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1. Introduction

For any integer d > 0, let Cd be the complex d-space and let dv be the ordinary
volume measure on Cd. For points z = (z1, · · · , zd) and w = (w1, · · · , wd) in Cd, we write
zw = ∑d

i=1 ziwi, and |z| =
√

zz. Let H(Cd) be the family of all holomorphic functions on
Cd. Given the real numbers m ≥ 1 and α > 0, the Lebesgue measure dµm,α is defined by

dµm,α(z) = cm,αe−α|z|2m
dv(z),

where cm,α = mα
d
m

πd
Γ(d)

Γ( d
m )

is the normalizing constant so that dµm,α is a probability measure

on Cd. Let L2
m,α be the space of measurable functions f : Cd → C, such that

∥ f ∥2
L2

m,α
:=
∫
Cd

| f (z)|2dµm,α(z) < ∞.

The generalized Fock space is denoted by F2
m,α = L2

m,α ∩ H(Cd). In particular, F2
1,α is the

Fock space when m = 1 (see [1]). F2
m,α is a Hilbert space under the inner product

⟨ f , g⟩m,α =
∫
Cd

f (w)g(w)dµm,α(w).

For any f ∈ F2
m,α, there exists a constant C, such that

| f (z)| ≤ C∥ f ∥F2
m,α

(1 + |z|)d(m−1)e
α
2 |z|

2m
, z ∈ Cd

according to [2] (Corollary 2.9), which implies that each point evaluation is bounded on F2
m,α.

Thus, for each z ∈ Cd, there exists a unique reproducing kernel function Km,α(·, z) ∈ F2
m,α,

such that
f (z) = ⟨ f , Km,α(·, z)⟩m,α
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for every f ∈ F2
m,α. The orthogonal projection Pm,α : L2

m,α → F2
m,α is defined by

Pm,α f (z) =
∫
Cd

f (w)Km,α(z, w)dµm,α(w), f ∈ L2
m,α, z ∈ Cd, (1)

where Km,α is the reproducing kernel in F2
m,α.

For multi-index j = (j1, j2, · · · , jd) ∈ Nd, we write |j| = j1 + j2 + · · · + jd and j! =
j1!j2! · · · jd!. We also write zj = zj1

1 zj2
2 · · · zjd

d for z = (z1, z2, · · · , zd) ∈ Cd. Since the weight
e−α|z|2m

depends only on |z|, the monomials zj(j ∈ Nd) form an orthogonal basis in F2
m,α. Its

integration into spherical coordinates gives

Em,α(j) := ∥zj∥2
F2

m,α
=

j!Γ(d)Γ
(

d+|j|
m

)
Γ
(

d
m

)
Γ(d + |j|)α

|j|
m

.

Then, the set E =
{

ej(z) = [Em,α(j)]−1/2zj : j ∈ Nd
}

is an orthonormal basis for F2
m,α. Using

the theory from Aronszajn [3] to compute the reproducing kernel of F2
m,α, we obtain

Km,α(z, w) = ∑
j

zjwj

Em,α(j)
, z, w ∈ Cd. (2)

Given 1 ≤ p < ∞ and b > 0, as a consequence of [4] (Corollary 2.11), we obtain the
following useful estimate

C1(1 + |z|)2d(m−1)
(

1− 1
p

)
e

pα2
4b |z|2m ≤

∫
Cd

|Km,α(z, w)|pe−b|z|2m
dv(w)

≤ C2(1 + |z|)2d(m−1)
(

1− 1
p

)
e

pα2
4b |z|2m

, z ∈ Cd

(3)

for the positive constants C1 and C2.
Let Mm,α be the set of all bounded functions in (F2

m,α)
⊥ with a compact support on

Cd; it is easy to show that Mm,α is dense in (F2
m,α)

⊥ by using a similar argument to [5]. Let
φ ∈ L2

m,α; we define the dual Toeplitz operator Sφ with the symbol φ as follows:

Sφ f = (I − Pm,α)(φ f ), f ∈ (F2
m,α)

⊥

where I is the identity operator. If φ is bounded, then Sφ is bounded on (F2
m,α)

⊥. However,
Sφ may not be bounded when the symbols are more general or even densely defined on
Mm,α. To ensure that the product of two dual Toeplitz operators is well defined, for a given
δ > 0, let L∞

αδ,m be the space of all Lebesgue measurable functions φ on Cd, such that

ess sup
{
|φ(z)|e−δα

|z|2m
2 : z ∈ Cd

}
< ∞.

