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Abstract: This paper discusses the approximate distributions of eigenvalues of a singular Wishart
matrix. We give the approximate joint density of eigenvalues by Laplace approximation for the
hypergeometric functions of matrix arguments. Furthermore, we show that the distribution of each
eigenvalue can be approximated by the chi-square distribution with varying degrees of freedom
when the population eigenvalues are infinitely dispersed. The derived result is applied to testing the
equality of eigenvalues in two populations.
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1. Introduction

The Wishart matrix is a symmetric random matrix defined by the sum of squares and
cross-products of samples from a multivariate normal distribution. It becomes non-singular
when the dimension is smaller than or equal to the number of observations; otherwise,
it is singular. The distributions for the Wishart matrix and its eigenvalues have been
used in many areas of science and technology, including multivariate analysis, Bayesian
statistics, random matrix theory, and wireless communications. Some exact distributions of
eigenvalues for a Wishart matrix are represented by the hypergeometric functions of matrix
arguments. James [1] classified multivariate statistics problems into five categories based
on hypergeometric functions. However, the convergence of these functions is slow, and
their numerical computation is cumbersome when sample sizes or dimensions are large.
Consequently, the derivation of approximate distributions of eigenvalues has received
a great deal of attention. Sugiyama [2] derived the approximate distribution for the
largest eigenvalue through the integral representation of the confluent hypergeometric
function. Sugiura [3] showed that the asymptotic distribution of the individual eigenvalues
is expressed by a normal distribution for a large sample size. The chi-square approximation
was discussed when the population eigenvalues are infinitely dispersed in Kato and
Hashiguchi [4] and Takemura and Sheena [5]. Approximations for hypergeometric
functions have been developed and applied to the multivariate distribution theory in
Butler and Wood [6–8]. Butler and Wood [6] provided the Laplace approximation for the
hypergeometric functions of a single matrix argument. The numerical accuracies for that
approximation were shown in the computation of noncentral moments of Wilk’s lambda
statistic and the likelihood ratio statistic for testing block independence. This approximation
was extended to the case of two matrix arguments in Butler and Wood [7]. All the
results addressed above were carried out for eigenvalue distributions for a non-singular
Wishart matrix.

Recently, the distribution of eigenvalues for the non-singular case has been extended
to the singular case; see Shimizu and Hashiguchi [9] and Shinozaki et al. [10]. Shimizu and
Hashiguchi [9] showed the exact distribution of the largest eigenvalue for a singular case is
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represented in terms of the confluent hypergeometric function as well as the non-singular
case. The generalized representation for the non-singular and singular cases under the
elliptical model was provided by Shinozaki et al. [10].

This paper is organized as follows. In Section 2, we apply the Laplace approximation
introduced by Butler and Wood [7] to the joint density of eigenvalues of a singular Wishart
matrix. Furthermore, we show that the approximation for the distribution of the individual
eigenvalues can be expressed by the chi-square distribution with varying degrees of
freedom when the population covariance matrix has spiked eigenvalues. Section 3 discusses
the equality of the individual eigenvalues in two populations. Finally, we evaluate the
precision of the chi-square approximation by comparing it to the empirical distribution
through Monte Carlo simulation in Section 4.

2. Approximate Distributions of Eigenvalues of a Singular Wishart Matrix

Suppose that an m × n real Gaussian random matrix X is distributed as
X ∼ Nm,n(O, Σ ⊗ In), where O is the m × n zero matrix, Σ is a m × m positive symmetric
matrix, and ⊗ is the Kronecker product. This means that the column vectors of X are
independently and identically distributed (i.i.d.) from Nm(0, Σ) with sample size n, where
0 is the m-dimensional zero vector. The eigenvalues of Σ are denoted by λ1, λ2, . . . , λm,
and λ1 ≥ λ2 ≥ · · · ≥ λm > 0. Subsequently, we define the singular Wishart matrix
as W = XX⊤, where m > n and its distribution is denoted by W(n, Σ). The spectral
decomposition of W is represented as W = H1L1H⊤

1 , where L1 = diag(ℓ1, . . . , ℓn) with
ℓ1 > ℓ2 > · · · > ℓn > 0, and the m × n matrix H1 is satisfied by H⊤

1 H1 = In. The set of all
m × n matrices H1 with orthonormal columns is called the Stiefel manifold, denoted by
Vn,m = {H1 | H1H⊤

1 = In}, where m ≥ n. The volume of Vn,m is represented by

Vol(Vn,m) =
∫

H1∈Vn,m
(H⊤

1 dH1) =
2nπmn/2

Γn(m/2)
.

