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Abstract

:

The Plücker matrix   B  L ( n , E )    of the Lagrangian Grassmannian   L ( n , E )  , is determined by the linear envelope   〈 L ( n , E ) 〉   of the Lagrangian Grassmannian. The linear envelope   〈 L ( n , E ) 〉   is the intersection of linear relations of Plücker of Lagrangian Grassmannian, defined here. The Plücker matrix   B  L ( n , E )    is a direct sum of the incidence matrix of the configuration of subsets. These matrices determine the isotropy index   r n   and   r n  -atlas which are invariants associated with the symplectic vector space E.






Keywords:


Lagrangian Grassmannian; Linear Envelope; Contraction Map; Incidence Matrices; Radical Ideal; Seindeber’s lemma




MSC:


14A99; 15B99; 37J11; 53D12; 94B35












1. Introduction


Given E a symplectic vector space of dimension   2 n  , the set   L ( n , E )   of all Lagrangian subspaces of E is called the Lagrangian Grassmannian of E. These spaces have a prominent role in symplectic geometry that, in the words of Dusa McDuff “Symplectic geometry: is the geometry of closed skew-symmetric form,   [ ⋯ ]   thus symplectic geometry is essentially topological in nature   [ ⋯ ]  ”, see [1]. In this article it is shown that the Lagrangian Grassmannian   L ( n , E )   has a rich algebraic structure when we assign a coordinate system known as Plücker coordinates. For this we prove the existence of a matrix   B  L ( n , E )   , whose kernel contains all the Lagrangian subspaces of E. This matrix is built with the minimal family of linear form in    (  ∧ n  E )  *   that nullify the Lagrangian Grassmannian under Plücker inclusion. another way of seeing   B  L ( n , E )    is as a sum of matrices of the family   {  L  r n   ,  L   r n  − 1   , … ,  L 2  }   where   L   r n  − k   , is a   ( 0 , 1 )  -matrix, sparce, with    r n  − k  -ones in each row and    r n  −  ( k + 1 )   -ones in each column where   k = 0 , … ,  r n  − 2   and    r n  =  ⌊   n + 2  2  ⌋    is an index that measures the degree of isotropy in E. In this paper, we have:



In Section 3 and Section 4 we construct a family of homogeneous polynomial equations whose solutions parameterize the elements of   L ( n , E )  , we call this family of polynomials Plücker relations of Lagrangian Grassmannian. In Section 5 and Section 6 we show that the linear relations of Plücker of the Lagrangian-Grassmannain is the minimal family, up to linear combination, of homogeneous linear polynomials that nullify   L ( n , E )  .



In Section 7 calculate the matrix   B  L ( n , E )    associated with the linear envelope   〈 L ( n , E ) 〉   of   L ( n , E )  , we call this the Plücker matrix of the Lagrangian Grassmannian. We can see that   B  L ( n , E )    is the incidence matrix of a family of subsets of the set of indices   I ( n , 2 n )   and so   B  L ( n , E )    is a direct sum of submatrices, each belonging to the set   {  L  r n   ,  L   r n  − 1   , … ,  L 2  }  . Where   L k   is a sparce matrix of zeroes and ones with k-ones in each row and   k − 1  -ones in each column.



Section 8 the isotropy index    r n  : =  ⌊   n + 2  2  ⌋    is studied as an invariant of   L ( n , E )   and that, among other things, allows us to compare Lagrangian Grassmannian.



De Concini and Lakshmibai [1981] [2] show that the Lagrangian Grassmannian   L ( n , E )   is defined by quadratic relations. These relations are obtained by expressing   L ( n , E )   as a linear section of   G ( n , E )  , so   L  ( n , E )  = G  ( n , E )  ∩ P ( L  (  ω n  )  )  , where   P ( L  (  ω n  )  )   is the projectivization of a vector space   L  ω n    such that    ∧ n  E ≃  L  ω n   ⊕  ∧  n − 2   E  , where   L  ω n    is    S  p  2 n     ( F )   -representation of highest weight    ω n  =  h 1 *  + ⋯ +  h n *   , and where   L  ( n , E )  ⊂ P ( L  (  ω n  )  )   see [3] (pages 182–184), [2,4].



The advantage of our approach is that we have the equations   {  Q  α , β   ,  Π  α  r s    }   that define   L ( n , E )   as a projective variety and with this we obtain a totally explicit information of   L ( n , E )   as a linear section of the Grassmannian   G ( n , E )   (see Theorem 6) and in this way, we can give a connection with matrix theory and symplectic geometry which opens a computational horizon in these topics. In [5] we show that the homogeneous linear functionals   {  Π  α  r s    :  α  r s   ∈ I  ( n , 2 n )  }   also allow us to describe the k-Grassmannian-Isotropic   I G ( k , E )  , of a symplectic vector space E of dimension   2 n   and we give the Plücker matrix of   I G ( k , E )   which is a generalization of   B  L ( n , E )   . The following bibliography is relevant for this research in [6,7,8,9,10] we can see a few results about   L ( n , E )  . See [9,11,12,13,14], where you can see some applications of   {  Π  α  r s    :  α  r s   ∈ I  ( n , 2 n )  }  .




2. Preliminaries


Using terminology and definitions as given in [15,16], let E be an vector space defined over an arbitrary field  F . A symplectic form is a bilinear map


  〈  ,  〉 : E × E ⟶ F  








that satisfies


     〈 v , w 〉     = − 〈 w , v 〉      f o r   a l l   v , w ∈ E       〈 v , v 〉     = 0      f o r   a l l   v ∈ E       a n d   i f  〈 v , w 〉     = 0      f o r   a l l   v ∈ E ⇒ w = 0     








and it is said to be skew-symmetric nondegenerate.   ( E , 〈 , 〉 )   is called a symplectic vector space, a symplectic vector space E is necessarily of even dimension and there is a basis    e 1  , … ,  e n  ,  u 1  , …  u n    of E such that


   〈  e i  ,  e j  〉  =  〈  u i  ,  u j  〉  = 0   y    〈  e i  ,  u j  〉  =  δ  i j    








where   δ  i j    is the Kroneker delta function. A subspace   U ⊆ E   is said to be isotropic if   〈 u ,  u ′  〉 = 0   for all   u ,  u ′  ∈ U  . A subspace   L ⊂ E   is said to be Lagrangian subspace if L is isotropic and   dim ( L ) = n  . The collection of Lagrangian subspace of E, we call it Lagrangian Grassmannian of E or simply Lagrangian Grassmannian we denote it by   L ( n , E )  . A subspace   W ⊂ E   is a symplectic subspace of E if the symplectic form in E when restricted to W remains symplectic.



Indices


Let m be an integer we denote


  [ m ] : = { 1 , 2 , … , m }  



(1)




to the set of the first m integers. Let m and ℓ be positive integers such that   ℓ < m   as usual in the literature   C ℓ m   denotes binomial coefficient. If   α =  (  α 1  , … ,  α ℓ  )  ∈   N  ℓ    then,   s u p p  { α }  : =  {  α 1  , ⋯ ,  α ℓ  }   . If   s ≥ 1   is a positive integer and   Σ ⊂ N   is a non-empty set, we define the sets


   C s   ( Σ )  : =  { α =  (  α 1  , … ,  α s  )  ∈   N  s  :  α 1  < ⋯ <  α s   a n d  s u p p  { α }  ⊆ Σ }   



(2)




if   | Σ | = m   then    |   C s    ( Σ )  | =   C ℓ m   ; with this notation if   ℓ < m   we define   I  ( ℓ , m )  =  C ℓ   (  [ m ]  )   . So we have


  I  ( ℓ , m )  = { α =  (  α 1  , … ,  α s  )  : 1 ≤  α 1  < ⋯ <  α ℓ  ≤ m } .  



(3)




We say


  α =  (  α 1  , … ,  α s  )  ∈  C s   ( Σ )   



(4)




if there is a permutation  σ  such that arrange the elements of   s u p p { α }   in increasing order so we have    ( σ  (  α 1  )  , … , σ  (  α s  )  )  ∈  C s   ( Σ )   .



if  α  and  β  are elements of    C s   ( Σ )    then we say that


  α = β  ⇔   s u p p  { α } =  s u p p  { β } .  



(5)




Let   α ∈ I ( n , 2 n )  , suppose there are   i , j ∈ s u p p  α   such that   i + j = 2 n + 1   in this case   j = 2 n − i + 1   and we write this pair as    P i  =  ( i , 2 n − i + 1 )    so we define the set


   Σ n  : =   P 1  , … ,  P n    



(6)




and if   α ∈ I ( n , 2 n )   such that   { i , 2 n − i + 1 } ⊂ s u p p { α }  , then we say that    P i  ∈ s u p p  { α }    and that    P i  ∈ s u p p  { α }  ∩  Σ m   , note that    | s u p p   P β   | = 2 | s u p p β |   .



If   k ≤ n   is a even integer with notation similar to (2) we define


   C  k 2    (  Σ n  )  : =  {  P β  =  (  P  β 1   , … ,  P  β  k 2    )  :  P  β i   ∈  Σ n   a n d  1 ≤  β 1  < … <  β  k 2   ≤ n }  .  



(7)




If   1 ≤  a 1  <  a 2  < ⋯ <  a  2 k   ≤ 2 n   such that    a i  +  a j  ≠ 2 n + 1   then we define


   Σ   a 1  , … ,  a  2 k     =  Σ n  −  {  P  a 1   , ⋯ ,  P  a  2 k    }   



(8)




so    |   Σ   a 1  , … ,  a  2 k      | = n − 2 k   .



We define the sets


      (  a 1  , … ,  a  2 k   )  ×  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k     )  : =                         : = {  (  a 1  , … ,  a  2 k   ,  P θ  )  ∈ I  ( n − 2 , 2 n )  |  P θ  ∈  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k     )  }     



(9)




similarly we define    (  a 1  , … ,  a  2 k + 1   )  ×  C   n − ( 2 k + 3 )  2    (  Σ   a 1  , … ,  a  2 k     )  .  



Lemma 1.






	(A) 

	
Let   n ≥ 4   be an even number such that    r n  =   n + 2  2   , then


   I  ( n − 2 , 2 n )  =  C   n − 2  2    (  Σ n  )  ∪ (  ⋃  k = 1    r n  − 2    ⋃     1 ≤  a 1  < ⋯ <  a  2 k   ≤ 2 n        a i  +  a j  ≠ 2 n + 1       (  a 1  , … ,  a  2 k   )  ×  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k     )  ) .   



(10)








	(B) 

	
Let   n ≥ 5   be an odd and such that    r n  =   n + 1  2   , then


      I  ( n − 2 , 2 n )  =  ⋃  j = 1  n   C   n − 3  2    (  Σ n  −  {  P j  }  )  ×  { j }  ∪                 ∪ (  ⋃  k = 1    r n  − 2    ⋃     1 ≤  a 1  < ⋯ <  a  2 k + 1   ≤ 2 n        a i  +  a j  ≠ 2 n + 1       (  a 1  , … ,  a  2 k + 1   )  ×  C   n − ( 2 k + 3 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )  ) .      



(11)















Proof. 

(A) Let   n ≥ 4   even integer and let    r n  =   n + 2  2   , then it is it is enough to prove the inclusion ⊆. If   s u p p  {  α  r s   }  ⊆  Σ n    then it exists    P θ  ∈  C   n − 2  2    (  Σ n  )    such that    α  r s   =  P θ  ∈  C   n − 2  2    (  Σ n  )   . If    1 ≤ | s u p p   {  α  r s   }  ∩  Σ n   | <   n 2    there are    P θ  ∈  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k     )    and   (  a 1  , … ,  a  2 k   )   such that   1 ≤  a 1  < … , <  a  2 k   ≤ 2 n   and    α  r s   =  (  a 1  , … ,  a  2 k   ,  P θ  )  ∈  (  a 1  , … ,  a  2 k   )  ×  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k     )   .



(B) If   n ≥ 5   odd integer and let    r n  =   n + 1  2   , analogously it is sufficient to show the ⊆.



Let    α  r s   ∈ I  ( n − 3 , 2 n )    then if    1 ≤ | s u p p   {  α  r s   }  ∩  Σ n   | ≤    n − 3  2   , if    | s u p p   {  α  r s   }  ∩  Σ n   | =    n − 3  2    then    α  r s   =  (  P θ  , j )    with    P θ  ∈  C   n − 3  2    (  Σ n  −  {  P j  }  )   .



