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Abstract: The non-transparency of artificial intelligence (AI) systems, particularly in deep learning
(DL), poses significant challenges to their comprehensibility and trustworthiness. This study aims
to enhance the explainability of DL models through visual analytics (VA) and human-in-the-loop
(HITL) principles, making these systems more transparent and understandable to end users. In this
work, we propose a novel approach that utilizes a transition matrix to interpret results from DL
models through more comprehensible machine learning (ML) models. The methodology involves
constructing a transition matrix between the feature spaces of DL and ML models as formal and
mental models, respectively, improving the explainability for classification tasks. We validated our
approach with computational experiments on the MNIST, FNC-1, and Iris datasets using a qualitative
and quantitative comparison criterion, that is, how different the results obtained by our approach
are from the ground truth of the training and testing samples. The proposed approach significantly
enhanced model clarity and understanding in the MNIST dataset, with SSIM and PSNR values of
0.697 and 17.94, respectively, showcasing high-fidelity reconstructions. Moreover, achieving an F1m
score of 77.76% and a weighted accuracy of 89.38%, our approach proved its effectiveness in stance
detection with the FNC-1 dataset, complemented by its ability to explain key textual nuances. For
the Iris dataset, the separating hyperplane constructed based on the proposed approach allowed
for enhancing classification accuracy. Overall, using VA, HITL principles, and a transition matrix,
our approach significantly improves the explainability of DL models without compromising their
performance, marking a step forward in developing more transparent and trustworthy AI systems.

Keywords: explainable artificial intelligence (XAI); deep learning; machine learning; visual analytics;
human-in-the-loop; model explainability; transition matrix

MSC: 68T20

1. Introduction

In this research paper, we explore the critical challenges posed by the non-transparent
nature of artificial intelligence (AI) systems, particularly in the domain of deep learning
(DL), and the imperative for explainable artificial intelligence (XAI) to make these systems
comprehensible to humans [1]. The concept of “black box” AI highlights systems whose
internal decision-making processes are not transparent, leaving developers and end users
alike unable to understand or trust their operations. This lack of transparency directly
contrasts with “white box” models [2], which are designed to be interpretable by experts,
thus ensuring a level of trustworthiness and comprehension in their outcomes.

XAI emerges as a solution to the “black box” problem by facilitating systems that can
articulate their decision-making process in human-understandable terms [3]. This is not
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just a technical enhancement but a fulfillment of a societal right—the right to explanations
that are clear and justifiable, especially when decisions have significant impacts [4,5]. The
legal and ethical discourse around this underscores its importance in an increasingly digital
society that relies on AI and machine learning (ML) technologies [6–8].

Our research employs the concept of mental models (MMs) and formal models (FMs)
to bridge the gap between human understanding and AI decision-making processes. MMs
represent the intuitive understanding humans have of the world, influencing our cognition
and decision-making [9]. FMs, however, are derived from AI methods and are often not
intuitively understandable to humans [10]. By transitioning from FM to MM, XAI aims to
correct misconceptions and enhance user performance, aligning with the social right to an
explanation [11].

In this study, we also delve into the principles of transparency, interpretation, and
explanation in XAI methods, highlighting the need for transparent processes [3], inter-
pretable models [12], and clear explanations of decisions [13]. The challenges in achieving
this with DL methods, which often surpass traditional ML in performance but lack ex-
plainability, are acknowledged [14,15]. Explanation is considered a key aspect, though its
term is not exhaustively defined [13]. It is believed that XAI can be considered as “a set
of characteristics of the interpreted domain that contributed to the decision-making in a
specific case” [16] (for example, regression [17] or classification [18]). Methods that meet
these criteria are considered capable of providing a rationale for the decisions made, con-
trol, and thus their verification, improvement, and learning of new facts [19]. This brings
to light concerns around biases and the ethical implications encapsulated in the FACTS
framework—Fairness, Accountability, Confidentiality, Transparency, and Safety [20].

To address the above-mentioned challenges, visual analytics (VA) and the human-in-
the-loop (HITL) principle are employed. VA leverages visual representations to simplify
complex data analyses, revealing patterns and trends [21,22]. Visualizing data in the form
of graphs, charts, and maps helps to identify patterns and contributes to the development
of effective ML and DL models. Visualization aids in uncovering patterns, trends, and cor-
relations that might otherwise go unnoticed. Notably, multidimensional scaling (MDS) [23]
is considered an effective VA tool, allowing for the visualization of multidimensional data
based on their similarity, presenting information about the distances between objects as
points in an abstract space. Furthermore, the concept of HITL is used to denote human
participation in the process of aiding the computer to make accurate decisions during
model development [24]. HITL enhances the ML process compared to random sampling
by selecting the most important data to achieve the best results [25,26].

