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Abstract: The reconstruction of the spatial complex conductivity σ + jωε0εr from complex valued
impedance measurements forms the inverse problem of complex electrical impedance tomography or
complex electrical capacitance tomography. Regularized Gauß-Newton schemes have been proposed
for their solution. However, the necessary computation of the Jacobian is known to be computationally
expensive, as standard techniques such as adjoint field methods require additional simulations. In
this work, we show a more efficient way to computationally access the Jacobian matrix. In particular,
the presented techniques do not require additional simulations, making the use of the Jacobian, free
of additional computational costs.
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tomography; inverse problem
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1. Introduction

In electrical measurements, electrical impedance tomography (EIT) [1], electrical
resistance tomography (ERT) [2], and electrical capacitance tomography (ECT) [3–7] form
the most established tomographic imaging techniques. The purpose of theses imaging
techniques is to visualize the spatial distribution of the conductivity σ or the relative
permittivity εr within a region of interest (ROI) from electrical measurements. This is done
by solving an inverse problem [8–10]. The sensor effects are governed by a Laplacian-type
partial differential Equation (PDE), i.e., ∇ · (σ∇V) for EIT and ERT and ∇ · (εr∇V) for
ECT. V is the electric scalar potential.

Well-known applications of these technique include medical imaging [11] and pro-
cess tomographic measurements [12], and the application of these sensing techniques to
environmental sensing such as monitoring of natural ice accretion [13,14] has also been
proposed [15–17]. An advantage of electrical imaging systems with respect to other tomo-
graphic sensing approaches is the moderate instrumentation effort [18]. A disadvantage is
the comparatively low imaging quality, which stems from the soft-field nature of the elec-
tric fields within the sensor. Yet, despite the comparatively low imaging quality, electrical
tomography systems have seen emerging use as underlying instruments in measurement,
e.g., for flow metering of particulate matter in pneumatic conveying [19–26].

The application of EIT, ERT, or ECT requires a dominant conductive or dielectric
character of the material distribution within the ROI, i.e., it depends on the ratio σ

ωε0εr
,

where ω is the circular frequency and ε0 is the absolute permittivity. If σ
ωε0εr

≫ 1, the con-
ductivity σ is generally imaged. Otherwise, the permittivity εr is of interest. In appli-
cations where σ

ωε0εr
≈ 1 holds, it is suitable to solve the inverse problem for both quan-

tities, the conductivity σ and the relative permittivity εr. This technique is sometimes
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referred to as complex electrical impedance tomography (CEIT) [27] or complex electri-
cal capacitance tomography (CECT) [28]. The governing PDE for this problem is given
by ∇ · ((σ + jωε0εr)∇V), which is the quasi-static formulation of the Maxwell equations.
The technique must be applied when the complex conductivity (σ + jε0εr) has no dominant
dielectric or conductive character, which typically leads to the use of classical ECT [3] or
EIT [1] approaches. The joint reconstruction of εr and σ is also often considered as an
approach for material analysis schemes, making it interesting for different applications.

A common approach for the determination of the material distribution from the
measurements is given by [29]

arg min
σ,εr

||F(σ, εr)− d̃||22 + ασR(σ) + αεr R(εr). (1)

The vectors σ and εr are N × 1 vectors, which hold a discretized representation of the
material distributions of the conductivity σ and the relative permittivity εr. Throughout this
work, an underline notation denotes complex valued variables. d̃ denotes an M × 1 vector
of complex impedance measurements. F(σ, εr) denotes a simulation of the measurement
process to compute the M elements of d̃. Hence, the inverse problem consists of determining
2N real-valued parameters from M complex-valued measurements. As the inverse problem
formulated by Equation (1) is ill posed [30], a regularization is required [31,32], which we
generally denote by ασR(σ) + αεr R(εr), where α· is a regularization parameter and R(·) is a
suitable regularization function. Often Equation (1) is augmented by constraints particular
to the measurement application.

