Efficient Jacobian Computations for Complex ECT/EIT Imaging
Abstract
:1. Introduction
- Derivation of a solution approach with Green’s functions for the quasi-static field problem;
- A technique to compute the full Jacobian in one step. Unlike existing methods, the new approach requires no additional simulations;
- The formulation of the inverse problem Equation (1) to efficiently use the derived techniques.
2. Fast Numerical Techniques for Symmetric Real-Valued Problems
2.1. Fast Assembly of the Stiffness Matrix and Modified Charge Computation
2.2. Solution with Green’s Functions
2.3. Jacobian Operations
3. Green’s Function Approach for Quasi-Static Problems
3.1. Green’s Functions for the Quasi-static Formulation
3.2. Jacobian Operations for the Quasi-Static Field Problem
Jacobian Operation
4. Reconstruction Example and Computational Speed Comparison
- GN-based optimization with Jacobian computation based on AVM;
- GN-based optimization with fast Jacobian computation;
- BFGS-based optimization with fast Jacobian computation;
- BFGS-based optimization with transpose of Jacobian operation.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AVM | Adjoint Variable Method |
BFGS | Broyden–Fletcher–Goldfarb–Shanno |
EIT | Electrical impedance tomography |
ERT | Electrical resistance tomography |
ECT | Electrical capacitance tomography |
FE | Finite Element |
GN | Gauss Newton |
PDE | Partial Differential Equation |
References
- Holder, D.S. Electrical Impedance Tomography: Methods, History and Applications; Institute of Physics Publishing: Philadelphia, PA, USA, 2005. [Google Scholar]
- Scott, D.M.; McCann, H. Process Imaging For Automatic Control (Electrical and Computer Enginee); CRC Press, Inc.: Boca Raton, FL, USA, 2005. [Google Scholar]
- Neumayer, M.; Steiner, G.; Watzenig, D. Electrical Capacitance Tomography: Current sensors/algorithms and future advances. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology, Graz, Austria, 13–16 May 2012; pp. 929–934. [Google Scholar] [CrossRef]
- Jaworski, A.J.; Dyakowski, T. Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system. Meas. Sci. Technol. 2001, 12, 1109–1119. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Q.; Xue, Q.; Fan, W.; Zhang, L.; Cao, Z.; Sun, B.; Wang, H.; Yang, W. A review on image reconstruction algorithms for electrical capacitance/resistance tomography. Sens. Rev. 2016, 36, 429–445. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W. Application of electrical capacitance tomography in circulating fluidised beds—A review. Appl. Therm. Eng. 2020, 176, 115311. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W. Scale-up of an electrical capacitance tomography sensor for imaging pharmaceutical fluidized beds and validation by computational fluid dynamics. Meas. Sci. Technol. 2011, 22, 104015. [Google Scholar] [CrossRef]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2004. [Google Scholar]
- Kaipio, J.; Somersalo, E. Statistical and Computational Inverse Problems; Springer Applied Mathematical Sciences: Philadelphia, PA, USA, 2005. [Google Scholar]
- Neumayer, M.; Bretterklieber, T.; Flatscher, M.; Puttinger, S. PCA based state reduction for inverse problems using prior information. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2017, 36, 1430–1441. [Google Scholar] [CrossRef]
- Adler, A. Electrical Impedance Tomography: Methods, History and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Wang, M. Industrial Tomography: Systems and Applications, 2nd ed.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawston, UK, 2022. [Google Scholar]
- Kang, G.; Hongfei, B.; Ziyu, L.; Junfeng, G.; Lin, Y. Impedance Ice Sensor Capable of Self-Componsating Temperature Drift. In Proceedings of the 2023 IEEE 16th International Conference on Electronic Measurement and Instruments (ICEMI), Harbin, China, 9–11 August 2023; pp. 118–122. [Google Scholar] [CrossRef]
- Dean, R.N. A PCB Sensor for Detecting Icing Events. IEEE Sens. Lett. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- Zheng, D.; Li, Z.; Du, Z.; Ma, Y.; Zhang, L.; Du, C.; Li, Z.; Cui, L.; Zhang, L.; Xuan, X.; et al. Design of Capacitance and Impedance Dual-Parameters Planar Electrode Sensor for Thin Ice Detection of Aircraft Wings. IEEE Sens. J. 2022, 22, 11006–11015. [Google Scholar] [CrossRef]
- Gui, K.; Liu, J.; Ge, J.; Li, H.; Ye, L. Atmospheric icing process measurement utilizing impedance spectroscopy and thin film structure. Measurement 2022, 202, 111851. [Google Scholar] [CrossRef]
- Flatscher, M.; Neumayer, M.; Bretterklieber, T.; Moser, M.J.; Zangl, H. De-icing system with integrated ice detection and temperature sensing for meteorological devices. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Z.; Li, H. Design of high-speed ECT and ERT system. J. Phys. Conf. Ser. 2009, 147, 012035. [Google Scholar] [CrossRef]
- Maung, C.O.; Kawashima, D.; Oshima, H.; Tanaka, Y.; Yamane, Y.; Takei, M. Particle volume flow rate measurement by combination of dual electrical capacitance tomography sensor and plug flow shape model. Powder Technol. 2020, 364, 310–320. [Google Scholar] [CrossRef]
- Datta, U.; Dyakowski, T.; Mylvaganam, S. Estimation of particulate velocity components in pneumatic transport using pixel based correlation with dual plane ECT. Chem. Eng. J. 2007, 130, 87–99. [Google Scholar] [CrossRef]
