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Abstract: The distributed leader-follower control of multi-agent systems is discussed. Each agent is
expressed in a discrete-time and non-linear dynamic model with an unknown parameter and can
be affected by its neighbors’ history information. For each agent, to identify the parameter, one
switching set of the parameter estimates is constructed and the optimal parameter estimate is chosen
based on the index switching function. Using the given desired reference signal, the leader agent’s
control law is designed, and relying on the neighbors’ history information, each follower agent’s local
control law is designed. With the designed distributed tracking adaptive control laws, the whole
system tracks the given desired reference signal, and in the face of strong couplings the closed-loop
system ultimately reaches an agreement. Finally, by comparing simulations of the control strategy
with a normal projection algorithm, the results indicate that the adaptive control method with a
switching set of the parameter estimates is effective in improving the control performance.
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1. Introduction

Over the past few decades, control strategies for multi-agent systems (MASs) have
attracted much interest in different areas, such as unmanned vehicle formation [1–3],
robotics and sensor networks [4–6], spacecraft formation flying [7,8], etc. However, from the
viewpoint of control tasks, investigation of the control problem of MASs has mainly
considered consistency control [9], cluster control [10], tracking control [11], formation
control [12], flocking control [13], and so on.

In an MAS there are many uncertainties. For each agent, it is usually hard and often
nearly impossible to create an accurate dynamic model. To deal with the various uncertain-
ties, adaptive control to solve the unknown parameters and structural uncertainties has
been studied using different methods [14,15].

Distributed adaptive control [16,17] and centralized adaptive control [18,19] are
two important control strategies for MASs. The distributed control strategy uses local
information to enable each agent to obtain the local control law. The centralized control
strategy assumes that the central station is available and has enough capacity to control
all agents. Although the use of these two strategies should be determined depending on
the specific circumstances, recently, scholars and researchers have tended to think that the
distributed strategy is more promising due to particular restrictions, such as information
communication among agents, computational complexity in the theoretical derivation, and
so on.

For MASs with a leader or which are leaderless, the adaptive control problem for
MASs can be classed into leaderless [20,21] and leader-follower MAS [22,23]. The goal of a
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leaderless MAS is that all agents’ outputs asymptotically reach the same trajectory, while
for the leader-follower MAS, the objective is to enable all agents’ outputs to asymptotically
follow a given desired trajectory.

One of the most important topics regarding adaptive control issues of MASs is tracking
control [24,25]. Due to the complexity of the performance indices and the interactions
among agents, the intrinsic challenges and difficulties regarding the distributed tracking
control problem of MASs with uncertainties are discussed. However, many studies have
considered distributed tracking control [26,27]. For an MAS with unknown parameters,
the parameter estimate is crucial and fundamental. To identify the parameter, various
methods have been chosen, such as the projected consensus algorithm [28], the least-squares
method [29], the neural network method [30], etc.

As is well-known, the multi-model method is an important technique to identify the pa-
rameters for non-linear system control. In the early 1970s, the multi-model method concept
was suggested to address the control problem [31]. In [32], for a linear system, a multi-model
method based on switching functions was presented, and it was shown that asymptotic
tracking in a set of deterministic points could be achieved with unmodeled dynamics.

In [33], a systematic switching control method was used to investigate the adaptive sta-
bilization of a linear time-varying system. In [34], for a discrete-time system, a multi-model
method for an adaptive predictive control strategy was adopted switching between the
two expressed control laws, which improved the performance of the closed-loop stability.

Most investigations of the multi-model method of adaptive control have focused on
handling the various kinds of uncertainties in a single system [35–38]. In recent years,
the distributed multi-model method for adaptive tracking control of MASs has attracted the
attention of scholars in the systems and control community [39,40]. For example, in [39], dis-
tributed optimal tracking control was investigated based on a correlative measured model.

In light of the above, a multi-model distributed method for the adaptive tracking
control of a leader-follower MAS with unknown parameters was investigated. Compared
to the projection algorithm described in [41], the multi-model method was used to improve
system performance for accelerating parameter convergence. Each agent and its neighbors’
history information influence the outputs. Due to the interactions among agents, the
complexity of the performance indices for MAS, and the number of multiple models,
certain difficulties and complexities occur. The main results obtained are listed as follows:
To identify the parameters, a multi-model method was chosen. The distributed adaptive
control scheme was designed based on the equivalence principle. The given desired
reference signal and the leader’s control law were designed, and each follower’s local
control law was designed according to its neighbors’ history information.

Under the distributed control scheme, each agent follows the given reference signal
and the whole system gradually reaches strong synchronization in terms of the mean.

