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Abstract: COPA, introduced by Andreeva et al., is the first online authenticated encryption (AE)
mode with nonce-misuse resistance, and it is covered in COLM, which is one of the final CAESAR
portfolios. However, COPA has been proven to be insecure in the releasing unverified plaintext
(RUP) setting. This paper mainly focuses on the integrity under RUP (INT-RUP) defect of COPA.
Firstly, this paper revisits the INT-RUP security model for adaptive adversaries, investigates the
possible factors of INT-RUP insecurity for “Encryption-Mix-Encryption”-type checksum-based AE
schemes, and finds that these AE schemes with INT-RUP security vulnerabilities utilize a common
poor checksum technique. Then, this paper introduces an improved checksum technique named
polynomial intermediate checksum (PIC) for INT-RUP security and emphasizes that PIC is a sufficient
condition for guaranteeing INT-RUP security for “Encryption-Mix-Encryption”-type checksum-based
AE schemes. PIC is generated by a polynomial sum with full terms of intermediate internal states,
which guarantees no information leakage. Moreover, PIC ensures the same level between the plaintext
and the ciphertext, which guarantees that the adversary cannot obtain any useful information from
the unverified decryption queries. Again, based on PIC, this paper proposes a modified scheme
COPA-PIC to fix the INT-RUP defect of COPA. COPA-PIC is proven to be INT-RUP up to the birthday-
bound security if the underlying primitive is secure. Finally, this paper discusses the properties of
COPA-PIC and makes a comparison for AE modes with distinct checksum techniques. The proposed
work is of good practical significance. In an interactive system where two parties communicate, the
receiver can effectively determine whether the information received from the sender is valid or not,
and thus perform the subsequent operation more effectively.

Keywords: authenticated encryption; checksum technique; integrity under releasing unverified
plaintext; provable security

MSC: 94A60; 68P25

1. Introduction
1.1. Background

With the increasing demand for lightweight sensors in the development of space–
aerial–ground–sea cooperative information networks, and the scalability, timeliness, and
security of the network, lightweight cryptography has been deeply explored in academia
and industry. To solve the practical application problems, authenticated encryption (AE) has
been extended to lightweight AE, which provides both privacy and authenticity on resource-
constrained devices. In conventional security models of AE, the decrypted plaintext must
be released after integrity is successfully verified. However, in lightweight devices, there
are not enough resources to store the whole decrypted plaintext. Moreover, there exist
side channel attacks to obtain the properties of the plaintext indirectly. Thus, releasing
the decrypted plaintext before verification (releasing unverified plaintext, RUP) is often
desirable and can contribute effectively to the improvement of efficiency in lightweight
devices [1–4].

Mathematics 2024, 12, 1011. https://doi.org/10.3390/math12071011 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12071011
https://doi.org/10.3390/math12071011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0647-0375
https://doi.org/10.3390/math12071011
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12071011?type=check_update&version=1


Mathematics 2024, 12, 1011 2 of 26

Andreeva et al. introduced stronger security models in the RUP setting [1]. For privacy,
they proposed a new notion called PA (Plaintext Awareness). PA, in fact, is a plaintext
extractor which tries to deceive adversaries by simulating the decryption oracle. An AE
scheme is PA if it is infeasible to distinguish the decryption oracle from the plaintext
extractor. For authenticity, they proposed a new notion called INT-RUP (Integrity under
Releasing Unverified Plaintext). INT-RUP is a stronger security metric than INT-CTXT
(Integrity of Ciphertext). An AE scheme is INT-RUP if an adversary can not generate a fresh
valid ciphertext–tag pair given the additional power of access to an unverified decryption
oracle, after the encryption oracle. This paper is only interested in INT-RUP security of
various AE schemes.

OCB [5–7] and COPA [8] are not INT-RUP. Andreeva et al. presented a forgery attack
under the INT-RUP security model and left fixing OCB and COPA to be INT-RUP in
an efficient way as an open problem [1]. Zhang et al. focused on the weakness of the
checksum processing, described a new generalized checksum technique—PCC (Plaintext
and Ciphertext Checksum)—and proved that all AE schemes with PCC are insecure under
the INT-RUP security model [9]. To fix the weakness of PCC, they provided an intermediate
checksum (IC) technique to generate the authentication tag. Based on the IC technique,
they proposed a modified OCB scheme with IC, called OCB-IC, to settle the INT-RUP
security of OCB [9,10]. Chakraborti et al. focused on the rate (which means the number
of message blocks processed per block of cipher invocation) of block-cipher-based AE
schemes to find the cause of INT-RUP insecurity [11]. They considered the weakness
during the tag processing, showed a generic INT-RUP attack on a “rate-1” block-cipher-
based affine AE mode, described an INT-RUP attack on CPFB (rate-3/4), and presented
a variant mCPFB (rate-3/4) which supports INT-RUP security. Zhang and Wu focused
on the security of online AE schemes in a RUP setting and looked for the reason of the
INT-RUP insecurity of the schemes [12]. They found that if the encryption part of AE
schemes has a CCJP (Control Ciphertext to Jump between two Plaintexts) property and the
input of the authentication part is built by linear combinations of all plaintext blocks (i.e.,
the authentication tag is generated by the plaintext checksum), it is easy to make an INT-
RUP forgery attack. Datta et al. investigated the integrity of the COLM structure in an RUP
setting, rewrote a nonce-respecting INT-RUP forgery attack against COPA’s XOR mixing,
and presented nonce-respecting and nonce-misusing INT-RUP forgery attacks for any
mixing functions [13]. They demonstrated that its security highly depends on the choice of
mixing function. Hirose et al. focused on the security of rate-1 AE schemes under RUP [14].
They showed that any rate-1 AE scheme cannot satisfy strong security requirements under
RUP and then introduced new strictly weaker security notions of tag-PA and tag-INT
by relaxing the security requirements; finally, they presented a new rate-1 AE scheme
OCBt which is both tag-PA and tag-INT. They considered the efficiency by rate-1 and full
parallelizability and security by robustness against decryption misuse. Chakraborti et al.
considered the INT-RUP security of AE schemes under the lightweight application and
proposed two lightweight AE modes: LOCUS and LOTUS with higher security and lighter
primitives [15]. They utilized the intermediate checksum technique to generate the final
authentication tag. In addition to the one-pass AE schemes with INT-RUP security, there
exist two-pass AE modes with INT-RUP security. Andreeva et al. considered the INT-
RUP security of SIV, HBS, and BTM and proved their INT-RUP security [1]. Chang et al.
proposed a lightweight deterministic AE mode ANYDAE and proved that ANYDAE
achieves INT-RUP security [16]. Recently, Andreeva et al. focused on the rate-1 online fork
AE mode SAEF and showed that SAEF is INT-RUP secure up to the birthday bound by the
H-coefficient technique [17]. Datta et al. considered SAEB and TinyJAMBU and presented
their integrity security in the setting of a releasing unverified plaintext model [18].

This paper revisits the possible causes which result in INT-RUP insecurity, investigates
almost all of the one-pass checksum-based AE schemes [5–8,11,13,19–27], and finds that
these AE schemes with INT-RUP security defects utilize a common checksum technique.
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This paper focuses on the weakness of the checksum technique and tries to introduce an
improved checksum technique to settle the INT-RUP security of COPA.

1.2. Problem Statement

For almost all of the one-pass AE schemes, their checksum is generated by the XOR-
sum of all plaintext blocks, which results in INT-RUP insecurity. Andreeva et al. presented a
forgery attack with a high probability by making one encryption query and two decryption
queries under the INT-RUP security model, and they left fixing COPA to be INT-RUP in an
efficient way as an open problem [1].

The IC technique [9,10] is a good technique for settling the INT-RUP security defect
of OCB. However, the IC technique cannot be directly applied to COPA. COPA is an
authenticated online cipher, which means that the i-block ciphertext just relies on the first
i plaintext blocks. In other words, the intermediate checksum in this case only relates
to the last ciphertext block. Even if you utilize the encrypted internal states to generate
the intermediate checksum, the adversary just needs to keep the last ciphertext block the
same to make a successful forgery. In addition, the intermediate parity checksum (IPC)
technique [10] was utilized to try to settle the INT-RUP security defect of COPA, but it
ultimately failed. The i-block plaintext can be recovered by the (i− 1)-block ciphertext
and the i-block ciphertext, which can be used by adversaries to launch forgery attacks.
Therefore, it is necessary to propose a new improved intermediate checksum technique for
settling the INT-RUP security defect of COPA.

1.3. Our Contributions

This paper mainly considers the INT-RUP insecurity of COPA and focuses on the
weakness of the checksum processing. This paper first revisits the INT-RUP security model
which allows for an adaptive adversary to make queries in any order and then introduces a
new improved checksum technique: polynomial intermediate checksum (PIC), which is a
generalization of IC. In the PIC technique, the intermediate internal states generated by
either an encryption or a decryption algorithm are hidden from the adversaries, and PIC
is generated by a polynomial sum with full terms of intermediate internal states, which
guarantees no information leakage. Moreover, PIC maintains the same level between the
plaintext and the ciphertext, which guarantees that the adversary cannot obtain any useful
information from the unverified decryption queries. This technique is very effective in
solving the INT-RUP security of checksum-based AE schemes. Finally, based on the PIC
technique, a modified scheme called COPA-PIC is proposed to fix the INT-RUP security
defect of COPA. COPA-PIC retains the main structure and the advantages of COPA.

From the perspective of the design idea, at the beginning, COPA-PIC is designed in
terms of tweakable blockciphers (TBCs), as TBC-based AE modes have more advantages
than AE modes based on other primitives; particularly, their structure is clear and their
proof is simple [19,22,28–31]. In addition, TBCs can also be constructed by distinct primi-
tives. Therefore, a TBC-based COPA-PIC is first illustrated, and then a blockcipher-based
TBC and a permutation-based TBC are utilized to further instantiate COPA-PIC.

