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Abstract: In this manuscript, we introduce a few new types of dominations in intuitionistic fuzzy
directed graphs (IFDGs) based on different types of strong arcs (SAs). Our work is not only a direct
extension of domination in directed fuzzy graphs (DFGs) but also fills the gap that exists in the
literature regarding the dominations in different extended forms of fuzzy graphs (FGs). In the
beginning, we introduce several types of strong arcs in IFDGs, like semi-β strong arcs, semi-δ strong
arcs, etc. Then, we introduce the concepts of domination in IFDGs based on these strong arcs and
discuss its various useful characteristics. Moreover, the dominating set (DS), minimal dominating
set (MDS), etc., are described with some fascinating results. We also introduce the concept of an
independent set in IFDGs and investigate its relations with the DS, minimal independent set (MIS)
and MDS. We also provide numerous important characterizations of domination in IFDGs based on
minimal and maximal dominating sets. In this context, we discuss the lower and upper dominations
of some IFDGs. In addition, we introduce the terms status and structurally equivalent and examine a
few relationships with the dominations in IFDGs. Finally, we investigate the most expert (influential)
person in the organization by utilizing the concepts of domination in IFGs.

Keywords: IFDGs; strong arcs; domination in IFDG; independent set; minimal and maximal
dominating sets

MSC: 03E72; 05C72

1. Introduction

The term fuzzy sets (FSs) was first introduced by Zadeh [1] in 1965. The theory of
FSs has become useful in different areas, such as management sciences, medical and life
sciences, management sciences, social sciences, statistics, artificial intelligence, multiagent
systems, expert systems, etc. In FSs, each element has some membership value allocated
from the interval [0, 1]. Due to the flexibility of FSs, numerous generalizations of them has
been introduced. The very first generalization of FSs, named interval-valued fuzzy sets
(IVFSs), was introduced by Zadeh in [2]. In IVFSs, the membership value is a subinterval
of [0, 1] instead of a fixed number. Since the concept of the non-membership value is
not considered in FSs, it was also observed that in order to describe the particular type
of information, one component (i.e., a membership value) is not sufficient. To explain
such circumstances, Atanassov [3] introduced the concept of intuitionistic fuzzy sets (IFs),
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in which both the membership and non-membership values are considered, with the
restriction that their sum is less than 1.

On the other hand, fuzzy logic becomes more beneficial and important in describing
real-life problems with uncertainties. Recently, different types of networking have been
dealt with through fuzzy logic. Consequently, fuzzy graph (FG) theory has become an
important mathematical tool to address real-time issues more accurately. This new concept
includes the fuzziness of the vertices and edges in fuzzy graphs (FGs). FGs were first
introduced by Rosenfeld [4] and Kauffman [5]. They also introduced various graph theoretic
tools, such as paths, cycles, bridges, trees, connectedness, etc., in their articles. As compared
to classical graph theory, FGs are more effective because of their flexibility. In the literature,
numerous applications of FGs have been investigated because of their flexibility. In the
theory of FGs, many new terms were introduced by Bhattacharya [6]. In [7], some new
operations were initiated and applied to FGs. The notion of Cayley IVFGs was described
in [8]. In [9], the term complement of FGs was discussed. Poulik et al. [10] shifted the
term average connectivity from classical graphs to FGs. Overall, FGs have become useful
in several fields, like networking, modelling, social sciences, the recognition of different
patterns, etc. Among the other types of FGs, fuzzy directed graphs (FDGs) or fuzzy
digraphs have their own importance. Mordeson and Nair [11] introduced the notion of
FDG. FDGs were further discussed in [12]. Numerous new terms related to FDGs, along
with their applications, have been explored. Akram, Muhammad et al. [13] discussed the
concept of bipolar FDGs in decision support systems. In continuation, a generalization of
FGs, termed intuitionistic fuzzy graphs (IFGs), was introduced in [14]. Similarly, the notion
of complex intuitionistic fuzzy graphs, along with their application to networking, was
explored in [15]. Akram et al. [16–18] introduced many new terms, which included strong
IFGs, IF hypergraphs, IF cycles, and IF trees. Afterwards, Akram et al. [19] introduced
the concept of intuitionistic fuzzy digraphs (IFDGs) and their application in decision
support systems. The application of IFGs in a water supply system was explored in [20].
Interval-valued intuitionistic fuzzy competition graphs were explored in [21]. IVIF-(s, t)
graphs were discussed in [22,23]. The concepts of m-polar IFGs were introduced in [24].
Singh, Suneet et al. [25] discussed an interval-valued intuitionistic fuzzy directed graph
with application towards transportation systems. Nithyanandham et al. [26] discussed an
energy-based bipolar IFDG and presented its application in decision making theory. Some
of the main components of picture fuzzy graphs (PFGs) were explored in [27].