If    1 ≤ | s u p p   {  α  r s   }  ∩  Σ n   | <    n − 3  2    then it exists   1 ≤  a 1  < ⋯ <  a  2 k + 1   ≤ 2 n   such that    a i  +  a j  ≠ 2 n   and    P θ  ∈  C   n − ( 2 k + 3 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )    with    α  r s   =  (  a 1  , … ,  a  2 k + 1   ,  P θ  )  ∈  (  a 1  , … ,  a  2 k + 1   )  ×  C   n − ( 2 k + 3 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )   



with which the demonstration ends. □





Given a canonical basis   B = {  e 1  , … ,  e n  ,  u 1  , …  u n  }  , see [15], of symplectic vector space E, in this article, we redefine its elements as follows    e  2 n   : =  u 1  ,  e  2 n − 1   : =  u 2  , …  e  n + 1   : =  u n    and we have   B = {  e 1  , … ,  e  2 n   }   such that


   〈  e i  ,  e j  〉  =     1    if   j = 2 n − i + 1  ,      0    otherwise .       



(12)




For   α =  (  α 1  , … ,  α n  )  ∈ I  ( n , 2 n )   , write


     e α     : =  e  α 1    ∧  ⋯  ∧   e  α n   ,       e  α  r s       : =  e  α 1    ∧  ⋯  ∧    e ^   α r    ∧  ⋯  ∧    e ^   α s    ∧  ⋯  ∧   e  α n   ,     








where    e ^   α k    means that the corresponding term is omitted.



Denote by    ∧ n  E   the n-th exterior power of E, which is generated by   {  e α  : α ∈ I  ( n , 2 n )  }  . For   w =  ∑  α ∈ I ( n , 2 n )    p α   e α  ∈  ∧ n  E  , the coefficients   p α   are the Plücker coordinates of w, see also [17] (p. 42). Writing   w ∈  ∧ n  E   as   w =  ∑  α ∈ I ( n , 2 n )    P α   e α   , the vector


   w ρ  =   [  p α  ]   α ∈ I ( n , 2 n )   ∈ P  (  ∧ n  E )   



(13)




we call the Plücker vector of w.





3. Contraction Map


In this section, E is a symplectic vector space of dimension   2 n  .



Definition 1.

The contraction map is defined as the linear transformation


   f :   ∧  n  E →   ∧   n − 2   E   










   f  (  w 1   ∧  ⋯  ∧   w n  )  =  ∑  1 ≤ r < s ≤ n    〈  w r  ,  w s  〉    ( − 1 )   r + s − 1    w 1   ∧  ⋯  ∧    w ^  r   ∧  ⋯  ∧    w ^  s   ∧  ⋯  ∧   w n    








where   w ^   means that the corresponding term is omitted; see [18] (p. 283).





Lemma 2.

Let f the contraction map, and   w =  ∑  α ∈ I ( n , 2 n )    X α   e α  ∈  ∧ n  E   arbitrary element, in coordinates of Plücker, then the contraction map


   f  ( w )  =  ∑   α  r s   ∈ I  ( n − 2 , 2 n )     (  ∑  i = 1  n   X  (  α  r s   ,  P i  )   )   e  α  r s      








where   X   α  r s    P i     disappears from the equation    ∑  i = 1  n   X  (  α  r s   ,  P i  )     if   | s u p p {  α  r s    P i  } | ≠ n  .





Proof. 

Let   w =  ∑  α ∈ I ( n , 2 n )    X α   e α  ∈  ∧ n  E   arbitrary element then


     f ( w ) =      ∑  α ∈ I ( n , 2 n )    X α  f  (  e α  )       =     ∑  α ∈ I ( n , 2 n )    X α  (  ∑  1 ≤ r < s ≤ n    〈  e  α r   ,  e  α s   〉    − 1   r + s − 1    e  α  r s    )      =     ∑  1 ≤ r < s ≤ n   (  ∑  i = 1  n   X  (  α  r s   ,  ( i , 2 n − i + 1 )  )    〈  e i  ,  e  2 n − i + 1   〉    − 1   [ i + 2 n − i + 1 ] − 1   )  e  α  r s         =     ∑   α  r s   ∈ I  ( n − 2 , 2 n )    (  ∑  i = 1  n   X  (  α  r s   ,  P i  )   )  e  α  r s        








where clearly   X  (  α  r s    P i  )    disappears from the equation if   | s u p p {  α  r s    P i  } | ≠ n .  





Let   ψ : E ⟶ E   a symplectomorphism that sends the symplectic basis    {  e i  }   i = 1   2 n    in the symplectic basis    {  ϵ i  }   i = 1   2 n    such that   ψ  (  e i  )  =  ϵ i    then let us consider the following linear transformations defined in generators    ψ n  :  ∧ n  E ⟶  ∧ n  E   such that    ψ n   (  e α  )  =  ϵ α    and    ψ  n − 2   :  ∧  n − 2   E ⟶  ∧  n − 2   E   such that    ψ  n − 2    (  e  α  r s    )  =  ϵ  α  r s    .  



Lemma 3.

Let   f :  ∧ n  E ⟶  ∧  n − 2   E   the contraction map then the following diagram commutes


[image: Mathematics 12 00858 i001]








that is to say   f ∘  ψ n  =  ψ  n − 2   ∘ f .  






4. Plücker Relations of Lagrangian Grassmannian


For an m-dimensional vector space E, denote by   G ( ℓ , E )   the set of vector subspaces of dimension ℓ of E. The Grassmannian   G ( ℓ , E )   is a algebraic variety of dimension   ℓ ( m − ℓ )   and can be embedded in a projective space    P   c − 1   , where   c =   m ℓ     by Plücker embedding. The Plücker embedding is the injective mapping   ρ : G  ( ℓ , E )  → P  (  ∧ ℓ  E )    given on each   W ∈ G ( ℓ , E )   by choosing a basis    w 1  , … ,  w ℓ    of W and then mapping the vector subspace   W ∈ G ( ℓ , E )   to the tensor    w 1   ∧  ⋯  ∧   w ℓ  ∈  ∧ ℓ  E  . Since choosing a different basis of W changes the tensor    w 1   ∧  ⋯  ∧   w ℓ    by a nonzero scalar, this tensor is a well-defined element in the projective space   P  (  ∧ ℓ  E )  ≃   P   N − 1    , where   N =  C ℓ m  =  dim F   (  ∧ ℓ  E )   . If   w =  ∑  α ∈ I ( ℓ , m )    P α   e α  ∈ P  (  ∧ ℓ  E )   , then   w ∈ G ( ℓ , E )   if and only if for each pair of tuples   1 ≤  α 1  < ⋯ <  α  ℓ − 1   ≤ m   and   1 ≤  β 1  < ⋯ <  β  ℓ + 1   ≤ m  , the Plücker coordinates of w satisfy the Plücker relations


   Q  α , β   : =  ∑  i = 1   ℓ + 1     ( − 1 )  i   P   α 1  ⋯  α  ℓ − 1    β i     P   β 1  ,  β 2  ⋯   β i  ^  ⋯  β  ℓ + 1     = 0 ,  



(14)




where    β i  ^   means that the corresponding term is omitted and where   α =  (  α 1  , … ,  α  ℓ − 1   )  ∈ I  ( ℓ − 1 , m )   ,   β =  (  β 1  , ⋯ ,  β i  , … ,  β  ℓ + 1   )  ∈ I  ( ℓ + 1 , m )   , see [17] (Section 4) and [19]. Under the inclusion of Plücker the Lagrangian Grassmannian is given by


     L  ( n , E )  = {  w 1   ∧  ⋯  ∧   w n  ∈ G  ( n , E )  :  〈  w i  ,  w j  〉  = 0  for  all   1 ≤ i < j ≤ n  }     



(15)







Lemma 4.

   L ( n , E ) = G ( n , E ) ∩ ker f .   





Proof. 

Using the Definition 1 we clearly have   L ( n , E ) ⊆ G ( n , E ) ∩ ker f   given that   〈  w r  ,  w s  〉 = 0   for all   1 ≤ r < s ≤ 2 n  .



Let    v 1  ∧ ⋯ ∧  v n  ∈ G  ( n , E )  ∩ ker f   then    {  w 1  ∧ ⋯ ∧   w ^  r  ∧ ⋯ ∧   w ^  s  ∧ ⋯ ∧  w n  }   1 ≤ r < s ≤ 2 n    is a family of linearly independent vectors in    ∧  n − 2   E   more over by hypothesis   f (  w 1  ∧ ⋯ ∧  w n  ) = 0   then   〈  w r  ,  w s  〉 = 0   for all   1 ≤ r < s ≤ 2 n   and so   G ( n , E ) ∩ ker f ⊆ L ( n , E )  . □





The proof of the following lemma is a consequence of the Lemma 2 where the kernel of the contraction map f is characterized as follows



Lemma 5.

Let   w =  ∑  α ∈ I ( n , 2 n )    X α   e α  ∈  ∧ n  E   written in Plücker coordinates, then we have


   w ∈ ker f ⇔  ∑  i = 1  n   X   α  r s    P i    = 0 ,  for  all    α  r s   ∈ I  ( n − 2 , 2 n )   .   








where   X   α  r s    P i     disappears from the equation if   | s u p p {  α  r s    P i  } | ≠ n .  





For all    α  r s   ∈ I  ( n − 2 , 2 n )    we define a homogeneous linear polynomial


      Π  α  r s    =  ∑  i = 1  n   c   α  r s    P i     X   α  r s    P i    ∈   (  ∧ n  E )  *      



(16)




where


   c   α  r s    P i    =     1    if   | supp {  α  r s    P i  } | = n  ,      0    otherwise ,       











Remark 1.

Throughout this article, we write the Equation (16) simply as


       Π  α  r s    =  ∑  i = 1  n   X   α  r s    P i         



(17)




where the addend   X   α  r s    P i     disappears from the Equation (17) if   | s u p p {  α  r s    P i  } | ≠ n .  





Corollary 1.

  ker f   is independent of the symplectic basis and


   ker f =  ⋂   α  r s   ∈ I  ( n − 2 , 2 n )    ker  Π  α  r s    .   



(18)









Proof. 

From the Lemma 2, we have   f ∘  ψ n  =  ψ  n − 2   ∘ f   so then   ker f ∘  ψ n  = ker  ψ  n − 2   ∘ f = ker f   since   ψ  n − 2    is an isomorphism and then   ker f =  ⋂   α  r s   ∈ I  ( n − 2 , 2 n )    ker  Π  α  r s     . □





Following [20] for definitions of algebraic set, we have below that   ker f  ,   G ( n , E )   and   L ( n , E )   are algebraic sets in   P (  ∧ n  E )  


     ker f = Z 〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉 .     



(19)




So we have to   G ( n , E )   is an algebraic set of


     G  ( n , E )  = Z 〈  Q  α , β   : α ∈ I  ( ℓ − 1 , m )  ,  β ∈ I  ( ℓ + 1 , m )  〉     



(20)




see (14).



Theorem 1.

Let E symplectic vector space of dimension   2 n   then


   L  ( n , E )  = Z  〈  Q  α , β   ,  Π  α  r s    〉    








where   Q  α , β    and   Π  α  r s     are as in (14) and (16), respectively.





Proof. 

Of Lemma 4, (20) and (19) we have


     L ( n , E )     = G ( n , E ) ∩ ker f          = Z  〈  Q  α , β   〉  ∩ Z  〈  Π  α  r s    〉           = Z 〈  Q  α , β   ,  Π  α  r s    〉     











□





Definition 2.

To the set of homogeneous polynomials


      {  Q  α , β   ,  Π  α  r s    }      



(21)




where   α =  (  α 1  , … ,  α  n − 1   )  ∈ I  ( n − 1 , 2 n )   ,   β =  (  β 1  , …  β i  , … ,  β  n + 1   )  ∈ I  ( n + 1 , 2 n )   , we call it relations of Pücker of Lagrangian Grassmannian. To the set of linear homogeneous polynomials


      {  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  }      



(22)




we call it linear relations of Plücker of the Lagrangian Grassmannian.





Example 1.

In the case   L ( 2 , E )   we have the relations of Plücker of Lagrangian Grassmannian


          Q : =  X 12   X 34  −  X 13   X 24  +  X 14   X 23      = 0       Π : =  X 14  +  X 23      = 0          



(23)









Example 2.

The linear relations of Plücker of   L ( 3 , E )   are


            Π 1  =  X   P 2  , 1   +  X   P 3  , 1          Π 2  =  X   P 1  , 2   +  X   P 3  , 2          Π 3  =  X   P 1  , 3   +  X   P 2  , 3          Π 4  =  X   P 1  , 4   +  X   P 5  , 4          Π 5  =  X   P 1  , 5   +  X   P 3  , 5          Π 6  =  X   P 2  , 6   +  X   P 3  , 6        .      



(24)









Example 3.

In the case   L ( 4 , E )   it was shown in [21] (example 4) that linear relations   {  Π  α  r s    :  α  r s   ∈ I  ( 2 , 8 )  }   consists of 28 homogeneous linear equations in 70 variables.





Ideal of   L ( n , E )  


The ideal of   L ( n , E )   in   F   [  X α  ]   α ∈ I ( n , 2 n )     is defines by


  I  ( L  ( n , E )  )  =  { f ∈ F   [  X α  ]   α ∈ I ( n , 2 n )   : f  ( w )  = 0  f o r  a l l  w ∈ L  ( n , E )  }  .  



