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Abstract: In this study, a deep learning-based approach is used to address inverse problems involving
the inversion of a magnetic field and the identification of the relevant source, given the field data
within a specific subdomain. Three different techniques are proposed: the first one is characterized by
the use of a conditional variational autoencoder (CVAE) and a convolutional neural network (CNN);
the second one employs the CVAE (its decoder, more specifically) and a fully connected deep artificial
neural network; while the third one (mainly used as a comparison) uses a CNN directly operating
on the available data without the use of the CVAE. These methods are applied to the magnetostatic
problem outlined in the TEAM 35 benchmark problem, and a comparative analysis between them
is conducted.

Keywords: deep learning; source identification problem; magnetic field; conditional variational
autoencoder; automatic differentiation; image reconstruction
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1. Introduction
1.1. Overview

In recent years, extensive research efforts have focused on employing neural network
(NN)-based methods to deal with electromagnetic (EM) field problems. This paper pro-
poses and compares various deep learning (DL)-based approaches for solving an inverse
problem in magnetostatics. In particular, this work is the continuation of the research
activity carried out by the authors, with the main goals of highlighting the difference
between different NN/DL-based approaches; the comparison is made both in terms of
computational resources and in the accuracy of the obtained results. Such comparisons on
a specific test case have been rarely presented in the literature.

Source identification and field reconstruction are fundamental aspects in EM field
research; besides being theoretically sound, such kinds of inverse problems also find
applications in many different high-technology environments [1–3].

1.2. Literature Review

In introducing NNs in EM solvers, frequently taking the form of DL models, NNs
have found applications mainly in addressing direct EM problems. This is especially
valuable when optimization processes necessitate numerous field computations [4,5]: their
primary advantage lies in their capability to accurately assess desired parameters in reduced
computational time. This can be accomplished by effectively training the NN with an
appropriate dataset. Nevertheless, it is crucial to know that the effort associated with the
generation of the training dataset (including the time required for constructing the dataset
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and model) is a non-negligible factor that needs to be considered in the overall assessment
of DL’s effectiveness in solving EM problems.

A newer application of DL arises from the ability to train NNs to address inverse EM
problems. This involves identifying the magnitude and/or the geometric characteristics
of the source when the field distribution is known at specific locations [6]. It must be
highlighted that EM forward problems are commonly well posed and associated with
unicity of the solution, achievable with a certain level of approximation determined by the
numerical method used for the solution, if the sources and boundaries are well defined. In
contrast, inverse problems are typically addressed by minimizing a field reconstruction
error, and regularization techniques are frequently needed in this context due to the inherent
non-uniqueness and ill-conditioned nature of raw observed data.

In this context, the employment of DL for EM problem inversion basically corresponds
to the application of a regularization technique. Several authors have explored similar
concepts in areas such as image processing [7–13]; however, the specific application of DL
for solving inverse problems in electromagnetic fields remains a relatively unexplored area,
with several aspects still to be investigated [4–6].

Both in forward and inverse solutions, DL offers an interesting advantage: the ability to
work directly with images. This means that various elements such as geometry (including
boundaries and material interfaces), sources, and outcomes (such as field distributions
represented as color maps) can be efficiently and directly represented using images.

In a previous work [13], the authors proposed a DL approach for 2D field reconstruction
and source identification, where the available data were the magnetic field in a specific
sub-region of space Ω0. The main goal was to find either the field distribution in the whole
domain Ω or the geometry of the sources (or to solve both problems at the same time). The
model proposed in [13] is composed of a cascade of a conditional variational autoencoder
(CVAE) [14,15] and a convolutional neural network (CNN) [11], where the CVAE recon-
structs the field distribution in the whole domain Ω given the field in a subdomain Ω0, and
the CNN predicts the device geometry given the output reconstructed field of the CVAE. The
approach proposed in [13] was applied to the EM problem as presented in TEAM 35 [16,17].

1.3. Motivation

In this work, the authors were interested in presenting, analyzing, and comparing
other approaches with respect to those in [13]. The use of ML-based approaches is a
“trending topic” in many research areas, and in the authors’ opinion, there are several good
contributions like the ones cited above; however, the wide variety of approaches and test
cases results in an objective difficulty in comparing their performances and their positive
and negative aspects. In the present contribution, the authors propose a clear comparison
between different methods, starting with using the same physical EM problem and the
same database.