In classical graph theory, the term domination has its own importance. Many re-
searchers have presented several extended forms of domination in graphs, such as double
Roman domination [28], triple Roman domination [29], broadcast domination [30], outer-
convex domination [31], paired domination [32], etc. Kosari and Asgharsharghi introduced
different domination numbers of graphs [33]. The notion of influence graphs has also been
described in the literature to solve “influential problems” like the influence maximization
problem for unknown social networks [34,35], etc. Alternatively, the term domination in
FGs based on effective edges was introduced in [36]. The domination in FGs using strong
arcs (SAs) was discussed by Nagoorgani et al. [37]. The notion of global domination in FGs
based on SAs was discussed in [38]. Similarly, Shanmugam et al. [39] presented the idea of
bridge domination in FGs. In [40], domination in FDGs was examined. Recently, in [41], the
notions of broadcasts and dominating broadcasts were introduced, and they also provided
applications of these concepts in a transportation model. The concept of domination in
rough fuzzy digraphs was described by [42]. Similarly, domination in several types of
vague graphs was discussed in [43–46]. Domination in IFGs was discussed by Parvathi [47],
while double domination in IFGs was described by Nagoorgani [48]. The concept of domi-
nation in bipolar picture fuzzy graphs (BPPFGs) with application in social networks was
introduced in [49].

In this study, we introduce various types of domination based on different strong arcs
in intuitionistic fuzzy digraphs (IFDGs). Firstly, we describe various types of strong arcs
in IFDGs. Then, based on these arcs, we introduce the concepts of domination in IFDGs.
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These concepts are direct generalizations of the dominations in FDGs. We also provide
some important characteristics of dominations in IFDGs based on minimal and maximal
dominating sets. In addition, we introduce the terms status, structurally equivalent, and
the lower and upper domination number, etc., in the framework of IFDGs. At the end,
we provide the application of domination in IFDGs towards an organization in order to
identify the most influential person through domination in IFDGs.

Motivations and Novelty:
In an IFG, the membership and non-membership values extend the domain as com-

pared to the other extensions of FGs and make the circumstances more flexible to express
problems with uncertainties. The term domination in FGs, IFGs, and BPFGs has been
established in the literature, which motivated us to extend these terms towards IFDGs,
along with their application. Our study also fills the gaps existing in the literature. We can
summarize the novelty of our work as in the following points.

1. Firstly, we introduce different types of strong arcs in IFDGs, like semi-β strong arcs,
semi-δ strong arcs, etc. Then, we introduce the concepts of domination in IFDGs
based on these strong arcs. Different characterizations of some special IFDGs are
also explored.

2. We also provide numerous important characterizations of domination in IFDGs based
on minimal and maximal dominating sets. The lower and upper dominations of some
IFDGs are also investigated.

3. We introduce the terms status and structurally equivalent and find few relationships
with the dominations in IFDGs.

4. To demonstrate the usefulness of the terms that we have introduced, we offer their
application in the context of influence graphs.

This article consists of five sections. In Section 2, we add some useful definitions and
explanations related to FSs, FGs, FDGs, IFGs, etc. In Section 3, we introduce the concept
of domination in an intuitionistic fuzzy digraph (IFDG) based on different types of SAs,
which is a direct generalization of domination in FDGs. In the beginning, we introduce
different types of SAs, like semi-β strong arcs, semi-δ strong arcs, etc. Then, we provide
some important characterizations of domination in IFDGs based on minimal and maximal
dominating sets. We also introduce the terms status, structurally equivalent, and the lower
and upper domination number, etc., in the framework of IFDGs. At the end, we provide the
application of domination in IFDGs towards an organization in order to identify the most
influential person through domination in IFDGs. In Section 5, we provide the conclusions,
which also include the future prospects of our work.

2. Preliminaries

In this section, we provide some useful terms related to FSs and FGs and their exten-
sions. For the basics of classical graph theory, one may consult [50].

Definition 1 ([49]). An FS F described on a non-empty set Y is a pair F = {(s, σ(s)): s ∈ Y,
σ(s) ∈ [0, 1]}, where σ(s) is the membership function from Y to [0, 1].

Definition 2 ([51]). An intutionistic fuzzy set (IFS) N on a non-empty set Y is a pair
N = (βN , δN) : Y → [0, 1], where βN : Y → [0, 1] is said to be the degree of membership and
δN : Y → [0, 1] is the degree of non-membership satisfying the condition 0 ≤ βN(s) + δN(s) ≤ 1,
for all s ∈ Y .

Definition 3 ([51]). A function N = (βN , δN) : Y × Y → [0, 1] × [0, 1] is said to be an
intutionistic fuzzy relation (IFR) on Y if βN(s, t) + δN(s, t) ≤ 1, for all (s, t) ∈ Y × Y.

Definition 4 ([51]). Let N = (βN , δN) and M = (βM, δM) be IFSs on the set Y. If N = (βN , δN)
is an IFR on a set Y, then N = (βN , δN) is called an IFR on M = (βM, βM), if βN(s, t) ≤
min{βM(s), δM(t)} and δN(s, t) ≥ max{δM(s), δM(t)}, for all s, t ∈ Y. An IFR N on Y is said
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to be symmetric if βN(s, t) = βN(t, s) and δN(s, t) = δN(t, s), for all s, t ∈ Y.

