K.; Dhanalakshmi, K.; John, A.D. Trajectory controllability of neutral stochastic integrodifferential equations with mixed fractional Brownian motion. J. Cont. Desi. 2023, 1–15. [Google Scholar] [CrossRef]
- Durga, N.; Djemai, M.; Chalishajar, D. Solvability and trajectory controllability of impulsive stochastic MHD equations with Rosenblatt process. Chaos Soliton Fract. 2023, 175, 114013. [Google Scholar] [CrossRef]
- Guesmia, A. Asymptot stability of abstract dissipative system with infinite memory. J. Math. Anal. Appl. 2011, 382, 748–760. [Google Scholar] [CrossRef]
- Cavalcanti, M.M.; Oquendo, H.P. Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 2003, 42, 1310–1324. [Google Scholar] [CrossRef]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1989. [Google Scholar]
- Liu, W.J.; Zuazua, E. Decay rates for dissipative wave equations. Ric. Mat. 1999, XLVIII, 61–75. [Google Scholar]
- Nicaise, A.S.; Pignotti, C. Stabilization of the wave equation with boundary or internal distributed delay. Diff. Int. Equ. 2008, 21, 935–958. [Google Scholar] [CrossRef]
- Rudin, W. Real and Complex Analysis, 2nd ed.; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choucha, A.; Ouchenane, D.; Mirgani, S.M.; Hassan, E.I.; Alfedeel, A.H.A.; Zennir, K. Exploring Thermoelastic Effects in Damped Bresse Systems with Distributed Delay. Mathematics 2024, 12, 857. https://doi.org/10.3390/math12060857
Choucha A, Ouchenane D, Mirgani SM, Hassan EI, Alfedeel AHA, Zennir K. Exploring Thermoelastic Effects in Damped Bresse Systems with Distributed Delay. Mathematics. 2024; 12(6):857. https://doi.org/10.3390/math12060857
Chicago/Turabian StyleChoucha, Abdelbaki, Djamel Ouchenane, Safa M. Mirgani, Eltigan I. Hassan, A. H. A. Alfedeel, and Khaled Zennir. 2024. "Exploring Thermoelastic Effects in Damped Bresse Systems with Distributed Delay" Mathematics 12, no. 6: 857. https://doi.org/10.3390/math12060857
APA StyleChoucha, A., Ouchenane, D., Mirgani, S. M., Hassan, E. I., Alfedeel, A. H. A., & Zennir, K. (2024). Exploring Thermoelastic Effects in Damped Bresse Systems with Distributed Delay. Mathematics, 12(6), 857. https://doi.org/10.3390/math12060857