In this work, we use a finite element (FE) approach for the computation of F(σ, εr).
Here, it is common to use the FE discretization of the sensing region to create the vectors σ
and εr. Solving Equation (1) can be efficiently done using first- or second-order optimization
methods [33,34], which require the Jacobian J. The elements of J are the derivatives of
the outputs of F(σ, εr) with respect to the optimization variables. Because of the complex
valued measurements the Jacobian J is given by [29]

J =

[
ℜ(J

σ
) ℜ(J

εr
)

ℑ(J
σ
) ℑ(J

εr
)

]
(2)

where J
σ

and J
εr

denote the Jacobian of the model outputs with respect to the elements of
σ and εr, respectively. In addition to a numerical computation of the Jacobian by means
of a difference scheme, there exist several techniques such as sensitivity methods [35],
or adjoint field methods [36] to compute J. From the computational point of view, these
methods require an additional simulation with the effort equivalent to the evaluation
of F(σ, εr), i.e., another FE equation system has to be solved [37]. This makes the evaluation
of the Jacobian computationally costly, which is a crucial factor for the fast solution of
inverse problems.

In a previous study [38], our research group showed a set of fast numerical techniques
for the solution of the inverse problem of ECT. This includes a fast technique for the
assembly of the FE stiffness matrix K̂ and, in particular, a set of techniques to evaluate
matrix vector products with the Jacobian or its transpose without an explicit evaluation
of J. No additional computations are required. These so-called Jacobian operations are
enabled by a simulation approach using Green’s functions [39], which is possible due to
the symmetry of the real-valued FE stiffness matrix. However, for the complex-valued FE
stiffness matrix K̂ of the computation F(σ, εr), a Green’s function approach is not directly
applicable, as the matrix would be required to be Hermitian [39].

In this work, an extension of the fast numerical techniques for inverse problems
with an underlying quasi-static electrical field problem is presented. The novelty and
contributions of the work are given by the following:

• Derivation of a solution approach with Green’s functions for the quasi-static field
problem;
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• A technique to compute the full Jacobian in one step. Unlike existing methods, the
new approach requires no additional simulations;

• The formulation of the inverse problem Equation (1) to efficiently use the derived
techniques.

A strength of the work lies in the consistent use of linear algebra techniques throughout
all derivations, as well as for the representation of the final computations. This allows
researchers to utilize a direct implementation within their individual code. In addition, a
MATLAB-based implementation of the methods is provided via a GitHub repository.

The rest of this paper is structured as follows. Section 2 presents a recap of the
methods presented in [38], including an introduction to the considered sensor setup. In
Section 3, the application of the Green’s function approach to inverse problems with an
underlying quasi-static electrical field problem is shown. Here, the required computations
with respect to the real-valued counterpart presented in [38] are derived. Afterward,
the computational steps to solve inverse problems with the new methods are discussed.
Section 4 presents an example and computational speed comparisons of the methods with
respect to a reference solution.

2. Fast Numerical Techniques for Symmetric Real-Valued Problems

This section contains a summary of the fast numerical techniques presented in [38].
While the techniques were developed for the inverse problem of ECT, most aspects can be
related to the complex-valued problems treated in this work.

Figure 1 depicts the scheme of an ECT sensor as it is used in industrial process
tomography. The sensor is assembled around a non-conductive pipe. The Nelec sensing
electrodes are mounted on the outside of the pipe and the whole assembly is shielded by a
screen. The domain inside the shield is denoted as Ω. The shield forms the boundary ∂Ω.
The measurements are given by the capacitances between the electrodes, which depend on
the material distribution inside the pipe. This domain is denoted as ΩROI of the sensor.

Figure 1. Scheme of a tomographic sensor for process tomography.