Let f ∈ Mm,α, and suppose that φ ∈ L∞
αδ1,m and ψ ∈ L∞

αδ2,m for some 0 < δ1, δ2 < 1
2 . By

calculating (3), we have

|Pm,α(ψ f )(z)| ≤ Ke

α

4
(

1− δ2
2

) |z|2m

, z ∈ Cd

for some positive constant K.
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Furthermore, we obtain φPm,α(ψ f ) ∈ L2
m,α; this implies that φSψ f ∈ L2

m,α, and then,
SφSψ f is well defined as a function in L2

m,α. Hence, for φ and ψ, the product SφSψ is densely
defined on (F2

m,α)
⊥ and can be expressed as

SφSψ f = φψ f − φPm,α(ψ f )− Pm,α(φψ f ) + Pm,α[φPm,α(ψ f )], f ∈ Mm,α. (4)

Let
SYMm =

⋃
0<δ< 1

2

L∞
αδ,m

be the the symbol space. Under pointwise multiplication, SYMm becomes an algebra.
Dual Toeplitz operators have been widely studied on the orthogonal complement of

classical function spaces. For example, in the Bergman space over the unit disk setting,
Stroethoff and Zheng [6] first studied the algebraic and spectral properties of the dual
Toeplitz operator. Also, they characterized commuting dual Toeplitz operators. Yu and
Wu [7] studied commuting dual Toeplitz operators with harmonic symbols on the orthogo-
nal complement of the Dirichlet space. Chen, Yu and Zhao [8] characterized when two dual
Toeplitz operators are commuting and semi-commuting on the orthogonal complement of
the harmonic Dirichlet space, where the spectral properties of these operators were also
studied. Later, their results were extended to a multiple-variable situation. Kong and Lu [9]
characterized the algebraic properties of dual Toeplitz operators on Bergman spaces on a
unit ball. Furthermore, they studied when the sum of the products of two dual Toeplitz
operators is equal to a dual Toeplitz operator, which yielded the results mentioned above
concerning the commutativity or product problem. Ding, Wu and Zhao [10] performed
complete characterization for the hyponormality of dual Toeplitz operators with bounded
harmonic symbols on the orthogonal complement of the Bergman space over an open unit
disk. Lee [11] characterized when the finite sum of products of two dual Toeplitz operators
is equal to zero on the orthogonal complement of the Dirichlet space. The corresponding
problem for dual Toeplitz operators on the Hardy–Sobolev space and Fock space (m = 1)
has also been studied (see [12,13]). For more details on the study of dual Toeplitz operators,
please refer to [6,14–17].

At the beginning of this century, some scholars began to pay attention to the structure
of the generalized Fock space and its operators. Bommier-Hato, Engliš and Youssfi [18]
proposed criteria for determining the boundedness of the associated Bergman-type pro-
jections on the generalized Fock space over Cn. Schneider [19] studied Hankel operators
with anti-holomorphic L2-symbols on generalized Fock spaces A2

m in one complex dimen-
sion. Bommier-Hato [20] studied the algebraic properties of the Toeplitz operator on the
generalized Fock space over Cd. For more details on the generalized Fock space, we refer
to [2,21–23].

Motivated by the above results, in this paper, we consider similar problems on the
orthogonal complements of the generalized Fock space F2

m,α, where m is a positive real
number. We generalize the results of [12] to the generalized Fock space F2

m,α. That is, we
mainly characterize the finite sum of dual Toeplitz products in another dual Toeplitz operator.