For the definition of the above exterior product (H⊤
1 dH1), see page 63 of Muirhead [11].

If m = n, Stiefel manifold Vm,m coincides with the orthogonal groups O(m). Uhlig [12]
gave the density of W as

f (W) =
π(−mn+n2)/2

2mn/2Γn(n/2)|Σ|n/2 |L1|(n−m−1)/2etr(−Σ−1W/2),

where Γm(a) = πm(m−1)/4 ∏m
i=1 Γ{a − (i − 1)/2} and etr(·) = exp(tr(·)). Srivastava [13]

represented the joint density of eigenvalues of W in a form that includes an integral over
the Stiefel manifold;

f (ℓ1, . . . , ℓn) =
2−nm/2πn2/2

|Σ|n/2Γn(n/2)Γn(m/2)

n

∏
i=1

ℓ
(m−n−1)/2
i

n

∏
i<j

(ℓi − ℓj)

×
∫

H1∈Vn,m
etr
(
−1

2
Σ−1H1L1H⊤

1

)
(dH1), (1)

where (dH1) =
(H⊤

1 dH1)
Vol(Vn,m)

and
∫

H1∈Vn,m
(dH1) = 1.

The above integral over the Stiefel manifold was evaluated by Shimizu and
Hashiguchi [9] as the hypergeometric functions of the matrix arguments. We approximate
(1) by Laplace approximation for the hypergeometric functions of two matrix arguments
provided by Butler and Wood [7].

For a positive integer k, let κ = (κ1, κ2, . . . , κm) denote a partition of k with
κ1 ≥ κ2 ≥ · · · ≥ κm ≥ 0 and κ1 + · · ·+ κm = k. The set of all partitions with less than or equal
to m is denoted by Pk

m = { κ = (κ1, . . . , κm) | κ1 + · · ·+ κm = k, κ1 ≥ κ2 ≥ · · · ≥ κm ≥ 0}.
The Pochhammer symbol for a partition κ is defined as (α)κ = ∏m

i=1{α − (i − 1)/2}κi ,
where (α)k = α(α + 1) · · · (α + k − 1) and (α)0 = 1. For integers, p, q ≥ 0 and m × m
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real symmetric matrices A and B, we define the hypergeometric function of two matrix
arguments as

pFq
(m)(α; β; A, B) =

∞

∑
k=0

∑
κ∈Pk

m

(α1)κ · · · (αp)

(β1)κ · · · (βq)

Cκ(A)Cκ(B)
k!Cκ(Im)

, (2)

where α = (α1, . . . , αp)⊤, β = (β1, . . . , βq)⊤ and Cκ(A) is the zonal polynomial indexed
by κ with the symmetric matrix A; see the details provided in Chapter 7 of Muirhead [11].
The hypergeometric functions with a single matrix are defined as

pFq(α; β; A) = pFq(α; β; A, Im). (3)

The special cases 1F1 and 2F1 of (3) are called the confluent and Gauss hypergeometric
functions, respectively. Butler and Wood [6]. proposed a Laplace approximation of 1F1 and
2F1 through their integral expressions. They showed that the accuracy of that approximation
is greater than the previous results. This approximation was extended to the complex case
in Butler and Wood [8]. The important property of (2) is the integral representation over
the orthogonal group.

pFq
(m)(α; β; A, B) =

∫
H∈O(m)

pFq(α; β; AHBH⊤)(dH), (4)

where (dH) is the invariant measure on the m × m orthogonal group O(m). Integral
representations (4) are a useful tool for obtaining an approximation of pF(m)

q . Asymptotic

expansions of 0F(m)
0 are given in Anderson [14] when both two positive definite matrix

arguments are widely spaced. Constantine and Muirhead [15] gave the asymptotic behavior
of 0F(m)

0 when the population eigenvalues are multiple. From the integral expression (4),
Butler and Wood [7] provided Laplace approximations for pFq

(m).