Definition 5 ([49]). A fuzzy graph (FG) on a set V is a pair G•= (A, B), where A = {ρA} and
B = {ρB}, where ρA : V →[0, 1] and ρB : V × V → [0, 1] with ρB(s, t) ≤ ρA(s) ∧ ρA(t), for all
s, t ∈ V.

Definition 6 ([49]). Let G• = (A, B), where A = {ρA} and B = {ρB}, is the FG of a crisp graph
G=(V, E). We say that s dominates t in the G•, if ρB(st) = ρA(s) ∧ ρA(t), for s, t ∈ V. A subset
V1 of V is said to be a dominating set (DS) of the FG G• if, for each s ∈ V1, there is t ∈ V − V1
such that s dominates t. A DS A1 in an FG G• is a minimal dominating set (MDS) if A1 has no
proper dominating subset. A DS in FG G• having the minimum (fuzzy) cardinality is known as the
domination number (DN) of FG G•.

Definition 7 ([49]). Let G• be an FG without an isolated vertex. Then, the DS V1 is known as
the total dominating set (TDS) if a vertex in V1 dominates all vertices of V. The minimum (fuzzy)
cardinality of the TDS is known as the total domination number (TDN).

Definition 8 ([49]). Two vertices s and t are called neighbors (Ns) in an FG G• if ρ(s, t) > 0.
The set of all Ns of s is denoted by Nbhd(s).

Definition 9 ([49]). A vertex s is known as a strong neighbor (SN) if the arc (s, t) is strong.
The collection of all strong neighbors (SNs) of s is said to be a strong neighborhood (SNbhd) of s and
is represented by NbhdS(s).

Definition 10. The closed strong neighborhood (CSNbhd) is defined as NbhdS[s] = NbhdS(s)∪{s}.

Definition 11 ([51]). An IFG with underlying set V is described as Ĝ = (N, M), where
N = {βN , δN} and M = {βM, δM}, where
(i) the function βN : V → [0, 1] represents the degree of membership of any element s ∈ V
and δN : V → [0, 1] represents the degree of non-membership of any element s ∈ V such that
βN(s) + δN(s) ≤ 1, for all s ∈ V;
(ii) the function βM : E ⊆ V × V → [0, 1] is the degree of membership of any element (s, t) ∈ E,
while δM : E ⊆ V × V → [0, 1] is the degree of non-membership of any element (s, t) ∈
E satisfying βM(s, t) ≤ min{βN(s), βN(t)} and δM(s, t) ≥ max{δN(s), δN(t)} such that
0 ≤ δM(s, t) + δM(s, t) ≤ 1, for all (s, t) ∈ E.

Definition 12 ([51]). If s, t are any two vertices of the IFG Ĝ = (N, M), where N = {βN , δN}
and M = {βM, δM}, then the βM-strength of connectedness between s and t is β∞

M(s, t), where

β∞
M(s, t) = sup{βk

M : k = 0, 1, 2, 3......n}

and the δM-strength of connectedness between s and t is

δ∞
M(s, t) = in f {δk

M : k = 0, 1, 2, 3......n}.

If y and z are connected by means of paths of length k, then

βk
M(s, t) = sup{βM(s, t1) ∧ βM(t1, t2) ∧ ....βM(tk−1, t) : s, t1, t2, ...., tk−1, t ∈ V}

and

δk
M(s, t) = in f {δM(s, t1) ∧ δM(t1, t2) ∧ ....δM(tk−1, t) : s, t1, t2, ...., tk−1, t ∈ V}.

Definition 13 ([51]). If deleting any vertex s of connected IFG Ĝ decreases the strength of connect-
edness between several pairs of vertices (nodes), then such a vertex s is called a cut vertex.
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Definition 14 ([51]). Let Ĝ=(N, M) be an IFG. Then, |N| = ∑s∈N
1+βN(s)−δN(s)

2 is known

as the vertex cardinality of N, |M| = ∑(s,t)∈M
1+βM(s,t)−δM(s,t)

2 is the edge cardinality of M,
and |T| = |N|+ |M| is the cardinality of IFG Ĝ.

Definition 15 ([40]). A directed simple graph is represented by GD = (Ṽ, Ẽ), where Ṽ is a
non-empty finite set of vertices and Ẽ = {(s, t) : s, t ∈ Ṽ, s ̸= t} is a set of directed edges. A pair
G•

D = (A, B) is called a fuzzy digraph (FDG), where A = {ρA} and B = {ρB} are the mappings
ρA : Ṽ → [0, 1] and ρB : Ẽ → [0, 1], such that ρB(s, t) ≤ ρA(s) ∧ ρA(t), for all s, t ∈ Ṽ and
(s, t) ∈ Ẽ. We call a digraph GD = (Ṽ, Ẽ) a hidden directed graph of a fuzzy directed graph
G•

D = (A, B).

Definition 16 ([40]). The sequence of strong arcs such that the end vertex of every arc is the same
as the starting vertex of the next arc in a sequence is called a fuzzy dipath (FDP) P.

Definition 17 ([40]). A dipath (DP) that begins and ends with the same vertex is called a fuzzy
dicycle (FDC) C.