Our main results are as follows.

Theorem 1. Let φk, ψk ∈ SYMm be pluriharmonic for k = 1, · · · , N and h ∈ SYMm. Then,
Sh = ∑N

k=1 Sφk Sψk if and only if h = ∑N
k=1 φkψk if and only if one of the following statement holds:

(a) ∑N
k=1 Pm,α(φk)Pm,α(ψkϕ) ∈ H(Cd) for all ϕ ∈ Mm,α;

(b) ∑N
k=1 RPm,α(φk)Pm,α(ψkϕ) = 0 for all ϕ ∈ Mm,α;

(c) There exists λk, νk ∈ CN for k = 1, · · · , N with λkνl = 0 for all k, l and

(Pm,α φ1 − φ1(0), · · · , Pm,α φN − φN(0)) =
N

∑
k=1

(λkPm,α φk − φk(0)),
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(Pm,αψ1 − ψ1(0), · · · , Pm,αψN − ψN(0)) =
N

∑
k=1

(νkPm,αψk − ψk(0)).

The organization of this paper is as follows. In Section 2, the boundedness and com-
pactness of the dual Toeplitz operators are characterized, and the necessary condition for
the finite sum of the products of two dual Toeplitz operators to be compact is also consid-
ered. Section 3 studies the zero sums of the products of two dual Toeplitz operators with
pluriharmonic symbols.

2. Boundedness and Compactness

In this section, we characterize the boundedness and compactness of dual Toeplitz
operators with symbols in L2

m,α.
Let w ∈ Cd, 0 < s < 1 define a function on Cd

Gm
w,s(z) = (z1 − w1)eα|z|2m

χB(w,s)(z), z ∈ Cd,

where B(w, s) is the Euclidean ball in Cd centered at w ∈ Cd with radius s, and χB(w,s)
denotes the characteristic function of B(w, s). Gm

w,s is usually called test function. Set

gm
w,s(z) =

Gm
w,s(z)

∥Gm
w,s∥L2

m,α

.

For each f ∈ (F2
m,α)

⊥ and w ∈ Cd, by applying the Cauchy–Schwarz inequality, we
determine that

|⟨ f , gm
w,s⟩m,α|2 =

∣∣∣∣∫B(w,s)
f (z)gm

w,s(z)dµm,α(z)
∣∣∣∣2 ≤

∫
B(w,s)

| f (z)|2dµm,α(z),

and it follows that gm
w,s converges to 0 weakly in (F2

m,α)
⊥ as s →0. For φ ∈ L2

m,α, the multi-
plication operator Mφ is defined by Mφ f = φ f for f ∈ L2

m,α.

Lemma 1. With the notations above, we have gm
w,s ∈ (F2

m,α)
⊥ and

lim
s→0+

∥Mφgm
w,s∥ = |φ(w)|

for a.e. w ∈ Cd and for each φ ∈ L2
m,α.

Proof. For each f ∈ F2
m,α, we have

⟨ f , Gm
w,s⟩ =

∫
Cd

f (z)Gm
w,s(z)dµm,α(z)

= cm,α

∫
B(w,s)

f (z)(z1 − w1)dv(z) = 0,

which implies that Gm
w,s ∈ (F2

m,α)
⊥, and so, gm

w,s ∈ (F2
m,α)

⊥. We next show that the limit

lim
s→0+

∥Mφgm
w,s∥ = |φ(w)|

holds. Using [24] (Proposition 1.4.9), we determine that

∥Gw,s∥2
L2

m,α
≥ cm,αs2v(B(w, s))L

for the constant L > 0. Hence,
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|∥Mφgm
w,s∥2 − |φ(w)|2| =

∣∣∣∣∫Cd
|φ(z)|2|gm

w,s(z)|2dµm,α(z)− |φ(w)|2
∣∣∣∣

≤
∫
Cd

||φ(z)|2 − |φ(w)|2||gm
w,s(z)|2dµm,α(z)