To this extent, three different approaches are compared. The first approach is the one
proposed in [13], for which updated results are reported in this work, resulting from a
more efficient training. The motivation for the choice of the methodology lies in the fact
that the CVAE is a powerful generative DL method, which is effective in reconstructing the
field image distribution in the full domain knowing the field distribution in a subdomain.
Additionally, a CNN can be used as a regressor to obtain the sources from a reconstructed
field image. The second approach consists of substituting both the decoder part of the
CVAE and the subsequent CNN with a fully connected artificial neural network, denoted
as ANN, to identify the sources. In this approach, the authors still employed the low
dimensional data lying in the latent space defined by the CVAE encoder as an input of the
ANN, taking fully advantage of the CVAE’s capability of representing high-dimensional
images in a low-dimensional space. As a third approach, an evaluation of the sources was
performed directly from the field data in the sub-region Ω0 through the use of a CNN.
Approaches 2 and 3 aimed to only identify the source, while Approach 1 is the only one
that also solves the problem of field reconstruction.
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The remaining parts of this paper are organized as follows. In Section 2, the use of the
CVAE for field reconstruction is presented and motivated, along with a description of the
latent space solution that was optimized using automatic differentiation. Also in Section 2,
the three DL approaches for source identification are further presented. In Section 3, the
TEAM 35 case study is described, while Section 4 is dedicated to the results. Finally, in
Section 5, a discussion and conclusion are reported.

2. Deep Learning Models for Field Reconstruction and Source Identification

It is assumed that the field source is an arbitrary distribution of current-carrying
conductors in air. Three possible approaches to field inversion are proposed here.

2.1. Conditional Variational Autoencoder

An autoencoder (AE) is an unsupervised learning technique [11], and its primary
function is to compress images and reconstruct them from the reduced representation,
usually called the latent space. An AE is composed of two neural networks: an encoder and
a decoder. The encoder transforms the input image X (usually a two-dimensional matrix)
into a vector Z of reduced dimensions (with respect to the original image). Subsequently,
the decoder utilizes this condensed representation to reconstruct the original image as
Xrec, aiming to minimize the reconstruction error. Due to this error in the reconstruction,
the encoder performs what is known as lossy compression—essentially removing certain
information during the compression process.

In a variational autoencoder (VAE) [12], the encoder produces two output vectors
of dimension nL, i.e., the mean value µz and the standard deviation σz, that describe
the probability distribution associated with Z, rather than produce a single Z point as
in the case of the standard autoencoder. The values µz and σz represent the probability
distribution of the latent representation of X, essentially reflecting how the encoder discerns
the posterior distribution p(Z|X).

The probability distribution, crucial in the operation of the decoder, makes it possible
to extract a point Z within the latent space as follows:

Z ∼ q(Z|X) = µz + ϵσz (1)

with ϵ ∼ N (0, 1) and q(Z|X) being the approximate posterior distribution. The sampled
Z point is given to the decoder, which operates as in the case of the standard autoencoder,
i.e., generating the reconstructed image Xrec. The VAE loss involves two parts: the recon-
struction loss, measuring the difference between original image X and decoded image
Xrec, and the Kullback–Leibler loss [14], which aligns learned means and variances with a
normal distribution. Balancing these errors creates a smoother, more organized latent space
compared to standard autoencoders, which minimize only reconstruction errors. This is
crucial for generative models, which aim to generate new data.

In a CVAE [15], a special “label” variable, denoted as Y, is used. It is an extra input that
acts as a guide to how X is encoded and reconstructed in the CVAE. In this specific study, X
represents the magnetic field map over the entire domain Ω, while Y depicts the map in a
smaller region Ω0 within X. The goal is to reconstruct X using only Y. From a mathematical
viewpoint, the problem is ill posed due to a lack of knowledge on the boundary conditions
in Ω0; nevertheless, utilizing a CVAE is a way of regularizing the problem in the search
for a solution [13]. During the training, both image X and label Y are inputs of the CVAE,
while during the test, only the label Y is given to the decoder.