In the dynamic landscape of DL, the rise of complex models requires utilizing methods
that not only make accurate predictions but also explain how these models arrive at those
predictions. This need for explainability comes from having to understand the reasoning
behind a model’s decisions, which is critical in areas where explaining the model’s judg-
ments is necessary to validate its usefulness and trustworthiness, e.g., healthcare, media,
legal field, etc. In this regard, our research employs VA and HITL approaches to improve
the explainability of DL models. We focus on exploring different representations of the
complex DL models, each capturing distinct features or characteristics, to explain how they
(as FMs) make predictions.

Our study is based on the hypothesis that a single dataset could lead to multiple
interpretable models (or feature sets), each depicted by distinct feature matrices. Within
our research, we posit that the number of rows in these matrices should correspond to
the number of samples in the training set, which lies between the number of classes in
the sample and the total number of training samples. We also suggest that these different
representations can be connected through a method that describes the transformations
between them. For our purposes, we analyze both comprehensive holistic models as well
as dimensionally reduced versions. Specifically, we delve into scenarios like comparing
a DL model with its ML counterpart or connecting a multidimensional data model with
a reduced-dimensional feature space model. A key challenge this study addresses is the
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difficulty in grasping the physical significance of features in formal DL models, which often
remain elusive to human understanding.

Overall, the goal of this study is to improve DL explainability through VA and HITL.
To achieve this goal, we propose a novel approach that involves constructing a transition
matrix to enable seamless mapping between two distinct feature spaces: the formal models
employed in DL and the mental models presented as an ML model that resonates more
intuitively with human cognition. The key contributions of this research include:

• A novel method that employs a transition matrix to transform the outcomes of a formal
DL model into a format that is more intuitive for human understanding, i.e., a mental
model, by leveraging an ML model with features that are more easily interpreted by
humans.

• An improved method for obtaining a separating hyperplane for classification tasks
using a transition matrix based on VA and the HITL principle.

The ability of the proposed methods to solve the specified tasks is demonstrated
through numerical examples and validated with benchmark datasets. It should be also
clarified that the possibility of empirical validation, i.e., evaluation of the effectiveness of
the proposed approach compared to analogs, depends on specific subject areas and tasks.
We believe that the quality of any interpretation is a subjective indicator and depends on
the end user’s ability to understand the decisions made by DL models. If the proposed
interpretation method allows an end user to trust the decision made by the DL model, this,
in our opinion, is sufficient for assessing the quality of the proposed approach.

The structure of the article is as follows. Section 2 “Basic Definitions and Concepts”
presents the main theoretical definitions and concepts used in the article. Section 3 “Materi-
als and Methods” contains a theoretical description of the proposed methods for explaining
results obtained by the DL model through the ML model and obtaining coefficients of the
hyperplane for points belonging to this hyperplane. The theoretical material is illustrated
with numerical examples. In Section 4 “Results and Discussion,” the ability of the proposed
methods to solve the set tasks is experimentally demonstrated using benchmark datasets.
Section 4 also contains limitations of the proposed methods. Lastly, Section 5 presents the
main conclusions of the study and suggests potential areas for future research.

2. Basic Definitions and Concepts

Let us consider the feature matrix A of dimension m × k, where m is the number of
vectors obtained from the training set, k is the dimensionality (number of features) of the
first feature set:

m




a1

1 a1
2 · · · a1

k
a2

1 a2
2 · · · a2

k
· · · · · · · · · · · ·
am

1 am
2 · · · am

k


︸ ︷︷ ︸

k

= A, (1)

and the matrix B (obtained from the same training set) of dimension m × l, where l is the
dimensionality (number of features) of another feature space:

m




b1

1 b1
2 · · · b1

l
b2

1 b2
2 · · · b2

l
· · · · · · · · · · · ·
bm

1 bm
2 · · · bm

l


︸ ︷︷ ︸

l

= B. (2)

In general, k may equal, be less than, or be greater than l.
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In practical tasks modeled in this way (there are two representations for the same
objects at different sets of features), it is often necessary to express the feature vectors of
one multidimensional space through their corresponding vectors from another feature
space. That is, it is proposed to find such a matrix T that the following equation is satisfied:

B = TA, (3)

where T is the transition matrix between matrices A (1) and B (2).
Note that in linear algebra, Formula (3) is a usual change of basis in vector space and,

when the condition m = k = l is met, finding T is trivial, i.e.,

T = BA−1. (4)

For the case being considered, where m ̸= k ̸= l, the inverse matrix does not exist, and
thus, it is proposed to apply the generalization of the inverse matrix—the pseudoinverse
matrix [27]. That is, it is proposed to find such a matrix T (4) of dimension k × l, that
ensures the transition between matrices A (1) and B (2):

AT ≈ B. (5)

Note that the approximation in Formula (5) is established concerning the Euclidean
norm in the feature space of matrices.