This paper is organized as follows: Section 2 describes the preparatory knowledge
and modeling. The projection algorithm and multi-model adaptive method are introduced,
and the distributed adaptive parameter update laws are presented in Section 3. Section 4
describes the design of the distributed adaptive control scheme based on the multi-model
method. Section 5 provides auxiliary lemmas, and the main theoretical results are presented
in Section 6. The simulation results, which show that the adaptive control method with a
switching set of the parameter estimates is effective in improving the control performance
in comparison with the normal projection algorithm, are presented in Section 7. Section 8
presents the conclusions.

2. Preparatory Knowledge and Modeling
2.1. Graph Theory

In an MAS composed of N agents, each agent through its neighbors’ available infor-
mation can be connected to other agents. A directed graph G = (V, E, A) describes the
communicated topology among agents. V = {1, 2, · · · , N} is a vertex set, the ordered edges
set E = V × V means the ordered edges set, and A = [aij] represents an adjacency matrix.
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The ordered pair (i, j) denotes that the jth agent’s history information has access to the ith
agent’s current output.

The jth agent is called by the ith agent’s neighbor.
The adjacency matrix [aij] ∈ RN×N refers to the matrix whose elements are aii = 0,

aij = 0 if (i, j) /∈ E and aij = 1 if (i, j) ∈ E. Ni = {j ∈ V|(i, j) ∈ E} expresses the ith agent’s

all neighbors set. If
N
∑

j=1
aij ≜ mi, i = 1, · · · , N, then the diagonal matrix D = m1, m2, · · · , mN

means an in-degree matrix.

Definition 1 ([41–43]). If there is a path that follows the direction of the edges of the directed graph
such that any two agents i and j are connected, then an adjacency matrix A(aij = 0, 1) is a strongly
connected matrix.

Definition 2 ([40,41]). If one agent obtains information from the desired reference signal, while the
other agents do not know either the existence of the leader or the desired reference signal, then the
agent is called a hidden leader.

2.2. Multi-Agent Modeling

In an MAS composed of N agents, the dynamic model of agent i is considered
as follows:

xi(T + 1) = gi(γi, xi(T), ψi(T)) + ui(T), i = 1, 2, · · · , N, (1)

where xi(T + 1) is the output, and ui(T) ∈ R is the input. The time-invariant parameter
γi ∈ Rpi is unknown. ψi(T), consisting of the outputs from the mi neighbors, is an mi-
dimensional vector when agent i has mi neighbors. The mapping gi is a known non-linear
function and is differentiable with respect to the unknown γi function.

Denote the derivative as

Ψi(T) ≜
∂gi(γi, xi(T), ψi(T))

∂γi
′ |γ=γ̂i(T).

In an MAS, to study the adaptive control strategy, the following assumptions
are made:

Assumption 1. In an MAS (1), the adjacency matrix A is strongly connected.

Remark 1. This assumption indicates that each agent has received any other agents’ information
through directed paths, directly or indirectly .

Assumption 2. It is reasonable to assume that one or more of the agents are hidden leaders.
However, for convenience, the hidden agent assumes that the first agent is a leader.

Assumption 3. The tracking reference signal sequence {x∗(T)} is bounded.

Assumption 4. The derivative Ψi((xi(T), ψi(T)) is a Lipschitz function.

3. Multi-Model Adaptive Method
3.1. The Projection Algorithm

For each agent, in order to provide one of the multiple parameters, the projection
algorithm is adopted to estimate the unknown parameters.

A parametric criterion is proposed to estimate the parameter:

Ji(γi) = [xi(T + 1)− gi(γi, xi(T), ψi(T))− ui(T)]2 + wi∥γi − γ̂i(T)∥2, (2)

where wi is a small positive constant and punishment factor, and γ̂i(T) is the estimate of γi.
For gi(γi, xi(T), ψi(T)) using Taylor’s expansion of function, we obtain
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gi(γi, xi(T), ψi(T)) ∼= gi(γ̂i(T), xi(T), ψi(T)) + Ψi(T)[γi − γ̂i(T)]. (3)

Plugging (3) into (2), one has

Ji(γi) ∼= [xi(T + 1)− gi(γ̂i(T), xi(T), ψi(T))− Ψi(T)× (γi − γ̂i(T))− ui(T)]2 + wi∥γi − γ̂i(T)∥2.

Taking the derivative on both sides of (3) and using the minimum value theorem, we
can write

∇Ji(γi) = 0,

i.e.,
[xi(T + 1)− gi(γ̂i(T), xi(T), ψi(T))− Ψi(T)(γi − γ̂i(T))− ui(T)]× Ψi(T)− wi(γi−γ̂i(T))T = 0.