When reconstructing a field map without direct encoder input X during the test Dphase
and prediction phase, the decoder still needs an estimate of the latent space mapping Z
corresponding to unknown image X. For this purpose, a rough estimate, denoted as X0,
can be randomly guessed, or selected by picking the most similar example belonging to the
training set, leveraging the conditioning with Y. Once X0 is selected, the corresponding
Z0 is consequently estimated using the encoder. The authors verified that further refining
the Z0 latent space solution improves the reconstruction; for this reason, an optimization
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process is performed for the definition of the best Z solution, using automatic differentiation
and the gradient descent algorithm [13]. The objective function used here is the mean of
squared errors:

mseY(Zk) =
∥Y − Yk(Zk)∥2

F
Ne

, (2)

between the given label Y and the label Yk associated with the reconstructed image Xk,
which depends on Zk, ∥ ∥F indicates the Frobenius matrix norm, and Ne is the number
of elements in the matrix. The estimate Z0 is used as the initial point for the gradient
descent algorithm:

Zk+1 = Zk − γk
∂mseY

∂Zk
. (3)

The Barzilai–Borwein method [18] is applied to determine the variable step size, γk.
The optimization loop terminates when the improvement in the objective function falls
below the tolerance value of 10−3, yielding an optimal Zopt value. Specifically, given Zk,
the decoder derives the corresponding Xk. The value of Xk aids the calculation of the
label Yk, enabling the computation of the objective function, mseY, which depends on Zk.
Consequently, automatic differentiation allows the calculation of the derivatives for the
objective function concerning Zk. At the end of this process, the optimal Zopt solution
and the label Y are given to the decoder that will predict the fully reconstructed image
Xrec depicting the magnetic field in the complete domain. In addition, the latent space of
the CVAE is available for further employment. This is the basis of the methods proposed
here for the problem inversion, i.e., the evaluation of the sources, particularly for both
Approaches 1 and 2.

2.2. Deep Learning-Based Source Identification

A graphical representation of the three different approaches defined in this contribu-
tion is presented in Figure 1. They are named, respectively, Approach 1, Approach 2, and
Approach 3, and are generally described in the following subsections.

As it will be clearer in the following, they are characterized by the use of different DL
paradigms. For this reason, the computational cost needed to train them is different. In this
proposal, they are all used to solve the inverse problem of evaluating the sources of the
magnetic field, while one of them provides, as an additional result, the field reconstruction,
as described in the previous section. Therefore, in order to make a significant comparison
between the performances of the three approaches, the accuracy in the source identification
was compared using the two different error metrics described below.
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2.2.1. Approach 1: Conditional Variational Autoencoder + Convolutional Neural Network

Approach 1 is resumed in Figure 2 and can be described as follows: based on the
procedure described in Section 2, a reconstructed field map of the whole domain is ob-
tained, which then serves as input for the CNN to recover the conductor geometries.
Basically, a cascade connection of the CVAE and the CNN is proposed, as clearly depicted
in Figure 2. This approach is the only one that can yield both the reconstructed field in the
complete domain (named Output #1 in the following figures) and the source characteristics,
named Output #2.

The details of the networks are provided in Section 4.
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2.2.2. Approach 2: Conditional Encoder + Artificial Neural Network

In the second approach, depicted in Figure 3, an ANN is used in substitution of the
decoder + CNN cascade. In particular, the ANN operates directly on the latent space,
i.e., the vectors representing the mean value µz and the standard deviation σz of the vector
Z. In this way, a partial simplification of the architecture is obtained, at the price of a missing
output, i.e., the field reconstruction, also named Output #1 in Figure 2. The simplification
in the architecture leads to a reduction in the computational burden during the inversion,
but the training phase of the CVAE must be retained, in order to let the ANN work on
a well-representative latent space. In this approach, the optimization algorithm is still
needed to obtain a good estimate of the latent space features. The details of the networks
are provided in Section 4.
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2.2.3. Approach 3: Convolutional Neural Network

The third approach is the most straightforward one, and it is represented in detail in
Figure 4. In this case, there is no use of the CVAE, and the CNN works on the field data in
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the specific region of space Ω0. As in approach 2, Output #1 (the reconstructed field) is not
obtained, but there is no computational expense devoted to the training of the CVAE.
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3. Case Study Description

As a benchmark magnetostatic problem, the authors considered the TEAM 35 prob-
lem [16,17] consisting in a small solenoid, e.g., for in vitro experiments of biomagnetism,
in which the source of the magnetic field is a winding with a rectangular cross section
(width w = 1 mm, height h = 1.5 mm) composed of 20 series-connected circular turns,
each of them carrying DC current I = 3 A (i.e., current density J = 2 Amm−2), as shown
in Figure 5.
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The advantage of using a known problem, selected as a benchmark by the Compumag
Society, lies in the fact that many solutions (obtained using completely different approaches)
already exist, and will also be available and published in the future.