=
1

∥Gw,s∥2
L2

m,α

∫
Cd

||φ(z)|2 − |φ(w)|2||Gm
w,s(z)|2dµm,α(z)

=
cm,α

∥Gw,s∥2
L2

m,α

∫
B(w,s)

||φ(z)|2 − |φ(w)|2||z1 − w1|2dv(z)

≤ cm,αs2

∥Gw,s∥2
L2

m,α

∫
B(w,s)

||φ(z)|2 − |φ(w)|2|dv(z)

≤ 1
Lv(B(w, s)

∫
B(w,s)

||φ(z)|2 − |φ(w)|2|dv(z).

Let

A =

{
w ∈ C : lim

s→0

∫
B(w,s) ||φ(z)|

2 − |φ(w)|2|dv(z)

v(B(w, s))
= 0

}
.

We determine that the complement set of A is a set of measure zero according to Theorem
8.8 of [25].This finishes the proof.

Given φ ∈ L2
m,α, we define the Hankel operators Hφ : F2

m,α → (F2
m,α)

⊥ and H∗
φ :

(F2
m,α)

⊥ → (F2
m,α)

⊥ with Hφ = (I − Pm,α)Mφ and H∗
φ = Pm,α Mφ. The following lemma

will be useful in our characterization for the boundedness and compactness of the dual
Toeplitz operator.

Lemma 2. For φ ∈ L2
m,α, we have

lim
s→0

∥Sφgm
w,s∥ = |φ(w)|

for a.e. w ∈ Cd.

Proof. Note that

Mφ f = Pm,α(φ f ) + (I − Pm,α)(φ f ) = H∗
φ f + Sφ f

for each f ∈ (F2
m,α)

⊥. Thus,

∥Mφgm
w,s∥2 = ∥Sφgm

w,s∥2 + ∥H∗
φgm

w,s∥2.

According to (3), we have

∥H∗
φgm

w,s∥2 =
∫
Cd

|H∗
φgm

w,s(z)|2dµm,α(z)

=
∫
Cd

|Pm,α(φgm
w,s)(z)|2dµm,α(z)

=
∫
Cd

∣∣∣∣∫B(w,s)
φ(ζ)gm

w,s(ζ)Km,α(z, ζ)dµm,α(ζ)

∣∣∣∣2dµm,α(z)

≤
∫
Cd

∫
B(w,s)

|φ(ζ)|2|Km,α(z, ζ)|2dµm,α(ζ)dµm,α(z)

≤ C
∫

B(w,s)
|φ(ζ)|2(1 + |ζ|)2d(m−1)eα|ζ|2m

dµm,α(ζ)

≤ C(2 + |w|)d(m−1)eα(|w|+1)2m
∫

B(w,s)
|φ(ζ)|2dµm,α(ζ).

for each 0 < s < 1. Based on this assumption, we obtain

lim
s→0

∫
B(w,s)

|φ(ζ)|2dµm,α(ζ) = 0.
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Therefore,
lim
s→0

∥H∗
φgm

w,s∥ = 0

for each w ∈ Cd, and this implies that

|φ(w)|2 = lim
s→0

∥Mφgm
w,s∥2 = lim

s→0
∥Sφgm

w,s∥2

for a.e. w ∈ Cd by using Lemma 1.

Recall that L∞(Cd) is the space of measurable functions f on Cd, such that

∥ f ∥∞ := ess sup{| f (z)| : z ∈ Cd} < +∞.

Now, we are ready to characterize the boundedness of dual Toeplitz operators on (F2
m,α)

⊥.

Theorem 2. If f ∈ L2
m,α, then S f is bounded on (F2

m,α)
⊥ if and only if f ∈ L∞(Cd). In which

case, we have ∥S f ∥ = ∥ f ∥∞.