The simulation model for ECT is denoted by F(εr). It comprises the solution of the
PDE ∇ · (εr∇V) = 0. The boundary conditions on the electrodes and on the screen are of
the Dirichlet type. The potential of one electrode is set to V = V0, while the potentials for
all other electrodes and the screen are set to V = 0. Hence, the PDE has to be solved Nelec
times. Using the FE method, this results in the FE equation system

K̂(εr)V = R (3)

Here, K̂(εr) is the sparse symmetric and real-valued NNode × NNode FE stiffness matrix.
NNode is the number of nodes of the FE mesh. The hat symbol indicates the incorporation
of the boundary conditions. In this work, the technique of keeping the essential nodes is
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used [40]. εr is an N × 1 vector holding the permittivity values for the finite elements in
the ROI as depicted in Figure 1. The matrix R is of the dimension NNode × Nelec and holds
the boundary conditions for the electrode excitation patterns of the measurements. V is
the corresponding solution vector holding the nodal potentials. Hence, V is of the same
dimension as R.

After solving Equation (3) for V , the coupling capacitances between the electrodes are
computed by the integration of the displacement flux for each electrode. The fluxes are
then normalized by V0, leading to the capacitances. Following [38], the normalization by
V0 is skipped, which means that the charges on the electrodes are computed. Using the FE
discretization, these computations can be performed by

Q = MV (4)

where M is a matrix of dimension Nelec × NNode and Q is an Nelec × Nelec matrix. For
each excitation, the charges for each electrode are held in the columns of the matrix Q,
i.e., Q = [qi,j], where j denotes the electrode where the excitation is applied and i is the
electrode where the flux is integrated. The M measurements are taken from the elements
of Q.

In the following, the main computational results of [38] are summarized.

2.1. Fast Assembly of the Stiffness Matrix and Modified Charge Computation

The assembly of K̂(εr) is a well-known bottleneck within FE simulations. To overcome
this, the assembly is carried out by

K̂(εr) = K̂ini +
p−1

∑
i=1

Âidiag(εr)ÂT
i (5)

Here, K̂ini holds the constant part of the matrix K̂(εr), including the incorporation of
the boundary conditions. p is the order of the finite elements. The columns of the NNode ×
N matrices Âi are formed from the eigenvectors of the p × p FE element matrices and their
eigenvalues. As the FE element matrices are rank deficient, only p − 1 matrices Âi are
required. The entries within the columns of Âi are arranged by means of the global node
number. Hence, the matrices Âi are sparse matrices.

For the computation of Q, Equation (4) is split into

Q = QΩ̄ + M∂ΩROI
V ∂ΩROI

(6)

Here, Q is evaluated from the potential on V ∂ΩROI
, which is the potential on the

boundary of the ROI. QΩ̄ represents the charges for the domain Ω̄ = Ω − ΩROI.
The initial setup costs for the proposed technique require an eigenvector decomposi-

tion of the FE element matrices for the assembly of the matrices Âi and the computation
of QΩ̄ and M∂ΩROI

. Yet, as discussed in [38], the benefit of the stiffness matrix assem-
bly technique following Equation (5) is given by the superior speedup with respect to
other techniques.

2.2. Solution with Green’s Functions

Instead of solving Equation (3) for V , the equation system

K̂(εr)GQ = E∂ΩROI
MT

∂ΩROI
= RQ (7)

is solved for GQ, which are referred to as Green’s functions for Q. The matrix E∂ΩROI
holds

the identity vectors for the nodes on ∂ΩROI. By multiplication with MT
∂ΩROI

, Equation (7)



Mathematics 2024, 12, 1023 5 of 12

has the same dimensions as the original FE equation system given by Equation (3). Given
GQ, Equation (6) can be replaced by

Q = QΩ̄ + GT
QR (8)

to compute the charges.

2.3. Jacobian Operations

The solution by Green’s functions is possible due to the symmetry of the FE stiffness
matrix K̂(εr). Yet, Green’s functions can be used to replace the inverse of K̂(εr) [38,39]. For the
presented inverse problem with the simulation model F(εr), this allows the derivation of
the Jacobian operation as

J∆εr =̂ ∆Q = GT
Q

[
p−1

∑
i=1

Âidiag(∆εr)ÂT
i

]
GQ (9)

and the transpose of the Jacobian operation as

JT∆q =

(
p−1

∑
i=1

(
GT

Q Âi

)T
⊙
(
[∆Q]GT

Q Âi

))
. (10)

Equation (9) allows the computation of the matrix vector product J∆εr without an
explicit evaluation of the Jacobian J. The evaluation of J∆εr provides a local linear ap-
proximation model for F(εr). An application for the Jacobian operation are Markov Chain
Monte Carlo (MCMC) techniques [41–43].