Definition 18 ([19]). An intuitionistic fuzzy digraph (IFDG) of a digraph GD = (Ṽ, Ẽ) is a pair
G◦

D = (N, M), where N = (Ṽ, βN , δN) represents an IFS in Ṽ and M = (Ṽ × Ṽ, βM, δM) represents
an IF relation on Ṽ such that

βM(st) ≤ min(βN(s), δN(t))

βM(st) ≥ max(βN(s), δN(t))

and 0 ≤ βM(st) + δM(st) ≤ 1, for all s, t ∈ Ṽ. We note that M may not be a symmetric relation.

3. Domination in Intutionistic Fuzzy Digraphs

In this section, firstly, we introduce the concepts of strong arcs and their types in IFDGs.
Based on these strong arcs, we present the concepts of domination in IFDGs. Moreover,
the dominating set (DS), minimal dominating set (MDS), etc., are also described with some
interesting results. Then, we also introduce the concept of an independent set in an IFDG
and its relations with the DS, minimal independent set (MIS) and MDS. At the end of this
section, we present the terms status and structurally equivalent and explore some relations
among these terms and the domination in IFDGs.

We begin our discussion with the definition of the degree of a vertex in an IFDG.

Definition 19. Let GD = (Ṽ, Ẽ) be a hidden digraph of an IFDG G◦
D = (N, M). Then, the order

q of G◦
D is defined as

q = (∑
s∈Ṽ

βN(s), ∑
s∈Ṽ

δN(s)).

Example 1. In the IFDG shown in Figure 1, we have q = (2, 0.6).

Now, we present the definition of the size of an IFDG.

Definition 20. Let GD = (Ṽ, Ẽ) be a hidden digraph of G◦
D = (N, M). The size p of G◦

D is
defined as

p = (∑
s ̸=t

βM(s, t), ∑
s ̸=t

δM(s, t))

for all (s, t) ∈ Ẽ.

Example 2. Referring to the IFDG shown in Figure 1, we have p = (1.6, 1.6).

Here, we present the definition of a strong arc in an IFDG, which plays a crucial role
in the rest of this paper.
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Definition 21. An arc (s, t) of an IFDG G◦
D is said to be a strong arc if βM(s, t) = β∞

M(s, t) and
δM(s, t) = δ∞

M(s, t); otherwise, the arc (s, t) is non-strong.

Afterwards, we present different types of strong arcs in IFDGs, such as semi β-strong
arcs, semi δ-strong arcs, etc.

Definition 22. An arc (s, t) of an IFDG G◦
D is a semi β-strong arc if βM(s, t) = β∞

M(s, t) and
δM(s, t) ̸= δ∞

M(s, t).

Definition 23. An arc (s, t) of an IFDG G◦
D is a semi δ-strong arc if βM(s, t) ̸= β∞

M(s, t) and
δM(s, t) = δ∞

M(s, t).

In Example 3, we analyze the strong arcs among those depicted in the IFDG given in
Figure 1.

Figure 1. Intuitionistic fuzzy digraph.

Example 3. We determine which arcs in the IFDG shown in Figure 1 are considered strong arcs
and which ones are not.
Case (i) Consider the arc (k, l); βM(k, l) = 0.3 and δM(k, l) = 0.4. Now, β∞

M(k, l) = sup{βN(k, l)} = 0.3
and δ∞

M(k, l) = sup{δN(k, l)} = 0.4. Therefore, βM(k, l) = β∞
M(k, l) = 0.3 and δM(k, l) = δ∞

M(k, l) = 0.3.
Hence, the arc (k, l) is a strong arc.
Case (ii) Let us consider an arc (l, m); βM(l, m) = 0.4 and δM(l, m) = 0.3. Now, β∞

M(l, m) =
sup{βN(l, m)} = 0.4 and δ∞

M(l, m) = inf{δN(l, m)} = 0.3. Therefore, βM(l, m) = β∞
M(l, m) = 0.4

and δM(l, m) = δ∞
M(l, m) = 0.3. Hence, the arc (l, m) is a strong arc.

Case (iii) Let us consider the arc (m, n); βM(m, n) = 0.4 and δM(m, n) = 0.3. Now, β∞
2 (m, n) =

sup{β1(m, n)} = 0.4 and δ∞
M(m, n) = inf{δN(m, n)} =0.3. Therefore, βM(m, n) = β∞

M(m, n) = 0.4
and δM(m, n) = δ∞

M(m, n) = 0.3. Hence, the arc (m, n) is a strong arc.
Case (iv) Let us consider the arc (n, k); βM(n, k) = 0.3 and δM(n, k) = 0.4. Now, β∞

M(n, k) =
sup{βN(n, k)} = 0.3 and δ∞

M(n, k) = inf{δM(n, k)} = 0.4. Therefore, βM(n, k) = β∞
M(n, k) = 0.3

and δM(n, k) = δ∞
M(n, k) = 0.4. Hence, the arc (n, k) is a strong arc.