From the perspective of the security guarantee, COPA-PIC is proven INT-RUP up to
the birthday bound of n/2-bit security if the underlying primitive (including TBC, block
cipher, and permutation) is secure, where n is the block size of the underlying primitive.

From the perspective of the efficiency, the number of underlying primitive invocations
of COPA-PIC is less than that of COPA. To be specific, let a be the number of blocks of
the associated data and l be the number of blocks of the plaintext. Then, the encryption,
decryption, and verification algorithms of COPA-PIC invoke a + 2l + 2, a + 2l + 2, and
a + l + 2 underlying primitives, respectively, while the encryption, decryption, and ver-
ification algorithms of COPA invoke a + 2l + 2 underlying primitives. In other words,
the encryption and decryption costs of COPA-PIC are the same as those of COPA, but the
verification cost of COPA-PIC is close to half of COPA. In practical scenarios, such as an
interactive system where two parties communicate, the receiver can first effectively deter-
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mine whether the information received from the sender is valid or not, and then perform
the decryption operation more effectively to obtain the correct plaintext. Therefore, the effi-
ciency of COPA-PIC is significantly improved in practical applications. The comparison
between COPA and COPA-PIC is shown in Table 1.

Table 1. Comparison between COPA and COPA-PIC for a-block associated data and l-block plaintext,
where # Encryption, # Decryption, and # Verification, respectively, stand for the number of invoking
underlying primitives in the encryption, decryption, and verification algorithms, and n is the block size.

Schemes Checksum Technique # Encryption # Decryption # Verification

COPA PCC a + 2l + 2 a + 2l + 2 a + 2l + 2
COPA-PIC PIC a + 2l + 2 a + 2l + 2 a + l + 2

Schemes Security Security Bound Rate Reference

COPA INT-CTXT O(2n/2) 1/2 [8]
COPA-PIC INT-RUP O(2n/2) 1/2 This paper

The proposed work is of high significance to both theoretical investigations and prac-
tical applications. This work supports Zhang and Wu’s view that it is easy to make an
INT-RUP forgery attack if the encryption part of the AE schemes has a CCJP property and
the input of the authentication part is mainly subject to linear combinations of all plaintext
blocks [12]. The PIC technique is essentially an improvement of Chakraborti et al.’s tech-
nique and covers the IC technique. The PIC technique aims to settle the problem of INT-RUP
security for “Encryption-Mix-Encryption”-type checksum-based AE schemes. Moreover,
the proposed work also meets the requirements of strong security and high efficiency in
lightweight devices in the next-generation network. In particular, it is of good practical
significance to establish the rapid feedback mechanism of third-party error authentication.

1.4. Organization of This Paper

Some preliminaries are presented in Section 2. A new polynomial intermediate check-
sum (PIC) technique is described in Section 3. Section 4 provides a modified scheme
COPA-PIC to fix the INT-RUP security defect of COPA and derives its security proof.
Finally, this paper concludes with some discussions and a mention of future works in
Section 5.

2. Preliminaries

The basic notations and concepts closely follow [9,10]. Some of the important symbols
are described in Abbreviations.

Block ciphers. Block cipher is an important part of symmetric-key ciphers, and its stan-
dardized algorithms, such as AES or SM4, have been widely used in practice.

Let E : K × {0, 1}n → {0, 1}n be a block cipher, where K is a key space and n is
the block size. For any K ∈ K, EK(·) = E(K, ·) is an n-bit permutation. Let A be an
adversary with access to the encryption oracle or encryption and decryption oracles; then,
the pseudorandom permutation (PRP) and strong pseudorandom permutation (SPRP)
advantages of A against E are, respectively, defined as

Advprp
E (A) = |Pr[K $← K : AEK ⇒ 1]− Pr[π $← Perm(n) : Aπ ⇒ 1]|,

Advsprp
E (A) = |Pr[K $← K : AE±1

K ⇒ 1]− Pr[π $← Perm(n) : Aπ±1 ⇒ 1]|.

Tweakable blockciphers (TBCs). As the generalization of block ciphers, TBCs have
been widely used in the fields of disk encryption, length-preserving encryption, storage
encryption, etc. Related works about TBCs include [30,32–39].

Let Ẽ : K× Γ× {0, 1}n → {0, 1}n be a TBC, where K is a key space and Γ is a tweak
space. For any K ∈ K, t ∈ Γ, Ẽt

K(·) = Ẽ(K, t, ·) is an n-bit permutation. Let A be an



Mathematics 2024, 12, 1011 5 of 26

adversary with access to the tweakable encryption oracle or tweakable encryption and
tweakable decryption oracles, then the tweakable PRP (TPRP) and strong TPRP (STPRP)
advantages of A against Ẽ are, respectively, defined as

Adv p̃rp
Ẽ

(A) = |Pr[K $← K : AẼK ⇒ 1]− Pr[π̃ $← Perm(Γ, n) : Aπ̃ ⇒ 1]|,

Advs̃prp
Ẽ

(A) = |Pr[K $← K : AẼ±1
K ⇒ 1]− Pr[π̃ $← Perm(Γ, n) : Aπ̃±1 ⇒ 1]|.

The above adversary is just allowed to query the encryption oracle in the tweak space
Γ for TPRP, while it is allowed to query both encryption and decryption oracles in the tweak
space Γ for STPRP. However, in real life, the encryption part of some cryptographic schemes
is allowed to query both encryption and decryption oracles in a subset of tweaks and the
authentication part of an associated data is just allowed to query the encryption oracle
in another subset of tweaks, such as COPA. Granger et al. introduced a mixed security
notion to settle this problem [22]. Consider a partition Γ0 ∪ Γ1 = Γ of the tweak space
into encryption-only tweaks Γ0 and encryption-and-decryption tweaks Γ1; then, the mixed
TPRP (MTPRP) advantage of A against Ẽ is defined as

Advm̃prp
Ẽ

(A) = |Pr[K $← K : AẼK ,Ẽ±1
K ⇒ 1]− Pr[π̃ $← Perm(Γ, n) : Aπ̃,π̃±1 ⇒ 1]|.

Note that, here, A is not allowed to query Ẽ−1
K or π̃−1 for tweaks from Γ0. In fact,

MTPRP covers TPRP if (Γ0, Γ1) = (Γ, ∅) and STPRP if (Γ0, Γ1) = (∅, Γ).

Construction of TBCs. TBCs can be constructed from primitives that are widely used
today, such as block ciphers and permutations. In these constructions, since the tweak is an
important component of TBCs, it must be instantiated in advance when implementing with
block ciphers and permutations. Moreover, considering the application of TBC in the actual
modes of operations, the update of the tweak is as simple as possible. In practice, due to the
wide application of nonce-based encryption, authentication, and authenticated encryption
modes of operations, using a nonce to instantiate a tweak has become a common technical
means. Here, we consider a nonce-based instantiation of a tweak space Γ = N × I × J ,
where N is a nonce space, I is a large-integer set, and J is a small-integer set, and we give
two general methods for constructing TBCs as follows.

Method 1: Let E : K × {0, 1}n → {0, 1}n be a block cipher. By the XEX* construc-
tion [6], a blockcipher-based TBC Ẽ : K× Γ× {0, 1}n → {0, 1}n is built as follows:

ẼN,i,j
K (x) = EK(x⊕ ∆) and ẼN,i′ ,j′

K (x) = EK(x⊕ ∆′)⊕ ∆′,

where K ∈ K, (N, i, j) ∈ Γ0, (N, i′, j′) ∈ Γ1, Γ0 ∩ Γ1 = ∅, Γ0 ∪ Γ1 ⊆ Γ, ∆ = 2i3jL, ∆′ = 2i′3j′L,
and L = EK(N).

Method 2: Let π : {0, 1}n → {0, 1}n be a public n-bit permutation. By the MEM con-
struction [22], a permutation-based TBC Ẽ : K× Γ× {0, 1}n → {0, 1}n is built as follows:

ẼN,i,j
K (x) = π(x⊕ ∆) and ẼN,i′ ,j′

K (x) = π(x⊕ ∆′)⊕ ∆′,

where K ∈ K, (N, i, j) ∈ Γ0, (N, i′, j′) ∈ Γ1, Γ0 ∩ Γ1 = ∅, Γ0 ∪ Γ1 ⊆ Γ, ∆ = 2i3jL, ∆′ = 2i′3j′L,
and L = π(N||K).

The security of these two general methods for constructing TBCs is shown in the
following lemmas.

Lemma 1 (XEX* [6]). Assume that the adversary makes q construction queries to Ẽ and Ẽ−1 and
2i3j ̸= 1 for all (i, j) ∈ I × J . Let Ẽ = XEX∗[E, 2I3J ]; then,

Advm̃prp
Ẽ

(q) ≤ Advsprp
E (2q) + 9.5q2/2n.
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Lemma 2 (MEM [22]). Assume that the adversary makes q construction queries to Ẽ and Ẽ−1 and p
primitive queries to π and π−1 and 2i3j ̸= 1 for all (i, j) ∈ I ×J . Let Ẽ = MEM[π, 2I3J ]; then,

Advm̃prp
Ẽ,π

(q, p) ≤ 4.5q2/2n + 3qp/2n + p/2k.

Syntax of AE. In the RUP setting, Andreeva et al. introduced a new syntax for AE
modes [1]. They divided the conventional decryption algorithm into a decryption al-
gorithm and a verification algorithm so that the decryption algorithm always releases
plaintext and the verification algorithm only performs integrity verification. The new
syntax of nonce-based AE schemes Π = (E ,D,V) consists of an encryption algorithm
E : K×N ×H×M→ C × T , a decryption algorithm D: K × N × H × C ×T → M,
and a verification algorithm V : K × N × H × C × T → ⊤/⊥, which is described
as follows:

EK(N, A, M) = (C, T),

DK(N, A, C, T) = M,

VK(N, A, C, T) = ⊤/⊥,

where K ∈ K, N ∈ N , A ∈ H, M ∈ M, C ∈ C, T ∈ T , and the symbols ⊤ and ⊥ indicate
the success and failure of integrity verification, respectively.