Proof. If f ∈ L∞(Cd), then ∥S f ∥ ≤ ∥ f ∥∞. Suppose that S f is bounded on (F2
m,α)

⊥. Note
that

∥S f gm
w,s∥ ≤ ∥S f ∥

for all w ∈ Cd and 0 < s < 1. Letting s → 0 and using Lemma 2, we have

| f (w)| ≤ ∥S f ∥

for a.e. w ∈ Cd, so that
∥ f ∥∞ ≤ ∥S f ∥.

This completes the proof.

Corollary 1. If f ∈ L∞(Cd), then S f is compact on (F2
m,α)

⊥ if and only if f (w) = 0 a.e. w ∈ Cd.

Corollary 2. If f ∈ L∞(Cd), then S f = 0 on (F2
m,α)

⊥ if and only if f (w) = 0 a.e. w ∈ Cd.

We consider the relation between the compactness of the finite sums of finite dual
Toeplitz products and their symbols.

Theorem 3. Let φt, ψt ∈ SYMm for t = 1, 2, · · · , N. If ∑N
t=1 Sφt Sψt is compact on (F2

m,α)
⊥, then

∑N
t=1 φtψt = 0.

Proof. If the dual Toeplitz operators are closely related to Hankel operators, we have
N

∑
t=1

Sφtψt =
N

∑
t=1

Sφt Sψt +
N

∑
t=1

Hφt H∗
ψt

.

Lemma 2 and (3) determine that
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∥Hφt H∗
ψt

gm
w,s∥2 = ∥(I − Pm,α)(φtH∗

ψt
gm

w,s)∥2

≤
∫
Cd

|φt(z)|2|H∗
φgm

w,s(z)|2dµm,α(z)

=
∫
Cd

|φt(z)|2
∫

B(w,s)
|ψt(ζ)Km,α(z, ζ)|2dµm,α(ζ)dm,αµ(z)

=
∫

B(w,s)
|ψt(ζ)|2

∫
Cd

|φt(z)|2|Km,α(z, ζ)|2dµm,α(z)dµm,α(ζ)

≤ C
∫

B(w,s)
(1 + |ζ|)d(m−1)e

α

2(1− δ
2 )

|ζ|2m

e
δα
2 |ζ|2m

dµm,α(ζ)

≤ C(2 + |w|)d(m−1)e
α
2 (

1
1− δ

2
+δ)(|w|+1)2m ∫

B(w,s)
dµm,α(ζ).

for each 0 < s < 1. Hence,
lim

s→0+
∥Hφj H

∗
ψt

gm
w,s∥ = 0

for w ∈ Cd, t = 1, 2, · · · , N. This means that

lim
s→0

∥S∑N
t=1 φtψt

gm
w,s∥ =

∣∣∣∣∣ N

∑
t=1

φtψt

∣∣∣∣∣ = 0

according to Lemma 1 again. This completes the proof.

As a simple application of Theorem 3, we determine that a product of several dual
Toeplitz operators with harmonic symbols can be compact only in a trivial case. For har-
monic functions φ1, · · · , φN ∈ SYMm for which φ1 · · · φN = 0, at least one φt must be zero.

Corollary 3. Let φ1, · · · , φN ∈ SYMm be harmonic; then, the following conditions are equivalent:

(a) ∏N
t=1 Sφt is compact;

(b) ∏N
t=1 Sφt = 0;

(c) φt = 0 for some t.

Let B((F2
m,α)

⊥) denote the space of all linear bounded operators on (F2
m,α)

⊥, and H

be the set of all operators of the form ∑M
t=1 AtHφH∗

ψ, where M ≥ 1 is an integer, and
At ∈ B((F2

m,α)
⊥), φ, ψ ∈ L∞(Cd). It follows from Lemma 2 that

lim
s→0+

∥Agm
w,s∥ = 0 (5)

for every w ∈ Cd and A ∈ H.

Lemma 3. Let φt ∈ L∞(Cd) for t = 1, 2, · · · , N. Then,

Sφ1 · · · SφN = Sφ1 φ2···φN + A

for some A ∈ H.

