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Abstract: In this work, we consider the one-dimensional thermoelastic Bresse system by addressing
the aspects of nonlinear damping and distributed delay term acting on the first and the second
equations. We prove a stability result without the common assumption regarding wave speeds
under Neumann boundary conditions. We discover a new relationship between the decay rate of
the solution and the growth of @ at infinity. Our results were achieved using the multiplier method
and the perturbed modified energy, named Lyapunov functions together with some properties of
convex functions.
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1. Introduction and Relevance of Subject

Originally, the Bresse system consists of three wave equations where the main variables
describe the longitudinal, vertical and shear angle displacements, which can be represented
in [1] as

P19 =Qx +IN+F
P2 = Mx—Q+ b @
p1wi = Ny —IQ + F3,

where
N =ko(wy —1¢),Q = k(@x +lw + 1), M = bipy. (2)

We use N, Q and M to denote the axial force, the shear force and the bending moment.
By w, ¢ and ¢, we are denoting the longitudinal, vertical and shear angle displacements.
Here, p; = pA = pl,kg = EA,k = KGA and | = R~!. We use p for density, E for the
modulus of elasticity, G for the shear modulus, K for the shear factor, A for the cross-
sectional area, I for the second moment of area of the cross-section and R for the radius of
curvature, and we assume that all these quantities are positives. Also, by F; we are denoting
external forces. The Bresse system (1) is more general than the well-known Timoshenko
system where the longitudinal displacement w is not considered ! = 0. There are a number
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of publications concerning the stabilization of Timoshenko system with a different kind of
damping; in this regard, we note the next references (see [2-7]).

System (1) is an un-damped system and its associated energy remains constant when
the time f evolves. To stabilize system (1), many damping terms have been considered by
several authors (see [8-14]).

By considering damping terms as infinite memories acting in the three equations,
the system (1) has been recently studied in [11]

0191 — Gh(@x + lw + )y — Ehl(wy —oé(p) + fooo Q1(t—5)@xx(s)ds =0
P21t — EIpax + Gh(@x + lw + ) + [;~ g2(t — 5)pxx(s)ds = 0
p1wiER(wy — 19)x + IGh(px + 1w + ) + [;~ &3(t — s)wxx(s)ds = 0,

where (x,t) €]0, L[xR4,g; : R+ — Ry, i =1,2,3 are given functions. The authors proved,
under suitable conditions on the initial data and the memories g;, that the system is well-
posed and its energy converges to zero when time goes to infinity, and they provided a
connection between the decay rate of energy and the growth of g; at infinity, whereas in our
system (3), the nonlinear damping dominates and makes the energy decay following its rate
with some assumptions on distributed delay, as seen in (40) since u3(s)9(s) is the coefficient
of nonlinear damping. The proof is based on the semi-groups theory for the well-posedness,
and the energy method with the approach introduced in [15] for the stability.

In [8], the authors considered the Bresse system in a bounded domain with delay
terms in the internal feedback

191 — Gh(@x + lw + )y — Ehl(wy — 1¢) + p19t + po@i(x,t — 1) =0
02it — Elpxx + Gh(gx + 1w +9) + s + fapps (x,t — 1) = 0
prwiEh(wy — 1)y + IGh(@x + 1w + ) + iy + o (x,t —13) =0

where 7; > 0(i = 1,2,3) are a time delay, j1, 42, i1, fi2, Th, 7 are a positive real numbers.
This system is subjected to the Dirichlet boundary conditions and to the initial conditions
which belong to a suitable Sobolev space. First, the authors proved the global existence
of its solutions in Sobolev spaces by means of the semi-group theory under a condition
between the weight of the delay terms in the feedback and the weight of the terms with-
out delay. Furthermore, the authors studied the asymptotic behavior of solutions using
multiplies methods.

Motivated by the works mentioned above, for x € (0,1),t € (0, %), we investigate the
following Bresse system:

P19t = k(@x + 1w +9)x + kol (wx — 1¢) — p19s
- T? |na(s)|ge(x,t —s)
P2ttt = Bpxx — k(@x + 1w + )
— Jo @(t = 5)[v(x)9px(s)]xds — 3 ()O(2) £ (1) — Y0x 3)
01Wi = ko(wx — l(p)x — kl((px +lw+ lP)
030t = —kqx — Yix
p4qr = —6q — kox,

with boundary conditions

p(x=0,t) =¢p(x=1,t) =0

P(x=0,t)=¢p(x=1t) =0

wx=0,t)=w(x=1,t)=0 4)
wy(x=0,f) =wy(x=1,1) =0

Px(x=0,t) = px(x=1,t) =0, t>0,
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and the initial data
p(x,t =0) = @o(x), pt(x,t = 0) = ¢1(x),
p(x,t =0) = ¢ho(x), Pe(x,t = 0) = 91 (x), 5)
w(x, t =0) = wo(x), w(x,t =0) = wy(x),
o(x,t =0) = go(x),q(x,t = 0) = qo(x)

and

e(x, —t) = fo(x,t).