Due to its well-defined nature and manageable complexity, this problem could be
effectively used by the authors both as a direct problem and as an inverse problem. More-
over, the initial problem formulation inherently includes a designated subregion (referred
to as the Region of Interest, ROI, in [16,17]) where field optimization is required. This
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aspect led the authors to obviously consider the ROI as the subdomain Ω0 where the field
is considered known before the inversion.

The generation of the database is a two-step procedure; first a set of simulations
performed using a Finite Element (FE) model are carried out, in order to find the magnetic
field map for any physical configuration (direct problem). Consequently, the obtained
field maps are post-processed with the goal of obtaining images that can be properly and
efficiently managed by the DL algorithm (image processing).

3.1. Database Generation: Direct Problem Description

A Finite Element (FE) model was implemented, where only 10 turns were simu-
lated, each characterized by radii R1, · · · , R10, respectively, and their variation range was
5 ≤ Ri ≤ 50 mm. A symmetric distribution of the radii was assumed with respect to the
plane z = 0. The geometry and a field map obtained using the FE model, implemented in
Simcenter Magnet [19], are shown in Figure 5. In detail, the axisymmetric model is charac-
terized by a rotational axis positioned at r = 0, while a symmetry condition was imposed at
z = 0. In this way, only 10 turns out of 20 were simulated. A vector potential formulation
was implemented, and the complete domain measured 150 × 100 mm, and at r = 150 mm
and z = 100 mm, a tangential field was imposed. A triangular mesh, composed of roughly
55,000 s-order elements, was created using the vector potential formulation.

The whole domain Ω used for the DL-based approaches was a subset of the FE domain
described before, and the sub-domain Ω0 ⊂ Ω (where the fields are supposedly known in
the inversion problems) is shown in Figure 5. The inverse problem can be formulated as
follows: given the magnetic field distribution in the sub-domain Ω0, identify the values of
the radii of the ten turns. No assumptions on the location of the turns, which can belong
to either Ω0 or to Ω\Ω0, were made. This problem was solved in three different ways, as
described before: in Approach 1, the field reconstruction problem is solved for the domain
Ω and then, based on the results of the first step, the identification problem of the coil
geometry is solved for. In Approach 2 and Approach 3, the reconstruction of the field in Ω
is not obtained and only the coil geometry is solved for.

The selection of the geometries can either follow some pre-defined guideline or can be
completely random. At this stage of the research, where the main goal is to quantitatively
evaluate and compare the performance of the methods, a set of geometries with given char-
acteristics, which are described in the following order to guarantee repeatability, was the
best choice. For this reason, three different geometries were considered, as reported in [13]:

• G1: turns with the same radius (solenoid-like geometry).
• G2: turns with an increasing radius along z (∆r = 1 mm).
• G3: turns with a decreasing radius along z (∆r = 1 mm).

This choice led to obtaining 451 solutions for geometry G1, 361 solutions for geometry
G2, and 361 solutions for geometry G3.

3.2. Database Generation: Image Processing

Since the original FEM images are oversized for their direct use in DL methods
(1000 × 1500 pixels), to make them suitable, they were initially cropped to focus on the
variable radius region. However, even after the cropping, the images remained excessively
large (225 × 550 pixels). Consequently, a resizing to 32 × 84 pixels was performed. Ad-
ditionally, the subdomain image, extracted post-cropping, was also resized to the same
dimensions of 32 × 84 pixels (Figure 6). This resizing aligns with the requirements of a DL
approach that can be effectively trained using our available hardware. A global database of
1173 solutions was created. The training set contained 75%, i.e., 880, of the solutions, while
the test set contained 25%, i.e., 293, of the solutions.
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3.3. Metric Definitions for the Comparison between the Approaches

The common result of all methods is the so-called Output #2, i.e., the source geometry
expressed as the radius of each coil. To evaluate the models, three metrics were used, the mean
absolute percentage error (MAPE), the normalized root mean square error (NRMSE), and the
normalized mean absolute error (NMAE), described in Equations (4)–(6), respectively:

MAPE = 100
1

Nt
∑Nt

∣∣∣∣Rpred − Rtrue

Rtrue

∣∣∣∣ (4)

NRMSE = 100

√
1

Nt
∑Nt

(
Rpred − Rtrue

)2

√
1

Nt
∑Nt(Rtrue)

2
(5)

NMAE = 100
1

Nt
∑Nt

∥∥∥Rpred − Rtrue

∥∥∥
max(Rtrue)− min(Rtrue)

(6)

where Nt is the number of samples in the test set, and Rpred and Rtrue are the predicted and
actual values of the radii, respectively.