(25)







Proposition 1.

If the field of definition of the symplectic vector, space E is algebraically closed then


   I  ( L  ( n , E )  )  =    Q  α , β   ,  Π  α  r s        








so   L ( n , E )   is a projective variety.





Proof. 

By the Theorem 1 we have   L  ( n , E )  = Z  〈  Q  α , β   ,  Π  α  r s    〉    and by Hilbert’s Nullstellensatz theorem, see [20] (Theorem 1.3 A), the result is fulfilled. □





Let   F q   be a finite field with q elements, and denote by    F ¯  q   an algebraic closure of   F q  . For a vector space E over   F q   of finite dimension k, let    E ¯  = E  ⊗  F q     F ¯  q    be the corresponding vector space over the algebraically closed field    F ¯  q  . We will be considering algebraic varieties in the projective space   P  (  E ¯  )  =   P   k − 1    (   F ¯  q  )   . Recall that a projective variety   X ⊆   P   k − 1    (   F ¯  q  )    is defined over the finite field   F q   if its vanishing ideal can be generated by polynomials with coefficients in   F q  . If E is a symplectic vector space, of dimension   2 n   define over a finite field   F q  , then the rational points of   L ( n , E )   are defined as the set


  L  ( n , E )   (  F q  )  : = Z  〈  Q  α , β   ,  Π  α  r s    ,  x ϵ q  −  x ϵ  〉   








where   α ∈ I ( n − 1 , 2 n )  ,   β ∈ I ( n + 1 , 2 n )  ,    α  r s   ∈ I  ( n − 2 , 2 n )    and   ϵ ∈ I ( n , 2 n )   more over


   | L  ( n , E )    (  F q  )   | =   Π  i = 1  n   ( 1 +  q i  )   



(26)




see [22] (Prop. 2.14).



We define the ideal    I   F ¯  q   ⊂ F   [  x α  ]   α ∈ I ( n , 2 n )     as


   I   F ¯  q   =   Q  α , β   ,  Π  α  r s    ,  g ϵ    



(27)




where   α ∈ I  ( n − 1 , 2 n )  , β ∈ I  ( n + 1 , 2 n )  ,  α  r s   ∈ I  ( n − 2 , 2 n )  , ϵ ∈ I  ( n , 2 n )    y    g ϵ  =  x ϵ q  −  x ϵ  .  



Lemma 6.

The ideal   I   F ¯  q    is radical





Proof. 

The ideal   I   F ¯  q    is zero-dimensional since the set of solutions to the homogeneous polynomial equations


   | S o l {   Q  α , β   ,  Π  α  r s    ,  g ϵ   } |  < ∞  








given that (26) implies    | S o l {   Q  α , β   ,  Π  α  r s    ,  g ϵ   } | = | L  ( n , E )    (  F q  )   |    moreover    g ϵ  = q  x  ϵ   q − 1   − 1 = − 1   so   g c d (  g ϵ  ,  g  ϵ  ′  ) = 1  , and by Seindeber’s lemma, ver [23] (Proposition 3.7.15),   I   F ¯  q    is radical. □





Let    ℜ t  : = Z  〈  h 1  ,  h 2  , … ,  h t  〉  ≤ P  (  ∧ n  E )    a hyperplane of codimension t, we say that   L  ( n , E )  ∩  ℜ t    is a linear section of the Lagrangian Grassmannian and let


   I t  : =  〈  Q  α , β   ,  Π  r s   ,  x  ϵ  q  −  x ϵ  ,  h 1  ,  h 2  , … ,  h t  〉  .  











Lemma 7.

Suppose the basis field   F q   is perfect then the linear section of the Lagrangian Grassmannian satisfies    | L  ( n , E )    (  F q  )  ∩  ℜ t   | =   dim  F q     F   [  x α  ]   α ∈ I ( n , 2 n )     I t   .  





Proof. 

Given the    | L  ( n , E )  ∩   ℜ t   | ≤ | L  ( n , E )  |    then the ideal   I r   is zero dimensional,   m c d (  g α  ,  g  α  ′  ) = 1  , thus by Seindeber’s lemma we have that the ideal   I t   is radical. □







5. Factorable Morphisms


Let   1 ≤ ⋯ <   α ¯  k  < ⋯ < 2 n −   α ¯  k  + 1 < ⋯ ≤ 2 n   two integers, we define


  S : =  [ 2 n ]  −  {   α ¯  k  , 2 n −   α ¯  k  + 1 }   



(28)




with the notation (2) we define


   I   α ¯  k    ( n − 1 , 2 n − 2 )  : =  C  n − 1    { S }  .  



(29)




Let


   ϕ   α ¯  k   : =  {  ( β ,   α ¯  k  )  ∈ I  ( n , 2 n )  : β ∈  I   α ¯  k    ( n − 1 , 2 n − 2 )  }  .  



(30)




For    e   α ¯  k   ∈ B   be a basic vector and let   ℓ = 〈  e   α ¯  k   〉 ⊂ E   generated by the vector   e   α ¯  k    and


  U ( ℓ ) = { W ∈ L ( n , E ) : ℓ ⊆ W } .  



(31)




In [16] (Lemma 1.4.38) it shows that there is a one-to-one correspondence between   U ( ℓ )   and   L ( n − 1 ,  ℓ ⊥  / ℓ )  , where    ℓ ⊥  / ℓ   is a symplectic vector space of dimension   2 n − 2  , generated by the symplectic basis   {  e 1  + ℓ , … ,   e ^    α ¯  k   + ℓ , … ,   e ^   2 n −   α ¯  k  + 1   + ℓ , … ,  e  2 n   + ℓ }  , recall ^ means that the term was omitted.



As consequence we have   U  ( ℓ )   = −  ∧  e   α ¯  k    ( L  ( n − 1 ,  ℓ ⊥  / ℓ )  )    and


  U  ( ℓ )  = L  ( n − 1 ,  ℓ ⊥  / ℓ )  ∧  e   α ¯  k    



(32)




so in Plücker coordinates we have


  U  ( ℓ )  = ( w ∈ L  ( n , E )  : w =  ∑   ( β ,   α ¯  k  )  ∈  ϕ   α ¯  k      p  ( β ,   α ¯  k  )    e  ( β ,   α ¯  k  )   ) .  



(33)




   X β  : =    e β  + ℓ  *    denotes the basis vector of the dual vector space     ∧  n − 1    ℓ ⊥  / ℓ  *   and    X β  ∧  X   α ¯  k   : =  e  ( β ,   α ¯  k  )  *    the basis vector of dual vector space     ∧ n  E  *  . Now with this notation we define in generators an injective linear transformation


     ξ :   (  ∧  n − 1    (  ℓ ⊥  / ℓ )  )  *  ⟶   (  ∧ n  E )  *         X β  ⟼  X β  ∧  X   α ¯  k       



(34)




with   β ∈  I   α ¯  k    ( n − 1 , 2 n − 2 )    and    X β  ∧  X   α ¯  k   =  X  ( β ,   α ¯  k  )    .



Definition 3.

We say that   h =  ∑  α ∈ I ( n , 2 n )    A  α ∈ I ( n , 2 n )    X  α ∈ I ( n , 2 n )   ∈   (  ∧ n  E )  *    is factored if   h =  h 0  ∧  X   α ¯  k     for some    h 0  ∈   (  ∧  n − 1    ℓ ⊥  / ℓ )  *    where   ℓ = 〈  e   α ¯  k   〉   and   1 ≤   α ¯  k  ≤ 2 n  . We say h satisfies the factoring property if there are at least one coefficient    A  α ¯   ≠ 0   and there are at least one element     α ¯  k  ∈ s u p p  {  α ¯  }    such that   2 n −   α ¯  k  + 1 ∉ s u p p  {  α ¯  }  .  





Example 4.

The homogeneous linear polynomials given in the Example 2 are factored


      Π 1     =  (  X  P 2   +  X  P 3   )  ∧  X 1        Π 2     =  (  X  P 1   +  X  P 3   )  ∧  X 2        Π 3     =  (  X  P 1   +  X  P 2   )  ∧  X 3        Π 4     =  (  X  P 1   +  X  P 5   )  ∧  X 4        Π 5     =  (  X  P 1   +  X  P 3   )  ∧  X 5        Π 6     =  (  X  P 2   +  X  P 3   )  ∧  X 6       













Proposition 2.

Let   h ∈   (  ∧ n  E )  *    such that   h ( L ( n , E ) ) = 0   and   h =  h 0  ∧  X   α ¯  k     is factored. Then    h 0   ( L  ( n − 1 ,  ℓ ⊥  / ℓ )  )  = 0   where   ℓ = 〈  e   α ¯  k   〉  .





Proof. 

  U  ( ℓ )  = L  ( n − 1 ,  ℓ ⊥  / ℓ )  ∧  e  α ¯   ⊆ L  ( n , E )    then   h ( U ( ℓ ) ) = 0   and


     h ( U ( ℓ ) )     = h ( L  ( n − 1 ,  ℓ ⊥  / ℓ )  ∧  e   α ¯  k   )          =  (  h 0  ∧  X   α ¯  k   )   ( L  ( n − 1 ,  ℓ ⊥  / ℓ )  ∧  e   α ¯  k   )           =  h 0   ( L  ( n − 1 ,  ℓ ⊥  / ℓ )  )  ·  X   α ¯  k    (  e   α ¯  k   )           = 0     








   h 0   ( L  ( n − 1 ,  ℓ ⊥  / ℓ )  )  = 0 .  □





We denote by    β  r s   =  (  β 1  , … ,   β ^  r  , … ,   β ^  s  , … ,  β  n − 1   )  ∈  I   α ¯  k    ( n − 3 , 2 n − 2 )   , where ^ means that the corresponding term is omitted. We define


   Π  (  β  r s   ,   α ¯  k  )   : =  ∑  i = 1  n   X   (  β  r s   ,   α ¯  k  )   P i     



(35)




an element of in    (  ⋀ n  E )  *   such that   | s u p p {  (  β  r s   ,   α ¯  k  )   P i  } | = n .  



Lemma 8.

Let    β  r s   ∈  I   α ¯  k    ( n − 3 , 2 n − 2 )    where   1 ≤ r < s ≤ 2 n   and   r , s ∈ S   see (28) then


   U  ( ℓ )  ⊆  ⋂   β  r s   ∈  I   α ¯  k    ( n − 3 , 2 n − 2 )    ker  Π  (  β  r s   ,   α ¯  k  )   .   













Proof. 

Let   w ∈ U ( ℓ )   be from (33) we have   w =  ∑  β ∈  I   α ¯  k    ( n − 1 , 2 n − 2 )     X  ( β ,   α ¯  k  )    e  ( β ,   α ¯  k  )     and   f ( w ) = 0   for f contraction map, we have


  f  ( w )  =  ∑  β ∈  I   α ¯  k    ( n − 1 , 2 n − 2 )     X  ( β ,   α ¯  k  )   f  (  e  ( β ,   α ¯  k  )   )  =  










  =  ∑  β ∈  I   α ¯  k    ( n − 1 , 2 n − 2 )     X  ( β ,   α ¯  k  )   (  ∑  1 ≤ r < s ≤ n    〈  e  α r   ,  e  α s   〉    ( − 1 )   r + s − 1    e   ( β ,   α ¯  k  )   r s    )  










  =  ∑  1 ≤ r < s ≤ n    (  ∑  1 ≤  ρ 1  <  ρ 2  ≤ n    X  (  β  r s   ,   α ¯  k  ,  ρ 1  ,  ρ 2  )    〈  e  ρ 1   ,  e  ρ 2   〉    ( − 1 )    ρ 1  +  ρ 2  − 1   )   e   ( β ,   α ¯  k  )   r s    = 0  








then


   ∑  1 ≤  ρ 1  <  ρ 2  ≤ n    X  (  β  r s   ,   α ¯  k  ,  ρ 1  ,  ρ 2  )     ( − 1 )    ρ 1  +  ρ 2  − 1    〈  e  ρ 1   ,  e  ρ 2   〉  = 0 .  








where    β  r s   ∈  I   α ¯  k    ( n − 3 , 2 n − 2 )    and as stated before    (  β  r s   ,   α ¯  k  ,  ρ 1  ,  ρ 2  )  ∈ I  ( n , 2 n )   . Now   〈  e  ρ 1   ,  e  ρ 2   〉 = 1   iff    ρ 1  +  ρ 2  = 2 n + 1  , note that with this condition we have     ( − 1 )    ρ 1  +  ρ 2  − 1   = 1  . Renaming    ρ 1  = i  , we have    ρ 2  = 2 n − i + 1  . Then


   ∑  1 ≤  ρ 1  <  ρ 2  ≤ n    X   (  β  r s   ,   α ¯  k  )   ρ 1   ρ 2    =  ∑  i = 1  n   X   (  β  r s     α ¯  k  )   P i    = 0  








for all    β  r s   ∈  I   α ¯  k    ( n − 3 , 2 n − 2 )   , that is   U  ( ℓ )  ⊆ ker  Π  (  β  r s   ,   α ¯  k  )     where


   Π  (  β  r s   ,   α ¯  k  )   : =  ∑  i = 1  n   X   (  β  r s     α ¯  k  )   P i     



(36)




for all    (  β  r s   ,   α ¯  k  )  ∈  I   α ¯  k    ( n − 3 , 2 n − 2 )  ×  {   α ¯  k  }  .   □





Remark 2.