INT-RUP security model of AE. Let Π = (E ,D,V) be a nonce-based AE scheme. Let
K ∈ K and A be an adversary which makes at most q queries to EK(·, ·, ·) and DK(·, ·, ·, ·),
and at most qv queries to VK(·, ·, ·, ·). Assume that A is an adaptive adversary which can
perform encryption and decryption oracle queries in any order. In other words, A can
perform the interleaved queries to EK(·, ·, ·) and DK(·, ·, ·, ·). A forges if at least one forgery
attempt in all qv forgery attempts succeeds. Then, the INT-RUP-advantage of A against
Π = (E ,D,V) is defined as

Advint−rup
Π (A) = Pr[K $← K : AEK ,DK ,VK f orges].

Let Advint−rup
Π (t, q, l, σ) be the INT-RUP-advantage of the adversary A against the

nonce-based AE scheme Π under the limited running time t, queries q, block length l, query
complexity σ, and other resources.

3. Polynomial Intermediate Checksum (PIC) Technique

This paper investigates almost all of the “Encryption-Mix-Encryption”-type checksum-
based AE schemes with INT-RUP insecurity, focuses on the weakness of their checksum
technique, and tries to introduce an improved checksum technique to settle the INT-RUP
insecurity of COPA. This section first introduces a polynomial intermediate checksum (PIC)
technique for supporting INT-RUP security and then presents the INT-RUP security of
“Encryption-Mix-Encryption”-type AE modes with PIC.

3.1. PIC Technique

The checksum technique used in the previous “Encryption-Mix-Encryption”-type AE
modes includes the plaintext checksum (PC), the plaintext and ciphertext checksum (PCC),
intermediate checksum (IC), and intermediate parity checksum (IPC). However, these
checksum techniques do not always guarantee INT-RUP security for “Encryption-Mix-
Encryption”-type AE modes. To always guarantee INT-RUP security for “Encryption-Mix-
Encryption”-type AE modes, here, we introduce a new polynomial intermediate checksum
(PIC) technique, which is a generalization of IC. As the name suggests, PIC is a full-term
polynomial XOR-sum of intermediate internal states. The intermediate internal states
are generated by encrypting all of the plaintext blocks or decrypting all of the ciphertext
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blocks, which make them hidden from the adversaries. In other words, PIC guarantees no
information leakage.

To always guarantee the INT-RUP security, PIC must satisfy the following two condi-
tions simultaneously:

Condition 1. It is generated by all of the plaintext blocks.
Condition 2. It is generated by all of the ciphertext blocks.
The above two conditions are indispensable. Conditions 1 and 2 show that PIC is con-

structed by polynomials with full terms and provides the same level for the plaintext and the
ciphertext to resist the releasing unverified plaintext attack. What calls for special attention
is that PIC must be a polynomial function with full terms of the plaintext blocks, and it must
also be a polynomial function with full terms of the ciphertext blocks. Otherwise, leaving
the missing term unchanged makes it easy to make a successful forgery. Having the same
level between the plaintext and the ciphertext ensures that the adversary cannot obtain any
useful information from the unverified decryption queries. In other words, PIC can resist
the unverified decryption queries. For “Encryption-Mix-Encryption”-type checksum-based
AE schemes, PIC is a sufficient condition for guaranteeing the INT-RUP security.

3.2. INT-RUP Security of “Encryption-Mix-Encryption”-Type AE Modes with PIC

The following mathematical model is utilized to formally describe “Encryption-Mix-
Encryption”-type AE modes with PIC.

Let Ẽ : K× Γ× {0, 1}n → {0, 1}n be a TBC, where K is a key space, Γ = N × I ×J
is a tweak space, N is a nonce space, I is a large-integer set, and J is a small-integer
set. Let N be a nonce, M be a plaintext, C be a ciphertext, and T be an authentication tag.
The overview of “Encryption-Mix-Encryption”-type nonce-based AE modes with PIC is
described in Figure 1.

M1

C1

M2 Ml...

...

...

TC2 Cl

Yl

PIC

    

Invertible Relationship R

   

Xl+1

Yl+1

X1 X2 Xl

Y1 Y2 ...

Figure 1. “Encryption-Mix-Encryption”-type nonce-based authenticated encryption modes with
polynomial intermediate checksum (PIC).

Let X1, X2, · · · , Xl be the encrypted internal states of the plaintext M = (M1, M2, · · · , Ml)
and Y1, Y2, · · · , Yl be the decrypted internal states of the ciphertext C = (C1, C2, · · · , Cl).
There exists some invertible mathematical relationship R between X1, X2, · · · , Xl and
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Y1, Y2, · · · , Yl , i.e., (Y1, Y2, · · · , Yl) = R(X1, X2, · · · , Xl) and for each Yi, the following equa-
tion holds:

Yi =
[

Ai1 Ai2 · · · Ail
]

X1
X2
· · ·
Xl

⊕ Bi

= Ai1X1 ⊕ Ai2X2 ⊕ · · · ⊕ AilXl ⊕ Bi

where Aii ̸= 0 for 1 ≤ i ≤ l and Bi for 1 ≤ i ≤ l are arbitrary constants.
Let PIC = a0⊕ a1X1⊕ · · · ⊕ alXl = b0⊕ b1Y1⊕ b2Y2⊕ · · · ⊕ blYl be a polynomial inter-

mediate checksum, where ai, bi ̸= 0 for 1 ≤ i ≤ l and a0, b0 are arbitrary constants. Then,

PIC = g(Y1, Y2, · · · , Yl) = b0 ⊕ b1Y1 ⊕ b2Y2 ⊕ · · · ⊕ blYl

= b0 ⊕
l

∑
i=1

biYi

= b0 ⊕
l

∑
i=1

bi(Ai1X1 ⊕ Ai2X2 ⊕ · · · ⊕ AilXl ⊕ Bi)

= b0 ⊕
l

∑
i=1

biBi ⊕
l

∑
i=1

bi Ai1X1 ⊕ · · · ⊕
l

∑
i=1

bi AilXl

= a0 ⊕ a1X1 ⊕ · · · ⊕ alXl = f (X1, X2, · · · , Xl),

where ai and bi (0 ≤ i ≤ l) satisfy the following relationship:

(I)

{
a0 = b0 ⊕∑l

j=1 bjBj, i = 0
ai = ∑l

j=1 bj Aji, 1 ≤ i ≤ l

In particular, if Aij = 0 for any j ̸= i, then Yi = AiiXi ⊕ Bi, where 1 ≤ i ≤ l. It follows
that the relationship (I) degenerates to

(I I)

{
a0 = b0 ⊕∑l

j=1 bjBj, i = 0
ai = bi Aii, 1 ≤ i ≤ l

OCB-IC [9] is a typical example when Aii = 1 and Bi = 0. In this case, Yi = Xi for
1 ≤ i ≤ l and PIC degrades to IC (i.e., PIC = f (X1, X2, · · · , Xl) = g(Y1, Y2, · · · , Yl) =
X1 ⊕ X2 ⊕ · · · ⊕ Xl = IC).

If Aij = 0 for any j > i, then (Y1, Y2, · · · , Yl) = R(X1, X2, · · · , Xl) is an online function
(i.e., Yi just depends on the first i inputs X1, X2, · · · , Xi, where 1 ≤ i ≤ l). It follows that,
the relationship (I) degenerates to

(I I I)

{
a0 = b0 ⊕∑l

j=1 bjBj, i = 0
ai = ∑l

j=i bj Aji, 1 ≤ i ≤ l

In this case, authenticated encryption schemes are also called authenticated online ciphers.
The typical authenticated online ciphers include ELmE [25], ELmD [24], and COLM [13].
Similar checksum techniques are actually used in their design. To take it one step further,
if Ai1 = · · · = Aii = 1, Bi = c, then Yi = X1 ⊕ X2 ⊕ · · · ⊕ Xi ⊕ c for 1 ≤ i ≤ l, where c is an
arbitrary constant. In this case, PIC must satisfy the following equation:

PIC = f (X1, · · · , Xl) = a0 ⊕ a1X1 ⊕ · · · ⊕ alXl

= g(Y1, · · · , Yl) = b0 ⊕ b1Y1 ⊕ · · · ⊕ blYl ,
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where ai and bi (0 ≤ i ≤ l) satisfy the following relationship:

(IV)

{
a0 = b0 ⊕∑l

j=1 bjc, i = 0
ai = ∑l

j=i bj = bi ⊕ · · · ⊕ bl , 1 ≤ i ≤ l

Theorem 1. For “Encryption-Mix-Encryption”-type AE modes with PIC, if PIC is generated by
all terms of the plaintext blocks and it can also be generated by all terms of the ciphertext blocks,
then the INT-RUP security can be guaranteed.

Proof. Let Π = (EK,DK,VK) be “Encryption-Mix-Encryption”-type AE modes with PIC.
Assume that the adversary A makes qe encryption queries {(Ni, Mi)}qe

i=1 to the encryp-
tion oracle EK(·, ·) and receives (Ci, Ti) = EK(Ni, Mi), where 1 ≤ i ≤ qe, and makes qd
decryption queries {(N∗j, C∗j, T∗j)}qd

j=1 to the decryption oracle DK(·, ·, ·) and obtains the

unverified plaintext M∗j = DK(N∗j, C∗j, T∗j), where 1 ≤ j ≤ qd. Note that (N∗j, C∗j, T∗j) ̸=
(Ni, Ci, Ti), 1 ≤ i ≤ qe, 1 ≤ j ≤ qd and qe + qd = q. Then, A forges qv challenge queries
{(N′1, C′1, T′1), (N′2, C′2, T′2), · · · , (N′qv , C′qv , T′qv)} ̸⊂ {(N1, C1, T1), · · · , (Nqe , Cqe , Tqe)}
to the verification oracle VK(·, ·, ·), where C′k = C′k1 C′k2 · · ·C′kl′k , Ci = Ci

1Ci
2 · · ·Ci

li , 1 ≤ k ≤
qv, 1 ≤ i ≤ qe.