Here v, 0, f are specific functions, and p1, 02, 03, 04,6, B, ¥, k, 1, ko are constitutive con-
stants, while 11, T, are two real numbers with 0 < 7y < 1, y; is positive constant, y is an
L*®function, y3 is a bounded function and @ is the relaxation function satisfying:

Hypothesis 1 (H1). @ : Ry — Ry isa C' function satisfying
@(0) > 0, — ||1/(x)||oo/0 @(s)ds = r > 0. ©)

Hypothesis 2 (H2). There exists a positive nonincreasing differentiable function ¢ : R — Ry

satisfying
@' (t) < —0(t)w@(t),t > 0. (7)

Hypothesis 3 (H3). y, : [11, 2] — R is a bounded function satisfying

[ a(s)lds < . ®)

Hypothesis 4 (H4). The functions v, 0 satisfy

ve Cl([O,l}),
v=20,0or v(0)+v(1) >0,
xeir[gl]{v(x) +0(x)} >0.

Hypothesis 5 (H5). f : R — R is a continuous and non-decreasing function such that there exist
positive constants ki, ky and I and h : R4 — Ry is a convex, continuous and increasing function
of class C1 (R ) N C?(]0, oo) satisfying: h(0) = 0, and "' = 0on [0,11] or h'(0) = 0 and K" > 0
on [0, 4] such that

W+ £2(5)) < f(s)s, for |s| < I,
kis? < f(s)s < kys?, for |s| > 1.

Remark 1. Since @ is positive and @(0) > 0; then, for any to > 0, we have
00 t to
@01 = / @(s)ds > / @(s)ds > / @(s)ds = @y > 0.
Jo 0 0

Using the fact that v(0) > 0 and a is continuous, then there exist ¢ > 0 such that

inf v(x) > 0. Let us denote
x€[0,€]

d = min{e, ir[})f }{v(x) +0(x)}} >0,
xel|0,e
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and let « € C'([0,1]) be such that 0 < & < a and
{ a(x) = 0,if v(x) < ¢

a(x) =v(x),if v(x)> %.

Under suitable assumptions, we show that, even in the presence of the thermoelastic,
we can establish a general energy decay of the solution for (3). We prove our result by using
the energy method together with some properties of convex functions. The advantage
to propose system (3) is to discover the interaction between the distributed delay term
(located in the first equation) and nonlinear damping in its general case (located in the
second equation) with the presence of linear memory and their influence on the stability of
the system. We found a good interaction between them by outlining minimal conditions to
stabilize the system. We consider that these two terms are considered as damping and each
term has a special way to stabilize the system.

Lemma 1 ([16]). The function « is not identically zero and satisfies

d
inf > 2.
(nf @) +6(x)} 2 5

Let us denote by h* the conjugate function in the sense of Young of the convex function
hasin [17]
I (p) = sup (pt = h(t)).

teR4

Assume that i’/ > 0; then, for p > 0 a given number, i* is the Legendre transform of 7,
which is given as in [18] by

1 (p) = plH'1 7 (p) = k(1K™ (p)), ©
and which satisfies the following inequality (Young’s inequality):
px < h(x)+h*(p), Vp,x > 0.
The relation (9) and the fact that #(0) = 0 and (k') !, h are increasing functions yield
1 (p) < plH']7H(p), ¥p 2 0.

Now, for ¢y, we define the functions | and K by

t, if W'=0on|01]
J(t) = { (10)
th' (eot), if W'(0) =0 and K’ >0 on [0,11],
and g
K(t) = /t T (11)

The following notations will be used:

(@ou)(t) = /104(95) /Otw(s)(u(t) — u(s))dsdx, Yu € L2(0,1)

0

(@ou)(f) = /1 v(x) /Otco(t — ) (u(t) — u(s))?dsdx, Yu € L2(0,1),

0
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there exists a positive constant ¢ so that
(@ou)? < cwouy,Yu € H}(0,1). (12)

We organized our paper as follows: In Section 2, we prepare some Lemmas and
present some appropriate functional to state the main Theorem 1. Notably, the research
establishes a stability result in Section 3 without the conventional assumptions on wave
speeds, particularly under Neumann boundary conditions.