Note that


    {  Π  (  β  r s   ,   α ¯  k  )   :  β  r s   ∈  I   α ¯  k    ( n − 3 , 2 n − 2 )  }  ⊆  {  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  }    








for all   1 ≤ r < s ≤ 2 n − 2  .






6. Linear Envelope of   L ( n , E )  


In this section, E is a symplectic vector space of dimension   2 n  .


  H : = 〈 h ∈   (  ∧ n  E )  *  : h  ( L  ( n , E )  )  = 0 〉  



(37)







Remark 3.

Sometimes in (37), it is necessary to distinguish the even case from the odd case so we write    H  e v e n  n  ⊂   (  ∧ n  E )  *    to n even number and    H  o d d  n  ⊂   (  ∧ n  E )  *    for n odd number.





Lemma 9.

 H  is a nontrivial vector subspace of    (  ∧ n  E )  *  





Proof. 

The proof follows from (18) given that   L ( n , E ) ⊂ ker f  , so   〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉   is a vector subspace of  H . □





Let   h ∈ H   to the set    H h  : = ker h   we call it a hyperplane containing   L ( n , E )  .



Definition 4.

The Linear Envelope   L ( n , E )   of   L ( n , E )   is the smallest linear variety that contains   L ( n , E )   in   P (  ∧ n  E ) .  





The proof of the following corollary follows directly from the Definition 4.



Corollary 2.

    L ( n , E )  =  ⋂  h ∈ H    H h  .   





Proposition 3.

Let   h =  ∑  α ∈ I ( n , 2 n )    A α   X α  ∈ H   and    A  α ¯   ≠ 0   a coefficient different from zero of h then it exists    {   α ¯  i  ,   α ¯  j  }  ⊆ s u p p  {  α ¯  }    such that     α ¯  i  +   α ¯  j  = 2 n + 1  .





Proof. 

Suppose that for each    {   α ¯  i  ,   α ¯  j  }  ⊆ s u p p  {  α ¯  }    you have to     α ¯  i  +   α ¯  j  ≠ 2 n + 1   this means that   〈  e   α ¯  i   ,  e   α ¯  j   〉 = 0   then    e  α ¯   =  e   α ¯  1   ∧ ⋯ ∧  e   α ¯  n   ∈ L  ( n , E )    and so then   h  (  e  α ¯   )  =  A  α ¯   = 0   which is a contradiction. Then there are    {   α ¯  i  ,   α ¯  j  }  ⊆ s u p p  {  α ¯  }    such that     α ¯  i  +   α ¯  j  = 2 n + 1  . □





For each    P θ  ∈  C   n − 2  2    (  Σ n  )   , we define


   h  P θ   =  ∑  i = 1  n   A   P θ   P i     X   P θ   P i     



(38)




for each    (  a 1  , … ,  a  2 k   ,  P θ  )  ∈  {  (  a 1  , … ,  a  2 k   )  }  ×  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k     )    we define


   h  (  a 1  , … ,  a  2 k   ,  P θ  )   =  ∑  i = 1  n   A  (  a 1  , … ,  a  2 k   ,  P θ  )    X  (  a 1  , … ,  a  2 k   ,  P θ  )   .  



(39)




Similarly



for each   1 ≤ j ≤ n   and    (  P θ  , j )  ∈  C   n − 3  2    (  Σ n  −  {  P j  }  )  ×  { j }    we define


   h  P  ( θ , j )    =  ∑  i = 1  n   A  (  P θ  , j ,  P i  )    X  (  P θ  , j ,  P i  )    



(40)




for each    (  a 1  , … ,  a  2 k + 1   ,  P θ  )  ∈  {  (  a 1  , … ,  a  2 k + 1   )  }  ×  C   n − ( 2 k + 3 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )    we define


   h  (  a 1  , … ,  a  2 k + 1   ,  P θ  )   =  ∑  i = 1  n   A  (  a 1  , … ,  a  2 k + 1   ,  P θ  )    X  (  a 1  , … ,  a  2 k + 1   ,  P θ  ) .    



(41)







Corollary 3.

Let E symplectic vector space of dimention   2 n  




	(i) 

	
If   n ≥ 4   even,    r n  =   n + 2  2    and let   h ∈  H  e v e n  n    then


   h =  ∑   P θ  ∈  C   n − 2  2    (  Σ n  )     h  P θ   +  ∑  k = 1    r n  − 2    ∑  (  a 1  , … ,  a  2 k   ,  P θ  )    h  (  a 1  … ,  a  2 k   ,  P θ  )     








with    P θ  ∈  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k     )    such that   1 ≤  a 1  < ⋯ <  a  2 k   ≤ 2 n   and    a i  +  a j  ≠ 2 n + 1  .




	(ii) 

	
If   n ≥ 5   odd,    r n  =   n + 1  2    and let   h ∈  H  o d d  n    then


   h =  ∑  j = 1  n   ∑   (  P θ  , j )  ∈  C   n − 3  2    (  Σ n  −  {  P j  }  )  ×  { j }     h  (  P θ  , j )   +  ∑  k = 1    r n  − 2    ∑  (  a 1  , … ,  a  2 k + 1   ,  P θ  )    h  (  a 1  … ,  a  2 k + 1   ,  P θ  )     








with    P θ  ∈  C   n − ( 2 k + 3 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )    such that   1 ≤  a 1  < ⋯ <  a  2 k + 1   ≤ 2 n + 1   and    a i  +  a j  ≠ 2 n + 1 .  











Proof. 

The proof follows directly from the Lemma 1 and Proposition 3. □





Lemma 10.

Let E symplectic vector space of dimension 4, and   h ∈   (  ∧ 2  E )  *    such that   h ( L ( 2 , E ) ) = 0   then   h = A Π   for A a non-zero constant and   Π : =  X  P 1   +  X  P 2    .





Proof. 

Clearly by Proposition 3 each   h ∈  H  e v e n  2    it is of the form   h =  A 14   X 14  +  A 23   X 23    it is easy see that    e 12  +  e 14  −  e 23  +  e 34  ∈ L  ( 2 , E )    since it satisfies the Equation (24) more over   h  (  e 12  +  e 14  −  e 23  +  e 34  )  =  A 14  −  A 23  = 0   consequently   h = A Π   where   A =  A 14  =  A 23   .



□





Theorem 2.

Let E symplectic vector space of dimension   2 n  ,   h ∈   (  ∧ n  E )  *    such that   h ( L ( n , E ) ) = 0   and   h =  h 0  ∧  X   α ¯  k     is factored then   h ∈   〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉  F   .





Proof. 

The proof is by induction on n. If   n = 2   it follows from Lemma 10.



We induction hypothesis is, let   E ′   symplectic vector space of dimension   2 m   with   m < n   and    h 0  ∈   (  ∧ m   E ′  )  *    such that    h 0   ( L  ( m ,  E ′  )  )  = 0   then    h 0  ∈  〈  Π  β  r s    :  β  r s   ∈ I  ( n − 3 , 2 n − 2 )  〉   .



If   h ∈   (  ∧ n  E )  *    such that   h ( L ( n , E ) ) = 0   and   h =  h 0  ∧  X   α ¯  k     is factored, then by Lemma 2    h 0   ( L  ( n − 1 ,  ℓ ⊥  / ℓ )  )  = 0   where   ℓ = 〈  e   α ¯  k   〉   then by induction step    h 0  ∈  〈  Π  β  r s    :  β  r s   ∈  I  α ¯    ( n − 3 , 2 n − 2 )  〉    so   h =  h 0  ∧  X   α ¯  k   ∈  〈  Π  β  r s    ∧  X   α ¯  k   :  β  r s   ∈  I  α ¯    ( n − 3 , 2 n − 2 )  〉  ⊆  〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉   . □





Proposition 4.

Let   h =  ∑  α ∈ I ( n , 2 n )    A α   X α  ∈   (  ∧ n  E )  *    such that   h ( L ( n , E ) ) = 0   and satisfies the factoring property from the Definition 3, then   h ∈ 〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉   or   h =  h ′  +  h  ′ ′    , where    h ′  ∈  〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉    and   h  ′ ′    satisfies that   s u p p  { α }  ⊂  Σ n    for all coefficients    A α  ≠ 0   moreover    h  ′ ′    ( L  ( n , E )  )  = 0  .





Proof. 

The proof is by induction on n. If   n = 2   it follows from Lemma 10.



Induction Step): Let   E ′   symplectic vector space of dimension   2 m   with   m < n   and    h 0  ∈   (  ∧ m   E ′  )  *    such that    h 0   ( L  ( m ,  E ′  )  )  = 0   then    h 0  ∈  〈  Π  β  r s    :  β  r s   ∈ I  ( n − 3 , 2 n − 2 )  〉   .



Let   A  α ¯    a non-zero coefficient that satisfies the factoring property, from the Definition 3, then there is     α ¯  k  ∈ s u p p  {  α ¯  }    but   2 n −   α ¯  k  + 1 ∉ s u p p  {  α ¯  }   . Now let    ϕ   α ¯  k   =  {  ( β ,   α ¯  k  )  ∈ I  ( n , 2 n )  : β ∈  I   α ¯  k    ( n − 1 , 2 n − 2 )  }    as in (30). So if   h =  Σ  α ∈ I ( n , 2 n )    A α   X α  ∈   (  ∧ n  E )  *    then   h =  Σ  α ∈  ϕ   α ¯  k      A α   X α  +  Σ  α ∈  ϕ    α ¯  k   c     A α   X α    where   I  ( n , 2 n )  =  ϕ   α ¯  k   ∪  ϕ    α ¯  k   c   . We define homogeneous linear polynomials    h ′  : =  Σ  α ∈  ϕ   α ¯  k      A α   X α    and    h  ′ ′   : =  Σ  α ∈  ϕ    α ¯  k   c     A α   X α    such that    h ′  ,  h  ′ ′   ∈   (  ∧ n  E )  *    and   h =  h ′  +  h  ′ ′     so    h ′  =  ∑   ( β ,   α ¯  k  )  ∈  ϕ   α ¯  k      A  ( β ,   α ¯  k  )    X  ( β ,   α ¯  k  )     and    h  ′ ′   =  ∑  α ∈  ϕ    α ¯  k   c     A α   X α   . Note that    h ′  ≠ 0  , because as we mentioned before    α ¯  ∈  ϕ   α ¯  k    , from (33) we have that    h  ′ ′    ( U  ( ℓ )  )  = 0   that is   h  ( U  ( ℓ )  )  =  h ′   ( U  ( ℓ )  )   , since   h ( L ( n , E ) ) = 0   we obtain    h ′   ( U  ( ℓ )  )  = 0   moreover    h ′  =  h 0  ∧  X   α ¯  k     with    h 0  =  ∑  β ∈  I   α ¯  k    ( n − 1 , 2 n − 2 )     A β   X β  ∈   (  ∧  n − 1    ℓ ⊥  / ℓ )  *    where    A β  =  A  ( β ,   α ¯  k  )     then by Proposition 2 we have    h 0   ( L  ( n − 1 ,  ℓ ⊥  / ℓ )  )  = 0   then    h ′  =  h 0  ∧  X   α ¯  k   ∈  〈  Π  β  r s    ∧  X   α ¯  k   :  β  r s   ∈  I   α ¯  k    ( n − 3 , 2 n − 2 )  }   〉 ⊆   〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉   . Given that    h  ′ ′    ( L  ( n , E )  )  =  ( h −  h ′  )   ( L  ( n , E )  )  = 0   and if   h  ′ ′    satisfies the factoring property from the Definition 3 continuing recursively in the same way, the process ends in a finite number of steps in   h ∈ 〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉   or   h =  h ′  +  h  ′ ′    , where    h ′  ∈  〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉    and    h  ′ ′   ≠ 0   with   s u p p  { α }  ⊂  Σ n    for all coefficients    A α  ≠ 0   and    h  ′ ′    ( L  ( n , E )  )  = 0  . □





Corollary 4.

Let E symplectic vector space of dimension   2 n  



(a) If   n ≥ 5   odd then    H  o d d  n  =  〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉   



(b) If   h ∈  H  e v e n  n    then   h =  h ′  +  h  ′ ′     such that    h ′  ∈   〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉  F    and   h  ′ ′    satisfies that   s u p p  { α }  ⊂  Σ n    for all coefficients    A α  ≠ 0   and    h  ′ ′    ( L  ( n , E )  )  = 0 .  