In the transpose of the Jacobian operation provided by Equation (10), ⊙ denotes a
row- and column-wise multiplication, and the matrix ∆Q is assembled from the residual
vector F(εr)− d̃. The transpose of the Jacobian operation provides the local gradient for the
objective function ||F(εr)− d̃||22. Hence, it is essential for the solution of inverse problems
as formulated by Equation (1).

3. Green’s Function Approach for Quasi-Static Problems

In this section, the extension of the techniques presented in Section 2.1 for quasi-static
problems is shown. The governing PDE in the sensor is given by ∇ · ((σ + jωε0εr∇V) = 0.
The inverse problem aims for the combined reconstruction of the conductivity σ and the
relative permittivity εr.

With the FE method, the computations in F(σ, εr) are given by

K̂(σ, εr)V = R (11)

Q = QΩ̄ + M∂ΩROI
V ∂ΩROI

(12)

Here, the underline notation expresses the complex-valued nature of the terms. In the
following, we skip the input arguments for the FE stiffness matrix K̂(σ, εr) for better
readability. For complex-valued and Hermitian matrices K̂h a Green’s function approach
for the rows Y of the matrix V can be applied by

K̂hG = EY (13)

VY = GH R. (14)

Here, EY is the matrix holding the identity vectors for the elements held in Y , and GH

denotes the Hermitian of G. However, the FE modeling approach generally leads to non-
Hermitian matrices, i.e., K̂ = K̂T holds. Thus, the Green’s function approach can formally
not be applied [39].
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3.1. Green’s Functions for the Quasi-Static Formulation

To apply a Green’s function approach, we left-multiply Equation (11) by K̂H . This
gives

K̂HK̂V = K̂H R. (15)

As the matrix K̂HK̂ is real-valued and symmetric, a Green’s function approach can be
applied as

K̂HK̂G = EY (16)

to compute ṼY by VY = GTK̂H R.

To analyze this expression, G is replaced by the solution of Equation (16), which gives

VY =

((
K̂HK̂

)−1
EY

)T
K̂H R (17)

=
(

K̂−1K̂−HEY

)T
K̂H R. (18)

This gives

VY = ET
Y K̂−1K̂−HK̂H R (19)

= ET
Y K̂−1R (20)

=
(

K̂−TEY
)T

R. (21)

From Equation (13), it can be seen that K̂−TEY corresponds to the Green’s functions G,
as K̂ = K̂T holds. Thus, a Green’s function approach can be applied for non-Hermitian
matrices by

K̂G = EY (22)

VY = GT R. (23)

Given this result, all of the presented techniques addressed in Section 2.1 can be used,
by applying the transpose for the Green’s functions. The computations for F(σ, εr) are,
therefore, given by

K̂(σ, εr)GQ = E∂ΩROI
MT

∂ΩROI
= RQ (24)

and
Q = QΩ̄ + GT

QR (25)

to compute the measurements.

3.2. Jacobian Operations for the Quasi-Static Field Problem

In the previous section, the applicability of a Green’s function approach for quasi-static
field problems was derived. This enables the use of Jacobian operations to speed up the
solution of Equation (1). However, this still requires some modifications in the formulation
of the problem. Throughout the remaining part of this work, the following notation is used.
Vectors marked with an underline are complex-valued vectors, e.g., v = Re(v) + jIm(v).
Their real-valued counterparts are denoted without the underline and formed by v =[

Re(v)T Im(v)T ]T .
While the inverse problem formulated by Equation (1) maintains the vectors σ and εr

as optimization variables, in this work the complex-valued vector x = σ + jωε0εr is used.
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Hence, the real part of x represents the distribution of σ and the imaginary part
represents the distribution of ωε0εr.