2. Main Result

In this section, we prove our decay result for the energy of the systems (3)—(5) using
the multiplier technique. To achieve our goal, as in [19], we use the following new variable:

z(x,7T,s,t) = @(x, t — sT),
and then we obtain
{ szi(x,T,8,t) + z¢(x,T,8,t) =0

z(x,0,s,t) = @¢(x, t).

consequently, the problem is equivalent to

P11t = k(px + 1w + 9)x + kol (wx — 1) — prgs
- Tle lua(s)|z(x,1,s,t)ds
P21 = ﬂi/’xx —k(px +1w+¢)
— Jo @t =) [v(x)9x(s)]xds — pz()0(x) f (1) — vox (13)
prwi = ko(wy —19)x — kl(@x + 1w+ )
P30t = —kqx — YiPrx
paqr = —0q — kox
szi(x,T,8,t) + z¢(x,7,5,t) =0,

where
(1,8) € (0,1) x (11, ™).

We need a several Lemmas.

Lemma 2. The energy functional £ is defined by

1 /1 t
Et) = 5 [ [t +papi+prwt+ (B—v(x) [ @(E)ds)p?+ pac®

1
a0 + k(s + I + ) + ko(wz — 1g)*]dx + S0y

1 /1 o,
—1—%/0 /o /ﬁ slua(s)|2%(x, T, s, t)dsdTdx, (14)
satisfies
e = —of 1 qux+%w'o¢x—%@(t) / () pRdx (15)
1 ko) 1
“pslt) [ 0pef s — (s~ [ atsilas) [ gt
and

1 1 1
E't) < —(5/0 qdx + %c@’m/;x — 770/0 Prdx — yg(t)/o O(x)ef (pr)dx <0, (16)
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where g = py — fTle |pa(s)|ds > 0.

Proof. Multiplying (3); by ¢, (3)2 by ¢, (3)3 by wy, (3)4 by 0 and (3)5 by g, with integration
by parts over (0,1) and using (4), we obtain

1d 1
EE/O [P1<P%+P2¢t2+p1w%+ﬁlp§+pgg2+p4q2+k(q)x+lw+¢)z
+k0(wx - l(P)ﬂ dx
1 1, 1, 1 o
+—(D0¢x+5/ q dx+y1/ qotdx+/() (pt/ lpa(s)|z(x, 1,5, t)dsdx
T

— [ [ o=ty (o) [ o@w@lar=0. @)

The last term in the LHS of (17) is estimated as follows:

/ th/ @(t — s)v(x)Px(s)dsdx
2dt @0 2dt/ / Y3

—3@op+ 300 [ vx)yiar as)

Now, multiplying the last equation in (13) by z|p2(s)| and integrating the result over

(0,1) x (0,1) x (71, T2)
dtz/ / / slpa(s)|22(x, 7,5, t)dsdTdx

- / / / |ua(s)|zz< (x, 7,5, t)dsddx
0 0 Tl
1 1 rm
- _1/ / /2|.“2(5>|%ZZ(X,T,S,t)dsdrdx
= 2// l2(5)[(2%(x,0,5,t) — 2°(x, 1,5, ) )dsdx
= ([ <s>|ds>/ 2ix
- 2 7 .1’12 0 (Pt
1 /1 m
_*// lua(s)|2%(x, 1,5, t)dsdx.
2 0 T

From (14), (17), (18) and (19), we obtain (15).
The energy functional satisfies

gt < —(S/Olqzdx—l—%a)’mpx—(yl / lua(s) /q)%dx
i) [ 6w

then, by (8), there exists a positive constant 7y such that

£10) < 6 [ Pt J@ope—mo [ ghdx—ps(t) [ OGS (s)ix

then, we obtain £ as a non-increasing function. [J
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Lemma 3. The functional
1 t
R() = —p2 [ a0 [ =) (g(t) - p(s))dsdx
’YPA‘/ q/ @(t—s) P(s))dsdx,
satisfies
F(t) < —pZ?(DO/Ola(x)gbtzdx—k&sl /01 Pidx + ke /Ol(gox—i-lw—i—z/))zdx
+ 16()2( )dx + ' gd Fe(lter +—+4)@
C/o xft/)txc'/oqxc elagogbx
+c@' oy dsdx. (19)
Proof. We set
Fy(t) = h(t) + I(t)
where
1 t
) = ez [ a0y [ @t —s) () - pls))dsdsx,
L(t) = ’)’04/ q/ @(t—s) P(s))dsdx.
Differentiation of I; gives
1 t
B0 = —p2 [ w()pu [ @t —s)@(e) — p(s)dsax
1 b
— pn [ a()pe [ @/(t=5)(p(1) — p(s)dsdx
1 t
- p2/0 zx(x)lptz/o @(s)dsdx. (20)