Lemma 1. Let the two diagonal matrices be A = diag(a1, . . . , am) and B =
diag(b1, . . . , b1, b2, . . . , br, . . . , br), where a1 > a2 > · · · > am > 0, b1 > b2 > · · · >
br ≥ 0, and bj have multiplicity mj, in which m = ∑r

j=1 mj. Let Ω(m1, . . . , mr) =

Vol(O(m))−1 ∏r
j=1 Vol(O(mj)). Then the Laplace approximation of pFq

(m) is given as

p F̂q
(m)(α; β; A, B) = (2π)

s
2 Ω(m1, . . . , mr)J−

1
2 pFq(α; β; AB),

where s = ∑r−1
i=1 ∑r

j=i+1 mimj and Hessian J is defined in Butler and Wood [7].

Shimizu and Hashiguchi [9] showed the following relationship∫
H1∈Vn,m

pFq(AH1B1H⊤
1 )(dH1) =

∫
H∈O(m)

pFq(AHBH⊤)(dH) (5)

for an m × m matrix B =

(
B1 O
O O

)
, where B1 is an n × n symmetric matrix and O is the

zero matrix. From (5), the joint density (1) can be rewritten by

f (ℓ1, . . . , ℓn) ∝
∫

H∈O(m)
etr
(
−1

2
Σ−1HLH⊤

)
(dH)

= 0F0
(m)

(
−1

2
Σ−1, L

)
, (6)
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where L = diag(ℓ1, . . . , ℓn, 0, . . . , 0) is the m × m matrix and the symbol “∝” means that a
constant required for scaling is removed. Applying Laplace’s method to the above joint
density, we have an approximation for the joint density of eigenvalues.

Proposition 1. The joint density of eigenvalues of a singular Wishart matrix by Laplace
approximation is expressed by

πn(n−m)/2

2nm/2|Σ|n/2Γn(n/2)

n

∏
i=1

ℓ
(m−n−1)/2
i

n

∏
i<j

(ℓi − ℓj) exp

(
−1

2

n

∑
i=1

ℓi
λi

)
n

∏
i<j

(
2π

cij

)1/2 n

∏
i=1

m

∏
j=n+1

(
2π

dij

)1/2

, (7)

where cij =
(ℓi−ℓj)(λi−λj)

λiλj
, dij =

ℓi(λi−λj)

λiλj
.

Proof. Applying Lemma 1 to the hypergeometric functions in (6), the integral over the
Stiefel manifold in (1) is approximated by

2n

Vol(Vn,m)
exp

(
−1

2

n

∑
i=1

ℓi
λi

)
n

∏
i<j

(
2π

cij

)1/2 n

∏
i=1

m

∏
j=n+1

(
2π

dij

)1/2

. (8)

Substituting (8) to (1), we have the desired result.

In order to derive the approximate distributions of individual eigenvalues, we define
the spiked covariance model ρk that implies the first k-th eigenvalues of Σ > 0 are infinitely
dispersed, namely

ρk = max
(

λ2

λ1
,

λ3

λ2
, . . . ,

λk+1
λk

)
→ 0, (9)

where k ≤ n. Under the condition of (9) when k = n, Takemura and Sheena [5]
proved that the distribution of individual eigenvalues for a non-singular Wishart matrix
is approximated by a chi-square distribution. The improvement for that approximation,
that is, when the condition listed in (9) cannot be assumed, was discussed in Tsukada and
Sugiyama [16]. The following lemma was provided by Nasuda et al. [17] and Takemura and
Sheena [5] in the non-singular case and could be easily extended to the singular case.