Hence, the inverse problem can be formulated as

x̂ = arg min
x

||F(x)− d̃||22 + α||Lx||22 (26)

s.t. xLB ⩽ x ⩽ xUB

where a single Tikhonov-type [44] regularization is used. As the real and the imaginary part
of x are of the same magnitude, a joint regularization with a single regularization parameter
can be applied. Furthermore, the inverse problem is augmented by boxed constraints.

For a first-order optimization scheme, the gradient of the objective function in
Equation (26) is required, which is given by

g = 2JT(F(x)− d̃
)
+ 2αLT Lx (27)

The product of gm = JT(F(x)− d̃
)

can now be evaluated using the transpose of the
Jacobian operation

g
m
=

(
p−1

∑
i=1

(
GT

Q Âi

)T
⊙
(
[∆Q]GT

Q Âi

))
(28)

where g
m

is the complex-valued representation of gm. The matrix ∆Q is formed from the
complex-valued vector ∆q = F(x)− d̃. Thus, the gradient g in Equation (27) can be directly
evaluated from the solution of F(σ, εr), which gives the Green’s functions GQ.

For a second-order optimization scheme, the Hessian matrix

G = 2JT J + 2αLT L (29)

has to be computed, which requires an explicit evaluation of the Jacobian J. Using
Equation (28), the complex-valued Jacobian J can be assembled in a sequential way by
setting the elements in ∆Q to 1. The real-valued Jacobian J is then given by

J =

[
ℜ(J) ℑ(J)
ℜ(jJ) ℑ(jJ)

]
(30)

This procedure requires M evaluations of Equation (28). However, by using MAT-
LAB’s vector indexing scheme, the matrix J can be constructed in one step using
Equation (28). To access this, the matrix 1 Nelec + 1 · · · Nelec · (Nelec − 1) + 1

...
...

...
Nelec 2Nelec · · · N2

elec


is used, which shows the numbering scheme of the elements held in the matrix Q, or Q,
respectively. The column vector I now holds the column-wise sequence of the indices held
in the matrix for the M measurements. The vector J is of the same dimension and holds the
corresponding column numbers for each element of I . By defining the matrix T i = GT

Q Âi,
the Jacobian J can be evaluated by

J =
p−1

∑
i=1

T i(I , :)⊙ T i(J , :) (31)

where (I , :) and (J , :) express MATLAB’s matrix indexing scheme. We refer to this tech-
nique as fast Jacobian. Note that the matrix J is stored as a sparse matrix. For the evaluation
of Equation (30), it is suitable to create full matrices, since the evaluation of Equation (29)



Mathematics 2024, 12, 1023 8 of 12

is faster.

Jacobian Operation

While it is not used for the solution of the inverse problem stated by Equation (26),
the Jacobian operation can also be applied to the quasi-static problem. It is given by

∆Q = GT
Q

[
p−1

∑
i=1

Âidiag(∆x)ÂT
i

]
GQ. (32)

∆x presents the variation for the vector x, for which the Green’s functions GQ have been
computed. ∆Q holds the variation due to ∆x in matrix form.

4. Reconstruction Example and Computational Speed Comparison

In this section, a numerical study of the proposed methods is presented. The focus of
the analysis lies on the comparison of the computational speed improvement. Therefore, a
first-order method based on BFGS and a second-order Gauss Newton (GN) method are
used to solve the inverse problem formulated by Equation (26). As a reference technique for
the computation of the Jacobian, the technique presented in [36] is used, which is referred
to as the adjoint variable method (AVM).

The following computations are implemented:

1. GN-based optimization with Jacobian computation based on AVM;
2. GN-based optimization with fast Jacobian computation;
3. BFGS-based optimization with fast Jacobian computation;
4. BFGS-based optimization with transpose of Jacobian operation.