Rearranging for agent i, we obtain the normal adaptive update law for estimation

γ̂i(T + 1) = γ̂i(T) +
ΦT

i (T)[xi(T + 1)− x̂i(T + 1)]

wi + ∥Ψi(T)∥2 , (4)

where
x̂i(T + 1) = gi(γ̂i(T), xi(T), ψi(T)) + ui(T).

In particular, the value γ̂i(T + 1) is an on-line estimation after the time-instant T + 1 and
before the time-instant T + 2. The estimated value γ̂i(T + 1) can be used to estimate the
output value of the time-instant T + 2; that is,

x̂i(T + 2) = gi(γ̂i(T + 1), xi(T + 1), ψi(T)) + ui(T).

Remark 2. In this algorithm, the punishment factor wi plays a key role. The suitable value wi is
taken to restrict the area of γ̂i(T + 1)− γ̂i(T). And the denominator of (4) is positive when wi is
positive, with no singular case guaranteed.

Remark 3. For agent i, the estimation is obtained from the recurrence formula by the projection
algorithm. γ̂i(T) is just one of the parameters in the switching set in the time-instant T.

3.2. Multi-Model Adaptive Parameter Estimate

Suppose that each parameter is varying in a given convex set. In other words,
the model parameter γi for agent i is unknown, and satisfies γi ∈ Ωi ⊂ Rpi , where
Ωi is one given nonempty convex set. The set Ωi has the following segmentations:

(1) Ωis ⊂ Ωi, Ωi ̸= ∅, s = 1, 2, · · · , di;

(2) Ωi =
di⋃

s=1
Ωis;

(3) For Ωis(s = 1, 2, · · · , di), let γis and ris ≥ 0 represent the centre and radius of Ωis,
respectively, that is to say, γis ∈ Ωis, and for any γi ∈ Ωis, one has

∥γi − γis∥ ≤ ris. (5)

Considering (1) and (4), based on multiple fixed invariant parameters, one has

γ̂is(T) = γis, s = 1, 2, · · · , di. (6)

It is easy to see that one set of multiple parameters is established for agent i. Using the
projection parameter update law (4), for the dynamics Equation (1), the normal adaptive
parameter model is established. Denoting the normal adaptive model parameter γ̂i1 as
γ̂i,di+1, we can write

γ̂i,di+1(T) = γ̂i1(T), (7)
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where γ̂i1(T) is obtained from the normal update law (4). Accelerating the parameter
convergence to improve the control performance, we bring in another adaptive model
parameter γ̂i2 , whose initial value would be adaptively adjusted to the nearest model
parameter of the dynamics. Let

γ̂i,di+2(T) = γ̂i2(T). (8)

Thus, based on (4), (7), and (8), it is easy to establish the multiple parameters’ switching
set with di + 2 elements. We can establish the di + 2 models, and the di models of them are
fixed; the other two models are adaptive models.

The adaptive multiple models are constructed as follows:

x̂is(T + 1) = gi(γ̂is, xi(T), ψi(T)) + ui(T), i = 1, 2, · · · , N,

s = {1, 2, · · · , di, di + 1, di + 2}.

Remark 4. (di + 2) models of agent i are established. Obviously, the number of all models of N

agents is
N
∑

i=1
(di + 2), which is the number of all models for the whole system.

For agent i, in the (di + 2) parameters, the question is how to choose the optimal
parameter, rapidly and accurately, which tracks the true parameter.

The specific details are provided in the next section.

3.3. Multi-Model Adaptive Optimal Parameter

For convenience when seeking one adaptive optimal parameter, we provide
two important definitions:

Definition 3. Define

χis(T) =

∥∥∥∥∥ ∆xis(T + 1)

[wi + ∥Ψi(T)∥2]1/2

∥∥∥∥∥
as the output error, where

s = {1, 2, · · · , di, di + 1, di + 2},

and
∆xis(T + 1) = xi(T + 1)− x̂is(T + 1)

= gi(γi, xi(T), ψi(T))− gi(γ̂is, xi(T), ψi(T)).

Definition 4. Define

Jis(Ti0, Ti1) =
Ti1

∑
t=Ti0

χ2
is(t),

as the index switching function, where

s = {1, 2, · · · , di, di + 1, di + 2}.

From Definition 4, it is obvious that

Jis(Ti0, Ti1) = Jis(Ti0, Ti1 − 1) + χ2
is(Ti1),

where
s = {1, 2, · · · , di, di + 1, di + 2}.