These three metrics are known to have different sensitivities to large errors, which
tend to have a greater effect on the NRMSE with respect to the MAPE and NMAE. Both
the NRMSE and NMAE are alternative metrics that overcome the limitations of the more
classical mean absolute percentage error in situations involving data that can be negative
or close to zero, providing more balanced measures of accuracy.

4. Results
4.1. Approach 1: CVAE + CNN

The architectures of all the components of Approach 1 are reported in Tables 1–3. The
high number of learnable elements shows the complexity of the approach, which allows
not only the calculation of the source geometry, but also the reconstruction of the field.
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Table 1. Encoder architecture (213 × 103 learnables).

Layers Activations

Image-based input (size 30 × 84) & Label (size 30 × 84) 30 × 84 × 2

2D Convolution (size 6 × 16, padd. same, stride 1) 30 × 84 × 16

Batch Norm. 30 × 84 × 16

ReLU act. fun. 30 × 84 × 16

Max Pooling 2D (stride 2 × 2) 15 × 42 × 16

2D Convolution (size 3 × 32, padd. same, stride 1) 15 × 42 × 32

Batch Norm. 15 × 42 × 32

ReLU act. fun. 15 × 42 × 32

Max Pooling 2D (stride 2 × 2) 7 × 21 × 32

2D Convolution (size 3 × 64, padd. same, stride 1) 7 × 21 × 64

Batch Norm. 7 × 21 × 64

ReLU act. fun. 7 × 21 × 64

Fully connected layer (20 outputs) 20 × 1

Table 2. Decoder architecture (107 learnables).

Layers Activations

Image-based input (size 1 × 1 × 10) & Labels (size 1 × 1 × 2520) 1 × 1 × 2530

Transp. Conv. 2D (size 3 × 420, stride 2 × 3, cropp. same) 2 × 3 × 420

ReLU act. fun. 2 × 3 × 420

Transp. Conv. 2D (size 5 × 35, stride 3 × 4, cropp. same) 6 × 12 × 35

ReLU act. fun. 6 × 12 × 35

Transp. Conv. 2D (size 10 × 16, stride 5 × 7, cropp. same) 30 × 84 × 16

ReLU act. fun. 30 × 84 × 16

Transp. Conv. 2D (size 3 × 8, stride 1 × 1, cropp. same) 30 × 84 × 8

ReLU act. fun. 30 × 84 × 16

Transp. Conv. 2D (size 3 × 1, stride 1 × 1, cropp. same) 30 × 84 × 1

Table 3. CNN architecture of approach 1 (105 × 103 learnables).

Layers Activations

Image-based input (size 30 × 84) 30 × 84 × 1

2D Convolution (size 3 × 8, padd. same, stride 1) 30 × 84 × 8

Batch Norm. 30 × 84 × 8

ReLU act. fun. 30 × 84 × 8

Aver. Pool. 2D (stride 2 × 2) 15 × 42 × 8

2D Convolution (size 3 × 16, padd. same, stride 1) 15 × 42 × 16

Batch Norm. 15 × 42 × 16

ReLU act. fun. 15 × 42 × 16

Aver. Pool. 2D (stride 2 × 2) 7 × 21 × 16

2D Convolution (size 3 × 32, padd. same, stride 1) 7 × 21 × 32

Batch Norm. 7 × 21 × 32
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Table 3. Cont.