Using (13), we obtain

- m/lmwﬁﬁa—ﬂwm—wmww
= —p/ t/ (£ = 5)(x(t) — P (s) )dsddx
t

+ k/ (px—i—lw—H/)/ ot — 8)(Y(t) — p(s))dsdx
— [ ([ ot s)atnis) ([ @l —5)(p(t) — e(s))ds

1
+uxﬂwm<vmm/mf@mww@myx
o [ ale [ @l =) (ple) ~ p(s))ds)d @
b [ @ (B ) [ @@pato)as) ([ @t - ) (0) — (s))ds) .

Next, by using (12), we have for any 4; > 0

1 1
—pz/o a(x) Py /Ot @' (t— 5)((t) — p(s))dsdx < c51/0 a(x)pPdx — iw’mpx. (22)
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Also
B = T [aa [ ol —s)p) - pis)ist
1 t
+ 28 [Ca(x)g [ @'t =) (p(e) - p(s)dsdx
t
W4 [ agpnl [ @(sis)ax.
Using (13), we obtain
L) = q/ ot — ) (s))dsdx
~y / Jox [ @t = 9)(w(t) ~ y(s))ds)ix
’YP4/ q/ (t—s)( P(s))dsdx
W [ a(igpl [ @(s)as)ix. 23)
Similarly to (22), we treat the terms in the RHS of (21) as follows:
1
[3/ / @(t—s)(Px(t) — Px(s))dsdx < csl/o P2dx + éa)(npx. (24)
Also,

1 t
k[ a@)gettwty) [ @t =) () - ys)dsd
< cey /01((px +lw + p)*dx + éa)mpx. (25)

By the same method used in [18], we have these estimates

[ ([ @) ([ @t - )(alt) — puls)is)
< cer /0 Y2dx + c(er + a)‘oo‘/’xr (26)
and
() [ a0 F ) ([ @0t = 9)(0a(6) — a(s))ds )
<c /01 0(x) f2(yr)dx + ccooypy. (27)
Finally,

[ ) (B~ v [ @(E)puts)is) ([ @t —)(w(1) — p(s))ds
<mAW@wm@+;mw% (28)

Asin (22), we easily find that

’yp4/ q/ (t—s)( P(s))dsdx < c/ FPdx — c@' oy (29)
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Also, we estimate the first term in the RHS of (23) as follows:

6 1 t 1
_%/o “(X)Q/O @(t—s)(P(t) — ¢(s))dsdx < c/o g dx — cooypy, (30)

and

7}(;4/ a(x )qlPt/ ()dsdx<cr52/ ¥ dx—i—(s / 7d (31)

By combining the estimates (20)-(31), we complete the proof. [

Lemma 4. Assume that (H1) hold. Then, the functional

1
t) = Pz/o Pipedx,

satisfies

_7/ ¢§dx+pz/ l,bdx+—/(¢x+lw4r¢)2dx

+c/ 0(x) f2(wy)dx + c/ 0%dx + c@opy. (32)
Proof. With direct computations using integration by parts and Young’s inequality, we have
E(t) = Pz/ ll)?dx—ﬁ/ ¢2dx—k/l (¢x + lw + 9p)dx
4 [ [ @t - unts )dsdx—v/ poudx
i) [ 00)pf () )

Using (H1), Young’s, Cauchy-Schwarz and Poincare’s inequalities, we obtain (32).
O

Lemma 5. The functional

1 X
F5(t) = p3pa /0 Q /0 q(y)dydx,
satisfies
Ei(t) < p3/ dex—i-sg/ Wrdx + c( 1+ / 7*d (34)

Proof. Direct computations give

1 1 X
B(t) = —kps/o (cpx+lw+¢)9dx+pskol/0 (wx—lq))/o o(y)dydx
1 1 1 1
+703 /O Q*dx + py fo qerdx — p1y /0 prdx + pyl /0 Proxdx.