Using a multi-model adaptive control strategy and a linearization technique, from
Definitions 3 and 4, one optimal parameter estimate is designed as follows:

(1) When T = Ti0, let
Ii(T) = Ii(0) = {1, 2, · · · , di}. (9)
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(2) When T > Ti0, the index switching functions are calculated

Îi(T) = {j|
∥∥xi(T)− x̂ij(T)

∥∥ ≤ rij∥Ψi(T − 1)∥, j ∈ Ii(T − 1)},

Ii(T) = Îi(T)
⋂

Ii(T − 1),

si(T) = arg min
l∈{Ii(T),di+1,di+2}

Jil(Ti0, Ti).
(10)

Let
γ̂i(T) = γsi(T)(T), (11)

γ̂di+2(T) = γsi(T)(T) (12)

and
Jdi+2(Ti0, Ti) = Jsi(T)(Ti0, Ti). (13)

For ∀εi > 0, we calculate the time is

Ti1 = min{T′
i |T′

i > Ti0, χsi(T′
i )
< εi}. (14)

If T < Ti1, then the estimate γ̂i(T) is chosen, and return to the above step (2) to
calculate xi(T + 1).

If T ≥ Ti1, then the (di + 2)th adaptive model degenerates into a normal adaptive
identifier, and

γ̂i(T) = γ̂di+2(T).

Remark 5. The optimal parameter estimate γ̂i(T) would be chosen in the index switching set.

Remark 6. The parameter estimate based on the projection algorithm is one of the multi-model
parameters; it is clear that the multi-model method has the advantages of accurate estimation and
fast convergence.

Each optimal parameter in an MAS is obtained. The goal is to ensure that the whole
system (1) tracks the given reference signal. Then, we need to solve the problem of how to
design the adaptive control strategy.

4. Distributed Adaptive Control Strategy

The leader agent can obtain the given signal x∗(T). By Assumption 2, the first agent is
the leader, whose control law is designed using the certainty equivalence principle and the
available information:

u1(T) = −g1(γ̂1(T), x1(T), ψ1(T)) + x∗(T + 1). (15)

As the leader is one hidden leader, this implies that any follower agent does not know
the desired signal or the existence of the leader agent, and only knows its own neighbors’
history information (only external information is available). The question arises of how
to design the follower agents’ control laws. The output of each follower agent tracks the
average value of the historic outputs of its own neighbors. Using the certainty equivalence
principle and the neighbors’ history information, each follower agent’s local control law is
designed as follows:

ui(T) = −gi(γ̂i(T), xi(T), ψi(T)) + x̄i(T), i = 2, · · · , N. (16)

And define the output average value of the neighbors of the agent i as

x̄i(T) =
1

mi
∑

l∈Ni

xl(T),

where Ni denotes the set of neighbors for agent i and mi is the number of elements of Ni.
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Denote
x̃1(T + 1) = x1(T + 1)− x∗(T + 1). (17)

as the error between the leader agent’s output and the desired signal at (T + 1).
Denote

x̃i(T + 1) = xi(T + 1)− x̄i(T), i = 2, 3 · · · , N. (18)

as the error between the output of the follower agent i and the average value of the outputs
of the neighbors x̄i(T) at (T + 1). Putting (1), (15) into (17), we obtain

x̃1(T + 1) = g1(γ1, x1(T), ψ1(T))− g1(γ̂1(T), x1(T), ψ1(T)). (19)

Plugging (3) into (19), one has

x̃1(T + 1) ∼= −Ψ1(T)γ̃1(T), (20)

where
γ̃1(T) = γ̂1(T)− γ1.

Similar to (20), one has

x̃i(T + 1) ∼= −Ψi(T)γ̃i(T), i = 2, 3 · · · , N, (21)

where
γ̃i(T) = γ̂i(T)− γi.

5. Auxiliary Lemmas

Lemma 1. The following formulas are satisfied in the projection algorithm:

(1) ∃ Mi > 0 s.t.
∥γ̂i(T)− γi∥ ≤ Mi;

(2)

lim
k→∞

T

∑
t=1

∥∆xi(T + 1)∥2

wi + ∥Ψi(t)∥2 < ∞;

(3)

lim
k→∞

∥∆xi(T + 1)∥2

wi + ∥Ψi(T)∥2 = 0,

where
∆xi(T + 1) =xi(T + 1)− x̂i(T + 1)

=gi(γi, xi(T), ψi(T))− gi(γ̂i(T), xi(T), ψi(T)).

Proof.

(1) Select
Γi(T) = ∥γ̃i(T)∥2

as the Lyapunov function. Then, the difference is

△Γi(T) =Γi(T)− Γi(T − 1)

=∥γ̃i(T)∥2 − ∥γ̃i(T − 1)∥2

=∥γ̃i(T)− γ̃i(T − 1)∥2 + 2γ̃T
i (T − 1)[γ̃i(T)− γ̃i(T − 1)].