Proof. 

(a) If   h ∈  H  o d d  n    then by Corollary 3  ( i i )  


  h =  ∑  j = 1  n   ∑   (  P θ  , j )  ∈  C   n − 3  2    (  Σ n  −  {  P j  }  )  ×  { j }     h  (  P θ  , j )   +  ∑  k = 1   r − 2    ∑  (  a 1  , … ,  a  2 k + 1   ,  P θ  )    h  (  a 1  … ,  a  2 k + 1   ,  P θ  )    








with    P θ  ∈  C   n − 2 ( k + 3 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )    such that   1 ≤  a 1  < ⋯ <  a  2 k + 1   ≤ 2 n + 1   and    a i  +  a j  ≠ 2 n + 1   satisfies the factoring property for all non-zero coefficients of h then by Proposition 4 we have   h ∈ 〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉  



(b) If   h ∈  H  e v e n  n    then by Corollary 3 we have   h =  h ′  +  h  ′ ′     where    h ′  =  ∑   P θ  ∈  C   n − 2  2    (  Σ n  )     h  P θ     and    h  ′ ′   =  ∑  k = 1   r − 2    ∑  (  a 1  , … ,  a  2 k   ,  P θ  )    h  (  a 1  … ,  a  2 k   ,  P θ  )     with    P θ  ∈  C   n − 2 ( k + 3 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )    such that   1 ≤  a 1  < ⋯ <  a  2 k + 1   ≤ 2 n + 1   and    a i  +  a j  ≠ 2 n + 1  . Clearly   h  ′ ′    satisfies factoring property of the Definition 3 for all non-zero coefficients of   h  ′ ′   , so by Proposition 4 we have    h  ′ ′   ∈   〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉  F    and each coefficient    A  P θ   ≠ 0   of   h ′   satisfies that   s u p p  {  P θ  }  ⊂  C   n − 2  2    (  Σ n  )    and    h ′   ( L  ( n , E )  )  = 0  . □





For    P θ  : =  (  P  θ 1   , … ,  P  θ  n 2    )  ∈  C  n 2    (  Σ n  )    an arbitrary element where   1 ≤  θ 1  < ⋯ <  θ  n 2   ≤ n   we say that


   θ 1  = min s u p p  {  P θ  }   



(42)




For   ∅ ≠ Ω ⊆  C  n 2    (  Σ n  )    an arbitrary subset then there are a partition of  Ω  of the form


  Ω =  ⋃  j = 1  t   Ω  k j    



(43)




where


   Ω  k j   : =  {  P θ  ∈ Ω :  k j  = min s u p p  {  P θ  }  }   



(44)




to   j ∈ { 1 , … , t }   and   1 ≤  k 1  < ⋯ <  k t  ≤ n  .


   h Ω  =  ∑  j = 1  t   (  ∑   P  θ ¯  j  ∈  Ω  k j      (  ∑  i = 1  r   A   P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ i  j     X   P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ i  j    )  )  .  



(45)




where    P  θ ¯  j  : =  P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ i  j   



Lemma 11.

Let E symplectic vector space of dimention   2 n  ,   Ω ⊆  C   n − 2  2    (  Σ n  )    non-empty set and    h Ω  ∈   (  ∧ n  E )  *    such that    h Ω   ( L  ( n , E )  )  = 0   then    h Ω  ∈  〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉   .





Proof. 

Let    h Ω  =  ∑  j = 1  t   (  ∑   P  θ ¯  j  ∈  Ω  k j      (  ∑  i = 1  r   A   P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ i  j     X   P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ i  j    )  )    and without loss of generality we can assume that    A   P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ 1  j    ≠ 0   for all   j ∈ { 1 , … , t }  . Now let    Π ¯  : =  ∑  j = 1  t  (  ∑   P  θ ¯  j  ∈  Ω  k j      A   P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ 1  j     Π   P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j    ) ∈  〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉    We define


       h ¯  Ω  :     =  h   ∪  j = 1  t   Ω  k j     −  Π ¯           =  ∑  j = 1  t   (   ∑   P  θ ¯  j  ∈  Ω  k j      (  ∑  i = 2  r   (  A   P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ i  j    −  A   P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ 1  j    )   X   P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ i  j   k j    )  ∧  X  2 n −  k j  + 1       








then for each   1 ≤ j ≤ t   we define


   h  ( 0 ,  k j  )   : =  ∑   P θ j  ∈  Ω  k j      (   ∑  i = 2  r   (  A   P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ i  j    −  A   P  k j   ,  P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ 1  j    )   X   P  θ 2  j  , …  P  θ   n − 2  2   j   P  ϵ i  j   k j     








such that


    h ¯  Ω  =  ∑  j = 1  t   (  h  ( 0 ,  k j  )   ∧  X  2 n −  k j  + 1   )   



(46)




Let   1 ≤  j 0  ≤ t   a fixed element,    ℓ  j 0   =  〈  e  j 0   〉  ⊆ E   and   L  ( n − 1 ,  ℓ   j 0   ⊥  /  ℓ  j 0   )  ∧  e  2 n −  k  j 0   + 1   ⊂ L  ( n , E )    then


       h ¯  Ω   ( L  ( n − 1 ,  ℓ   j 0   ⊥  /  ℓ  j 0   )  ∧  e  2 n −  k  j 0   + 1   )  =                 = (  ∑  j = 1  t   (  h  ( 0 ,  k j  )   ∧  X  2 n −  k  j 0   + 1   )  )  ( L  ( n − 1 ,  ℓ   j 0   ⊥  /  ℓ  j 0   )  ∧  e  2 n −  k  j 0   + 1   )  =                       =  h  ( 0 ,  k  j 0   )    ( L  ( n − 1 ,  ℓ   j 0   ⊥  /  ℓ  j 0   )  )  ·  X  2 n −  j 0  + 1    (  e  2 n −  j 0  + 1   )  =                                                 =  h  ( 0 ,  k  j 0   )    ( L  ( n − 1 ,  ℓ   j 0   ⊥  /  ℓ  j 0   )  )  .     








Moreover,     h ¯  Ω   ( L  ( n , E )  )  = 0   implies    h  ( 0 ,  k  j 0   )    ( L  ( n − 1 ,  ℓ   j 0   ⊥  /  ℓ  j 0   )  )  = 0   so by Corollary 4  ( a )   given that   n − 1   is odd number and    h  ( 0 ,  k  j 0   )   ∈   (  ∧  n − 1    ℓ   j 0   ⊥  /  ℓ  j 0   )  *    we have    h 0  ∈  〈  Π  β  r s    :  β  r s   ∈  I  k  j 0     ( n − 3 , 2 n − 2 )  〉    so


      h  ( 0 ,  k  j 0   )   ∧  X  2 n −  k  j 0   + 1       ∈ 〈  Π  (  β  r s   ,  k  2 n −  j 0  + 1   )   :  (  β  r s   ,  k  2 n −  j 0  + 1   )  ∈ I  ( n − 2 , 2 n )  〉          ⊆ 〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉     








then     h ¯  Ω  =  ∑  j = 1  t   (  h  ( 0 ,  k j  )   ∧  X  2 n −  k j  + 1   )  ∈  〈  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  〉   . □





Corollary 5.

If   n ≥ 4   even then     H   e v e n  n  =  〈  Π  α  r s    :  α  r s   ∈ I  ( n , 2 n )  〉   .





Proof. 

By Corollary 4(b) and by the Lemma 11, we have    〈  Π  α  r s    :  α  r s   ∈ I  ( n , 2 n )  〉  ⊆   H   e v e n  n   . □





Theorem 3.

Let E be a symplectic vector space of dimension   2 n   then








	(I) 

	
   H = 〈  Π  α  r s    :  α  r s   ∈ I  ( n , 2 n )  〉   




	(II) 

	
  〈 L ( n , E ) 〉 = P ( ker f )  .











Proof. 

  ( I )   From the Corollary 4  ( a )   and Corollary 5 we have   H = 〈  Π  α  r s    :  α  r s   ∈ I  ( n , 2 n )  〉  



  ( I I )   By (I) above, Corollary 2 and (18) we have


   〈 L  ( n , E )  〉  =  ⋂  h ∈ H    H h  =  ⋂   α  r s   ∈ I  ( n − 2 , 2 n )    ker  Π  α  r s    = ker f .  











□





Lemma 12.

Let   g :  ∧ n  E ⟶  ∧  n − 2   E   a linear transformation such that   g ( L ( n , E ) ) = 0   then   g ( ker f ) = 0  .





Proof. 

  g ( L ( n , E ) ) = 0   we have   L ( n , E ) ⊆ ker g   so   ker f ⊆ ker g   that is   g ( ker f ) = 0  . □





Corollary 6.

Suppose the contraction map f is surjective and suppose   G :  ∧ n  E ⟶  ∧  n − 2   E   is a surjective linear transformation that vanishes   L ( n , E )   then there exists a unique isomorphism such that   G = h ∘ f  .





Proof. 

By Lemma 12 we have   ker f ⊆ ker G  , more over   ker f = ker G   since both have the same dimension because f and G are surjective, then there exists a unique linear isomorphism h that makes the following diagram commute.
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and so we have to   G = h ∘ f  . □





Corollary 7.

Suppose the contraction map f is surjective then








	(i) 

	
If H is a matrix of order    C  n − 2   2 n   ×  C n  2 n     and maximum rank that annuls   L ( n , E )  , then   H = P  B  L ( n , E )    , where P is an invertible matrix.




	(ii) 

	
Suppose that there exists R matrix such that   L ( n , E ) = G ( n , E ) ∩ ker R  . Then   R = P  B  L ( n , E )     where P is an invertible matrix.











Proof. 

The proof of (i) follows directly from the Lemma 6. For the (ii) suppose that   R =      h 1       h 2      ⋮      h ϵ        is a rank matrix  ϵ  such that   L ( n , E ) = G ( n , E ) ∩ ker R  , then   L ( n , E ) ⊂ ker R   and   ϵ ≤  C  n − 2  n   . If   ϵ =  C  n − 2  n    the affirmation is followed by the previous clause of this lemma. Now suppose that   t <  C  n − 2  n    then   ker  B  L ( n , E )   ⊊ ker R  ; this implies that


     L ( n , E )     = G  ( n , E )  ∩ ker  B  L ( n , E )           ⊊  G ( n , E ) ∩ ker R          = L ( n , E ) ,     








which is a contradiction and therefore   ϵ =  C  n − 2  n   . □






7. The Plücker Matrix of the Lagrangian Grassmannian


Definition 5.

Let E symplectic vector space of dimension   2 n   defined over an arbitrary field  F  arbitrary. The matrix


   B  L ( n , E )    



(47)




of order    C  n − 2   2 n   ×  C  n   2 n     associated to the linear equations system   {  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  }   we call the Plücker matrix of the Lagrangian Grassmannian.





The main result of this section is



Theorem 4.

Let E symplectic vector space of dimension   2 n   and let    r n  =  ⌊   n + 2  2  ⌋   , then there exists a family


   A = {  L  r n   ,  L   r n  − 1   , … ,  L 2  }   








of   ( 0 , 1 )  -matrices, regular, sparse such that








	(A) 

	
If   n ≥ 4   be an even integer and   1 ≤ k ≤  r n  − 2  , then


    B  L ( n , E )   =  L  r n   ⊕  ⨁  k = 1    r n  − 2   (  ⨁     1 ≤  a 1  < ⋯ <  a  2 k   ≤ 2 n        a i  +  a j  ≠ 2 n + 1       L   r n  − k   (  a 1  , ⋯ ,  a  2 k   )   )   








where   L   r n  − k   (  a 1  , ⋯ ,  a  2 k   )    is a copy of   L   r n  − k   , for each   1 ≤ k ≤  r n  − 2  .




	(B) 

	
If   n ≥ 5   be an odd integer then   B  L ( n , E )   


    B  L ( n , E )   =  L   r n   n  ⊕  ⨁  k = 1    r n  − 2   (  ⨁     1 ≤  a 1  <  a 2  < ⋯ <  a  2 k + 1   ≤ 2 n        a i  +  a j  ≠ 2 n + 1       L   r n  − k   (  a 1  ,  a 2  , ⋯ ,  a  2 k + 1   )   )   








where   L   r n  − k   (  a 1  ,  a 2  , ⋯ ,  a  2 k + 1   )    is a copy of   L   r n  − k    for each   1 ≤ k ≤  r n  − 2   and    L   r n   n  =  L  r n   ⊕ ⋯ ⊕  L  r n    n-times.