All TBCs of Π are replaced with tweakable random permutations to obtain Π[π̃],

where π̃
$← Perm(Γ, n) and Γ is a tweak space. Then the INT-RUP-advantage of A is

Advint−rup
Π (A) =Pr[K $← K : AEK ,DK ,VK f orges]

≤|Pr[K $← K : AEK ,DK ,VK f orges]− Pr[π̃ $← Perm(Γ, n) : AE ,D,V f orges]|

+ Pr[π̃ $← Perm(Γ, n) : AE ,D,V f orges]

=Advm̃prp
Ẽ

(B) + Pr[π̃ $← Perm(Γ, n) : AE ,D,V f orges]

=Advm̃prp
Ẽ

(B) + Advint−rup
Π[π̃]

(A),

where B is an MTPRP adversary against Ẽ.
Let F be an event that at least one forgery attempt in all qv forgery attempts succeeds.

Then, the INT-RUP-advantage of A is

Advint−rup
Π[π̃]

(A) = Pr[AE ,D,V f orges] = Pr[AE ,D,V sets F] = Pr[F].

Define a collision as the same output from distinct inputs. Let T be the event that a
collision of the authentication tag occurs for the encryption queries.

With the total probability formula and the probability inequality, one has

Pr[F] = Pr[F∧ ¬T] + Pr[F∧ T] = Pr[F|¬T]Pr[¬T] + Pr[F|T]Pr[T]

≤ Pr[F|¬T] + Pr[T].

Step 1: Bound the probability of event T occurring: Pr[T] ≤ q2

2n .
Step 2: Evaluate the upper bound of the probability that event F occurs under the con-

dition¬T: Pr[F|¬T]. For simplicity, a single forgery attempt (N′, C′, T′) /∈ {(N1, C1, T1), · · · ,
(Nqe , Cqe , Tqe)} is first considered, where C′ is divided into l′ blocks and Ci is divided into
li blocks for 1 ≤ i ≤ qe. Let Te = {T1, T2, · · · , Tqe} be a set of the authentication tags
generated by the encryption oracle (Under the condition ¬T, T1, T2, · · · , Tqe are distinct
from each other.).

Case 1: T′ is new, i.e., T′ /∈ Te. In this case, the adversary A already knows the value
of Ti, where 1 ≤ i ≤ qe, and with this knowledge, the adversary tries to guess the preimage
of another new tag. Therefore, the probability that the adversary A correctly guesses this
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value is at most 1/(2n − qe), which is also the probability that the adversary’s forgery
attempt succeeds.

Case 2: T′ is old, i.e., T′ ∈ Te. Let us say T′ = Tu, where u ∈ {1, · · · , qe}. According to
the last two tweaks (N′, l′, 3) and (N′, l′, 4) of the authentication tag generation, a further
analysis is discussed as follows.

Case 2-1: If N′ ̸= Nu, the last two tweaks (N′, l′, 3) and (N′, l′, 4) are new. The ad-
versary tries to forge an identical tag (T′ = Tu) using a new nonce N′. The image of a
single point under a tweakable random permutation is uniform, so the generated tag is an
independent and uniform random value. Thus, the probability that the adversary correctly
forges an identical tag (T′ = Tu) is 1/2n.

Case 2-2: If N′ = Nu and l′ ̸= lu, the last two tweaks (N′, l′, 3) and (N′, l′, 4) are
new. The adversary tries to forge an identical tag (T′ = Tu) using a new block-length l′.
The image of a single point under a tweakable random permutation is uniform, so the
generated tag is an independent and uniform random value. Thus, the probability that the
adversary correctly forges an identical tag (T′ = Tu) is 1/2n.

Case 2-3: If N′ = Nu and l′ = lu, the last two tweaks (N′, l′, 3) and (N′, l′, 4) in this
case are the same as those of previous query–response pairs (Nu, Mu, Cu, Tu). According
to PIC′ = b0 ⊕ b1Y′1 ⊕ b2Y′2 ⊕ · · · ⊕ blY′l , where Y′i = (π̃N′ ,i,2)−1(C′i) for all 1 ≤ i ≤ l′, a
further discussion is shown as follows.

1. C′ is new and PIC′ is new, i.e., PIC′ ̸= PICu. The probability that this case occurs is
about 1− 1/2n. The adversary tries to forge an identical tag (T′ = Tu) using a new
checksum PIC′. Thus, the probability that the adversary’s forgery attempt succeeds
is 1/2n.

2. C′ is new and PIC′ is old, i.e., PIC′ = PICu. According to the fact that Pr[b1Y′1 ⊕
b2Y′2 ⊕ · · · ⊕ blY′l = c] = 1/2n for any Y′1, Y′2, · · · , Y′l′ ∈ {0, 1}n, where c is a constant
from {0, 1}n, the probability that PIC′ is old is at most 1/2n. Therefore, the probability
that the adversary can guess the correct value in this case is the probability that PIC′

is old, which is at most 1/2n.

3. C′ is old. This contradicts (N′, C′, T′) ̸⊂ {(N1, C1, T1), · · · , (Nqe , Cqe , Tqe)}.
Summarizing all cases above, the successful probability of the single forgery attempt

is upper-bounded by

max{1/(2n − qe), 1/2n} ≤ 2/2n.

Therefore, for qv forgery attempts, it is easy to bound the probability that event F
occurs under the condition ¬T:

Pr[F|¬T] ≤ 2qv/2n.

The INT-RUP advantage of A, after q encryption and decryption queries, and qv
forgery queries, is

Advint−rup
Π (A) ≤ Advm̃prp

Ẽ
(B) + q2

2n +
2qv

2n ,

where B is an MTPRP adversary against Ẽ. If Ẽ is a secure MTPRP, then Π with PIC
guarantees the INT-RUP security.

Here, PIC just focuses on the authentication of the plaintext. The authentication of
the associated data should be included in the verification algorithm. This paper directly
utilizes PMAC1 algorithm [6] to generate the authentication of the associated data A,
i.e., c = TA = PMAC1(A). In addition, the associated data can also be treated in a similar
way to messages, just saving the final output as its authentication tag.
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4. COPA-PIC: COPA with Polynomial Intermediate Checksum for INT-RUP Security

To solve the INT-RUP security defect of COPA, the PIC technique is applied to COPA,
and an improved variant, COPA-PIC, is proposed. In this section, the top-level design
of COPA-PIC is first described from the angle of TBCs, and then blockcipher-based and
permutation-based COPA-PIC instances are presented.

4.1. TBC-Based COPA-PIC: COPA-PIC[Ẽ]

At the beginning of the design, the idea was to retain as much of the COPA structure
as possible. Therefore, the mainly structure of COPA-PIC is the same as that of COPA
except that the plaintext checksum used in the encryption and verification algorithms is
replaced with PIC. For PIC, a polynomial sum with full terms of internal intermediate
states is utilized to ensure INT-RUP security. Therefore, the verification algorithm and the
decryption algorithm of COPA-PIC share parts of computing resources such that the cost
of the authentication tag is minimal.

Let Ẽ : K× Γ× {0, 1}n → {0, 1}n be a TBC, where K is a key space, Γ = N ×I ×J is
a tweak space, N is a nonce space, I is a large-integer set, and J is a small-integer set.
We assume that COPA-PIC takes a key K, a nonce N, associated data A, and a plaintext
M = M1||M2|| · · · ||Ml as input and returns the corresponding ciphertext C = C1||C2|| · · ·
||Cl and an authentication tag T. Then, the checksum of COPA-PIC is PIC = 2l−1X1 ⊕
2l−2X2 ⊕ · · · ⊕ 2Xl−1 ⊕ Xl = g(Y1, Y2, · · · , Yl), where Xi = ẼN,i,1

K (Mi) and Yi = D̃N,i,2
K (Ci)

for all 1 ≤ i ≤ l, and g is a full-term polynomial function. It is essential to call two extra
TBCs in the tag-generating process (let N = N′ and M = M′; then, PIC = PIC′; for
two distinct associated data A ̸= A′, if the final authentication tag is generated by calling
once extra primitive, we can get the difference in the authentication tag of associated data
and the difference in the final authentication tag, which can be easily used to obtain a
forgery attack).

The overview of COPA-PIC[Ẽ] is shown in Figure 2, and its authentication component
of the associated data is depicted in Figure 3. The authentication of associated data utilizes
the TBC-based PMAC1 algorithm, which is shown in Algorithm 1. COPA-PIC[Ẽ] consists
of an encryption algorithm E , a decryption algorithm D, and a verification algorithm V ,
which are shown in Algorithms 2–4.

M1

C1

M2 Ml...

...

...

TC2 Cl

X1 X2 Xl

Y1 Y2 Yl

PIC

   

   

 

TA

 

Xl+1

Yl+1

Figure 2. TBC-based COPA-PIC: COPA-PIC[Ẽ], where Ẽ is a TBC and TA is the authentication of
associated data A, i.e., TA = PMAC1[Ẽ](A). If there are no associated data, then set TA = 0.
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A1 A2 Aa-1...

...

TA

Aa

TA

Aa10*

 

   

 

Figure 3. TBC-based PMAC1: PMAC1[Ẽ].