Proof. As mentioned above, the result is true for N = 2. Now, suppose the result holds for
N − 1; then,

Sφ1 · · · SφN = Sφ1(Sφ2···φN + A)

= Sφ1 Sφ2···φN + Sφ1 A

= Sφ1 φ2···φN − Hφ1 H∗
φ2···φN

+ Sφ1 A.

for some A ∈ H. Note that −Hφ1 H∗
φ2···φN

+ Sφ1 A ∈ H.
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Proposition 1. Let φkt ∈ L∞(Cd). If ∑N
k=1 ∏Mk

t=1 Sφkt is compact, then ∑N
k=1 ∏Mk

t=1 φkt = 0.

Proof. According to Lemma 3, we have

N

∑
k=1

Mk

∏
t=1

Sφkt =
N

∑
k=1

(
S

∏
Mk
t=1 φkt

+ Ak

)
= S

∑N
k=1 ∏

Mk
t=1 φkt

+
N

∑
k=1

Ak

for some Ak ∈ H(k = 1, 2, · · · , N). For w ∈ Cd, gm
w,s converges to 0 weakly in (F2

m,α)
⊥ as

s → 0. Combining the assumption, Lemma 2, and equality (5), we obtain

lim
s→0

∥S
∑N

k=1 ∏
Mk
t=1 φkt

(gm
w,s)∥ = 0.

Remark 1. The above conclusion holds for bounded symbols. However, we do not know whether it
is true for the symbol in SYMm.

3. Zero Sum of Products of Dual Toeplitz Operators

In this section, we consider the finite sum of the products of two dual Toeplitz oper-
ators on the generalized Fock space, determine when such an operator equals zero, and
obtain several applications. Recall that a complex-valued function on Cd is said to be
pluriharmonic when its restriction to an arbitrary complex line is harmonic as a function of
one complex variable. It is well known that each pluriharmonic function can be decom-
posed as f + g for some f , g ∈ H(Cd). For the two multi-indices j = (j1, j2, · · · , jd) and
γ = (γ1, γ2, · · · , γd), the notation j ≼ γ denotes that jk ≤ γk for all 1 ≤ k ≤ d. For j ≼ γ
we assume that γ − j = (γ1 − j1, γ2 − j2, · · · , γd − jd).

The following proposition will be very useful in our analysis later on.

Proposition 2. Let u ∈ SYMm be pluriharmonic. Then, the following statements are equivalent:

(1) Pm,α(uϕ) = 0 for every ϕ ∈ Mm,α;
(2) u ∈ H(Cd);
(3) Pm,αu is constant.

Proof. It is trival that condition (2) ⇔ (3). We are going to prove that (1) ⇔ (2). First,
assume that (1) holds and write u = f + g for some f , g ∈ H(Cd). For a multi-index j, we
let ϕj = wjχB, where B is the unit ball in Cd. Then, ϕj ∈ Mm,α and Pm,α(gϕj) = 0 for every
j with |j| ≥ 1. Thus, Pm,α( f ϕj) = 0 for every j with |j| ≥ 1. We let f (z) = ∑γ aγzγ be its
Taylor series. According to (1) and (2), we have

0 =Pm,α( f ϕj)(z)

=∑
γ

aγPm,α(wγϕj)(z)

=∑
γ

aγ ∑
τ

1
Em,α(τ)

zτ
∫

B
wγwτ+jdµm,α(w)

= ∑
j≼γ

aγ
1

Em,α(γ − j)
zγ−j

∫
B
|wγ|2dµm,α(w)

for every j with |j| ≥ 1 and z ∈ Cd. Thus, for any given j with |j| ≥ 1, the above shows that
aγ = 0 for every γ with j ≼ γ, which means that aγ = 0 for every γ ̸= 0. So, we determine
that (2) holds. Suppose that condition (2) holds. Using (3), uKm,α(·, z) ∈ F2

m,α for all z ∈ Cd.
It follows that

Pm,α(uϕ)(z) = ⟨uϕ, Km,α(·, z)⟩m,α = ⟨ϕ, uKm,α(·, z)⟩m,α = 0, z ∈ Cd
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for every ϕ ∈ Mm,α. This shows that (1) holds.