7.1. Configuration of Subsets


Following [24] (p. 3) we call   X = {  x 1  , … ,  x n  }   an n-set. Now let    X 1  ,  X 2  , ⋯ ,  X m    be m distinct subsets of the n-set X. We refer to this collection of subsets of an n-set as a configuration of subsets. We set    a  i j   = 1   if    x j  ∈  X i    and we set    a  i j   = 0   if    x j  ∉  X i   . The resulting   ( m × n )  -matrix   A = (  a  i , j   )  ,   i = 1 , … , m  ,   j = 1 , … , n   of size m by n is the incidence matrix for the configurations of subsets    X 1  ,  X 2  , ⋯ ,  X m    of the n-set X. The   1 ′  s in row i of A display the elements in the subsets   X j   and the   1 ′  s in column j display the occurrences of the element   x j   among the subsets. If a matrix A has all its coefficients equal 0 or 1 is called a   ( 0 , 1 )  -matrix. Give a   ( 0 , 1 )  -matrix A we say that is regular if the number of 1’s is fixed in each column and has a fixed number of 1’s in each row. If A is not regular we say that is irregular see [10,25,26], for more information. A sparse matrix is a   ( 0 , 1 )  -matrix in which most of the elements are zero.



Configuration of Incidence


Let   S = {  s 1  … ,  s n  }   an n-set and    S 1  , … ,  S m    be m subsets of the n-set S and  L  the   m × n   incidence matrix, for the configuration of subsets    S 1  , … ,  S m   . The pair


  ( S ,  S i    )   i = 1  m   



(48)




we call configuration of incidence of S. If   (  S ′  ,  S i ′   )  i = 1  m   ,where    S ′  =  {  s 1 ′  … ,  s n ′  }   , is other configuration of incidence then they are isomorphic if and only if there is a bijection


  ψ : S ⟶  S ′   










  ψ  (  s i  )  =  s i ′   








such that   ψ  (  S i  )  =  S i ′    for all   i = 1 , … , m   and note   L =   L  ′    where  L  and    L  ′   are   ( m × n )  -incidence matrices.



Let   (  S ′  ,  S i ′   )  i = 1  m    be an incidence configuration, with S an n-set and   { a }   a set of cardinality 1 then using the Cartesian product we define the Cartesian incidence configuration as follows


  a ×   ( S ,  S i  )   i = 1  m  : =   (  { a }  × S ,    S  ( a , i )   )   i = 1  m   



(49)




where    S  ( a , i )   : =  { a }  ×  S i   .



Lemma 13.

The Cartesian incidence configuration    { x }  ×   ( S ,  S i  )   i = 1  m    is isomorphic to    ( S ,  S i  )   i = 1  m   and they have the same incidence matrix.





Proof. 

Since    |  { x }  ×    ( S ,  S i  )   i = 1  m   | = |    ( S ,  S i  )   i = 1  m   |    then the projection mapping


  ψ :  { x }  ×   ( S ,  S i  )   i = 1  m  ⟶   ( S ,  S i  )   i = 1  m   










  ( x , s ) ⟼ s  








is one–one and clearly    ψ   |  { x }  ×   S i    =  S i   ; thus, the configurations are isomorphic. Moreover,    ( x , s )  ∈  { x }  ×  S i    if and only if   s ∈  S i    and so both configurations have the same incidence matrix. □





Let   m ≥ 2   even integer,    r m  =   m + 2  2    and    Σ m  =  {  P 1  , … ,  P m  }    as in (6)


   (  C   m 2     (  Σ m  )  ,   S  P α   )    P α  ∈  C   m − 2  2    (  Σ m  )    



(50)




where    C  m 2    (  Σ m  )    and   C   m 2   m  -set and


   S  P α   =  {  P β  ∈  C  m 2    (  Σ m  )  : s u p p  { α }  ⊂ s u p p  { β }  }  ,  



(51)




a configuration of subsets of    C  m 2    (  Σ m  )   .



Remark 4.

Note that    S α   = {   P β  ∈  C  m 2    (  Σ m  )   : | s u p p   { α }  ∩ s u p p  { β }   | =   m − 2  2  }   .







7.2. Properties


Let   m ≥ 4   even integer, given the incidence configuration (50)


   (  C   m 2     (  Σ m  )  ,   S  P α   )    P α  ∈  C   m − 2  2    (  Σ m  )    








let    r m  =   m + 2  2    then we have



Lemma 14.

For all    P α  ∈  C   m − 2  2    (  Σ m  )    we have    |   S  P α    | =   r m   .





Proof. 

If    P β  ∈  S  P α     and    | s u p p  { α }  |  =   m − 2  2    then


      |   S  P α    |      = | { β ∈ I ( m / 2 , m ) : s u p p { β } = s u p p { α } ∪ { i }  w i t h  1 ≤ i ≤ m } |          = | { i ∈ [ m ] : | s u p p { α } ∪ { i } | = m / 2 } |          = m − | s u p p { α } |          = m −   m − 2  2           =   m + 2  2      











□





Lemma 15.

Let   P α   and   P  α ¯    two different elements of    C   m − 2  2    (  Σ m  )    then


    S  P α   ∩  S  P  α ¯    ≠ ∅   i f  a n d  o n l y  i f    | s u p p  { α }  ∩ s u p p  {  α ¯  }  |  =   m − 4  2  .   













Proof. 

  ⇒ ) :   Let    P β  ∈  S  P α   ∩  S  P  α ¯     . Then there are two different positive integers N and M such that   s u p p  { α }  ∪  { N }  = s u p p  { β }  = s u p p  {  α ¯  }  ∪  { M }   , also   s u p p  { α }  −  { M }  = s u p p  { β }  −  { N , M }  = s u p p  {  α ¯  }  −  { N }   , as a consequence we have to   s u p p  { β }  −  { N , M }  = s u p p  { α }  ∩ s u p p  {  α ¯  }    so    | s u p p   {  P α  }  ∩ s u p p  {  P  α ¯   }   | = | s u p p   {  P β  }   | − |   { N , M }   | =    m − 4  2   



  ⇐ ) :   Suppose    | s u p p  { α }  ∩ s u p p   {  α ¯  }   | =    m − 4  2    then there exist M, N distinct positive integers such that    { M }  = s u p p  { α }  − s u p p  { α }  ∩ s u p p  {  α ¯  }    and    { N }  = s u p p  {  α ¯  }  − s u p p  { α }  ∩ s u p p  {  α ¯  }    and so it exists    P β  ∈  C  m 2    (  Σ m  )    such that   s u p p  { β }  =  ( s u p p  { α }  ∩ s u p p  {  α ¯  }  )  ∪  { N , M }    then we have    P β  ∈  S  P α   ∩  S  P  α ¯      and so    S  P α   ∩  S  P  α ¯    ≠ ∅  . □





Corollary 8.

Let   P α   and   P  α ¯    be two different of    C   m − 2  2    (  Σ n  )    then    |   S  P α   ∩  S  P  α ¯     | ≤ 1   .





Proof. 

Be    P β  ∈  S  P α   ∩  S  P  α ¯      then there are two positive integers N and M different such that   s u p p  { α }  ∪  { N }  = s u p p  { β }  = s u p p  {  α ¯  }  ∪  { M }   , also   s u p p  { α }  −  { M }  = s u p p  { β }  −  { N , M }  = s u p p  {  α ¯  }  −  { N }   , as a consequence we have to   s u p p  { β }  =  ( s u p p  { α }  ∩ s u p p  {  α ¯  }  )    ∪  { N , M }    clearly    ( s u p p  { α }  ∩ s u p p  {  α ¯  }  )  ∪  { M }  ⊂ s u p p  { α }    then for Lemma 15 we have    |   ( s u p p  { α }  ∩ s u p p  {  α ¯  }  )  ∪  { M }   | =    m − 4  2  + 1 =   m − 2  2    so we have to   s u p p  { α }  =  ( s u p p  { α }  ∩ s u p p  {  α ¯  }  )  ∪  { M }   , analogously we have to   s u p p  {  α ¯  }  =  ( s u p p  { α }  ∩ s u p p  {  α ¯  }  )  ∪  { N }   . Suppose there is another    P  β ′   ∈  S  P α   ∩  S  P  α ¯      then there exist   M ′   y   N ′   distinct positive integers such that   s u p p  {  β ′  }  = s u p p  { α }  ∩ s u p p  {  α ¯  }  ∪  {  N ′  ,  M ′  }   , as   s u p p  { α }  ⊆ s u p p  {  β ′  }    then    ( s u p p  { α }  ∩ s u p p  {  α ¯  }  )  ∪  { M }  ⊆  ( s u p p  { α }  ∩ s u p p  {  α ¯  }  )  ∪  {  N ′  ,  M ′  }    then   M ∈ {  N ′  ,  M ′  }  . Analogously,   s u p p  {  α ¯  }  ⊆ s u p p  {  β ′  }   , and so we have to   N ∈ {  N ′  ,  M ′  }   so    { N , M }  =  {  N ′  ,  M ′  }    then   s u p p  { β }  = s u p p  {  β ′  }    so by (5) we have    |   S  P α   ∩  S  P  α ¯     | ≤ 1 .    □





Corollary 9.

If    S  P α   =  S  P  α ¯      then    P α  =  P  α ¯   .  





Proof. 

Suppose    S  P α   =  S  P  α ¯      and    P α  ≠  P  α ¯     then by Corollary 8 we have to    |   S  P α   ∩  S  P  α ¯     | ≤ 1   ; however, this is not possible since by Lemma 14,    |   S  P α   ∩  S  P  α ¯     | = |   S  P α    | =   r m    but   m ≥ 4   and so    r m  ≥ 3   which implies that    P α  =  P  α ¯   .   □





We call   w  P α    the intersection count of the   S  P α   



Lemma 16.

    w  P α   =  r m  − 1   





Proof. 

Clearly    P β  ∈  S  P α     if and only if   α ∈  C   m − 2  2    { s u p p  { β }  }   , so the number subsets   S  P α    that contain   P β   is equal to


   |   C  (   m − 2  2  )     { s u p p  { β }  }  | =   C  ( m − 2 ) / 2   m / 2   = m / 2 =  r m  − 1  








in consequence we have    w  P α   =  r m  − 1   □





Let us denote by


  L  r m   



(52)




the    C    m − 2  2   m  ×  C   m 2   m   -incidence matrix from     (  C   m 2    (  Σ m  ) ,  S   P α    )    P α  ∈  C    m − 2  2    (  Σ m  )    



Proposition 5.

Let   2 ≤ m   even positive integer and let    r m  =   m + 2  2    then








	(a) 

	
  L  r m    has   r m  -ones in each row;




	(b) 

	
  L  r m    has    r m  − 1  -ones in each column;




	(c) 

	
every two lines have at most one 1 in common;




	(d) 

	
  L  r m    is sparse.











Proof. 

The case   m = 2   generates the matrix   L 2   which trivially satisfies all the statements of this statement. So we assume that   m ≥ 4   for the rest of the proof.



(a): the    1 ′  s   in row   P α   of   L  r m    display the elements in the subset   S  P α    so by Lemma 14 each row has exactly   r m   ones in each row.



(b): the    1 ′  s   in the column   P β   display the occurrences of the elements of   S  P α    among the subsets, which follows from Lemma 16.



(c): follows directly from Corollary 8.



(d): The density of ones in the matrix is given by    r m  ×  C   m − 2  2  m  =  (  r m  − 1 )  ×  C  m 2  m   


    r m   C  m 2  m   =    r m  − 1   C   m − 2  2  m    








which approaches zero as m approaches infinity. □





Definition 6.

Let   n ≥ 2   is an integer and    r n  =  ⌊   n + 2  2  ⌋    we define the   r n  -atlas


   A : = {  L  r n   ,  L   r n  − 1   , … ,  L 2  }   



(53)




of incidence matrices corresponding to the family


       C  m 2    (  Σ m  )  ,   S  P α      P α  ∈  C   m − 2  2    (  Σ m  )      m = 2  n   



(54)




of incidence configurations.






7.3. Cartesian Configurations


For   n ≥ 4   even,    r n  =   n + 2  2   ,   1 ≤ k ≤  r n  − 2   and   1 ≤  a 1  <  a 2  < ⋯ <  a  2 k   ≤ 2 n   such that    a i  +  a j  ≠ 2 n + 1   then we define    Σ   a 1  , … ,  a  2 k     =  Σ n  −  {  P  a 1   , ⋯ ,  P  a  2 k    }    as in (8). We define an Cartesian incidence configuration as in (49)


   (  a 1  , … ,  a  2 k   )  ×    C   n − 2 k  2    (  Σ   a 1  , … ,  a  2 k     )  ,   S  (  a 1  , … ,  a  2 k   ,  P α  )      P α  ∈  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k     )     



(55)




where


   {  (  a 1  , … ,  a  2 k   )  }  ×  C   n − 2 k  2    (  Σ   a 1  , … ,  a  2 k     )   








is an   C   n − 2 k  2   n − 2 k   -set and the subsets are


   S  (  a 1  , … ,  a  2 k   ,  P α  )   : =  {  (  a 1  , … ,  a  2 k   ,  P β  )  : s u p p  { α }  ⊂ s u p p  { β }  }   



(56)




for all    P α  ∈  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k     )   .



Lemma 17.