Lemma 2. Let W ∼ Wm(n, Σ), where m > n and ℓ1, ℓ2, . . . , ℓn be the eigenvalues of W. If
ρk → 0, we have

rk = max
(
ℓ2

ℓ1
,
ℓ3

λ2
, . . . ,

ℓk+1
ℓk

)
p→ 0,

in the sense that ∀ϵ > 0, ∃δ > 0,

ρk < δ → Pr (rk > ϵ) < ϵ,

where k ≤ n.

From Proposition 1 and Lemma 2, we obtain the chi-square approximation that is the
main result of this paper.

Theorem 1. Let W ∼ Wm(n, Σ), where m > n and ℓ1, ℓ2, . . . , ℓn be the eigenvalues of W.
If ρk → 0, it holds that

ℓi/λi
d→ χ2

n−i+1, 1 ≤ i ≤ k,

where χ2 is a chi-square distribution with n − i + 1 degrees of freedom and the symbol “ d→" means
convergence in the distribution.



Mathematics 2024, 12, 921 5 of 11

Proof. First, we rewrite the approximate distribution (7) as

f (ℓ1, . . . , ℓn) =
1

2n(n+1)/4|Σ|n/2 ∏n
i=1 Γ( n−i+1

2 )

n

∏
i=1

ℓ
(m−n−1)/2
i exp

(
−1

2

n

∑
i=1

ℓi
λi

)

×
n

∏
i<j

{
(ℓi − ℓj)

(
λiλj

λi − λj

)}1/2 n

∏
i=1

m

∏
j=n+1

(
1

dij

)1/2

. (10)

From Lemma 2, we have

n

∏
i<j

(ℓi − ℓj)
1/2 =

n

∏
1≤i≤k,i<j

ℓ1/2
i

(
1 −

ℓj

ℓi

)1/2 n

∏
i=k+1<j

(ℓi − ℓj)
1/2

≈
k

∏
i=1

ℓ
(n−i)/2
i

n

∏
i=k+1<j

(ℓi − ℓj)
1/2.

Then the approximate joint density is expressed by

f (ℓ1, . . . , ℓn) ≈
1

2n(n+1)/4|Σ|n/2 ∏n
i=1 Γ( n−i+1

2 )

k

∏
i=1

ℓ
(m−i+1)/2
i

n

∏
i=k+1

ℓ
(m−n−1)/2
i

n

∏
i=k+1<j

(ℓi − ℓj)
1/2

× exp

(
−1

2

n

∑
i=1

ℓi
λi

)
n

∏
i<j

(
λiλj

λi − λj

)1/2 n

∏
i=1

m

∏
j=n+1

(
1

dij

)1/2

=
1

2n(n+1)/4|Σ|n/2 ∏n
i=1 Γ( n−i+1

2 )

k

∏
i=1

ℓ
(n−i+1)/2
i

n

∏
i=k+1

ℓ
(m−n−1)/2
i

n

∏
i=k+1<j

(ℓi − ℓj)
1/2

× exp

(
−1

2

n

∑
i=1

ℓi
λi

)
n

∏
i<j

(
λiλj

λi − λj

)1/2 k

∏
i=1

m

∏
j=n+1

(
λj

1 − λj/λi

)1/2 n

∏
i=k+1

m

∏
j=n+1

(
1

dij

)1/2

.

If ρk → 0, we have

n

∏
i<j

(
λiλj

λi − λj

)1/2

=
n

∏
1≤i≤k,i<j

(
λj

1 − λj/λi

)1/2 n

∏
i=k+1<j

(
λiλj

λi − λj

)1/2

≈
k

∏
i=1

λ
(n−i)/2
i

n

∏
i=k+1<j

(
λiλj

λi − λj

)1/2

.