- Neumayer, M.; Flatscher, M.; Bretterklieber, T. Coaxial Probe for Dielectric Measurements of Aerated Pulverized Materials. IEEE Trans. Instrum. Meas. 2019, 68, 1402–1411. [Google Scholar] [CrossRef]
- Wang, D.; Xu, M.; Marashdeh, Q.; Straiton, B.; Tong, A.; Fan, L.S. Electrical capacitance volume tomography for characterization of gas–solid slugging fluidization with Geldart group D particles under high temperatures. Ind. Eng. Chem. Res. 2018, 57, 2687–2697. [Google Scholar] [CrossRef]
- Rasel, R.K.; Chowdhury, S.M.; Marashdeh, Q.M.; Teixeira, F.L. Review of selected advances in electrical capacitance volume tomography for multiphase flow monitoring. Energies 2022, 15, 5285. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, C.; Yang, W.; Wang, C.H. Application of electrical capacitance tomography in particulate process measurement—A review. Adv. Powder Technol. 2014, 25, 174–188. [Google Scholar] [CrossRef]
- Huang, K.; Meng, S.; Guo, Q.; Ye, M.; Shen, J.; Zhang, T.; Yang, W.; Liu, Z. High-temperature electrical capacitance tomography for gas–solid fluidised beds. Meas. Sci. Technol. 2018, 29, 104002. [Google Scholar] [CrossRef]
- Yang, W.; Wang, H. Application of electrical capacitance tomography in pharmaceutical manufacturing processes. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019; pp. 1–6. [Google Scholar]
- Jiang, Y.; Soleimani, M. Capacitively Coupled Phase-based Dielectric Spectroscopy Tomography. Sci. Rep. 2018, 8, 17526. [Google Scholar] [CrossRef] [PubMed]
- Jossinet, J.; Trillaud, C. Imaging the complex impedance in electrical impedance tomography. Clin. Phys. Physiol. Meas. 1992, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Hollaus, K.; Gerstenberger, C.; Magele, C.; Hutten, H. Accurate reconstruction algorithm of the complex conductivity distribution in three dimensions. IEEE Trans. Magn. 2004, 40, 1144–1147. [Google Scholar] [CrossRef]
- Hansen, P.C. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1998. [Google Scholar]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems; Kluwer Verlag: Philadelphia, PA, USA, 2002. [Google Scholar]
- Kaipio, J.; Somersalo, E. Statistical and Computational Inverse Problems, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Fletcher, R. Practical Methods of Optimization, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1987. [Google Scholar]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Geselowitz, D.B. An Application of Electrocardiographic Lead Theory to Impedance Plethysmography. IEEE Trans. Biomed. Eng. 1971, BME-18, 38–41. [Google Scholar] [CrossRef]
- Brandstätter, B. Jacobian calculation for electrical impedance tomography based on the reciprocity principle. IEEE Trans. Magn. 2003, 39, 1309–1312. [Google Scholar] [CrossRef]
- Brančík, L. Comparative Study of Jacobian Calculation Techniques in Electrical Impedance Tomography. In Proceedings of the VI. International Workshop “Computational Problems of Electrical Engineering”, Kynżvart, Czech Republic, 13–16 September 2004; p. 101. [Google Scholar]
- Neumayer, M.; Suppan, T.; Bretterklieber, T.; Wegleiter, H.; Fox, C. Fast Numerical Techniques for FE Simulations in Electrical Capacitance Tomography. In Proceedings of the 20th International IGTE Symposium on Computational Methods in Electromagnetics and Multiphysics, Graz, Austria, 18–21 September 2022. [Google Scholar] [CrossRef]
- Young, N. An Introduction to Hilbert Space; Cambridge University Press: New York, NY, USA, 1988. [Google Scholar]
- Ern, A.; Guermond, J. Theory and Practice of Finite Elements; Applied Mathematical Sciences; Springer: New York, NY, USA, 2004. [Google Scholar]
- Gilks, W. and Richardson, S. and Spiegelhalter, D. Markov Chain Monte Carlo in Practice: Interdisciplinary Statistics; Chapman and Hall/CRC: Boca Raton, FL, USA, 1995. [Google Scholar]
- Watzenig, D.; Neumayer, M.; Fox, C. Accelerated Markov chain Monte Carlo sampling in electrical capacitance tomography. Int. J. Comput. Math. Electr. Electron. Eng. 2011, 30, 1842–1854. [Google Scholar] [CrossRef]
- Christen, J.A.; Fox, C. Markov chain Monte Carlo Using an Approximation. J. Comput. Graph. Stat. 2005, 14, 795–810. [Google Scholar] [CrossRef]
- Vogel, C.R. Computational Methods for Inverse Problemss; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2002. [Google Scholar]
- Granzow, B. A Matlab Implementation of L-BFGS-B. 2017. Available online: https://github.com/bgranzow/L-BFGS-B (accessed on 23 January 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumayer, M.; Suppan, T.; Bretterklieber, T.; Wegleiter, H.; Fox, C. Efficient Jacobian Computations for Complex ECT/EIT Imaging. Mathematics 2024, 12, 1023. https://doi.org/10.3390/math12071023
Neumayer M, Suppan T, Bretterklieber T, Wegleiter H, Fox C. Efficient Jacobian Computations for Complex ECT/EIT Imaging. Mathematics. 2024; 12(7):1023. https://doi.org/10.3390/math12071023
Chicago/Turabian StyleNeumayer, Markus, Thomas Suppan, Thomas Bretterklieber, Hannes Wegleiter, and Colin Fox. 2024. "Efficient Jacobian Computations for Complex ECT/EIT Imaging" Mathematics 12, no. 7: 1023. https://doi.org/10.3390/math12071023
APA StyleNeumayer, M., Suppan, T., Bretterklieber, T., Wegleiter, H., & Fox, C. (2024). Efficient Jacobian Computations for Complex ECT/EIT Imaging. Mathematics, 12(7), 1023. https://doi.org/10.3390/math12071023