by using Young’s inequality, we obtain (34). [
In the following Lemma, we suppose that

k = k. (35)
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Lemma 6. The functional

1 1
Ey(t) = —p1/0 ¢r(wy — lo)dx — pq ./0 wi(@x + lw+ ¢)dx

satisfies
1
Ei(t) < —% ( xflgo)zdxf%l/o w dx+c/ loh dx+c/ Prdx
0 .
1 rT
+kl/ ((px—i—lw—l—t/))zdx—i—c/ /2 \yz(s)\z (x,1,s,t)dsdx, (36)
0 0 Jr

Proof. By differentiating F4, then using (3), integration by parts and (4), we obtain

1 1
E() = —k/o (gox+lw+lp)x(wx—lq))dx—kol/0 (wy — Lg)2dx

1 1 [

—|—y1/0 q)t(wx—l(p)dx—/o (wx—l(p)/T lu2(s)|z(x,1,s, t)dsdx

1

1 1

—p1/0 q)t(wtx—lq)t)dx—kofo (wx — 1) x(@x + lw + p)dx
1 1

+kl/0 ((px+lw+1,b)2dx—p1/0 Wi (@t + lws + Py )dx

Using Young’s, Cauchy-Schwarz and Poincare’s inequalities, bearing in mind (35)
yields (36). O

In the following Lemma, we suppose that

2
_kBos KB 37)
1Y Pay

where x = (£ — %2) and (35) holds.
Lemma 7. The functional
1
B = e ¢t(¢x+lw+lp)dx+ﬁpl/ ¢x¢dx+ﬁ93x/ opidx
k 1
—ﬁX/ ﬁ%%—lw—i—@dx—%/@ gbgbtdx—kﬁpl / Ywidx
/ (pt/ @(t —s)v(x)Py(s)dsdx
—l—ﬂ/ @(s)ds v(x)t/;x /x w(y)dyd,
k Jo 0 0
satisfies

1
Fi(t) < *K (<Px+lw+1p)2dx+584/ wtdx+3ce6/ (wy — lg)*dx

272 4
+8C£5/ rdx + (ﬁ ELe (DOC / P2dx
ko

/z/;dx+ /godx+ /q

+(1+:+ /dex+cl+ // |u2(s)|2% (x, 1, t)dsdx
5

(14 814 + L ' )0y — calop (38)
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Proof. Direct computations give

1 1
F(t) = Pz/o wtt((px+lw+¢>dx+pz/o Pi(@ux + Loy + 1 )dx
1 1 1
+%/0 #’tx(Ptder%/o ¢X¢ttdx+%x/o Qrrdx
Bos [ _ke [
2 [ ogudx = 27k [ au(get o+ g
1 2 1
—kﬁx/ Q(q)tx+lw1s+¢t)dx—ﬁpzl /Ollﬂl)ttdx
L
+ﬁ£\/ 1pwttdx—?/ gott\/o (,’D(t—S)U(X)lPx(S)dex
/ / (t — s)v(x)px(s)dsdx
+ﬂ/0 w(s)ds/ v(x )lPtx/ w(y)dydx

+%/O @(s)ds /01 v(x) Py /Ox wy (y)dydx.

Using Young, Cauchy-Schwarz and Poincare’s inequalities, bearing in mind (35) and
(37) yields (38). O

Lemma 8. The functional
/ / / e ua(s)|2%(x, 7,5, t)dsdtdx,
satisfies
11 m 1
Fi(t) < —171/ / / s|y2(s)|22(x,*r,s,t)dsdex—I—]/tl/ prdx
0 Jo Jgy 0

1 rr
_171/0 /2|V2(S)|z2(x,1,s,t)dsdx (39)
T

where 111 is a positive constant.

Proof. By differentiating Fs;, with respect to t and using the last equation in (13), we have

—2/ / / e M pua(s)|zz(x, T, s, t)dsdtdx

B 7/ / / se™ T |ua(s) |22 (x, T, 5, t)dsddx
O -O J T
1 o
~ [ ]Il 1,5, — 2 (x,0,5,1)dsdx.
0 Jhy

Fg(t)

Using the fact that z(x,0,s,t) = ¢¢(x,t),and e™® < e 7 <1, forall0 < T < 1, we obtain

Fl(t) = —171/// slua(s)|2%(x, o, 5, t)dsdpdx
// 5| ua(s)|22 xlstdsdx+/ [pa ( s)|ds/ @rdx.
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Due to the fact that —e™* is a increasing function, we have —e™° < —e™ ™2, for all
s € [n,nl
Finally, setting 71 = e~ and recalling (H3), we obtain (39). O

We are now ready to prove the following result.