We note |Σ|n/2 =
k

∏
i=1

λn/2
i

n

∏
i=k+1

λn/2
i

m

∏
j=n+1

λn/2
j ; the joint density (10) is approximated as

f (ℓ1, . . . , ℓn)

≈
k

∏
i=1

{
ℓ
(n−i−1)/2
i

(2λi)(n−i+1)/2Γ( n−i+1
2 )

exp
(
− ℓi

2λi

)}
· f (ℓk+1, . . . , ℓn)

k

∏
i=1

λ
(n−2i+1)/2
i

m

∏
j=n+1

λ
(k−n)/2
j

=
k

∏
i=1

gn−i+1(ℓi/λi) · f (ℓk+1, . . . , ℓn)
k

∏
i=1

λ
(n−2i+1)/2
i

m

∏
j=n+1

λ
(k−n)/2
j ,
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where gn−i+1(·) is the density function of the chi-square distribution, and degree of freedom
n − i + 1 and f (ℓk+1, . . . , ℓn) is represented by

f (ℓk+1, . . . , ℓn) =
n

∏
i=k+1

1

2(n−i+1)/2λn/2
i Γ( n−i+1

2 )

n

∏
i=k+1

ℓ
(m−n−1)/2
i

n

∏
i=k+1<j

(ℓi − ℓj)

× exp

(
−1

2

n

∑
i=k+1

ℓi
λi

)
n

∏
i=k+1<j

(
1
cij

)1/2 n

∏
i=k+1

m

∏
j=n+1

(
1

dij

)1/2

.

Corollary 1 shows the chi-square approximation when all population eigenvalues are
infinitely dispersed.

Corollary 1. Let W ∼ Wm(n, Σ), where m > n and ℓ1, ℓ2, . . . , ℓn are the eigenvalues of W.
If ρn → 0, it holds that

ℓi/λi
d→ χ2

n−i+1, 1 ≤ i ≤ n.

Proof. The proof is provided in the Appendix A.

In the context of the High Dimension-Low Sample Size (HDLSS) setting,
the asymptotic behavior of the eigenvalue distribution of a sample covariance matrix
was discussed in Ahn et al. [18], Bolivar-Cime and Perez-Abreu [19], Jung and Marron [20].
Jung and Marron [20] showed that the spiked sample eigenvalues are approximated by the
chi-square distribution with a degree of freedom of n. In contrast, Theorem 1 provides the
approximation of the distribution of individual eigenvalues by a chi-square distribution
with varying degrees of freedom.

3. Application to Test for Equality of the Individual Eigenvalues

This section discusses testing for equality of individual eigenvalues of the covariance
matrix in two populations. For testing problems, we give the approximate distribution of
the statistic based on the derived results from the previous section.

Let an m× ni Gaussian random matrix X(i) be distributed as X(i) ∼ Nm,n(O, Σ(i)⊗ Ini ),

where Σ(i) > 0 and i = 1, 2. The eigenvalues of Σ(i) are denoted by λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
m ,

where λ
(i)
1 ≥ λ

(i)
2 ≥ · · · ≥ λ

(i)
m > 0. We denote the eigenvalues of W(i) = X(i)X(i)⊤ by

ℓ
(i)
1 , ℓ(i)2 , . . . , ℓ(i)m , where ℓ

(i)
1 > ℓ

(i)
2 > · · · > ℓ

(i)
m ≥ 0. For fixed j, we consider the test of the

equality of the individual eigenvalues in two populations as

H0 : λ
(1)
j = λ

(2)
j , vs. H1 : λ

(1)
j ̸= λ

(2)
j . (11)

Sugiyama and Ushizawa [21] reduced (11) to the equality of variance test for the
principal components and proposed a testing procedure using the Ansari-Bradley test.
Takeda [22] proposed the test statistic ℓ(1)j /ℓ(2)j with n ≥ m for (11) and derived the exact

distribution of ℓ
(1)
1 /ℓ(2)1 . Since Johnstone [23] indicated that the first few eigenvalues

are very large compared to the others in the large dimensional setting, it is essential to
understand how the distribution for the first few eigenvalues is constructed. We provide
the exact density function of ℓ(1)1 /ℓ(2)1 with n < m in the same way as Takeda [22].