For   n ≥ 4   even,    r n  =   n + 2  2   ,   1 ≤ k ≤  r n  − 2   and   1 ≤  a 1  <  a 2  < ⋯ <  a  2 k   ≤ 2 n   such that    a i  +  a j  ≠ 2 n + 1   then the incidence matrix of (55) is    L   r n  − k    a 1  , … ,  a  2 k     =  L   r n  − k     an element of   A .  





Proof. 

As    |   Σ   a 1  , … ,  a  2 k      | = n − 2 k    if we make   m = n − 2 k   and    r m  =   m + 2  2   , clearly   2 ≤ n − 2 k ≤ n − 2   and    r m  =  r n  − k  . A simple calculation shows that   2 ≤  r m  ≤  r n  − 1  , then renumber the elements of    Σ   a 1  , … ,  a  2 k     =  {  P 1  , … ,  P m  }    so by the Lemma 13 the incidence configuration


   (  a 1  , … ,  a  2 k   )  ×    C   n − 2 k  2    (  Σ   a 1  , … ,  a  2 k     )  ,   S  (  a 1  , … ,  a  2 k   ,  P α  )      P α  ∈  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k     )     








is isomorphic to


    C  m 2    (  Σ m  )  ,     S  P α      P α  ∈  C   m − 2  2    (  Σ m  )    








so also for the Lemma 13 both have the same    C   n − ( 2 k + 1 )  2   n − 2 k   ×  C   n − 2 k  2   n − 2 k     incidence matrix    L  r m   =  L   r n  − k    . We denote this matrix by


   L   r n  − k    a 1  , … ,  a  2 k     =  L   r n  − k   .  



(57)







□





For   n ≥ 5   odd and    r n  =  ( n + 1 )  / 2   and   j ∈ { 1 , … , n }  , we define an Cartesian incidence configuration as in (49)


  j ×    C   n − 1  2    (  Σ n  −  {  P j  }  )  ,   S  ( j ,  P α  )      P α  ∈  C   n − 3  2    (  Σ n  −  {  P j  }  )     



(58)




where


   { j }  ×  C   n − 1  2    (  Σ n  −  {  P j  }  )   








is a   C  n 2  n  -set and its subsets   S  ( j ,  P α  )    are defined by


   S  ( j ,  P α  )   =  {  ( j ,  P β  )  : s u p p  { α }  ⊂ s u p p  { β }  }   



(59)




with    P α  ∈  C   n − 3  2    (  Σ n  −  {  P j  }  )   .



For   n ≥ 5   odd and    r n  =   n + 1  2   ,   1 ≤ k ≤  r n  − 2  , consider   1 ≤  a 1  <  a 2  < ⋯ <  a  2 k + 1   ≤ 2 n   such that    a i  +  a j  ≠ 2 n + 1   we define    Σ   a 1  , … ,  a  2 k + 1     =  Σ n  −  {  P  a 1   , … ,  P  a  2 k + 1    }   , as in (8).



We define a Cartesian incidence configuration as in (49)


   (  a 1  , … ,  a  2 k + 1   )  ×    C   n − ( 2 k + 1 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )  ,   S  (  a 1  , … ,  a  2 k + 1   ,  P α  )      P α  ∈  C   n − ( 2 k + 3 )  2    (  Σ   a 1  … ,  a  2 k + 1     )     



(60)




where


   {  (  a 1  , … ,  a  2 k + 1   )  }  ×  C   n − ( 2 k + 1 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )   








is   C   n − ( 2 k + 1 )  2   n − ( 2 k + 1 )   -set where the family of subsets is given by


   S  (  a 1  , … ,  a  2 k + 1   ,  P α  )   =  {  (  a 1  , … ,  a  2 k + 1   ,  P β  )  : s u p p  { α }  ⊂ s u p p  { β }  }   



(61)




for all    P α  ∈  C   n − 2 ( k + 3 )  2    (  Σ   a 1  , … ,  a  2 k     )   .



Lemma 18.






	(a) 

	
The incidence matrix (58) is   L  r n   




	(b) 

	
The    C   n − ( 2 k + 3 )  2   n − ( 2 k + 1 )   ×  C   n − ( 2 k + 1 )  2   n − ( 2 k + 1 )     incidence matrix (60) is    L   r m    (  a 1  , … ,  a  2 k + 1   )   =  L   r n  − k     and is an element of  A .











Proof. 

For the proof of (a) If we do   m = n − 1   and define    Σ m  =  Σ n  −  {  P j  }    so on


  j ×    C   n − 1  2    (  Σ n  −  {  P j  }  )  ,  S  ( j ,  P α  )      ( j ,  P α  )  ∈  C   n − 3  2    (  Σ n  −  {  P j  }  )     










  ≅    C  m 2    (  Σ m  )  ,  S  P α      P α  ∈  C   m − 2  2    (  Σ m  )     








so both have the same incidence matrix    L  r n   =  L  r m    . Given that    r m  =   m + 2  2  =   n + 1  2  =  r n   , we denote the incidence matrix (58) by


   L   r n    { j }   =  L  r m    



(62)




and part (a) has been proved.



For the proof of (b), clearly    |   Σ   a 1  , … ,  a  2 k + 1      | = n −  ( 2 k + 1 )     if we do   m = ( n − 1 ) + 2 k   and    r m  =   m + 2  2   , clearly we have that    r m  =  r n  − k  . Now if we rename the elements of    Σ   a 1  , … ,  a  2 k + 1     =  {  P 1  , … ,  P m  }    then


   (  a 1  , … ,  a  2 k + 1   )  ×    C   n − ( 2 k + 1 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )  ,  S  P α      P α  ∈  C   n − ( 2 k + 3 )  2    (  Σ   a 1  … ,  a  2 k + 1     )     








is isomorphic to the incidence configuration


   (  C  m 2    (  Σ m  )  ,  S  P α   )    P α  ∈  C   m − 2  2    (  Σ m  )    








then    L   r m    (  a 1  , … ,  a  2 k + 1   )   =  L   r n  − k     note that   2 ≤ m ≤ m − 3   implies that   2 ≤  r m  ≤  r n  − 1  . □





For all    α  r s   ∈ I  ( n − 2 , 2 n )    making a change in the notation we rewrite (16) as


      Π  α  r s    =  ∑  i = 1  n   c   α  r s    P i     X   α  r s    P i        



(63)




where


   c   α  r s    P i    =     1    if   | s u p p {  α  r s    P i  } | = n  ,      0    otherwise ,       








For each    α  r s   ∈ I  ( n , 2 n )   , consider


   S  α  r s     = {   α  r s    P i  ∈ I  ( n − 2 , 2 n )  ×  Σ n   : | s u p p   {  α  r s    P i  }   | = n }  .  



(64)







Remark 5.

Note that depending on where    α  r s   ∈ I  ( n − 2 , 2 n )    is, we have   S  α  r s     is equal to (51), (56), (59) or (61), respectively.






7.4. Function  φ 


For   n ≥ 4  , we consider


     φ : I  ( n − 2 , 2 n )  →   { 0 , 1 }   C n  2 n        



(65)






      (  α  r s   )  ↦   (  c β  )   β ∈ I ( n , 2 n )    ; w h e r e     



(66)






      c β  =     1    if  β ∈  S  α  r s         0    otherwise .          



(67)




Clearly


   B  L ( n , E )   = φ  ( I  ( n − 2 , 2 n )  )   



(68)




up to permutation of rows.



Lemma 19.

The function φ is injective.





Proof. 

Let    α  r s   ,   α  r s  ′  ∈ I  ( n − 2 , 2 n )    such that   φ  (  α  r s   )  = φ  (  α  r s  ′  )    then     (  c β  )   β ∈ I ( n , 2 n )   =   (  c β ′  )   β ∈ I ( n , 2 n )     this implies    S  α  r s    =  S  α  r s  ′     and by Corollary 9 we have    α  r s   =  α  r s  ′    □





Corollary 10.

Let   n ≥ 4   integer even,    r n  =   n + 2  2    then








	(a) 

	
   φ  (  C   n − 2  2    (  Σ n  )  )  =  L  r n     




	(b) 

	
   φ  (  (  a 1  , … ,  a  2 k   )  ×  C   n − 2 k  2    (  Σ   a 1  , … ,  a  2 k     )  )  =   L    r n  − k   (  a 1  , … ,  a  2 k   )     



Let   n ≥ 5   odd integer,    r n  =   n + 1  2    then




	(c) 

	
  φ  (  { j }  ×  C   n − 2  2    (  Σ n  −  {  P j  }  )  )  =   L   r n  j    for all   j = 1 , … , n  




	(d) 

	
   φ  (  (  a 1  , … ,  a  2 k + 1   )  ×  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )  )  =   L    r n  − k   (  a 1  , … ,  a  2 k + 1   )     











Proof. 

The proof follows directly from the Lemma 19 and Remark 5. □






7.5. Proof of the Theorem 4


(A) by Lemma 1 we have


     I ( n − 2 , 2 n )     =  C   n − 2  2    (  Σ n  )  ∪ (  ⋃  k = 1    r n  − 2    ⋃     1 ≤  a 1  < ⋯ <  a  2 k   ≤ 2 n        a i  +  a j  ≠ 2 n + 1       (  a 1  , … ,  a  2 k   )  ×  C   n − 2 ( k − 1 )  2    (  Σ   a 1  , … ,  a  2 k     )  ) .     








since  φ  is injective we have a partition in the image, so


     φ  (  C   n − 2  2    (  Σ n  )  )  ⋃ (  ⋃  k = 1    r n  − 2    ⋃     1 ≤  a 1  < ⋯ <  a  2 k   ≤ 2 n        a i  +  a j  ≠ 2 n + 1      φ   (   (  a 1  , … ,  a  2 k   )  ×  C   n − 2 ( k − 1 )  2    (  Σ   a 1  , … ,  a  2 k     )    )  ) .     








Associating the corresponding matrix, using the Corollary 10, we have that


     B  L ( n , E )      =  L  r n   ⊕  ⨁  k = 1    r n  − 2   (  ⨁     1 ≤  a 1  < ⋯ <  a  2 k   ≤ 2 n        a i  +  a j  ≠ 2 n + 1           L   r n  − k   (  a 1  , ⋯ ,  a  2 k   )   ) .     








Part (B) Proceeding as in part (A) of this proof, we have


      ⋃  j = 1  n   (  { j }  ×  C  n 2    (  Σ n  )  )  ∪ (  ⋃  k = 1    r n  − 2    ⋃     1 ≤  a 1  < ⋯ <  a  2 k + 1   ≤ 2 n        a i  +  a j  ≠ 2 n + 1       (  a 1  , … ,  a  2 k + 1   )  ×  C   n − 2 k + 3 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )  )     








we obtain


      φ  ( I ( n − 2 , 2 n ) )   =  ⋃  j = 1  n  φ  (  { j }  ×  C   n − 2  2    (  Σ n  )  )  ∪                ⋃  k = 1    r n  − 2   (  ⋃     1 ≤  a 1  <  a 2  < … <  a  2 k + 1   ≤ 2 n        a i  +  a j  ≠ 2 n + 1       φ  (  (  a 1  , … ,  a  2 k + 1   )  ×  C   n − ( 2 k + 3 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )  )     )                        B  L ( n , E )   =  ⨁  j = 1  n   L   r n   j  ⊕  ⨁  k = 1    r n  − 2   (  ⨁     1 ≤  a 1  < … <  a  2 k + 1   ≤  a  2 n          a i  +  a j  ≠ 2 n + 1       L   r n  − k   (  a 1  ,  a 2  , … ,  a  2 k + 1   )   ) .     











Example 5.

Let E be a symplectic vector space of dimension 12 and    r 6  =   6 + 2  2  = 4   then his   r 6  -atlas is given by the triplet of matrices


  A = {  L 4  ,  L 3  ,  L 2  }  








where


[image: Mathematics 12 00858 i003]








and


   L 3  =     1   1   1   0   0   0     1   0   0   1   1   0     0   1   0   1   0   1     0   0   1   0   1   1     .  








  L 2   is a row matrix filled with zeros and with only two entries equal to 1.



The matrix   B  L ( 6 , E )   , of size     12 4   ×   12 6    , associated to the homogeneous system   Π = {  Π  α  r s    :  α  r s   ∈ I  ( 4 , 12 )  }   can be given by a block diagonal matrix as follows


      B  L ( 6 , E )      =  L 4  ⊕ (  ⨁   1 ≤  α 1  <  α 2  ≤ 12    α 1  +  α 2  ≠ 13     L 3  (  α 1  ,  α 2  )   ) ⊕ (  ⨁   1 ≤  α 1  <  α 2  <  α 3  <  α 4  ≤ 12    α i  +  α j  ≠ 13     L  2   (  α 1  ,  α 2  ,  α 3  ,  α 4  )   ) ,      










[image: Mathematics 12 00858 i004]








where there are 1 matrix   L 4  , 60 submatrices   L 3  , and 240 submatrices   L 2  .