(22)

Since γ̃i(T) = γ̂i(T)− γi, we have

γ̃i(T)− γ̃i(T − 1) = γ̂i(T)− γ̂i(T − 1). (23)

Plugging (23) into (22) to obtain

△Γi(T) =∥γ̂i(T)− γ̂i(T − 1)∥2 + 2γ̃T
i (T − 1)[γ̂i(T)− γ̂i(T − 1)]. (24)
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Using (4) and (24), this can be written as

△Γi(T) =
∥Ψi(T − 1)∥2∆x2

i (T)

[wi + ∥Ψi(T − 1)∥2]2
+ 2γ̃T

i (T − 1)
ΦT

i (T − 1)∆xi(T)

wi + ∥Ψi(T − 1)∥2 . (25)

Putting (20) and (21) into the right side of (25), and taking wi > 0, we have

△Γi(T) ∼= −
wi∆x2

i (T)

(wi + ∥Ψi(T − 1)∥2)2
−

∆x2
i (T)

wi + ∥Ψi(T − 1)∥2 ,

which can be written as

△Γi(T) = −
wi∆x2

i (T)

(wi + ∥Ψi(T − 1)∥2)2
−

∆x2
i (T)

wi + ∥Ψi(T − 1)∥2 + o(∆x2
i (T))

≤ −
∆x2

i (T)

wi + ∥Ψi(T − 1)∥2 + o(∆x2
i (T)),

(26)

The infinitesimal of the higher-order (o(∆x2
i (T))) does not affect the sign of the

function △Γi(T); that is,
△Γi(T) ≤ 0.

So, we can conclude ∥γ̃i(T)∥ < ∞. In other words, ∃Mi > 0 s.t. ∥γ̂i(T)− γi∥ ≤ Mi.
(2) Applying some simple manipulations to (26), we can obtain

∞

∑
k=1

∆x2
i (T)

wi + ∥Ψi(T − 1)∥2 ≤ Γi(0) + o(∆x2
i (T)). (27)

It is easy to see that the left side of (27) is a convergent series; that is

lim
k→∞

T

∑
t=1

∥∆xi(T + 1)∥2

wi + ∥Ψi(t)∥2 < ∞.

(3) According to (2) of Lemma 1, it follows from one necessary condition for the conver-
gence of the series that

lim
k→∞

∆x2
i (T)

wi + ∥Ψi(T − 1)∥2 = 0.

□

Lemma 2 ([41]). If Assumptions 1–4 hold, then under the normal distributed parameter update
law for estimation (4) and the distributed adaptive control strategy (15) and (16), one has

(1) lim
T→∞

(x1(T)− x∗(T)) = 0, and lim
T→∞

(xi(T)− x̄i(T − 1)) = 0, i = 2, 3, · · · , N;

(2) lim
T→∞

(xi(T)− x1(T)) = 0, i = 2, 3, · · · , N;

(3) lim
T→∞

(xi(T)− x∗(T)) = 0.

Proof. Due to limited space, the proof can be omitted. For details, see Theorem 6.1 of [41].
□

Lemma 3. Considering the multi-model adaptive parameters (9)–(14) and the distributed adaptive
control strategy (15) and (16), ∃Ti4 when T > Ti4, the multi-model adaptive controllers are
converted into a normal single one.

Proof. For the fixed models s ∈ Ii(T), the index switching function is either divergent
or bounded as T > Ti0,. Considering (3) of Lemma 1, for the (di + 1)th model, the index
switching functions meet
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lim
T→∞

Jdi+1(Ti0, T) = lim
T→∞

T

∑
t=1

χ2
is(t) < ∞.

Then, in the subset of the dynamic system

I′i (T) = {j|j ∈ Ii(T)and lim
T→∞

Ji,j(Ti0, T) → ∞},

∃Ti3, when T > Ti3, one has

Ji,j(Ti0, T) > Ji,di+1(Ti0, T), j ∈ I′i (T),

which indicates that, in the set of the dynamic model, the index functions cannot participate
in switching. That is to say, when T > Ti3, the subset of the dynamic models contain
multi-model adaptive controllers

I′′i (T) = {j|j ∈ Ii(T)and lim
k→∞

Ji,j(Ti0, T) < ∞},

and adaptive models di + 1, di + 2. The parameter γ̂i(T) is switching in the parameters
γ̂Si(T)(Si(T) = {I′′i (T), di + 1, di + 2}).

Considering Definitions 3, 4, Lemma 1 and (10), we have

lim
k→∞

χSi(T) = 0.

Thus, ∃Ti4 > Ti3, when T > Ti4, we can obtain

χSi(T) < εi, Si(T) ∈ {I′′i (T), di + 1, di + 2}.