Theorem 2. Let W(1) and W(2) be two independent Wishart matrices with distribution
Wm(n1, Σ(1)) and Wm(n2, Σ(2)), respectively, where m > ni (i = 1, 2). Then we have the
density of q = ℓ

(1)
1 /ℓ(2)1 as
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f (q) = C
∞

∑
k=0

∑
κ∈Pk

m

∞

∑
t=0

∑
τ∈Pt

m

{(m + 1)/2}κCκ(Σ(1)−1
/2)

{(n1 + m + 1)/2}κk!
{(m + 1)/2}τCτ(Σ(2)−1

/2)
{(n2 + m + 1)/2}τt!

×
{
(mn1/2 + k)(mn2/2 + t)qmn2/2+t−1Γ(u)/vu

− (mn1/2 + k)(trΣ(2)−1
/2)qmn2/2+tΓ(u + 1)/vu+1

− (mn2/2 + t)(trΣ(1)−1
/2)qmn2/2+t−1Γ(u + 1)/vu+1

+ (trΣ(1)−1
/2)(trΣ(2)−1

/2)qmn2/2+tΓ(u + 2)/vu+2
}

, (12)

where u = m(n1 + n2)/2 + k + t, v = trΣ(1)−1 − qtrΣ(2)−1
and

C =
Γn1{(n1 + 1)/2}Γn2{(n2 + 1)/2}

2m(n1+n2)/2Γn1{(n1 + m + 1)/2)Γn2{(n2 + m + 1)/2)}|Σ|n1/2|Σ|n2/2
.

Proof. The exact expression of ℓ(i)1 was provided by Shimizu and Hashiguchi [9] as

Pr(ℓ(i)1 < x) =
Γni (

ni+1
2 )( x

2 )
mni/2

Γni (
ni+m+1

2 )|Σ(i)|ni/2
exp

(
− x

2
trΣ(i)−1

)
1F1

(
m + 1

2
;

ni + m + 1
2

;
x
2

Σ(i)−1
)

. (13)

The derivative of (13) is represented by

f (x) =
Γni{(ni + 1)/2}

2mni/2Γni{(ni + m + 1)/2)}|Σ(i)|ni/2

∞

∑
k=0

∑
κ∈Pk

m

{(m + 1)/2}κCκ(Σ(i)−1
/2)

{(ni + m + 1)/2}κk!

× exp
(
− x

2
trΣ(i)−1

){
(nim/2 + k)xmni/2+k−1 − (trΣ(i)−1

/2)xmni/2+k
}

. (14)

From (14), we have the joint density of ℓ(1)1 and ℓ
(2)
1 as

f (x, y) = C
∞

∑
k=0

∑
κ∈Pk

m

∞

∑
t=0

∑
τ∈Pt

m

{(m + 1)/2}κCκ(Σ(1)−1
/2)

{(n1 + m + 1)/2}κk!
{(m + 1)/2}τCτ(Σ(2)−1

/2)
{(n2 + m + 1)/2}τt!

×
{
(mn1/2 + k)xmn1/2+k−1 − (trΣ(1)−1

/2)xmn1/2+k
}

×
{
(mn2/2 + t)ymn2/2+t−1 − (trΣ(2)−1

/2)ymn2/2+t
}

exp
(
− x

2
trΣ(1)−1

)
exp

(
−y

2
trΣ(2)−1

)
.

Translating x and y to q = y/x and r = x, we have

f (q, r) = C
∞

∑
k=0

∑
κ∈Pk

m

∞

∑
t=0

∑
τ∈Pt

m

{(m + 1)/2}κCκ(Σ(1)−1
/2)

{(n1 + m + 1)/2}κk!
{(m + 1)/2}τCτ(Σ(2)−1

/2)
{(n2 + m + 1)/2}τt!

×
{
(mn1/2 + k)(mn2/2 + t)qmn2/2+t−1rm(n1+n2)/2+k+t−1

− (mn1/2 + k)(trΣ(2)−1
/2)qmn2/2+trm(n1+n2)/2+k+t

− (mn2/2 + t)(trΣ(1)−1
/2)qmn2/2+t−1rm(n1+n2)/2+k+t

+ (trΣ(1)−1
/2)(trΣ(2)−1

/2)qmn2/2+trm(n1+n2)/2+k+t+1
}

× exp
(
−(trΣ(1)−1

− qtrΣ(2)−1
)r
)

.
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Noting that
∫ ∞

0 xα−1e−βxdx = Γ(α)/βα, where α, β > 0, and integrating r with respect to
f (q, r), we have the desired result.