We let

R f (z) =
d

∑
i=1

zi
∂ f
∂zi

(z), R̃ f (z) =
d

∑
i=1

zi
∂ f
∂zi

(z)

for z = (z1, . . . , zd) ∈ Cd.
We now prove the main result of this section.

Proof of Theorem 1. Write φk = uk + vk for some uk, vk ∈ F2
m,α. Using (4), we obtain[

Sh −
N

∑
k=1

Sφk Sψk

]
ϕ =ϕ

(
h −

N

∑
k=1

φkψk

)
+

N

∑
k=1

φkPm,α(ψkϕ)

− Pm,α

[
ϕ

(
h −

N

∑
k=1

φkψk

)]
− Pm,α

[
N

∑
k=1

φkPm,α(ψkϕ)

] (6)

for every ϕ ∈ Mm,α. We note that

vk = Pm,α φk − uk(0)

according to (1) and (2) for each k. Then, according to Theorem 3, we see that Sh =

∑N
k=1 Sφk Sψk if and only if h = ∑N

k=1 φkψk and (a) holds. Thus, in order to complete the
proof, it is sufficient to show that (a), (b) and (c) are all equivalent.

Implication (a) ⇒ (b). By taking R̃ in (a), we determine that (a) ⇒ (b) holds.
Equivalence (b) ⇔ (c). We see from [17] (Theorem 3.2) that (b) holds if and only if

there exists λk, νk ∈ CN for k = 1, · · · , N, such that λkνl = 0 for all k, l and

(R̃Pm,α(φ1), · · · , R̃Pm,α(φN)) =
N

∑
k=1

λkR̃Pm,α(φk),

(Pm,α(ψ1ϕ), · · · , Pm,α(ψNϕ)) =
N

∑
k=1

νkPm,α(ψkϕ)

(7)

for all ϕ ∈ Mm,α. Writing λk = (λ1
k , · · · , λN

k ) and νk = (ν1
k , · · · , νN

k ) for each k, we note
that (7) is equivalent to

R
[

Pm,α

(
φk −

N

∑
k=1

λl
k φk

)]
= RPm,α(φk)−

N

∑
k=1

λl
kRPm,α(φk) = 0,

Pm,α

[(
ψk −

N

∑
k=1

νl
kψk

)
ϕ

]
= Pm,α(ψkϕ)−

N

∑
k=1

νl
kPm,α(ψkϕ) = 0

(8)

for each l and all ϕ ∈ Mm,α. According to Proposition 2, we know that (8) is equivalent to

Pm,α

(
φk −

N

∑
k=1

λl
k φk

)
= Pm,α

(
φk −

N

∑
k=1

λl
k φk

)
(0),

Pm,α

(
ψk −

N

∑
k=1

νl
kψk

)
= Pm,α

(
ψk −

N

∑
k=1

νl
kψk

)
(0)

(9)

for each l. Note that Pm,α φk(0) = φk(0) and Pm,αψk(0) = ψk(0) for each k, so (9) is
equivalent to (c). Hence we conclude that (b) ⇔ (c).

Implication (c) ⇒ (a). Suppose now that (c) holds. From Proposition 2 and λk · νl = 0
for all k, l, we see that

N

∑
k=1

Pm,α(φk)Pm,α(ψkϕ) =
N

∑
k=1

φk(0)Pm,α(ψkϕ) ∈ H(Cd)
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for all ϕ ∈ Mm,α, which shows that (a) holds. This completes the proof of the theorem.