Example 6.

Let E be a symplectic vector space of dimension 14 and    r 7  =  ⌊   7 + 2  2  ⌋  = 4   then his 4-atlas is given by


   A = {  L 4  ,  L 3  ,  L 2  }   










       B  L ( 7 , E )   =  ⨁  i = 1  7   L 4  { i }   ⊕ (  ⨁   1 ≤  a 1  <  a 2  <  a 3  ≤ 14    a i  +  a j  ≠ 15     L 3  (  a 1   a 2   a 3  )   ) ⊕ (  ⨁   1 ≤  a 1  <  a 2  < … <  a 4  <  a 5  ≤ 14    a i  +  a j  ≠ 15     L 2  (  a 1   a 2   a 3   a 4   a 5  )   ) ,      








where    L 4  { i }   =  L 4   ,    L 3  (  a 1   a 2   a 3  )   =  L 3    and    L 2  (  a 1   a 2   a 3   a 4   a 5  )   =  L 2   .
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8. Isotropy Index   r n   and   r n  -Atlas


Definition 7.

Let E symplectic vector space of dimension   2 n  ; we call    r n  =  ⌊   n + 2  2  ⌋    isotropy index of E.





Let   B  L ( n , E )    as Equation (47) and using notation as in (13) and    [  ]   α ∈ I ( n , 2 n )  T   denotes the transposed vector.



Lemma 20.

Let f be the contraction map, then   f   ( w )  ρ  =  B  L ( n , E )     (  w ρ  )  T   .





Proof. 

Let   w =  ∑  α ∈ I ( n , 2 n )    X α   e α  ∈  ∧ n  E   and ρ Plücker embedding we denote    w ρ  =   [  X α  ]   α ∈ I ( n , 2 n )    , it as in (13), then by Lemma 2 and by Equation (68) the following diagram commutes i.e.,   ρ ∘ f =  B  L ( n , E )   ∘ ρ  


[image: Mathematics 12 00858 i006]








so we have


      (  ρ 2  ∘ f )   ( w )      =  ρ 2   (   ∑   α  r s   ∈ I  ( n − 2 , 2 n )      (   ∑  i = 1  n    X  (  α  r s   ,  P i  )   )   e  α  r s    )           =     ∑  i = 1  n    X  (  α  r s   ,  P i  )      α  r s   ∈ I  ( n − 2 , 2 n )             =  B  L ( n , E )     [  X α  ]   α ∈ I ( n , 2 n )  T           =  B  L ( n , E )     (  w  ρ 1   )  T      








which proves commutativity so    ρ 2  ∘ f =  B  L ( n , E )   ∘  ρ 1   .



□





Corollary 11.

  ker f   is isomorphic to   ker  B  L ( n , E )     as vector spaces.





Proof. 

From the Lemma 20 we have    ρ 1   ( ker f )  ⊂ ker  B  L ( n , E )    , and both have the same dimension so   ker f ≅ ker  B  L ( n , E )     is an isomorphism of vector spaces. □





The following corollary follows directly from the Lemma 20.



Corollary 12.

Let E symplectic vector spaces of dimension   2 n   then


   dim ker f =  C n  2 n   − r a n k  B  L ( n , E )     








Moreover,    C n  2 n   −  C  n − 2   2 n   ≤ dim ker f ≤  C n  2 n   − 1  .





Theorem 5.

Let E symplectic vector space of dimension   2 n   defined over an arbitrary field  F  and    r n  =  ⌊   n + 2  2  ⌋    the isotropy index.



Then, the following are equivalent:



(a)   C h a r F = 0   or   C h a r F ≥  r n   



(b)   r a n k  B  L ( n , E )   =  C  n − 2   2 n    



(c)   dim ker f =  C n  2 n   −  C  n − 2   2 n    



(d)   dim H =  C  n − 2   2 n     and   {  Π  α  r s    :  α  r s   ∈ I  ( n − 2 , 2 n )  }   is a base of  H .





Proof. 

(a) and (b) are equivalent by [27] (Theorem 6).



(b) and (c) are equivalent by Corollary 11 and by Corollary 12.



(c) and (d) are equivalent by Theorem 3. □





We say that the embedding rank   e r ( L ( n , E ) )   of   L ( n , E )   is the dimension of the linear envelope   〈 L ( n , E ) 〉  .



Lemma 21.

Embedding rank of   L ( n , E )   is   e r  ( L  ( n , E )  )  =  C n  2 n   − r a n k  B  L ( n , E )    .





Proof. 

We have that


     e r ( L ( n , E ) )     = dim 〈 L ( n , E ) 〉          = dim k e r f          =  C n  2 n   − r a n k  B  L ( n , E )       











□





Corollary 13.

Let E a symplectic vector space of dimension   2 n  , let f the contraction map the isotropy index    r n  =  ⌊   n + 2  2  ⌋    are equivalent








	(1) 

	
f is surjective




	(2) 

	
   e r  ( L  ( n , E )  )  =  C  n   2 n   −  C  n − 2   2 n     




	(3) 

	
   r a n k  B  L ( n , E )   =  C  n − 2   2 n     




	(4) 

	
char  F = 0   or char  F ≥  r n   




	(5) 

	
  r a n k  L   r n  − k     is maximum for everything   0 ≤ k ≤  r n  − 2  .











Proof. 

(1) is equivalent (2), (2) is equivalent (3) given that   dim ker f = dim ker B   y   dim ker f =    2 n  n   − r a n k B  .



(3) is equivalent (4) is followed from [27] (Theorem 6) and finally (3) is equivalent (5) is obvious. □





Example 7.

By Corollary 12   dim ker f = 70 − r a n k  B  L ( 4 , 8 )    , the order of   B  L ( 4 , 8 )    is   28 × 70   and by Theorem 4,   L 3   is a submatrix of   B  L ( 4 , 8 )    and it is also easy to see that


    L 3  =     1   1   1   0   0   0     1   0   0   1   1   0     0   1   0   1   0   1     0   0   1   0   1   1     ∼     1   0   0   1   1   0     0   1   0   1   0   1     0   0   1   0   1   1     0   0   0   2   2   2     .   













and


  r a n k  B  L ( 4 , 8 )   =     28    if  char  F ≥ 3       27    if  char  F = 2        











Example 8.

Consider the matrices   L 4   and   L 3   in a field   F 2  . By elementary matrix operations we have


    L 4  ∼








This matrix we denote by   ( i d |  A 3 3  )  .



As we saw in the Example 7,   L 3   in   F 2   it is of the form


    L 3  ∼      1    0   0   1   1   0     0   1   0   1   0   1     0   0   1   0   1   1     0   0   0   0   0   0       








and we denote by   ( I d |  A 2 2  )  .





In [18] (Corollary 1.2) can find a more general case of Theorem 5 also see [28] for some examples where   n = 2 , 3 , 4 , 5 , 6  , and 7.



Let E be a symplectic vector space of dimension   2 n   and let    r n  =  ⌊   n + 2  2  ⌋    consider the family of matrices given in (53)


  A = {  L  r n   ,  L   r n  − 1   , … ,  L 2  }  



(69)




and we call the   r n  -atlas of   L ( n , E )  .



Lemma 22.

Let n integer and let E and   E ¯   symplectic vector spaces of dimension   2 n   and   2 m  , respectively, then


    r n  =  r m   i f  a n d  o n l y  i f  n = m  o r  m = n + 1 .   













Proof. 

  ⇒ )   If both m and n are even integers or if both m and n odd integers then   n = m  .



Suppose that n is even integer and   m = 2 k + 1   is odd integer. If    r n  =  r m    then    ⌊   n + 2  2  ⌋  =  ⌊   2 k + 1 + 2  2  ⌋    so     n + 2  2  =   2 k + 2  2    what it implies   n = 2 k   so   m = n + 1  .



  ⇐ )   If   n = m   then    r n  =  r m   . Now if   m = n + 1   then    r m  =  ⌊   m + 2  2  ⌋  =  ⌊   n + 1 + 2  2  ⌋  =   n + 2  2  =  r n  .   □





Corollary 14.

(a) If E and   E ¯   both are symplectic vector spaces of dimension   2 n   so they share the same   r n  -atlas.



(b) Let E symplectic vector space of dimension   2 n   and let   E ¯   symplectic vector space of dimension   2 ( n + 1 )   then both spaces share the same   r n  -atlas.





Proof. 

The proof follows directly from the Lemma 22. □





Example 9.

Let   E 1   and   E 2   two symplectic vector spaces of dimension   2 n   defined over a field  F  and isotropy index    r n  =  ⌊   n + 2  2  ⌋   . If char F =0 or char  F ≥ r   then   E 1   and   E 2   they share



(a) the same isotropy index   r n  ;



(b) the same   r n  -atlas   {  L  r n   , … ,  L 2  }  ;



(c) the same Plücker relations   {  Q  α , β   ,  Π  α  r s    }   of the Lagrangian Grassmannian variety.





Example 10.

Consider the symplectic vector spaces     R  6  ⊕   (   R  6  )  *    and    F 2 6  ⊕   (  F 2 6  )  *   , two symplectic vector space non-symplectomorphisms, them



(a) They share the same isotropy index    r 6  =   6 + 2  2  = 4  .



(b) They share the same Plücker relations   {  Q  α , β   ,  Π  α  r s    }   of the Lagrangian Grassmannian variety.



However, they do not share the same 4-atlas so we have:



the 4-atlas of     R  6  ⊕   (   R  6  )  *    is   {  L 4  ,  L 3  ,  L 2  }   see Example 5



but the 4-atlas of    F 2 6  ⊕   (  F 2 6  )  *    is   {  ( i d |  A 3 3  )  ,  ( i d |  A 2 2  }  ,  L 2  }   see Example 8.





Hypersurfaces in   L ( n , E )  


The linear sections of the Lagrangian-Grassmannian   L ( n , E )   have applications in other fields of mathematics see [14]. Using the notation    ℜ  α  r s    : = Z  〈  Π  α  r s    〉  ⊂ P  (  ∧ n  E )    we define the following linear varieties.



Definition 8.

Let   n ≥ 4   even integer then








	(a) 

	
   ℜ : =  ⋂   α  r s   ∈  C   n − 2  2    (  Σ n  )     ℜ  α  r s      




	(b) 

	
    ℜ   C   n − 2 ( k + 1 )  2     (  a 1  , … ,  a  2 k   )   : =  ⋂   α  r s   ∈  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k     )     ℜ  α  r s      









Let   n ≥ 5   odd integer then








	(c) 

	
    ℜ n  : =  ⋂   α  r s   ∈  ⋃  j = 1  n   { j }  ×  C   n − 2  2    (  Σ n  )     ℜ  α  r s      




	(d) 

	
    ℜ   C   n − 2 ( k + 1 )  2     (  a 1  , … ,  a  2 k + 1   )   : =  ⋂   α  r s   ∈  C   n − 2 ( k + 1 )  2    (  Σ   a 1  , … ,  a  2 k + 1     )     ℜ  α  r s      











Theorem 6.

Let E be a symplectic vector space of dimension   2 n   then   L ( n , E )   is intersection of linear sections of the Grassmannian variety and is included in a projective space of a direct sum of matrix kernels








	(A) 

	
If   n ≥ 4   even integer and let    r n  =   n + 2  2   , then


      L ( n , E )     =  ( G  ( n , E )  ∩ ℜ )  ∩ (  ⋂  k = 1    r n  − 2    ⋂     1 ≤  a 1  < ⋯ <  a  2 k   ≤ 2 n        a i  +  a j  ≠ 2 n + 1       ( G  ( n , E )  ∩  ℜ   C   n − 2 k  2     (  a 1  , … ,  a  2 k   )   )  )          ⊆ P ( ker  L  r n   ⊕  ⨁  k = 1    r n  − 2   (  ⨁     1 ≤  a 1  < ⋯ <  a  2 k   ≤ 2 n        a i  +  a j  ≠ 2 n + 1      ker  L   r n  − k   (  a 1  , ⋯ ,  a  2 k   )   ) )      












	(B) 

	
If   n ≥ 5   odd integer and let    r n  =   n + 1  2   , then





      L ( n , E )     =  ( G  ( n , E )  ∩  ℜ n  )  ∩ (  ⋂  k = 1    r n  − 2    ⋂     1 ≤  a 1  < ⋯ <  a  2 k + 1   ≤ 2 n        a i  +  a j  ≠ 2 n + 1       ( G  ( n , E )  ∩  ℜ   C   n − 2 k  2     (  a 1  , … ,  a  2 k + 1   )   )  )          ⊆ P ( ker  L   r n   n  ⊕  ⨁  k = 1    r n  − 2   (  ⨁     1 ≤  a 1  <  a 2  < ⋯ <  a  2 k + 1   ≤ 2 n        a i  +  a j  ≠ 2 n + 1      ker  L   r n  − k   (  a 1  ,  a 2  , ⋯ ,  a  2 k + 1   )   ) ) .      
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