Algorithm 1 PMAC1 algorithm PMAC1N
K (A)

Input: Key K, nonce N, associated data A;
Output: Tag of associated data TA;
1: Partition A into A1∥ · · · ∥Aa, |Ai | = n, 1 ≤ i ≤ a− 1, 0 < |Aa| ≤ n;
2: for i = 1 to i = a− 1 do
3: Si ← ẼN,i,5

K (Ai);
4: end for
5: if |Aa| = n then
6: Σ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕ Aa;
7: TA = ẼN,a,6

K (Σ);
8: else
9: Σ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕ Aa10∗;

10: TA = ẼN,a,7
K (Σ);

11: end if
12: return TA

Algorithm 2 Encryption algorithm COPA− PIC.EN
K (A, M)

Input: Key K, nonce N, associated data A, and plaintext M;
Output: Ciphertext C and authentication tag T;
1: Partition M into M1∥ · · · ∥Ml , |Mi | = n, 1 ≤ i ≤ l;
2: Y0 = TA;
3: for i = 1 to i = l do
4: Xi ← ẼN,i,1

K (Mi);
5: Yi = Yi−1 ⊕ Xi ;
6: Ci ← ẼN,i,2

K (Yi);
7: end for
8: PIC ← 2l−1X1 ⊕ 2l−2X2 ⊕ · · · ⊕ 2Xl−1 ⊕ Xl ;
9: Σ = ẼN,l,3

K (PIC);
10: T = ẼN,l,4

K (Σ⊕Yl);
11: return (C1||C2|| · · · ||Cl , T)

Algorithm 3 Decryption algorithm COPA− PIC.DN
K (A, C, T)

Input: Key K, nonce N, associated data A, ciphertext C, and authentication tag T;
Output: Plaintext M;
1: Partition C into C1∥ · · · ∥Cl , |Ci | = n, 1 ≤ i ≤ l;
2: Y0 = TA;
3: for i = 1 to i = l do
4: Yi ← D̃N,i,2

K (Ci);
5: Xi = Yi−1 ⊕Yi ;
6: Mi ← D̃N,i,1

K (Xi);
7: end for
8: return M = M1||M2|| · · · ||Ml
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Algorithm 4 Verification algorithm COPA− PIC.VN
K (A, C, T)

Input: Key K, nonce N, associated data A, ciphertext C, and authentication tag T;
Output: Success or failure ⊤/⊥;
1: Partition C into C1∥ · · · ∥Cl , |Ci | = n, 1 ≤ i ≤ l;
2: Y0 = TA;
3: for i = 1 to i = l do
4: Yi ← D̃N,i,2

K (Ci);
5: end for
6: PIC = 2l−1Y0 ⊕ 3 · 2l−2Y1 ⊕ 3 · 2l−3Y2 ⊕ · · · ⊕ 3Yl−1 ⊕Yl ;
7: Σ = ẼN,l,3

K (PIC);
8: T′ = ẼN,l,4

K (Σ⊕Yl);
9: if T′ = T then

10: return ⊤;
11: else
12: return ⊥;
13: end if

For COPA-PIC, we check the correctness as follows:

PIC = f (X1, X2, · · · , Xl) = 2l−1X1 ⊕ 2l−2X2 ⊕ · · · ⊕ Xl

=2l−1(TA ⊕Y1)⊕ 2l−2(Y1 ⊕Y2)⊕ · · · ⊕ (Yl−1 ⊕Yl)

=2l−1TA ⊕ 3 · 2l−2Y1 ⊕ · · · ⊕ 3Yl−1 ⊕ Yl

=g(Y1, Y2, · · · , Yl).

Thus, PIC is both a polynomial function with full terms of the plaintext blocks and a
polynomial function with full terms of the ciphertext blocks, which meets Conditions 1 and 2.
Therefore, according to Theorem 1, COPA-PIC[Ẽ] ensures INT-RUP security.

Next, the strict INT-RUP security of COPA-PIC[Ẽ] is given in the following theorems.

Theorem 2 (INT-RUP security of COPA-PIC based on ideal TBCs). For COPA-PIC[Ẽ], real

TBCs are replaced with tweakable random permutations π̃
$← Perm(Γ, n) to obtain COPA-PIC[π̃].

Let A be a nonce-misusing adversary with q encryption and decryption queries and qv forgery
attempts. Then, one has

Advint−rup
COPA−PIC[π̃]

(A) ≤ q2

2n +
(l + 2)(q− 1)2

2n +
2qv

2n .

Proof. Similar to the proof of Theorem 1, assume that A makes qe encryption queries
{(Ni, Ai, Mi)}qe

i=1 to E(·, ·, ·) and receives (Ci, Ti) = E(Ni, Ai, Mi), where 1 ≤ i ≤ qe,
and makes qd decryption queries {(N∗j, A∗j, C∗j, T∗j)}qd

j=1 to D(·, ·, ·, ·) and obtains the un-

verified plaintext M∗j = D(N∗j, A∗j, C∗j, T∗j), where 1 ≤ j ≤ qd. Note that
(N∗j, A∗j, C∗j, T∗j) ̸= (Ni, Ai, Ci, Ti), 1 ≤ i ≤ qe, 1 ≤ j ≤ qd and qe + qd = q. Then, A forges
qv challenge queries {(N′1, A′1, C′1, T′1), (N′2, A′2, C′2, T′2), · · · , (N′qv , A′qv , C′qv , T′qv)} ̸⊂
{(N1, A1, C1, T1), · · · , (Nqe , Aqe , Cqe , Tqe)} to V(·, ·, ·, ·), where C′k = C′k1 C′k2 · · ·C′kl′k , Ci =

Ci
1Ci

2 · · ·Ci
li , 1 ≤ k ≤ qv, 1 ≤ i ≤ qe.

Let F be an event that at least one forgery attempt in all qv forgery attempts succeeds.
Then, the INT-RUP-advantage of A is

Advint−rup
COPA−PIC[π̃]

(A) = Pr[AE ,D,V f orges] = Pr[AE ,D,V sets F] = Pr[F]. (1)

Denote variables Yα of internal state values as Yα =
⊕α

i=1 π̃N,i,1(Mi)⊕ TA, which is
also equal to (π̃N,α,2)−1(Cα), where 1 ≤ α ≤ l and TA is the authentication of the associated
data A. Define a collision as the same value Yα from different prefixes AM1M2 · · ·Mα and
A′M′1M′2 · · ·M′α. More precisely, Yα−1 ̸= Y′α−1 and Yα = Y′α, which means Mα ̸= M′α. Let
C be the event that a collision of Yα occurs for some α. Similarity, let T be the event that a
collision of the tag occurs for the encryption queries. Let A be the event that a collision of
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TA occurs for two different associated data. Let E be the union of events C, T, and A; then,
E = A∨C∨ T.

With the total probability formula and the probability inequality, one has

Pr[F] = Pr[F|¬E]Pr[¬E] + Pr[F|E]Pr[E] ≤ Pr[F|¬E] + Pr[E]. (2)

Step 1: Bound the probability of event E occurring: Pr[E]. As COPA-PIC and COPA
have the same encryption and decryption structures, the events E, A, and C are exactly
the same as those of COPA. Moreover, COPA-PIC and COPA use different methods for
generating tags, but their authentication tags are all generated through the randomization of
the checksum and the last ciphertext block. The only difference is whether the checksum has
been randomized before. This does not make much difference in authentication processing,
but it needs to be carefully considered in verification processing. Therefore, the event T is
exactly the same as that of COPA.

According to two claims Pr[A] ≤ q2/2n and Pr[C ∨ T|¬A] ≤ (l + 2)(q− 1)2/2n in
COPA and the total probability formula, one has

Pr[E] = Pr[A∨C∨ T] ≤ Pr[A] + Pr[C∨ T|¬A] ≤ q2/2n + (l + 2)(q− 1)2/2n. (3)

Step 2: Evaluate the upper bound of the probability that event F occurs under
the condition ¬E: Pr[F|¬E]. For simplicity, a single forgery attempt (N′, A′, C′, T′) /∈
{(N1, A1, C1, T1), · · · , (Nqe , Aqe , Cqe , Tqe)} is considered, where C′ is divided into l′ blocks
and Ci is divided into li blocks for 1 ≤ i ≤ qe. Let Te = {T1, T2, · · · , Tqe} be a set of the
authentication tags generated by the encryption oracle.

Case 1: T′ is new, i.e., T′ /∈ Te. In this case, the adversary A already knows the value
of Ti, where 1 ≤ i ≤ qe, and with this knowledge, the adversary tries to guess the preimage
of another new tag. Therefore, the probability that the adversary A correctly guesses this
value is at most 1/(2n − qe), which is also the probability that the adversary’s forgery
attempt succeeds.

Case 2: T′ is old, i.e., T′ ∈ Te. Let us say T′ = Tu, where u ∈ {1, · · · , qe}. According to
the last two tweaks (N′, l′, 3) and (N′, l′, 4) of generating the authentication tag, a further
analysis should be discussed as follows.

Case 2-1: If N′ ̸= Nu, the last two tweaks (N′, l′, 3) and (N′, l′, 4) are new. The ad-
versary tries to forge an identical tag (T′ = Tu) using a new nonce N′. The image of a
single point under a tweakable random permutation is uniform, so the generated tag is an
independent and uniform random value. Thus, the probability that the adversary correctly
forges an identical tag (T′ = Tu) is 1/2n.

Case 2-2: If N′ = Nu and l′ ̸= lu, the last two tweaks (N′, l′, 3) and (N′, l′, 4) are
new. The adversary tries to forge an identical tag (T′ = Tu) using a new block length l′.
The image of a single point under a tweakable random permutation is uniform, so the
generated tag is an independent and uniform random value. Thus, the probability that the
adversary correctly forges an identical tag (T′ = Tu) is 1/2n.

Case 2-3: If N′ = Nu and l′ = lu, the last two tweaks (N′, l′, 3) and (N′, l′, 4) in
this case are the same as those of the previous query–response pair (Nu, Au, Mu, Cu, Tu).
According to PIC′ = 2l′−1T′A′ ⊕ 3 · 2l′−2Y′1 ⊕ 3 · 2l′−3Y′2 ⊕ · · · ⊕ 3Y′l′−1 ⊕ Y′l′ , where T′A′ =
PMAC1(A′) and Y′i = (π̃N′ ,i,2)−1(C′i) for all 1 ≤ i ≤ l′, a further discussion should be
considered as follows.