Theorem 1. Assume (H1)—(H5), and there exist positive constants A1 and Ay such that the energy
functional given by (14) satisfies

t
£(t) < MK (M /O #3(5)8(5)ds ), vt > 0, (40)
where & = 1if v = 0. K is defined in (11).

3. Proof of Main Result

We define a Lyapunov functional

L(t) = NE(t)+ N1F(f) + NoFy(f) + N3Fs(t) 4+ Fy(t)
+  NsFs5(t) + NeFs(t), (41)

where N, N1, N», N3, N5 and N are positive constants to be selected later.

Proof. (Of Theorem 1) By differentiating (41) and using (16), (19), (32), (34), (36), (38), (39),
we have

£ < ~[22] [+ o0t + 20 [ o(xghax

r 212 l4
_ %—26‘81]\]1 +8(385N5—N5('B 3 CDOC :|/ w,%dx

I 1
+ p2N2+£3N3+C(1+€)N5+C:|/0 1pt2dx

L 4

- 1 '
= NUO_CN5(1+)_.”1N6_C}/O prdx
— P211 5:34N5]/ wtdx

[ 1
_N5—CN1—CN3(1+£)—CN5 1—|— :|/q

- Np?’—ch—ch(l—i-l—l—)}/ o*dx
& & | Jo
1 1 1 1
+[cNo +cNi(14+¢e + — 4+ —) +cN5(1 + — + —)]@oypy
€ &3 €4 &

N
+[= —cNy — cN5]a7’01px

2
- N6771_CN5 1+ —c}/ / 2 (s)|22(x, 1,5, t)dsdx
—[Ne11] / / / s|ua(s)|2%(x, 7,8, t)dsdTdx
ko s 2ck? )
- §N5—k €2N1—7N2 / (¢x + lw + ¢)“dx
r 1
— % —3C£6N5:| / (wy —l(p)zdx
I 0
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1
—[eNy + ¢Na + cNs] /0 8(x) £2 (1) dx

1
~Nps(t) [ 0(0ef (pr)d. )
By setting
_lp; kol 1 o
€47 20Ne €6 T TaeNe €5 T BeNg 2 T gRe
we obtain

cw < -[B2 /Ol(a(x)+e(x))¢$dx+@ Ole(x)t,btzdx

1
— {7’21\72(1 — 41%m) — 2cs1N1] /0 W2dx

1
+lo2Na + eaNa +c(1+ Ns)Ns +c] |

1
—[N#no — cN5(1+ N5) — 1 Ng — ¢ /0 (pfdx

pull [t 1 'y
s /Owtdx— N(S—CNl—CN3(1+5>—CN5(1+N5) /qux

1
- |:N3I? —¢cNy — N5 (1 + N5)} /0 0%dx

1 1
+[cNy +cNp(1+ €3+ i ;) + cN5(1 + Ns)|@otpy
2 3

N
+[E —cNp — CN5]CO/01/)x

1,
—[Net1 — cN5(1+ N5) — ¢ /0 / ’ \yz(s)|zz(x,1,s,t)dsdx
5

1 1 rr
—[Néiyl]/ / /2s|y2(s)|zz(x,T,s,t)dsd'cdx
0 0 T
k 2 ! 2
- ZNS_k &Ny —c¢ /0 (¢x + lw+¢)“dx

S

“[eNy + N> + cNs /O L) 2 () dx
1

~Nus(t) [ 0x)pif (o) 3)

Next, we carefully choose our constants so that the terms inside the brackets are
positive. Let us take e; = e7 = N% and we choose N5 large enough such that

kN:
&1:TS*€2N1*C>O,

then, we choose I small enough and we fix N; such that

(1 —4°m)N> — 2eoN; — ¢ > 0,

N~

Ky =
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where
m— (13726' 312(DQC)
g2 2r2

then, we take e3 = N% and we choose Nj large enough such that

dp1

N3y = 4

N; — p2N2 — &3N3 — cN5(1 + N5) > 0,

then, we choose N3 large enough such that

k
g = ‘%Ng, — cN;(14 Np) — cN» — cN5(1+ Ns) > 0,

and N large enough such that
a5 = 171Ny — cN5(1 + N5) > 0.
Thus, we arrive at
1 1 1 1
L't < —ucz/ w%dx—ag/ Prdx — | Nﬂo—c/ (p%dx—ocy/ whdx
0 0
1
—tx5/ / s|ua(s)|2%(x, 1,5, t)d x—oq/ (@x + lw + p)2dx
—vcg/( —l¢)2dx— ON — ] / qzdx—vq/ Q (44)
0
+[N—c]w’o¢x+cwo¢x—zx6/ / / slpa(s)|22(x, T, 8, t)dsdTdx
2 0 Jo Jy
1 1
e [ 00 (dx — Npa(t) [ 00x)pef (o)