Case (v) Consider the arc (k, m); βM(k, m) = 0.2 and δM(k, m) = 0.2. Now, β∞
M(m, k) =

sup{βN(k, l)∧ βN(l, m)} = sup{0.3,0.4} = 0.4 and δ∞
M(k, m) = inf{δN(k, l)∨ δN(l, m)} = inf{0.4,

0.3} = 0.3. Therefore, βM(k, m) ̸= β∞
M(k, m) and δM(k, m) = δ∞

m (k, m) = 0.3. Hence, the arc
(k, m) is not a strong arc.

In Definition 24, we introduce the terms strong neighborhood (SNbhd) and closed
neighborhood (CNbhd) along with their types and cardinalities.
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Definition 24. Let GD = (Ṽ, Ẽ) be a hidden digraph of an IFDG G◦
D = (N, M). Then,

(i) NbhdS(s) = {t ∈ Ṽ : arc(s, t) is strong arc} is the SNbhd of s ∈ Ṽ. Similarly, the CNbhd of s
is NbhdS[s] = NbhdS(s) ∪ {s}.
(ii) NbhdβS(s) = {t ∈ Ṽ : arc (s, t) is semi β-strong arc} is known as the semi β-SNbhd of s ∈ Ṽ
and CNbhd of s is NbhdβS[s] = NbhdβS(s) ∪ {s} .
(iii) NbhdδS(s) = {t ∈ Ṽ : arc(s, t) is semi δ-strong arc} is known as the semi δ-SNbhd of s ∈ Ṽ
and CNbhd of s isNbhdδS[s] = NbhdδS(s) ∪ {s}.
(iv) ηS(G◦

D) = min{|NbhdS(s)| : s ∈ Ṽ(G◦
D)} is the minimum cardinality of the SNbhd.

(v) θS(G◦
D) = max{|NbhdS(s)| : s ∈ Ṽ(G◦

D)} is the maximum cardinality of the SNbhd.

Theorem 1. If two nodes of an IFDG G◦
D are linked by one dipath, then every arc of G◦

D is a strong arc.

Proof. Let G◦
D be a connected IFDG with n nodes. If we take n = 2, then s and t must

be adjacent by one arc (because G◦
D is a connected IFDG). Clearly, βM(s, t) = βM

∞(s, t)
and δM(s, t) = δM

∞(s, t). Hence, an arc (s, t) is a strong arc. Let n > 2. In any IF di-
path, βM

∞(s, t) = βM(s, t) and δM
∞(s, t) = δM(s, t) for any arc in the dipath (s, t), as they

are connected through the same dipath. Thus, it is proven that βM(s, t) = βM
∞(s, t) and

δM(s, t) = δM
∞(s, t) for any number of arcs in a given dipath. Hence, all the arcs are strong.

Corollary 1. In an IF dipath, each arc is a strong arc.

Theorem 2. In a non-trivial connected IFDG G◦
D with n nodes such that n ≥ 2, G◦

D has at least
one strong arc.

Proof. Let G◦
D be a connected IFDG with vertices n ≥ 2. Assume that s and t are the two

nodes of G◦
D.

Case(i) : When n = 2: Because G◦
D is a connected IFDG, s and t are two nodes such that

(s, t) is an arc. From Theorem 1, only one strongest dipath between s and t exists such that
βM(s, t) = βM

∞(s, t) and δM(s, t) = δM
∞(s, t). Hence, (s, t) is a strong arc.

Case(ii) : When n > 2: Assume that G◦
D has at least one strong arc. Because G◦

D is connected
with n > 2, there exists more than one dipath between s and t such that at least one strong
dipath exists. Thus, βM(s, t) = βM

∞(s, t) and δM(s, t) = δM
∞(s, t) (from Theorem 1). If this

does not hold, there is no dipath between s and t. Hence, G◦
D is a disconnected digraph,

which contradicts our hypothesis that G◦
D is connected. Therefore, if n ≥ 2, then non-trivial

connected IFDG G◦
D has at least one strong arc.

Theorem 3. Let (s, t) be the arc of IFDG G◦
D. Then, the following conditions are equivalent.

(i) In G◦
D, an arc (s, t) is a strong arc.

(ii) An arc (s, t) must be semi β-strong and semi δ-strong.
(iii) The membership degree and non-membership degree of arc (s, t) must be in between the closed
interval [βSM, δLM], where the smallest value of the membership degree of the IFDG G◦

D is βSM,
and the largest value of the non-membership degree of the IFDG G◦

D is δLM.

Definition 25. Let G◦
D be an IFDG and s, t be any two vertices of G◦

D. Then, s dominates t, if the
arc (s, t) is a strong arc.

Example 4. Referring to the IFDG given in Figure 1, the arcs (k, l), (l, m), (m, n), (n, k) are strong
arcs but the arc (m, k) is a non-strong arc. Thus, l dominates m, m dominates n and n dominates k,
but m does not dominate k.

Definition 26. A DS of IFDG G◦
D is a subset N1 of Ṽ if, for each t ∈ Ṽ−N1, there exists s ∈ N1

such that s dominates t. A DS N1 is an MDS if there is no proper subset of N1 that is a DS.
The minimum cardinality from all MDSs is a lower DN of G◦

D and it is abbreviated as LD(G◦
D).