1. A′ ̸= Au. Let TAi = PMAC1(Ai), where 1 ≤ i ≤ qe. Under the condition that ¬E
(¬A), TA1 , TA2 , · · · , TAqe are distinct from each other. According to T′A′ = PMAC1(A′),
we consider the following two cases.

(a) T′A′ is new, i.e., T′A′ ̸= TAu . The probability that this case occurs is 1− 1/2n.

i. C′l′ is new. Then, Y′l′ is new. The adversary tries to forge an identical tag
(T′ = Tu) using a new ciphertext block C′l′ . Therefore, the probability that
the adversary correctly forges an identical tag (T′ = Tu) is 1/2n.
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ii. C′l′ is old and C′ is new. Then, Y′l′ is old and there exists at least one
more fresh value in Y′1, Y′2, · · · , Y′l′−1 ∈ {0, 1}n. According to whether
PIC′ = 2l′−1T′A′ ⊕ 3 · 2l′−2Y′1 ⊕ 3 · 2l′−3Y′2 ⊕ · · · ⊕ 3Y′l′−1 ⊕ Y′l′ is new or not,
the following subcases are discussed.

• PIC′ is new, i.e., PIC′ ̸= PICu. The probability that this case occurs is
about 1− 1/2n. The adversary tries to forge an identical tag (T′ = Tu)
using a new checksum PIC′. Thus, the probability that the adversary’s
forgery attempt succeeds is (1− 1/2n)× 1/2n ≤ 1/2n.

• PIC′ is old, i.e., PIC′ = PICu. According to the fact that Pr[2l′−1T′A′ ⊕3 ·
2l′−2Y′1 ⊕ · · · ⊕ 3Y′l′−1 = c] = 1/2n for any T′A′ , Y′1, Y′2, · · · ,
Y′l′−1 ∈ {0, 1}n, where c is a constant from {0, 1}n, the probability that
PIC′ is old is at most 1/2n. As PIC′, Y′l′ , and (N′, l′) are old, the probabil-
ity of obtaining an identical tag (T′ = Tu) is 1. Therefore, the probability
that the adversary can guess the correct value in this case is the probability
that PIC′ is old, which is at most 1/2n.

iii. C′ is old. Then, Y′i is old, where 1 ≤ i ≤ l′. According to PIC′ = 2l′−1T′A′ ⊕
3 · 2l′−2Y′1 ⊕ 3 · 2l′−3Y′2 ⊕ · · · ⊕ 3Y′l′−1 ⊕ Y′l′ ; then, PIC′ is a fresh random
value. The adversary tries to forge an identical tag (T′ = Tu) using new
associated data A′ (or a new checksum PIC′). Therefore, the probability that
the adversary can guess the correct value is 1/2n.

Summarizing the cases of (a), the probability that the adversary can guess the
correct value is at most (1− 1/2n)× 1/2n ≤ 1/2n.

(b) T′A′ is old, i.e., T′A′ = TAu . The probability that this case occurs is 1/2n.

i. C′l′ is new. Then, Y′l′ is new. The adversary tries to forge an identical tag
(T′ = Tu) using a new ciphertext block C′l′ . Therefore, the probability that
the adversary correctly forges an identical tag (T′ = Tu) is 1/2n.

ii. C′l′ is old and C′ is new. Then, Y′l′ is old and there exists at least one more
fresh value in Y′1, Y′2, · · · , Y′l′−1 ∈ {0, 1}n. If there only exists one fresh value
in Y′1, Y′2, · · · , Y′l′−1 ∈ {0, 1}n, according to PIC′ = 2l′−1T′A′ ⊕ 3 · 2l′−2Y′1 ⊕ 3 ·
2l′−3Y′2 ⊕ · · · ⊕ 3Y′l′−1 ⊕Y′l′ , then PIC′ is new. Therefore, the probability that
the adversary’s forgery attempt succeeds is 1/2n. If there exist at least two
more fresh values in Y′1, Y′2, · · · , Y′l′−1 ∈ {0, 1}n, according to whether PIC′

is new or not, the following subcases are discussed.

• PIC′ is new, i.e., PIC′ ̸= PICu. The probability that this case occurs is
about 1− 1/2n. The adversary tries to forge an identical tag (T′ = Tu)
using a new checksum PIC′. Thus, the probability that the adversary’s
forgery attempt succeeds is (1− 1/2n)× 1/2n ≤ 1/2n.

• PIC′ is old, i.e., PIC′ = PICu. According to the fact that Pr[3 · 2l′−2Y′1⊕ 3 ·
2l′−3Y′2 ⊕ · · · ⊕ 3Y′l′−1 = c] = 1/2n for any Y′1, Y′2, · · · ,
Y′l′−1 ∈ {0, 1}n, where c is a constant from {0, 1}n, the probability that
PIC′ is old is at most 1/2n. As PIC′, Y′l′ and (N′, l′) are old, the probability
of obtaining an identical tag (T′ = Tu) is 1. Therefore, the probability that
the adversary can guess the correct value in this case is the probability
that PIC′ is old, which is at most 1/2n.

iii. C′ is old. Then, Y′i is old, where 1 ≤ i ≤ l′. As PIC′, Y′l′ , and (N′, l′) are old,
the probability that the adversary can guess the correct value is 1.

Summarizing the cases of (b), the probability that the adversary can guess the
correct value is at most 1/2n ×max{1/2n, 1} ≤ 1/2n.

2. A′ = Au; then, T′A′ = TAu . As (N′, A′, C′, T′) /∈ {(Ni, Ai, Ci, Ti)}qe
i=1; therefore, C′

must be new.
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(a) C′l′ is new. Then, Y′l′ is new. The adversary tries to forge an identical tag (T′ = Tu)
using a new ciphertext block C′l′ . Therefore, the probability that the adversary
correctly forges an identical tag (T′ = Tu) is 1/2n.

(b) C′l′ is old and C′ is new. Then, Y′l′ is old and there exists at least one more fresh
value in Y′1, Y′2, · · · , Y′l′−1 ∈ {0, 1}n.

i. If there only exists one fresh value in Y′1, Y′2, · · · , Y′l′−1 ∈ {0, 1}n, according
to PIC′ = 2l′−1T′A′ ⊕ 3 · 2l′−2Y′1 ⊕ 3 · 2l′−3Y′2 ⊕ · · · ⊕ 3Y′l′−1 ⊕ Y′l′ , then PIC′

is new. The adversary tries to forge an identical tag (T′ = Tu) using a
new checksum PIC′. Therefore, the probability that the adversary’s forgery
attempt succeeds is 1/2n.

ii. If there exist at least two more fresh values in Y′1, Y′2, · · · , Y′l′−1 ∈ {0, 1}n, ac-
cording to whether PIC′ is new or not, the following subcases
are discussed.

• PIC′ is new, i.e., PIC′ ̸= PICu. The probability that this case occurs is
about 1− 1/2n. The adversary tries to forge an identical tag (T′ = Tu)
using a new checksum PIC′. Thus, the probability that the adversary’s
forgery attempt succeeds is (1− 1/2n)× 1/2n ≤ 1/2n.

• PIC′ is old, i.e., PIC′ = PICu. According to the fact that Pr[3 · 2l′−2Y′1⊕ 3 ·
2l′−3Y′2 ⊕ · · · ⊕ 3Y′l′−1 = c] = 1/2n for any Y′1, Y′2, · · · ,
Y′l′−1 ∈ {0, 1}n, where c is a constant from {0, 1}n, the probability that
PIC′ is old is at most 1/2n. As PIC′, Y′l′ , and (N′, l′) are old, the probabil-
ity of obtaining T′ = Tu is 1. Therefore, the probability that the adversary
can guess the correct value in this case is the probability that PIC′ is old,
which is at most 1/2n.

Summarizing all cases above, the successful probability of the single forgery attempt
is upper-bounded by

max{1/(2n − qe), 1/2n} ≤ 2/2n.

Therefore, for qv forgery attempts, the probability that event F occurs under the
condition ¬E is

Pr[F|¬E] ≤ 2qv/2n. (4)

Combining Equations (1)–(4), the INT-RUP advantage of A, after q encryption and
decryption queries, and qv forgery queries, is

Advint−rup
COPA−PIC[π̃]

(A) ≤ q2

2n +
(l + 2)(q− 1)2

2n +
2qv

2n .

The proof of Theorem 2 is finished.

Theorem 3 (INT-RUP security of COPA-PIC based on TBCs). Let Ẽ : K × Γ× {0, 1}n →
{0, 1}n be a TBC, where Γ = N × I ×J is a tweak space, N is a nonce space, I is a large-integer
set, and J is a small-integer set. Let A be a nonce-misusing adversary with q encryption and
decryption queries and qv forgery attempts. For COPA-PIC[Ẽ], one has

Advint−rup
COPA−PIC[Ẽ]

(t, q + qv, l, σ) ≤ Advm̃prp
Ẽ

(t′, 2σ) +
q2

2n +
(l + 2)(q− 1)2

2n +
2qv

2n ,

where t′ = t + cnσ for some absolute constant c, and l is the maximum block length.

Proof. For COPA-PIC[Ẽ], all TBCs are replaced with tweakable random permutations to

obtain COPA-PIC[π̃], where π̃
$← Perm(Γ, n) and Γ is a tweak space.
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Let σ be the total query complexity of message blocks for (q + qv) queries. According
to the MTPRP advantage, COPA-PIC[Ẽ] can be replaced with COPA-PIC[π̃], which together

cost at most Advm̃prp
Ẽ

(t′, 2σ) (here, 2σ comes from the queries of TBCs in the upper and
lower layers; in other words, 2σ is the query complexity of TBCs), i.e.,

Advint−rup
COPA−PIC[Ẽ]

(t, q + qv, l, σ) ≤ Advm̃prp
Ẽ

(t′, 2σ) + Advint−rup
COPA−PIC[π̃]

(t, q + qv, l, σ). (5)

Therefore, combining Equation (5) and Theorem 2, it is easy to obtain the bound of
Theorem 3.