At this time, the multi-model adaptive controllers would be converted into a normal single
one. □

Lemma 4. For the whole system, combining the multi-model adaptive parameters (9)-(14) and the
distributed adaptive laws (15), and (16), then ∃Ti4, when T > Ti4, and the multi-model adaptive
controllers are converted into a normal single one.

Proof. From Lemma 3, we can see

∃T4 = max(T14, T24, · · · , Tn4),

when T > T4, the multi-model adaptive controllers would be converted into normal
adaptive controllers. □

Remark 7. By the distributed control strategy (15) and (16), the multi-model adaptive controllers
are designed in a discrete-time non-linearly parameterized MAS. If each identification parameter
satisfies that ∥γ̂i(T)− γi∥ is bounded, then the system tracks the desired signal.

6. Tracking Performance of The Multi-Agent System

Theorem 1. If Assumptions 1–4 hold, under the multi-model adaptive parameters (9)–(14) and the
distributed adaptive laws (15), and (16), a discrete-time non-linearly parameterized heterogeneous
MAS (1) exhibits the following performance:

(1) the desired reference signal is tracked by the hidden leader agent, and each follower agent
follows the average value of its own neighbors’ history outputs; that is

lim
T→∞

(x1(T)− x∗(T)) = 0

and
lim

T→∞
(xi(T)− x̄i(T − 1)) = 0, i = 2, 3, · · · , N;
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(2) the strong synchronization in the sense of the mean of all the follower agents to the hidden
leader agent is achieved; that is,

lim
T→∞

(xi(T)− x1(T)) = 0, i = 2, 3, · · · , N;

(3) all the agents track the desired reference signal; that is

lim
T→∞

(xi(T)− x∗(T)) = 0, i = 1,2, 3, · · · , N.

Proof.

(1) From Lemma 2, we can write

x̃i(T) = ιi(T)[wi + ∥Ψi(T − 1)∥2]
1
2 , (28)

where ιi(T) ∈ L2[0, ∞). Based on Assumption 4 and the Lipschitz condition of Ψi(·),
the order estimation is obtained

Ψi(T) = O(xi(T), ψi(T)),

thus, we can obtain

(wi + ∥Ψi(T − 1)∥2)
1
2 = wi + O(xi(T − 1), ψi(T − 1)).

From (28), one has

x̃i(T) = O(1) + o(xi(T − 1), ψi(T − 1)). (29)

According to o(xi(T), ψi(T)) ∼ o(xi(T)) + ∑
l∈Ni

o(xl(T)), and (29), one has

X̃(T) ∼{O(1), O(1), · · · , O(1)}(A + I)X(T − 1) + [O(1), O(1), · · · , O(1)]T , (30)

where I is an identity matrix and A is an adjacency matrix of MAS; that is

A =


0 a12 · · · a1N

a21 0 · · · a2N
...

...
. . .

...
aN1 aN2 · · · 0

.

After calculation, it can be found that

X(T + 1) ={DA + {O(1), O(1), · · · , O(1)} × (A + I)}X(T) + [x∗(T + 1) + O(1),

O(1), · · · , O(1)]T ,

where

D =


0 0 · · · 0
0 1

d2
· · · 0

...
...

. . .
...

0 0 · · · 1
dN

.

It is clear that as T → ∞,

{DA + {O(1), O(1), · · · , O(1)}(A + I)}X(T) → DAX(T).

From Assumption 3, and the bounded sequence {x∗(T)}, then

(x∗(T + 1) + O(1), O(1), · · · , O(1))T = O(1).

Thus, (6) can be written as

X(T + 1) = DAX(T) + O(1).
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It is clear to see DA is a sub-stochastic and irreducible matrix; and ρ(DA) < ∥DA∥∞ = 1,
which clearly indicates that

X(T + 1) = O(1). (31)

Combining (30) and (31), we have
x1(T)− x∗(T)

x2(T)− x̄2(T − 1)
...

xn(T)− x̄N(T − 1)

 =


O(1)
O(1)

...
O(1)

. (32)

According to (32), we can obtain

lim
T→∞

x̃1(T) = lim
T→∞

(x1(T)− x∗(T)) = 0 (33)

and
lim

T→∞
x̃i(T) = lim

T→∞
(xi(T)− x̄i(T − 1)) = 0,

i = 2, 3, · · · , N.

(2) Define the error as follows:

χ(T) ≜


χ11(T)
χ21(T)

...
χN1(T)

 =


x1(T)− x1(T)
x2(T)− x1(T)

...
xn(T)− x1(T)

. (34)

By (18), we have
xi(T + 1) = x̄i(T) + x̃i(T + 1), i ̸= 1. (35)

Combining (34) and (35), one has

χi1(T + 1) = x̄i(T)− x1(T + 1) + x̃i(T + 1), i ̸= 1.