The maximum cardinality from all MDSs is an upper DN of G◦
D and is abbreviated as UD(G◦

D).
The minimum fuzzy cardinality from all DSs of an IFDG is known as the strong arc DN and is
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symbolically written as ωS(G◦
D). The corresponding DS is known as the minimum strong arc DS

and the number of elements in the minimum strong arc DS is known as n[ωS(G◦
D)].

Example 5. Consider a set of vertices N = {a, b, c, d} in an IFDG, as shown in Figure 2. Let N1
= {a, c} be the DS lying in N. Let {b, d} be the set of vertices other than N1, such that each of its
vertices dominates at least one vertex in N, which implies that N1 is a DS. Again, consider that
N2 = {b, d} is the DS lying in N. Let {a, c} be the set other than N2 such that each of its vertices
dominates at least one vertex in N, which implies that N2 is a DS. Thus, the DSs are {a, c} and
{b, d}, while {b, d} is the MDS of minimum cardinality 1.25 and {a, c} is the MDS of maximum
cardinality 1.35.

Figure 2. Intuitionistic fuzzy digraph.

Definition 27. The open Nbhd of s in an IFDG G◦
D is represented as ONbhd(s) and is defined as

ONbhd(s) = {t ∈ Ṽ : β(s, t) > 0, δ(s, t) > 0}. The vertex t is known as the SN of s if an arc
(s, t) is a strong arc, and the set of all SNs of s is known as the SNbhd of s and is abbreviated as
NbhdS(s). Similarly, NbhdS[s] = NbhdS(s) ∪ {s} is the CSNbhd of s.

Example 6. Referring to the IFDG given in Figure 1, one can easily deduce that the arcs
(k, l), (l, m), (m, n), (n, k) are strong arcs, while the arc (k, m) is a non-strong arc. The SN of
k is l. Thus, NbhdS[k] = {l} ∪ {k} = {l, k} is the CSNbhd of k.

Definition 28. Let G◦
D be an IFDG and s, t be any two vertices of G◦

D. Then,
(i) s semi β- dominates t, if the arc (s, t) is a semi β-strong arc;
(ii) s semi δ- dominates t, if an arc (s, t) is a semi δ-strong arc.

Remark 1. (i) Semi β- strong arc DN is ωβS(G◦
D). The number of elements in the minimum semi

β- strong arc DS is symbolically written as n[ωβS(G◦
D)].

(ii) Semi δ - strong arc DN is described as ωδS(G◦
D). The number of elements in the minimum semi

δ - strong arc DS is represented as n[ωδS(G◦
D)].

Definition 29. Two vertices s and t of an IFDG G◦
D = (N, M) are called isolated vertices

if βM(s, t) = 0 and δM(s, t) = 0. Secondly, Nbhd(s) = ∅, which implies that there does not exist
any Nbhd of s. Thus, an isolated vertex cannot dominate any other vertex of G◦

D.

Theorem 4. In an IFDG G◦
D = (N, M), a DS N1 is an MDS if, for each s ∈ N1, one of the

following conditions holds.
(i) s is not an SN of any vertex in N1;
(ii) there exists a vertex t ∈ N − N1 such that Nbhd(t) ∩ N1 = {s}.

Proof. Assume that N1 is an MDS of G◦
D. For each vertex s ∈ N1, N1 − s is not a DS. Then,

t ∈ (N1 − s) exists and is not dominated by any vertex in N1 − s. If t = s, then t is not an
SN of any vertex in N1. If t ̸= s, t is not dominated by N1 − t, but it is dominated by N1,
and there is a vertex t that is the only SN of s in N1. Hence, Nbhd(t) ∩ N1 = s.
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Conversely, consider that N1 is a DS. For every vertex s ∈ N1, one of the two given
conditions holds true. Assume that N1 is not an MDS. Thus, there exists a vertex s ∈ N1,
N1 − s that is a DS. Hence, s is an SN to one of the vertices in N1 − s, so condition (i) does
not hold true. If N1 − s is a DS, then each vertex of N − N1 is an SN to one of the vertices in
N1 − s, and condition (ii) also does not hold true. This is a contradiction of our hypothesis
that one of the two conditions holds true. Thus, N1 is an MDS.

Theorem 5. Let G◦
D = (N, M) be an IFDG with no isolated vertex. Let N1 be an MDS. Then,

N − N1 is a DS of G◦
D.

Proof. Assume that N1 is an MDS. Consider that t is a vertex of N1. As G◦
D does not have

isolated vertices and there exists a vertex s ∈ Nbhd(t), t is dominated by one of the vertices
in N1 − t, i.e., N1 − t is a DS. From Theorem 4, s ∈ N − N1. Thus, each vertex in N1 is
dominated by one of the vertices in N − N1 and N − N1 is a DS.

Corollary 2. If there is no isolated vertex in an IFDG G◦
D = (N, M), then LD(G◦

D) ≤ q(G◦
D)/2.

Proof. Let G◦
D be an IFDG with no isolated vertex. Then, it has two disjoint DSs, i.e.,

LD(G◦
D) ≤ q(G◦

D)/2.