4.2. Blockcipher-Based COPA-PIC Instance: COPA-PIC[E]

Let E : K× {0, 1}n → {0, 1}n be a block cipher and Ẽ : K× Γ× {0, 1}n → {0, 1}n be a
TBC, where K is a key space and Γ is a tweak space. This section presents a blockcipher-
based instance of COPA-PIC[Ẽ] by the XEX* construction Ẽ = XEX∗[E, 2I3J ] [6] and
renames it as COPA-PIC[E].

The overviews of COPA-PIC[E] and blockcipher-based PMAC1 are depicted in
Figures 4 and 5, respectively. The blockcipher-based PMAC1 algorithm, and an encryption
algorithm EK, a decryption algorithm DK, and a verification algorithm VK of COPA-PIC[E]
are shown in Algorithms 5, 6, 7, and 8, respectively.

M1

EK

C1

M2

EK

EK

Ml

EK

...

...

...

TC2

EK

Cl

EK EK

PIC

TA
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3L   

 

Figure 4. Blockcipher-based COPA-PIC: COPA-PIC[E], where TA = PMAC1(A) and L = EK(N).

A1
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A2
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Aa-1

EK

...

...

Aa
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Aa10*

EK
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Figure 5. Blockcipher-based PMAC1: TA = PMAC1(A), where L = EK(N).
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Algorithm 5 Blockcipher-based PMAC1 algorithm PMAC1[E]NK (A)

Input: Key K, nonce N, associated data A;
Output: Tag of associated data TA;

1: Partition A into A1∥ · · · ∥Aa, |Ai| = n, 1 ≤ i ≤ a− 1, 0 < |Aa| ≤ n;
2: L = EK(N);
3: for i = 1 to i = a− 1 do
4: Si ← EK(Ai ⊕ 2i−1 · 33L);
5: end for
6: if |Aa| = n then
7: Σ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕ Aa;
8: TA = EK(Σ⊕ 2a−1 · 34L);
9: else

10: Σ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕ Aa10∗;
11: TA = EK(Σ⊕ 2a−1 · 35L);
12: end if
13: return TA

Algorithm 6 Encryption algorithm COPA− PIC[E].EN
K (A, M)

Input: Key K, nonce N, associated data A, and plaintext M;
Output: Ciphertext C and authentication tag T;

1: Partition M into M1∥ · · · ∥Ml , |Mi| = n, 1 ≤ i ≤ l;
2: L = EK(N) and y0 = TA ⊕ L;
3: for i = 1 to i = l do
4: xi ← EK(Mi ⊕ 2i−1 · 3L) and Xi=xi ⊕ 2i−1 · 3L;
5: yi = yi−1 ⊕ xi and Yi = yi ⊕ 2i L;
6: Ci ← EK(yi)⊕ 2i L;
7: end for
8: PIC ← 2l−1X1 ⊕ 2l−2X2 ⊕ · · · ⊕ 2Xl−1 ⊕ Xl ;
9: Σ = EK(PIC⊕ 2l−1 · 32L);

10: T = EK(Σ⊕ yl)⊕ 2l−1 · 7L;
11: return (C1||C2|| · · · ||Cl , T)

Algorithm 7 Decryption algorithm COPA− PIC[E].DN
K (A, C, T)

Input: Key K, nonce N, associated data A, ciphertext C, and authentication tag T;
Output: Plaintext M;

1: Partition C into C1∥ · · · ∥Cl , |Ci| = n, 1 ≤ i ≤ l;
2: L = EK(N) and y0 = TA ⊕ L;
3: for i = 1 to i = l do
4: yi ← DK(Ci ⊕ 2i L);
5: xi = yi−1 ⊕ yi;
6: Mi ← DK(xi)⊕ 2i−1 · 3L;
7: end for
8: return M = M1||M2|| · · · ||Ml

Theorem 4 (INT-RUP security of COPA-PIC based on block ciphers). Let E : K× {0, 1}n →
{0, 1}n be a block cipher and Ẽ : K × Γ× {0, 1}n → {0, 1}n be a TBC, where K is a key space,
Γ = N × I × J is a tweak space, N is a nonce space, I is a large-integer set, and J is a small-
integer set. Let Ẽ = XEX∗[E, 2I3J ] and assume that 2i3j ̸= 1 for all (i, j) ∈ I × J . Then, for a
nonce-misusing adversary A, one has

Advint−rup
COPA−PIC[E](A) ≤ Advsprp

E (B) + 39(σ + q)2

2n +
(l + 2)(q− 1)2

2n +
2qv

2n ,

where a new adversary B has an additional running time equal to the time needed to process the
queries from A.
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Proof. The security proof includes two steps. First, COPA-PIC[E] is converted to COPA-
PIC[Ẽ]. The dummy masks {3L, 2 · 3L, · · · , 2l−1 · 3L, 2l−1 · 32L} and {2L, 22L, · · · , 2l ·
L, 2l−1 · 7L} are introduced to the upper and lower layers of COPA-PIC[E], respectively, in
terms of the XEX* construction, where L = EK(N). Therefore, distinct TBCs ẼN,i,1

K , ẼN,i,2
K ,

ẼN,l,3
K , and ẼN,l,4

K are utilized to replace the block ciphers with distinct masks, where
i = 1, · · · , l. For the blockcipher-based PMAC1, distinct TBCs ẼN,i,5

K , ẼN,a,6
K , and ẼN,a,7

K are
utilized to replace the block ciphers with distinct masks, where i = 1, · · · , a− 1. According
to Lemma 1 and the blockcipher-based PMAC1 [6], COPA-PIC[E] can be replaced with
COPA-PIC[Ẽ], which together cost

9.5(2σ + 2q)2

2n + Advsprp
E (t′, 2 · 2(σ + q)) +

σ2

2n (6)

Then, combining Equation (6) and Theorem 3, the bound of Theorem 4 is obtained.

Algorithm 8 Verification algorithm COPA− PIC[E].VN
K (A, C, T)

Input: Key K, nonce N, associated data A, ciphertext C, and authentication tag T;
Output: Success or failure ⊤/⊥;

1: Partition C into C1∥ · · · ∥Cl , |Ci| = n, 1 ≤ i ≤ l;
2: L = EK(N) and Y0 = TA;
3: for i = 1 to i = l do
4: yi ← DK(Ci ⊕ 2i L) and Yi = yi ⊕ 2i L;
5: end for
6: PIC = 2l−1Y0 ⊕ 3 · 2l−2Y1 ⊕ 3 · 2l−3Y2 ⊕ · · · ⊕ 3Yl−1 ⊕Yl ;
7: Σ = EK(PIC⊕ 2l−1 · 32L);
8: T′ = EK(Σ⊕ yl)⊕ 2l−1 · 7L;
9: if T′ = T then

10: return ⊤;
11: else
12: return ⊥;
13: end if

4.3. Permutation-Based COPA-PIC Instance: COPA-PIC[π]

Let π : {0, 1}n → {0, 1}n be a public n-bit permutation, K = {0, 1}k be a set of k-bit
keys, T = {0, 1}n−k × I × J be a tweak space, I be a set of large integers, and J be a set
of small integers, we reload COPA-PIC[Ẽ] by Ẽ = MEM[π, 2I3J ] [22] to obtain an instance
called COPA-PIC[π].

Let K, N, A, M, C, and T be the key, the nonce, the associated data, the plaintext,
the ciphertext, and the authentication tag, respectively. The overviews of COPA-PIC[π]
and PMAC1 are depicted in Figures 6 and 7, respectively. The PMAC1 algorithm and an
encryption algorithm EK, a decryption algorithm DK, and a verification algorithm VK of
COPA-PIC[π] are shown in Algorithms 9, 10, 11, and 12, respectively.
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Figure 6. Permutation-based COPA-PIC: COPA-PIC[π], where TA = PMAC1[π](A) and L = π(N||K).
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A1
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Figure 7. Permutation-based PMAC1: TA = PMAC1[π](A), where L = π(N||K).

Algorithm 9 Permutation-based PMAC1 algorithm PMAC1[π]NK (A)

Input: Key K, nonce N, associated data A;
Output: Tag of associated data TA;
1: Partition A into A1∥ · · · ∥Aa, |Ai | = n, 1 ≤ i ≤ a− 1, 0 < |Aa| ≤ n;
2: L = π(N||K);
3: for i = 1 to i = a− 1 do
4: Si ← π(Ai ⊕ 2i−1 · 33L);
5: end for
6: if |Aa| = n then
7: Σ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕ Aa;
8: TA = π(Σ⊕ 2a−1 · 34L);
9: else

10: Σ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕ Aa10∗;
11: TA = π(Σ⊕ 2a−1 · 35L);
12: end if
13: return TA

Algorithm 10 Encryption algorithm COPA− PIC[π].EN
K (A, M)

Input: Key K, nonce N, associated data A, and plaintext M;
Output: Ciphertext C and authentication tag T;
1: Partition M into M1∥ · · · ∥Ml , |Mi | = n, 1 ≤ i ≤ l;
2: L = π(N||K) and y0 = TA ⊕ L;
3: for i = 1 to i = l do
4: xi ← π(Mi ⊕ 2i−1 · 3L) and Xi=xi ⊕ 2i−1 · 3L;
5: yi = yi−1 ⊕ xi and Yi = yi ⊕ 2i L;
6: Ci ← π(yi)⊕ 2i L;
7: end for
8: PIC ← 2l−1X1 ⊕ 2l−2X2 ⊕ · · · ⊕ 2Xl−1 ⊕ Xl ;
9: Σ = π(PIC⊕ 2l−1 · 32L);

10: T = π(Σ⊕ yl)⊕ 2l−1 · 7L;
11: return (C1||C2|| · · · ||Cl , T)

Algorithm 11 Decryption algorithm COPA− PIC[π].DN
K (A, C, T)