As the dimension increases, it is difficult to perform the numerical computation of (12)
due to the high computational complexity. From Theorem 1, we provide the approximate
distribution for (12) by F-distribution.

Corollary 2. Let W(1) and W(2) be two independent Wishart matrices with distribution
Wm(n1, Σ(1)) and Wm(n2, Σ(2)), respectively, where m > ni (i = 1, 2) and ℓ

(i)
1 , ℓ(i)2 , . . . , ℓ(i)n

are the eigenvalues of W(i). If the first k-th eigenvalues of Σ(i) are spiked, then we have

ℓ
(1)
j /{(n1 − j + 1)λ(1)

n1−j+1}

ℓ
(2)
j /{(n2 − j + 1)λ(2)

n2−j+1}
d→ F(n1−j+1,n2−j+1), 1 ≤ j ≤ k,

where F is an F distribution with n1 and n2 degrees of freedom.

4. Simulation Study

We investigate the accuracy of the approximation for the derived distributions. In the
simulation study, we consider the following population covariance matrix:

Σ = diag(ab, ab/2, . . . , ab/m), (15)

where a, b > 0. In the large-dimensional setting, mainly the accuracy of the approximate
distributions for the largest and second eigenvalues was investigated; see Iimori et al. [24].
In (15), we set (a, b) = (200, 3) as Case 1 and (a, b) = (50, 3) as Case 2. These two cases
imply that the population covariance matrix has two spiked eigenvalues. Parameter ρk
in (9) is smaller in Case 1 than in Case 2. We denote F1(x) and F2(x) as the chi-square
distributions with n and n − 1 degrees of freedom, which are the approximate distributions
of the largest and second eigenvalues, respectively. The empirical distribution based on 106

Monte Carlo simulations is denoted by Fsim. Tables 1 and 2 show the 100α-percentile points
of the distributions of ℓ1 and ℓ2 for m = 50 and n = 10, respectively. From the simulation
study, we know that sufficient accuracy of approximation for the largest eigenvalue has
already been obtained in Case 2. Case 1 is more accurate than Case 2 for the second
eigenvalue. It is seen that the desired accuracy can be achieved when the parameter ρk
is small.

Table 1. Percentile points of the distributions of ℓ1 and ℓ2 of W50(10, Σ) (Case 1).

α F−1
sim(α) F−1

1 (α) α F−1
sim(α) F−1

2 (α)

0.99 23.2359 23.2093 0.99 21.791 21.666
0.95 18.3026 18.307 0.95 17.0601 16.919
0.90 15.9825 15.9872 0.90 14.8377 14.6837
0.50 9.34466 9.34182 0.50 8.48676 8.34283
0.05 3.94389 3.9403 0.05 3.47796 3.32511

Table 2. Percentile points of the distributions of ℓ1 and ℓ2 of W50(10, Σ) (Case 2).

α F−1
sim(α) F−1

1 (α) α F−1
sim(α) F−1

2 (α)

0.99 23.239 23.2093 0.99 22.1285 21.666
0.95 18.306 18.307 0.95 17.4079 16.919
0.90 15.9857 15.9872 0.90 15.1856 14.6837
0.50 9.34844 9.34182 0.50 8.84394 8.34283
0.05 3.94744 3.9403 0.05 3.86566 3.32511



Mathematics 2024, 12, 921 9 of 11

Tables 3 and 4 present the chi-square probabilities for Case 1 in 90% 95% 99% percentile
points denoted as x0.90, x0.95, and x0.99 from the empirical distribution. We denote G1(x) and
G2(x) as the chi-square approximation of the distributions for the largest and second largest
eigenvalues, respectively. In this simulation study, we set m = 20, 30, 40, 100, and n = 5, 15.
It can be observed that all probabilities are close to the true theoretical probabilities.