Since

DAX(T) =


0 0 · · · 0

1
d2

a21 0 · · · 1
d2

a2N
...

...
. . .

...
1

dN
aN1

1
dN

aN2 · · · 0




x1(T)
x2(T)

...
xn(T)



=


0

1
d2

∑
l∈N2

xl(T)

...
1

dN
∑

l∈NN

xl(T)

,

then, we can have

χ(T + 1) =DAX(T)− [0, 1, · · · , 1]Tx1(+{0, 1, · · · , 1}X̃(T + 1).

Furthermore, we have

χ(T + 1) =DAX(T)− [0, 1, · · · , 1]Tx1(T) + [0, 1, · · · , 1]T(x1(T)− x1(T + 1))

+ {0, 1, · · · , 1}X̃(T + 1),

which can be written as
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χ(T + 1) =DAX(T)−DA[1, 1, · · · , 1]Tx1(T) + [0, 1, · · · , 1]T(x1(T)− x1(T + 1))

+ {0, 1, · · · , 1}X̃(T + 1).
(36)

Based on Assumption 3, we can suppose lim
k→∞

x∗(T) = x. In other words, for every

real number ε > 0, there is K ∈ N, if k > K, then

|x∗(T)− x| < ε

2
,

which yields
|x∗(T + 1)− x∗(T)| ≤ |x∗(T + 1)− x|+ |x∗(T)− x| < ε.

Then,

x1(T)− x1(T + 1) =x1(T)− x∗(T)− x1(T + 1) + x∗(T + 1) + x∗(T)− x∗(T + 1)

=O(1).
(37)

Combining (36) with (37), one has

χ(T + 1) = DA{X(T)− [1, 1, · · · , 1]Tx1(T)}+ [O(1), O(1), · · · , O(1)]T ,

which can be written as

χ(T + 1) = DAχ(T) + [O(1), O(1), · · · , O(1)]T .

In particular, ρ(DA) < 1. There is a matrix norm ∥·∥p such that

∥χ(T + 1)∥p ≤ ρ̄∥χ(T)∥p + O(1),

for ∀ρ̄ ∈ [ρ, 1). That is
∥χ(T + 1)∥p ≤ ρ̄∥χ(T)∥p + εT , (38)

where lim
T→∞

εT = 0; that is, for ∀ε > 0, ∃K ∈ N, if T > K, then |εT | < ε. Obviously,

the first T terms of this sequence are bounded by a constant ε̄, i.e., |εT | < ε̄, k =
1, · · · , K. Thus, (38) can be written as

∥χ(T)∥p ≤ρ̄T∥χ(0)∥p +
T−1

∑
i=0

(ρ̄T−i−1εi)

≤ρ̄T∥χ(0)∥p +
T−1

∑
i=T−K−1

ρ̄i ε̄ +
T−K−2

∑
i=0

ρ̄iεT−i−1.

(39)

Since ρ̄ < 1, one has

lim
T→∞

T−1

∑
i=T−K−1

ρ̄i ε̄ = 0 (40)

and

lim
T→∞

T−K−2

∑
i=0

ρ̄iεT−i−1 = 0. (41)

From (39)–(41), we can obtain

∥χ(T)∥p = O(1).

Based on the equivalence among norms, we have

∥χ(T)∥2 = O(1).
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From (34), it is clear to see that

lim
T→∞

χi1(T) = lim
T→∞

(xi(T)− x1(T)) = 0, i = 2, · · · , N. (42)

(3) Denote the error χi1(T) = xi(T)− x1(T); thus,

χi1(T) = xi(T)− x1(T)

= xi(T)− x∗(T) + x∗(T)− x1(T)

= χir(T)− x̃1(T),

which leads to
χir(T) = χi1(T) + x̃1(T).

From (33) and (42), one has

lim
T→∞

χir(T) = lim
T→∞

(xi(T)− x∗(T)) = 0.

□

7. Simulations

To test and verify the feasibility and effectiveness of the theoretical results, we consider
a non-linear discrete-time coupled MAS consisting of five agents. The dynamics model of
agent i is

xi(T + 1) = gi(γi, xi(T), ψi(T)) + ui(T), (43)

where 

g1(T) =γ2
1x1(T) + γ1x4(T) + sin γ1x4(T))

g2(T) =γ2x2(T) + γ2
2e−|x3(T)| + cos(γ2x5(T))

g3(T) =(γ3
3 − 5γ3 − 3)x3(T) + cos(γ3x1(T)) + γ3e−|x4(T)|

g4(T) =x4(T) + γ2
4 cos(x2(T))

g5(T) =γ5x5(T) + sin(x3(T)) + cos(x2(T)).