Layers Activations

ReLU act. fun. 7 × 21 × 32

Aver. Pool. 2D (stride 2 × 2) 3 × 10 × 32

2D Convolution (size 3 × 64, padd. same, stride 1) 3 × 10 × 64

Batch Norm. 3 × 10 × 64

ReLU act. fun. 3 × 10 × 64

Aver. Pool. 2D (stride 2 × 2) 1 × 5 × 64

2D Convolution (size 3 × 128, padd. same, stride 1) 1 × 5 × 128

Batch Norm. 1 × 5 × 128

ReLU act. fun. 1 × 5 × 128

Dropout (20% probability) 1 × 5 × 128

Fully connected layer (10 outputs) 1 × 1 × 10

Regression layer 1 × 1 × 10

As is common in the cases of large deep neural networks, the choices of the architecture
and hyperparameters of the CVAE and CNN are made heuristically by trial and error. The
best performance of the CVAE was obtained by means of the following training options of
the custom training loop: a minibatch size equal to 220, a number of epochs equal to 1000,
a global learning rate of 10−3, a gradient decay factor of 0.9, and a squared gradient decay
factor of 0.99. While for the CNN, the following values were found: a minibatch size equal
to 32, a number of epochs equal to 800, an initial learning rate of 10−4, a learning rate drop
factor of 0.9, and a learning rate drop period of 20. The method utilized for both the CVAE
and the CNN training was Adaptive Moment Estimation (ADAM).

Following an 8 h training of the CVAE and 1 h training of the CNN, the results
obtained for both the reconstruction and source identification are reported in Table 4: the
mean percentage error for reconstructing the entire field map hovers around 4%, while
identifying the 10 radii incurs an approximately 3% error. It is important to highlight again
that the CNN receives as input the reconstructed field map.

Table 4. Results obtained with Approach 1: CVAE.

Metric Output #1
Reconstructed Field

Output #2
10 Radii

MAPE 4.24% 3.30%

NRMSE 4.14% 3.18%

NMAE 1.70%. 1.27%

4.2. Approach 2: Encoder + ANN

The encoder is the one described in Table 1, while the ANN is a fully connected
network with two hidden sigmoidal layers of size 10. The time employed to train the CVAE
is the same as before (even though the decoder is not used during the prediction phase
in Approach 2), while the time needed to train the ANN was 10 min, using an early stop
criterion based on the performance on a validation set. The results relative to the errors
during the radius identification are reported in Table 5, showing a performance around a
2% MAPE, while the performances for the field reconstruction are, of course, not available.
The scatter plot shown in Figure 7 shows that in this approach, the true geometry was
“missed” only three times.
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Table 5. Results obtained with Approach 2: Encoder + ANN.

Metric Output #1
Reconstructed Field

Output #2
10 Radii

MAPE N.A. 2.28%

NRMSE N.A. 1.98%

NMAE N.A. 0.78%
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4.3. Approach 3: CNN

The CNN architecture is shown in Table 6, and it was directly trained on the field data
in the subdomain Ω0. It is worth it to note that the CNN architecture chosen for solving
this problem is the same as the one used in Approach 1, but in order to achieve a better
performance, in this CNN, the dropout probability was increased to 30%.

The best performance of the CNN was obtained with the following training options:
a minibatch size equal to 64, a number of epochs equal to 1500, an initial learning rate of
10−4, a learning rate drop factor of 0.9, and a learning rate drop period of 20. The ADAM
method was utilized for the CNN training; the resulting training time was 1 h.

The results relative to the errors during the radius identification are reported in Table 7,
showing a MAPE performance between 2.5% and 3.5%; the performances for the field
reconstruction are, of course, not present. The scatter plot shown in Figure 8 demonstrates
that in this approach, the true geometry was “missed” several times in cases of geometry
with large radii, i.e., far from the subdomain from which the image was provided as input
to the CNN.

Table 6. CNN architecture of approach 3
(
105 × 103 learnables).

Layers Activations

Image-based input (size 30 × 84) 30 × 84 × 1

2D Convolution (size 3 × 8, padd. same, stride 1) 30 × 84 × 8

Batch Norm. 30 × 84 × 8

ReLU act. fun. 30 × 84 × 8

Aver. Pool. 2D (stride 2 × 2, stride 2) 15 × 42 × 8

2D Convolution (size 3 × 16, padd. same, stride 1) 15 × 42 × 16
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Table 6. Cont.

Layers Activations

Batch Norm. 15 × 42 × 16

ReLU act. fun. 15 × 42 × 16

Aver. Pool. 2D (2 × 2, stride 2) 7 × 21 × 16

2D Convolution (size 3 × 32, padd. same, stride 1) 7 × 21 × 32

Batch Norm. 7 × 21 × 32

ReLU act. fun. 7 × 21 × 32

Aver. Pool. 2D (2 × 2, stride 2) 3 × 10 × 32

2D Convolution (size 3 × 64, padd. same, stride 1) 3 × 10 × 64

Batch Norm. 3 × 10 × 64

ReLU act. fun. 3 × 10 × 64

Aver. Pool. 2D (2 × 2, stride 2) 1 × 5 × 64

2D Convolution (size 3 × 128, padd. same, stride 1) 1 × 5 × 128

Batch Norm. 1 × 5 × 128

ReLU act. fun. 1 × 5 × 128

Dropout (30% probability) 1 × 5 × 128

Fully connected layer (10 outputs) 1 × 1 × 10

Regression layer 1 × 1 × 10

Table 7. Results obtained with Approach 3: CNN.