For the GN-based techniques, MATLAB’s fmincon is used. In combination with the
Jacobian computation using the AVM method, this technique provides the established
reference technique. For the BFGS-based techniques, we used a MATLAB implementation
provided by [45]. The simulation study is carried out for a sensor as depicted in Figure 1
with Nelec = 16 electrodes. The ROI for this example contains N = 711 finite elements. Since
the study focuses on the computational speed, the same simulation model is used for both
the data generation and the image reconstruction. For the regularization, a second-order
smoothness matrix is used for the real part and the imaginary part of x. The measurement
frequency is set to 10 MHz. Box constraints with 0 Sm−1 ≤ σ ≤ 1 Sm−1 and 1 ≤ εr ≤ 20
are applied to all of the four implementations. The MATLAB code is provided under the
link given at the end of the paper.

Figures 2 and 3 show two exemplary image reconstruction results using GN-based
techniques, which illustrate the functionality of the proposed approach. The figures show
the true material distribution as well as the corresponding reconstruction results. In the first
reconstruction experiment, a layer of higher conductivity and higher relative permittivity
is placed at the lower half of the pipe. The true material distributions also show the FE
discretization. In the reconstruction results, the effect of the prior smoothing is visible. Yet,
both reconstruction results provide a meaningful representation of the true distribution.
Similar results are obtained for the second reconstruction experiment depicted in Figure 3,
where a circular inclusion in the center of the pipe is studied. The regularization parameter
was determined based on an L-curve evaluation as depicted in Figure 4.

Figure 5 shows the convergence behavior of the different GN- and BFGS-based tech-
niques. The results have been computed for the material distribution presented in Figure 2.
The two GN approaches and the two BFGS approaches show identical convergence be-
havior. The four methods lead to numerically equivalent reconstruction results, i.e., the
differences are in the order of magnitude of numerical rounding errors. For the GN-based
techniques, a faster convergence is achieved, which is due to the incorporation of the
Hessian matrix. The BFGS algorithm iteratively approximates the inverse Hessian [33],
which leads to a slightly slower convergence.
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Figure 2. Reconstruction example 1 .

Figure 3. Reconstruction example 2.
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Figure 4. L-curve for the determination of the regularization parameter α.

While the different implementations lead to the same numerical values, the different
computational methods for the Jacobian lead to significant differences in the computation
times. Figure 6 shows a timing comparison for the four different methods. For the first
three methods, where the Jacobian J is explicitly formed, the first iteration lasts longer due
to the initial storage acquisition. The benefit of the fast Jacobian technique with respect to
the reference AVM method is evident, as can be seen by the comparison between the first
and the second method.

The third method using the BFGS approach is slightly faster than the second, GN-
based, method. From profiling, we found the time difference between the second and
the third method to be caused by the evaluation of JT J in Equation (29). The fourth
method does not require an explicit evaluation of the Jacobian, as the gradient stated
by Equation (27) is computed by the transpose of Jacobian operation. The benefit of the
method is obvious with respect to the computation time. Another positive aspect is given
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by the reduced storage requirements, as the fourth algorithm does not require the storage
of J. The results presented in this section highlight the benefit of the proposed numerical
methods. The presented study was conducted for N = 711. Tests with different values of
N did not show any limitations to the approach.
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2: GN method with fmincon and fast Jacobian

3: BFGS with fast Jacobian

4: BFGS with Jacobian operation

Figure 5. Convergence behavior of the different GN and BFGS implementations.
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Figure 6. Timing comparison between different optimization schemes and different techniques
for the evaluation of the Jacobian. The first technique (GN method with fmincon and AVM) uses
the established AVM technique for the computation of the Jacobian. The other techniques use the
proposed techniques for fast computations with the Jacobian.

5. Conclusions

In this work, the application of a Green’s function approach for FE simulations in
quasi-static field problems has been presented. The modification with respect to real-valued
problems was derived. Based on the analysis, the application to other problems should
also be possible. Using the Green’s functions, efficient methods for computations using the
Jacobian are derived. This includes Jacobian and transpose of Jacobian operations, as well as
a technique to assemble the whole Jacobian in one step. A benefit of all the derived methods
is the use of linear algebra expressions, which allow a convenient re-implementation by
researchers and engineers in the field.
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