It follows from (43) that the adjacency matrix is

A =


0 0 0 1 0
0 0 1 0 1
1 0 0 1 0
0 1 0 0 0
0 1 1 0 0

. (44)

Firstly, by Definition 1 and the adjacency matrix, we can infer this adjacency matrix is
strongly connected. It is clear that Assumption 1 holds. Secondly, the hidden leader (first)
agent knows the desired signal, while the other agents are not aware of the desired signal
nor the existence of the leader agent, and thus, Assumption 2 holds. Thirdly, give the

desired signal x∗(1) = 21, x∗(T + 1) = 20 + (−1)T+1

T as the reference signal. It is easy to
check that, Assumption 3 holds, too. Lastly, it is easy to obtain that Assumption 4 holds.
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According to the discussion in Section 4, the distributed controllers are designed as

u1(T) = −γ̂2
1(T)x1(T)− γ̂1x4(T)− sin γ̂1(T)x4(T)) + x∗(T + 1)

u2(T) = −γ̂2x2(T)− γ̂2
2χ−|x3(T)| − cos(γ̂2x5(T)) +

1
2
(x3(T) + x5(T))

u3(T) = −(γ̂3
3 − 5γ̂3 − 3)x3(T)− cos(γ̂3x1(T))− γ̂3χ−|x4(T)| +

1
2
(x1(T) + x4(T))

u4(T) = −x4(T)− γ̂2
4 cos(x2(T)) + x2(T)

u5(T) = −γ̂5x5(T)− sin(x3(T))− cos(x2(T)) +
1
2
(x2(T) + x3(T)),

where γ̂i is the estimate calculated by (4).

γ1 = 1

γ2 = 2

γ3 = 3

γ4 = 4

γ5 = 5

with the set [1, 1, 1, 1, 1]T and T = 0.01 as the initial outputs, [0, 0, 0, 0, 0]′ as the initial
parameter estimates, and w1 = 0.7, w2 = 0.6, w3 = 0.5, w4 = 0.4, w5 = 0.3 as the punish-
ment factors.

According to the normal parameter update laws discussed in Section 3.1, the un-
known parameters are estimated. Each parameter’s estimate and true value are shown in
Figure 1. It can be clearly obtained that, for each agent, each parameter estimate tends to
the corresponding true parameter value.

Figure 1. Based on the projection algorithm parameter true value and estimates.

It is easy to see from Figure 2 that the velocity of the hidden leader (first) agent tracking
the desired signal is faster than the velocity of the followers because the hidden leader
tracks the reference directly and the closed-loop system achieves strong synchronization in
the sense of the mean in the presence of strong couplings.

According to the adaptive optimal parameter update laws discussed in Section 3.3,
the unknown parameters are estimated. As we can see, for each agent, the parameter
estimate tends to converge toward the true parameter value. A comparison of Figure 1
and Figure 3, shows that the multi-model method has advantages of accurate estimation
and fast convergence. It is not difficult to see from Figures 2 and 4 that the vibration time
and overshoot of each agent output are reduced by multi-model adaptive control. The
multi-model adaptive control algorithm is effective in improving the control performance
when compared with the normal projection algorithm, based on the simulation results.
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Figure 2. Based on the projection algorithm each agent’s outputs and desired signal.

Figure 3. Based on multi-model method parameter true value and estimates.

Figure 4. Based on multi-model method each agent’s outputs and desired signal.

8. Conclusions

We investigated a class of distributed multi-model adaptive tracking control for
discrete-time coupled MASs. The model of each agent involves non-linearly parameterized
dynamics with an unknown parameter and can interact with its neighbors’ information.

To identify the system, we adopted the multi-model method.
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Each optimal parameter estimate is chosen from one switching set of its own param-
eter estimates, which contains the parameter estimate that is obtained by the projection
algorithm. Under the multi-model estimate update laws and based on the certainty equiva-
lence principle, the leader agent’s control law is designed using the given desired reference
signal, and each follower agent’s local control law is designed relying on the neighbors’
history information. With the distributed adaptive control laws, the desired reference signal
is tracked by the hidden leader agent, which is followed by the follower agents. Finally,
all the agents track the desired reference signal, and the whole system achieves strong
synchronization in the sense of the mean.

Finally, simulations show that the adaptive control method with a switching set of
the parameter estimates is effective in improving the control performance. The adaptive
control scheme for time-varying strong coupling MASs was discussed.

It is very challenging to design the distributed laws such that the whole system
achieves strong synchronization in the sense of the mean in the face of time-varying
strong couplings.
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