Definition 30. Two vertices s and t of an IFDG G◦
D = (N, M) are called independent if there is

no strong edge between these two vertices. A subset N2 of N is known as an independent set (IS) of
an IFDG G◦

D if the following conditions hold:

βM(s, t) < β∞
M(s, t) and δM(s, t) < δ∞

M(s, t)

for all (s, t) ∈ N2.

Definition 31. An IS N2 ⊆ N in an IFDG G◦
D = (N, M) is called a maximal independent set

(MIS) if the set N ∪ {s} is not independent for every s ∈ N − N2. The minimum cardinality
between the MISs is called the lower independent number of an IFDG G◦

D, represented by i(G◦
D).

The maximum cardinality between the MISs is called the upper independent number of an IFDG
G◦

D, represented as I(G◦
D).

Theorem 6. An IS is an MIS in an IFDG G◦
D = (N, M) if and only if it is an IS and DS.

Proof. Let N2 be an MIS of IFDG G◦
D. Then, for each vertex s ∈ (N − N2), the set N2 ∪ s is

not independent. Moreover, for each vertex s ∈ (N − N2), there exists a vertex t ∈ N2 such
that t is an SN of s. Hence, N2 is a DS. Thus, N2 is both a DS and IS.

Conversely, let N2 be an IS and DS. If N2 is not an MIS, there is a vertex s ∈ N − N2
such that the set N2 ∪ {s} is independent. If N2 ∪ {s} is independent, then there is no vertex
in N2 that is an SN of s. Hence, N2 is not a DS, which contradicts our assumption. Thus, N2
is an MIS.

Theorem 7. Every MIS in an IFDG G◦
D = (N, M) is an MDS.

Proof. Let N2 be an MIS of an IFDG. By assumption, N2 is a DS but not an MDS. Then,
there exists at least one vertex s ∈ N2 such that N2 − {s} is a DS. If N2 − {s} dominates
N − {N2 − (s)}, then there is at least one vertex in N2 − {s} that is necessarily an SN of t,
which contradicts our assumption. Hence, N2 is an MDS.

Definition 32. In IFDG G◦
D, a subset of vertex set N is known as status S if each vertex g, h ∈ S

obeys the property that the vertex g dominates the vertices in N − S and is equal to the set of vertices
in N − S that is dominated by h.

Remark 2. Each vertex in status S dominates the same set of vertices outside the status. It can be
seen that the status must contain at least two vertices.
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Theorem 8. If a status S of a connected non-trivial IFDG G◦
D is an MDS, then S is an independent

DS with cardinality 2.

Proof. Let S be a status that is an MDS. As G◦
D is connected with no isolated vertex, then

there exists at least one vertex g ∈ N − S. As S is an MDS, g is adjoint at least in the S, and
since S is the status, each node of S is adjoint to the g. Additionally, every vertex of S is
adjoint to the each vertex in N − S. Thus, |S| ≥ 2, because S is the status. Now, consider
|S| ≥ 3 and assume that h belongs to S and g belongs to N − S. Since S is the status, it
implies that h is adjoint to each vertex of C − S and g is adjoint to every other vertex of
S. Hence, the DS is {g, h}, which contradicts our assumption that S is the minimal set.
Thus, |S| = 2. However, if h is adjoint to the g, then the DS of G◦

D is g, which is again a
contradiction that S is the minimal set. Consequently, |S| = 2 is an IS.

Definition 33. Let g and h be any two vertices of an IFDG. Then, these two vertices are called
structurally equivalent if either NbhdS(g) = NbhdS(h) or NbhdS[g] = NbhdS[h]. A set S is
called structurally equivalent if each of the two vertices in S is structurally equivalent.

Corollary 3. Let G◦
D be a connected IFDG. Let S be an MDS that is structurally equivalent. Then,

the set S has two independent vertices such that each vertex has a degree q(G◦
D)− 1.

4. Application of Domination in IFDGs towards Social Networks

Graphs have various applications in many areas of science, such as chemistry, physics,
biology, mathematics, computer science and others. In the organization model, it has been
noted that, in a group, there is a connection between two workers. It is also necessary to
conclude that, in a graph, one worker is more dominant or influential. Using the graph,we
can draw this scenario. In a specific group, we can draw a graph in which each vertex
represents each worker. In the graph, the directed edges show the relationship between
two workers from one particular vertex (worker) to another. Multiple edges or loops are
not needed in these types of graphs. In classical graph theory, every vertex has equal
importance. It is not possible to draw such types of graphs in an organization model
accurately. Additionally, in classical graph theory, every organization in a social unit
(individual or organization) should have equal importance, but the situation is different in
real life. Similarly, in classical graph theory, every directed edge has equal strength. Thus,
the influence of the worker has fuzzy directed boundaries. It is useful to represent these
situations in fuzzy directed graphs. Every vertex represents a worker and the strength of
his influence in the organization model, and it is represented by the membership value in
the fuzzy directed influential graph. Since the developed form of FS is the IFS, domination
in IFDGs provides better results as compared to fuzzy directed graphs.