11 kol
where K = 171N6,(X7 = p4 , X8 = 2

On the other hand, if we let
T (t) = N1Fi(t) + NoFy(t) + N3F3(t) + F4(t) + N5Fs(t) + NeFs(t),

then
T < oMy [ It [ @(t—9)((0) — p(s)dslx
'7941\]/ lov(x q/ @(t—s)( (s))ds|dx+N2/Ol|1/)1/)t|dx

dx+p1/ |g0t —lq))|dx

+0304N3 A Q A q(y)dy

1
bou [ (et ot g)ldx+ p2Ns [ il + o+ ) dx

ﬁplNe;/ [ pt IdX+ﬁp3st/ logt|dx

poal® [
T Ns [ Il
ot
v(x) @t ./0 @(t —s)Px(s)ds|dx

v(x)ihx /Ox wt (y)dy

+7st/0 |q(@x + lw + ) |dx +

o1l /’1 P1 !
+——N. wtldx + ==Ni
ko > Jo [ k2 Jo

+l%(/0tco(s)ds)N5 /01

dx + N6|F6(f)|.
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Exploiting Young, Cauchy-Schwarz and Poincaré’s inequalities, we obtain

1
TOI < e [ (F+ 97+ +ud+ (pu+ o+ 9+ (we = 1g) + 0 + 72 dx

1 1 rm
+chot/Jx+c/ / /2s\yz(s)|zz(x,r,s,t)dsdex.
0 0 T
< c&(t).

Consequently, we obtain

I T()] = |£(t) = NE(H)| < c&(t),

that is
(N—=0c)E(t) < L(t) < (N+0)E(H).

Now, by choosing N large enough such that
N
N—C>O,E—C>0,N§—C>0,N170—C>O,
and exploiting (14), estimates (44) and (45), respectively, give

CE(H) < L(1) < 0E(t), ¥t >0,

for some cq, ¢y > 0.
We have
L(t) ~ E(2),

and

L'(t) < —c&(t) + caovopy + C‘/ol 0(x)(W? + f2(yr))dx, Vt > tq.

Let us define the following sets:

Ty = {xeO1):[¢i(x,0)[>h},

op = (0,1)\Zy.

We estimate the last term in the RHS of (47).
First, note that

1
Jy e+ Ay = [ eh+ £
+/ X)(§7 + f2(r))dx

Using assumption (H5) and (16), we easily show that

(®) [, 0WE+ Pux < (57 4 [ is(D00)pf ()

IN

A

—c&'(t).

If1n” =0o0n[0,1]:

1
(k7' +k2) [ pa(00(pf (9r)dx

(45)

(46)

(47)

(48)

This implies that there exist k}, k} such that k’ls2 < f(s)s < k’252 foralls € Ry and
then (48) is also satisfied for |¢(x,t)| < I3, then on all (0,1). From (47) and (48) and the

fact that p} < 0, we arrive at
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(a() L+ cE(1)) < —p3()](E(F)) + cvoypy, VE > to, (49)
where | is defined in (10).
If 1 (0) =0and 4"’ > 0 on (0,4]:

Since h is convex and increasing, 1! is concave and increasing, and by using (H5),
the reversed Jensen’s inequality for concave function (see [20]), and (16), we obtain

Ha(t) /‘2¢9<x><¢%+f2<¢t>>dx < wst) /w9<x>hl<¢tf<¢t>>dx
< pslt) /Q O (yi)dx

IN
=
w
—~
—
-
o
e
=
AN
Q
=
N
/c‘_
T~
5
—~
=
SN—
S
-
—
S
N—
QU
=
S~—

IN

cua () /Q IO (9

IN

cps (O ([ 1 @0 p))
< cpa(t)hH (—c€' (1) (50)