Table 3. Approximate probabilities of ℓ1 based on the empirical percentile points (Case 1).

n m G1(x0.90) G1(x0.95) G1(x0.99)

5

20 0.900047 0.950011 0.990165
30 0.900227 0.950002 0.990018
40 0.900173 0.950185 0.990072

100 0.899952 0.949874 0.990048

15

20 0.900409 0.950375 0.990088
30 0.900258 0.950232 0.990124
40 0.900729 0.950464 0.990213

100 0.900331 0.950039 0.990083

Table 4. Approximate probabilities of ℓ2 based on the empirical percentile points (Case 1).

n m G2(x0.90) G2(x0.95) G2(x0.99)

5

20 0.904868 0.952295 0.990482
30 0.905512 0.953016 0.990761
40 0.905838 0.952924 0.990609

100 0.906393 0.95315 0.990613

15

20 0.903118 0.951587 0.990331
30 0.903275 0.951856 0.990335
40 0.903943 0.952062 0.990315

100 0.904027 0.952163 0.990498

Finally, we provide the graph of the density of F distribution in Corollary 2 compared
to the empirical distribution function. In Figure 1, we superimpose the graph of the F
approximation with the histogram of ℓ(1)1 /ℓ(2)1 for ni = 10 (i = 1, 2) and m = 30 in Case 2.

The vertical line and histograms show the empirical distribution of the ℓ
(1)
1 /ℓ(2)1 based on

106 iteration, respectively. The solid line is the density function of the F distribution. From
the 95% points of Fsim, we can confirm that the approximate probability is 0.950.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

f (x)

x

Figure 1. ni = 10 (i = 1, 2) and m = 30.

5. Concluding Remarks

In this study, we provided the approximate distribution of eigenvalues of the
singular Wishart matrix, which is similar to the result of Takemura and Sheena [5]
for the non-singular case. Through numerical experiments, we confirmed that the
approximation accuracy is sufficient when the parameter ρk is small. The distribution
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approximation proposed by Tsukada and Sugiyama [16] might be useful to improve the
derived approximate results when ρk → 0 is not assumed. As a part of future work, it
would be desirable to examine the robustness of the chi-square approximation to normality
assumption.
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Appendix A

Proof of Corollary 1

From Lemma 2, we have

n

∏
i<j

(ℓi − ℓj)
1/2 =

n

∏
i<j

ℓ1/2
i

(
1 −

ℓj

ℓi

)1/2

≈
n

∏
i=1

ℓ
(n−i)/2
i ,

n

∏
i<j

(
λiλj

λi − λj

)1/2

=
n

∏
i<j

(
λj

1 − λi/λj

)1/2

≈
n

∏
i=1

λ
(i−1)/2
i .

Furthermore, we note |Σ|n/2 =
n

∏
i=1

λn/2
i

n

∏
i=1

m

∏
j=n+1

λ1/2
j ; the joint density (10) is

represented by

f (ℓ1, . . . , ℓn)

≈
n

∏
i=1

{
ℓ
(n−i−1)/2
i

(2λi)(n−i+1)/2Γ( n−i+1
2 )

exp
(
− ℓi

2λi

)} n

∏
i=1

ℓ
(m−n)/2
i

n

∏
i=1

m

∏
j=n+1

(
1
λj

)1/2 n

∏
i=1

m

∏
j=n+1

(
1

dij

)1/2

=
n

∏
i=1

{
ℓ
(n−i−1)/2
i

(2λi)(n−i+1)/2Γ( n−i+1
2 )

exp
(
− ℓi

2λi

)} n

∏
i=1

m

∏
j=n+1

ℓ
1
2
i

n

∏
i=1

m

∏
i=j+1

(
1
λj

)1/2 n

∏
i=1

m

∏
j=n+1

(
1

dij

)1/2

=
n

∏
i=1

{
ℓ
(n−i−1)/2
i

(2λi)(n−i+1)/2Γ( n−i+1
2 )

exp
(
− ℓi

2λi

)}

=
n

∏
i=1

gn−i+1(ℓi/λi).
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