4.1. Fuzzy Influence Digraph

Let us consider an organization with workers and their designations. Let S = {BOD,
CEO, CTO, DM, DPD, DHR, Stt } be the set of workers for this organization, as shown in
Table 1. By conducting research on the organization, we conclude the following.

(i) The CEO has worked with the DM for about 8 years, and, on strategic initiatives, he
gives importance to his input.

(ii) The BOD has been chaired for about 8 years and is associated with the DM. Similarly
to the CEO, the BOD also values the DM.

(iii) In reorganization, the whole marketing scheme is vital but the DHR is more vital.
(iv) There is a history of disputes between the CTO and DHR.
(v) The CTO has more influence on the DPD.



Mathematics 2024, 12, 872 11 of 14

Table 1. Designations of workers in an organization and abbreviations used for their designations.

Designation Abbreviation

Board of Directors BOD
Chief Executive officer CEO

Chief Technology officer CTO
Director of Marketing DM

Director of Product Development DPD
Director of Human Resources DHR

Staff Stt

An influence digraph can be drawn by observing the above-mentioned points, but this
type of digraph does not show the power of the workers in an organization and also the
degree of influence of workers on one another. It is important to show them in fuzzy sets as
their influence and power have no definite limits. The influence of workers on one another
can be represented through a fuzzy digraph, but there exists hesitation in evaluating their
influence. We consider a fuzzy directed influential graph of this organization, shown in
Figure 3. The organization is represented by the nodes and its membership value represents
the degree of influence. The degree of membership represents how influential the worker
is? in the organization. The BOD has an 80% level of influence. In the digraph, the directed
edges show the influence level of one worker on the other workers within the organization.
The membership degree of the directed edges is considered as a positive percentage of
influence, e.g., the DM has a 50% influence on both the BOD and CEO. Thus, the DM
dominates both the BOD and CEO, which is why it is busier and more influential than
the others.

While dealing with the above circumstances through FDGs, we have only the degree
of acceptance and there is no information about the degree of non-acceptance of the lower
staff members. Hence, there is a lack of information that can be properly manipulated
through the IFDGs.

Figure 3. Fuzzy directed influence graph.

4.2. Intuitionistic Fuzzy Influence Digraph

Since the power and influence of workers cannot be properly described in fuzzy
digraphs, we use an IFDG, which gives better results as compared to FGs. In an IFDG,
the directed edges are used to show the influence. The resulting IFDG is shown in Figure 4,
and Table 2 shows the allocated membership and non-membership values. In the IFDG,
the vertices also represent the workers along with their power in terms of membership
and non-membership degrees, which are described by percentages. For instance, the CEO
has 80% power in the organization. Likewise, in the IFDG, the directed edges show the
influence of one worker on another. The membership and non-membership degrees can
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also be referred to as a positive influence and negative influence, respectively. For instance,
the BOD has a 50% influence on the DM’s opinion but he does not follow his opinion 30%
of the time. In Figure 4, it can be seen that the DM has an influence on both the BOD and
CEO. As the membership degrees in both cases are 0.5, which is 50%, his influence on
both of them is the same. In the case of the CEO, the hesitation degree is 0.2, which is
(π = 1 − 0.5 − 0.3), but it is 0.1 in the case of the BOD, which is (π = 1 − 0.5 − 0.4), which
shows that the CEO has more hesitation than the BOD. It is clear that the most influential
worker within the organization is the DM. He has a great influence on both the BOD and
CEO; each has 80% power. Clearly, all the arcs are strong but the DM dominates the BOD,
CEO and Stt. Hence, the most influential worker in the organization is the DM.

Table 2. Power of workers allocated in terms of membership and non-membership degrees.

BOD CEO CTO DM DPD DHR Stt

βN 0.8 0.8 0.7 0.6 0.5 0.5 0.4
δN 0.1 0.1 0.2 0.2 0.2 0.3 0.2

Figure 4. Intuitionistic fuzzy directed influence graph

5. Conclusions

In this article, we have introduced the notion of domination in IFDGs based on
SAs, along with several fundamental properties and applications. We have extended the
concepts of domination in FDGs. Since dominations in picture fuzzy graphs and bipolar
picture fuzzy graphs were introduced in the literature, but the concept of domination in
IFDGs was missing, we have also filled this gap the literature related to domination. At the
beginning of our study, we introduced several types of strong arcs in IFDGs, like semi-β
strong arcs, semi-δ strong arcs, etc. Then, we introduced the concept of domination in
IFDGs based on these strong arcs and discussed its various useful characteristics. Moreover,
the dominating set (DS), minimal dominating set (MDS), etc., were described with some
fascinating results. We have also introduced the concept of an independent set in an IFDG
and investigated its relations with the DS, minimal independent set (MIS) and MDS. We
have also provided numerous important characterizations of domination in IFDGs based on
the minimal and maximal dominating sets. In this context, we have discussed the lower and
upper dominations of some IFDGs. In addition, we have introduced the terms status and
structurally equivalent and explored a few relationships with the dominations in IFDGs.
Finally, we have investigated the most expert (influential) person in the organization by
using the concepts of domination in IFGs. One could extend these concepts towards other
extended forms of FGs, like spherical picture fuzzy graphs.
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