Therefore, from (47), (48) and (50), we find that
U3 L' (t) < —cpz&(t) + cush 1 (—cE'(t)) — c&'(t) + cooypy, Vt > to.
By using Young’s inequality (49) and the fact that
W (p) < p[H] M (p), & <O,h" >0 and p; <0,
we obtain for g > 0 small enough and ¢y > 0 large enough,

(1 (e0& (1)) [u3 () L(t) + cE(1)] + co€ (1))
= eof ()" (o€ (1)) [u3L(t) + cE(t)]

(0 (1)) [ L () + HAL(E) +c€'(B)] + o€ (1)

IN

—cpah’ (eo€ (1)) E(t) + cush’ (o€ (£))h ™ (—cE' (1))

+co&' (t) + ch' (& (t)) @0ty

IN

—cpsh’ (o€ (t))E(t) + cpush™ (W (e0&(t)) — c&'(t)

+co&' (t) + ch' (& (t)) @0ty

IN

—cuzh'(e0€(t))E(t) + ceoush’ (eoE(H)E(t) + ccoopy

IN

—cuzh’(e0€ (1)) E(t) + cwopy = —cuz] (E(t)) + c@otpy. (51)
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Now, let us define the following functional:
uz(£)L(t) — c&(t) if W =0, on [0,}4]
D(t) =
W (eo&(t))[us(t)L(t) — cE(E)] 4+ co&'(t), if W' (0) =0 and K" >0 on [0,1].

Using (46), we have
D(t) ~ £(t),

and exploiting (49) and (51), we easily deduce that
D'(t) < —cus(t)J(E()) + cwopy, Vt > 1. (52)
By using (16) and (H2), we obtain

@®)D() = ¢(HD(E) +9()D(¢)

< —eus(D)9(1)] (E()) + cB(t) @0y
< —eus(D)9(1)](E()) + c(d(t)@)oypx
< —epua()9()](E(L)) — c'oypy

< —cus()O(H)](E(t)) — &' (1)

Next, let
H =e(0(t)D(t) + (1)),
where 0 < & < € and ¢ is a positive constant satisfying
O(t)D(t) +c&(t) < %S(t),w > 0.
We also have

H~E, (53)
and for Vt > tg

HI (1) < —ceps(D)8(1) (). (54)
Noting that K" = —% (see (11)), we obtain from (54)
H (1)K (H(t)) > ceps(t)d(t), Yt > to.
A simple integration over (to, t) then yields

to

K(H(t)) > K(H(to)) + ce /Ot usz(s)0(s)ds — cs/o us(s)d(s)ds.

On the other hand, since lim K(t) = +o0 and

t—0+

0 < H(ty) < %5(150) < %8(0).
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References

We obtain for € small enough

to
K(H(to)) — cs/o 115(s)8(s)ds > 0.

Then, thanks to the fact that K~! is decreasing, we infer

to

t
H(t) < K HK(H(to)) + cs/o us(s)d(s)ds — cs/o 13 (s)9(s)ds)
t
< K7t [ pals)9(s)ds).
0
From this end inequality and (53), we easily obtain (40). Then, the proof is completed. O

4. Conclusions

Our system concerns a Bresse system along with structural damping, distributed delay
and in the presence of both temperatures of second sound type effects introduced in (3).
As a main novelty, a general decay result for the solution with few constraints regarding the
speeds of wave propagation is obtained. This new result is considered, as far as we know,
as an extension of previous results in the literature for such type of system. We mention
here that the nonlinear damping in our system creates a good interaction between the
distributed delay and the other damping terms of system (3). This type of damping gives
more information and qualitative properties on the solution and its impact on stability is
also very important, as it is shown in the requirement of Theorem 1. Of course, the other
terms (both temperatures and strong damping effects) act as balances in the stability of
the system.

Open problem: Open problem: It will be very interesting to analysis the stability of
the same system in more complicated cases from the mathematical point of view, but it will
be very useful for the application point of view. Namely, one can consider the system

P11 = k(x + 1w + )2 + kol (wx —19) — p1 ¢
2Pt = Pprx — k(@x + 1w+ ) — o (£)0(x) f (1) — 70« (55)
prwte = ko(wx —19)x —kl(gx +lw + )
P30t =¢ fo @(s)0xx(t —s)ds — Yitx,
with a good choice of boundary and initial conditions. The thermoplastic effect is taken in

viscoelasticity, and the most interesting question will be asked as follows: Can the system
be stabilized? What kind of stability can be found? What is the role of u(#)60(x) f (¢¢)?
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