Metric Output #1
Reconstructed Field

Output #2
10 Radii

MAPE N.A. 2.54%

NRMSE N.A. 3.28%

NMAE N.A. 1.28%
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5. Discussion and Conclusions

In the context of deep learning, the so called “hold out” was the most common
approach for validation, which consists of splitting the dataset into training and test sets
and using the test data to compare and to assess the generalization capabilities of the
models. In our case, the dataset was split into 75–25% training and testing, respectively.
All performance results presented refer to the test errors. Regarding the selection of the
hyper-parameters, due to the complexity of the deep learning models, a commonly used
trial-and-error heuristic approach was adopted.

The training of the CVAE was performed using GPU computing, in particular, on an
NVIDIA Quadro 4000 RTX, while the other neural networks were trained using parallel
computing on a CPU, in particular, an AMD Zen 3 with 16 cores (32 threads). The software
environment used was MATLAB 2022.

The cost of inference was negligible with all the models (below 300 ms), while the time
required to carry out the optimization of the initial Z value at inference time was of the
order of 10 s.

An overview of the performances of the three approaches can be obtained by analyzing
and comparing Tables 4, 5 and 7.

Approach 2 stands out as the most effective method for predicting the radii, utilizing
the encoder’s latent space in conjunction with the CVAE. This fusion of an autoencoder
and a fully connected NN enforces the effect of the CVAE’s regularization capabilities.
While Approaches 1 and 3 show similarities in predicting the radii, Approach 1’s additional
feature of reconstructing the entire field map makes it more comprehensive.

In addition, Approach 2 effectively handles the task of accurately predicting the correct
geometry among the three options. The model misidentified the geometry only three times
in the test set solutions. By replacing the autoencoder with a CNN (Approach 3), there
is a slight dip in predicting the radii and a worsened normalized root mean square error
(NRMSE). This performance decrease suggests that larger errors, impacting the NRMSE,
arise from the CNN’s misjudgments, particularly for larger radii.

As far as the radii identification problem is concerned, in order to compare our
approaches with a FEA and PDE-constrained optimizations the following remarks can
be put forward. Referring to ref. [17], which shows different solutions of the TEAM
35 problem used as a test case in this paper, the costs of training and inference can be
compared with the cost of conducting PDE-constrained optimization for an inverse design
as follows. In view of a fair comparison, the lowest costs from Table 4 in [17], i.e., the cost
of NSGA-II optimization, on a very similar problem, are considered: the optimization run
for 100 iterations with a population of 20 individuals. This means that roughly 2000 FEAs
for the whole optimization procedure are needed. Moreover, in the case of Cuckoo Search,
the cost is approximately 200 iterations times 20 individuals, i.e., 4000 FEAs. On the other
hand, the computational burden for training our networks is roughly 1200 FEAs.

It is worth it to notice that the optimizations carried out in [17] are general because
10 variables were considered as fully independent, while the approach proposed here
is based on the parametrization of three families of geometries (G1, G2, and G3) with a
loss of generality. However, the cost of the optimization is firmly linked to a prescribed
field distribution, and there is no flexibility, i.e., in changing the prescription, another
optimization problem must be solved. In contrast, for any given field distribution in the
subdomain, the same networks with no extra costs can be utilized—at least in principle—for
solving the radius identification problem; and this is clearly an advantage.

To sum up, different deep learning approaches have been implemented and compared
for solving inverse problems in the frame of TEAM benchmark problem 35. The CVAE
approach can solve both inverse problems (field map reconstruction and radius identifi-
cation) with good accuracy, but the CVAE structure is complex, and the training requires
a long time. Both an ANN and CNN can solve the radius identification problem. The
ANN approach applied to the latent space, however, requires CVAE training, but it shows
a better accuracy with respect to the CNN and the CVAE itself. In using the latent space
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of a CVAE for the feature vectors, it seems that the more standard CNN approach can
be outperformed.
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