Input: Key K, nonce N, associated data A, ciphertext C, and authentication tag T;
Output: Plaintext M;
1: Partition C into C1∥ · · · ∥Cl , |Ci | = n, 1 ≤ i ≤ l;
2: L = π(N||K) and y0 = TA ⊕ L;
3: for i = 1 to i = l do
4: yi ← π−1(Ci ⊕ 2i L);
5: xi = yi−1 ⊕ yi ;
6: Mi ← π−1(xi)⊕ 2i−1 · 3L;
7: end for
8: return M = M1||M2|| · · · ||Ml
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Algorithm 12 Verification algorithm COPA− PIC[π].VN
K (A, C, T)

Input: Key K, nonce N, associated data A, ciphertext C, and authentication tag T;
Output: Success or failure ⊤/⊥;
1: Partition C into C1∥ · · · ∥Cl , |Ci | = n, 1 ≤ i ≤ l;
2: L = π(N||K) and Y0 = TA;
3: for i = 1 to i = l do
4: yi ← π−1(Ci ⊕ 2i L) and Yi = yi ⊕ 2i L;
5: end for
6: PIC = 2l−1Y0 ⊕ 3 · 2l−2Y1 ⊕ 3 · 2l−3Y2 ⊕ · · · ⊕ 3Yl−1 ⊕Yl ;
7: Σ = π(PIC⊕ 2l−1 · 32L);
8: T′ = π(Σ⊕ yl)⊕ 2l−1 · 7L;
9: if T′ = T then

10: return ⊤;
11: else
12: return ⊥;
13: end if

For an INT-RUP security model with a permutation, the adversary is allowed to make
π±1 queries in addition to the previous oracle queries; then, the INT-RUP-advantage of A
against Π = (E ,D,V) is defined as

Advint−rup
Π (A) = Pr[K $← K : AEK ,DK ,VK ;π±1

f orges].

Theorem 5 (INT-RUP security of COPA-PIC based on permutations). Let π : {0, 1}n →
{0, 1}n be a public n-bit permutation and Ẽ : K × Γ × {0, 1}n → {0, 1}n be a TBC, where
K = {0, 1}k is a key space, Γ = N × I ×J is a tweak space, N = {0, 1}n−k is a nonce space, I
is a large-integer set, and J is a small-integer set. Assume that 2i3j ̸= 1 for all (i, j) ∈ I × J . Let
Ẽ = MEM[π, 2I3J ]. For a nonce-misusing adversary A, one has

Advint−rup
COPA−PIC[π]

(A) ≤ 19(σ + q)2

2n +
6(σ + q)p

2n +
p
2k +

(l + 2)(q− 1)2

2n +
2qv

2n .

Proof. Similar to the proof of Theorem 4, the security proof includes two steps. First,
COPA-PIC[π] is converted to COPA-PIC[Ẽ]. The dummy masks {3L, 2 · 3L, · · · , 2l−1 ·
3L, 2l−1 · 32L} and {2L, 22L, · · · , 2l · L, 2l−1 · 7L} are introduced to the upper and lower
layers of COPA-PIC[π], respectively, in terms of the MEM construction, where L = π(N||K).
Therefore, distinct TBCs ẼN,i,1

K , ẼN,i,2
K , ẼN,l,3

K , and ẼN,l,4
K are utilized to replace permutations

with distinct masks, where i = 1, · · · , l. For the permutation-based PMAC1, distinct
TBCs ẼN,i,5

K , ẼN,a,6
K , and ẼN,a,7

K are utilized to replace permutations with distinct masks,
where i = 1, · · · , a− 1. According to Lemma 2 and the permutation-based PMAC1 [6],
COPA-PIC[π] can be replaced with COPA-PIC[Ẽ], which together cost

4.5(2σ + 2q)2

2n +
3(2σ + 2q)p

2n +
p
2k +

σ2

2n =
18(σ + q)2

2n +
6(σ + q)p

2n +
p
2k +

σ2

2n . (7)

Then, combining Equation (7) and Theorem 3, the bound of Theorem 5 is obtained.

5. Discussions and Future Works

COPA-PIC is a secure “rate-1/2” parallelizable delayed authenticated online cipher
with nonce-misuse resistance. The structure of COPA-PIC is the same as that of COPA
except that the authentication checksum is replaced with PIC. Therefore, COPA-PIC inherits
all the advantages of COPA and calculates the authentication tag ahead of time in the
verification oracle. It can be viewed as an instance of the generic B1 scheme introduced by
Namprempre et al. [40]. At the beginning of the design, TBCs are used to improve COPA
from the perspective of a top-level design, and the updating of the tweaks is as simple as
possible. Then, by using the XEX* construction [6] and the MEM construction [22], provably
secure block-cipher-based and permutation-based instances are presented. For the update
of tweaks, a simple and efficient technique—point doubling is used to update tweaks.
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This technique follows the framework of the XEX* and MEM constructions, which makes
proposed instances and proofs very simple. This paper considers the message whose length
is a positive multiple of the block size n. In fact, for any length message, it also works.

There have been many studies on COPA in recent years [1,13,41,42]. Among them,
the INT-RUP security is one of the most important research contents. COPA-PIC enjoys
INT-RUP security up to the birthday bound in the nonce-misuse setting if the underlying
primitive (including TBC, block cipher, and permutation) is secure. Of course, COPA-PIC
just settles the problem of INT-RUP in the nonce-misuse setting, while the problem of
privacy in the RUP setting still exists. It is left as an open problem to settle the privacy of
COPA-PIC in the RUP setting.

COPA-PIC utilizes a new checksum technique—polynomial intermediate checksum
(PIC)—to fix the INT-RUP security. PIC is a very vital technique which guarantees no
information leakage and the same level between the plaintext and the ciphertext. In the AE
schemes with PIC, the adversary cannot obtain any useful information to make a successful
forgery even if given the additional power of access to an unverified decryption oracle.
mCPFB with INT-RUP security combines a distance 4 error correcting code and delayed
dislocation technique which is essentially a similar PIC technique. LOCUS and LOTUS are
based on OCB and OTR, and their final checksum utilizes IC, which is a degenerated version
of PIC. Table 2 shows the comparison of AE modes with distinct checksum techniques. Our
work finds a new technique, PIC, and we believe that PIC can settle the INT-RUP security
defects of any “rate < 1” and “Encryption-Mix-Encryption”-type checksum-based AE
schemes. In addition, the mixing function of COLM (ELmE/ELmD) essentially provides an
implementation of PIC for the authentication part, but COLM (ELmE/ELmD) also utilizes
PCC in the authentication part. In fact, COLM (ELmE/ELmD) could have been designed
entirely using PIC.

Table 2. Comparison of AE modes with distinct checksum techniques.

Scheme Security Checksum Technique Rate Reference

OCB INT-CTXT PCC 1 [5–7]
CPFB INT-CTXT PCC 3/4 [11]
COPA INT-CTXT PCC 1/2 [8]
OCBt tag-INT PCC 1 [14]

OCB-IC INT-RUP IC 1/2 [9]
mCPFB INT-RUP similar PIC 3/4 [11]
COLM INT-RUP PIC 1/2 [13]
LOCUS INT-RUP IC 1/2 [15]
LOTUS INT-RUP IC 1/2 [15]

COPA-PIC INT-RUP PIC 1/2 This paper

The proposed work is of high practical significance to establish a rapid feedback
mechanism for third-party error authentication. The computational costs of COPA-PIC’s
encryption and decryption algorithms are about the same as those of COPA, but the
verification cost is close to one half of COPA (see Table 1). Thus, in practical applications,
the receiver first verifies whether the received message is valid or not, and then determines
whether to perform the next action (decrypt and obtain the correct plaintext or reject and
return an error symbol). The proposed work supports Chakraborti et al.’s works and Zhang
and Wu’s views, introduces a new intermediate checksum technique, PIC, and gives a
possible direction for settling the security of all one-pass checksum-based AE schemes in
the RUP setting. Recently, Andreeva et al. focused on SAEF which is a rate-1 online AE
mode using a forkcipher as a building block, and they showed that SAEF is INT-RUP-secure
up to the birthday bound by the H-coefficient technique [17]. Therefore, forkcipher is a hot
future research direction. Additionally, there have been some achievements in RUP security
for two-pass AE schemes in recent years, such as GCM-RUP [43] and its variant [44]. This
is also a direction to watch in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

K the nonempty set of keys (the key space)
Γ the nonempty set of tweaks (the tweak space)
N the nonempty set of nonces (the nonce space)
H the nonempty set of associated data (the associated data space)
M the nonempty set of plaintexts (the plaintext space)
C the nonempty set of ciphertexts (the ciphertext space)
T the nonempty set of authentication tags (the authentication tag space)
EK the encryption of block ciphers with a key K
DK , E−1

K the decryption of block ciphers with a key K
E±1

K the encryption and decryption oracles of block ciphers with a key K
ẼK the encryption of tweakable blockciphers with a key K
D̃K , Ẽ−1

K the decryption of tweakable blockciphers with a key K
Ẽ±1

K the encryption and decryption oracles of tweakable blockciphers with a key K
Perm(n) the set of all n-bit permutations
π±1 the permutation and its inverse
Perm(Γ, n) the set of all n-bit tweakable permutations with the tweak space Γ
π̃±1 the tweakable permutation and its inverse
{0, 1}∗ the set containing all finite bit strings (including the empty string)
{0, 1}n the nonempty set containing all n-bit strings
AO ⇒ 1 the adversary A outputs 1 after interacting with the oracle O

x $← X the value x randomly chosen from the set X
Pr[A] the probability of the event A
E the encryption algorithm
D the decryption algorithm
V the verification algorithm
|x| the bit length of the finite string x
x∥y or xy the concatenation of two finite strings x and y
⊕ the XOR/addition operation over the finite field GF(2n)

· the multiplication operation over the finite field GF(2n)

I a set of large integers, such as I = {0, 1, 2, · · · , 2n − 1}
J a set of small integers, such as J = {0, 1, · · · , 10}
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