We now have several consequences of Theorem 1. Firstly, in the special case when
N = 2, we obtain a more concrete solution in the next corollary. In the course of the proof,
we use the well-known complexification lemma:

Lemma 4. Let Ω be a domain in Cd and assume that Φ is holomorphic on Ω × Ω∗, where
Ω∗ = {z : z ∈ Ω}. If Φ(z, z) = 0 for all z ∈ Ω, then Φ = 0 on Ω × Ω∗.

Corollary 4. Let f , g, u, v ∈ SYMm be pluriharmonic and h ∈ SYMm. Then Sh = S f Sg + SuSv

on (F2
m,α)

⊥ if and only if h = f g + uv and one of the following conditions holds:

(I) f , u ∈ H(Cd);
(II) g, v ∈ H(Cd);
(III) f , v ∈ H(Cd);
(IV) g, u ∈ H(Cd);
(V) f + λu ∈ H(Cd) and v − λg ∈ H(Cd) for some constant λ ̸= 0.

Proof. According to Theorem 1, it suffices to prove that (b) of Theorem 1 holds if and only
if one of (I)− (V) holds. According to Lemma 4, we determine that (b) of Theorem 1 holds
if and only if

Ru(z)Pm,α(vϕ)(w) = −R f (z)Pm,α(gϕ)(w) (10)

for all z, w ∈ Cd and ϕ ∈ Mm,α. First, suppose that (10) holds. Recall that for a pluri-
harmonic function P , RP = 0 if and only if P ∈ H(Cd). If u ∈ H(Cd), then Ru = 0,
and together with (10), we determine that either Ru = R f = 0 or Ru = Pm,α(gϕ) = 0
for all ϕ ∈ Mm,α. Thus, the first case implies that f , u ∈ H(Cd), and hence, (I) holds.
According to Proposition 2, the second one implies that (IV) holds. Still, if g ∈ H(Cd), then
Pm,α(gϕ) = 0 for all ϕ ∈ Mm,α according to Proposition 2 again, and (I I) or (IV) holds
based on a similar argument.

Next, assume that u, g are not holomorphic. Then, Ru(z0) ̸= 0 and Pm,α(gϕ0)(w0) ̸=
0 for some z0, w0 ∈ Cd and ϕ0 ∈ Mm,α. According to (10), we have Pm,α(vϕ)(w) =

−ηPm,α(gϕ)(w) and R f (z) = −λRu(z) for all z, w ∈ Cd and ϕ ∈ Mm,α, where

η =
R f (z0)

Ru(z0)
, λ =

Pm,α(vϕ0)(w0)

Pm,α(gϕ0)(w0)
.

Therefore, Pm,α(vϕ + ηgϕ) = 0 for all ϕ ∈ Mm,α and R( f + λu) = 0. Notice that λ = −η
according to (10). So, v − λg ∈ H(Cd) and f + λu ∈ H(Cd) according to Proposition 2.
If λ = 0, then (I I I) holds. If λ ̸= 0, then (V) holds.

For the converse implication, we assume that (I)− (V) holds. Then, we use Proposi-
tion 2 to determine that (10) holds.

As a simple application of Corollary 4, we characterize the commutativity of dual
Toeplitz operators with pluriharmonic symbols.

Corollary 5. Let f , g ∈ SYMm be pluriharmonic . Then, S f Sg = SgS f on (F2
m,α)

⊥ if and only if
one of the following conditions holds:

(I) f , g ∈ H(Cd);
(II) f , g ∈ H(Cd);
(III) There exist constants λ, η, not both 0, such that λ f + ηg is constant on Cd.

Proof. We take u = g and v = − f in Corollary 4, as desired.
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Corollary 6. Let f ∈ SYMm be pluriharmonic. Then, S f S f = S f S f on (F2
m,α)

⊥ if and only if f is
constant.

If we take u = v = 0 in Corollary 4, we obtain the following corollary.

Corollary 7. Let f , g ∈ SYMm be pluriharmonic and h ∈ SYMm. Then Sh = S f Sg on (F2
m,α)

⊥

if and only if h = f g, and either f ∈ H(Cd) or g ∈ H(Cd).
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