Then, it is proposed to find T in the following way:

T ≈ A+B, (6)

where A+ is the pseudoinverse matrix [27].
For the special case where (AT A) is of full rank, meaning the columns of matrix A are

linearly independent (rank(A) = k), then A+ is defined as follows:

A+ =
(

AT A
)−1

AT , (7)

otherwise, for the full rank of (AAT), meaning if the rows of matrix A are linearly indepen-
dent (rank(A) = m), then

A+ = AT
(

AAT
)−1

, (8)

In practice, if the specified conditions are met, the mentioned methods formalized
with Formulas (7) and (8) yield the best results. To decide on the use of Formula (7), it is
sufficient to check that det

(
AT A

)
̸= 0, or similarly for Formula (8)—det

(
AAT) ̸= 0.

In cases where it is not possible to obtain A+ as outlined in Formulas (7) or (8),
meaning det

(
AT A

)
= 0, det

(
AAT) = 0 or they are close to 0, it is proposed to determine

A+ using SVD decomposition [28]:

A+ = VΣ+UT , (9)

where A = UΣVT is the singular decomposition of matrix A, matrix Σ+ is formed by
transposing matrix Σ and replacing all its non-zero diagonal elements with their reciprocals:

Σ+ =

[
D+

...0
]

, m ≥ k;

Σ+ =

D+

· · ·
0

, m < k;

D+ = diag
(
σ+

1 , σ+
2 , σ+

3 , . . . , σ+
t
)
, σ+

i =

{
1

σ+
i

, σi > 0;

0, σi = 0.
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Note that besides Formulas (7)–(9), there are other methods for determining A+ (A = BC
decomposition, QR decomposition, decomposition using minors, etc.), which can be used
if necessary.

Therefore, for any feature row vector a∗j , j = 1, k, obtained from the model defined

by matrix A, the corresponding feature row vector b∗i , i = 1, l, defined by the model with
matrix B, is determined using the obtained transition matrix T as follows:

b∗i = Ta∗j , i = 1, k, j = 1, l. (10)

In the next section, another application of the transition matrix T is proposed, specif-
ically for obtaining the coefficients of the hyperplane from points that belong to (or are
close to) this hyperplane. Here, we present the prerequisites for this, namely defining the
coefficients of the hyperplane.

In some VA tasks, particularly when applying the principle of HITL, there arises a
need to determine the coefficients of the hyperplane from points that belong to or (more
often) are near this hyperplane [29]. The determination of the hyperplane coefficients is
proposed in a manner analogous to work [30].

For a set of points x(j), j = 1, m, which are located on a corresponding hyperplane, to
determine the coefficients wi and b of the equation of this hyperplane, a system of linear
algebraic equations is formed [31]:

w1x1(1) + w2x2 (1) + . . . + wmxm (1) + b = 0;
w1x1(2) + w2x2 (2) + . . . + wmxm (2) + b = 0;
. . .
w1x1(m) + w2x2(m) + . . . + wmxm (m) + b = 0.

(11)

The given homogeneous system (11) has an infinite number of solutions, but they
are all proportional, and one of these solutions is proposed to be obtained by the method
described below.

The system (11) is presented in the form of the equation of a hyperplane [32], which
passes through m points:

det


x1 x2 · · · xm 1

x1(1) x2(1) · · · xm(1) 1
x1(2) x2(2) · · · xm(2) 1

...
... · · ·

... 1
x1(m) x2(m) · · · xm(m) 1

 = 0, (12)

and Formula (12) is decomposed using the first row:

w1︷ ︸︸ ︷
(
−11+1

)
det


x2(1) x3(1) · · · xm(1) 1
x2(2) x3(2) · · · xm(2) 1

...
... · · ·

...
...

x2(m) x3(m) · · · xm(m) 1

x1+

+

w2︷ ︸︸ ︷
(
−11+2

)
det


x1(1) x3(1) · · · xm(1) 1
x1(2) x3(2) · · · xm(2) 1

...
... · · ·

...
...

x1(m) x3(m) · · · xm(m) 1

x2 + · · ·+
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+

wk︷ ︸︸ ︷
(
−11+k

)
det


x1(1) · · · xk−1(1) xk+1(1) · · · xm(1) 1
x1(2) · · · xk−1(2) xk+1(2) · · · xm(2) 1

... · · ·
...

... · · ·
...

...
x1(m) · · · xk−1(m) xk+1(m) · · · xm(m) 1

xk + · · ·+ (13)

wm︷ ︸︸ ︷
(
−11+m

)
det


x1(1) x2(1) · · · xm−1(1) 1
x1(2) x2(2) · · · xm−1(2) 1

...
... · · ·

...
...

x1(m) x2(m) · · · xm−1(m) 1

xm+

+

b︷ ︸︸ ︷
(
−12+m

)
det


x1(1) x2(1) · · · xm(1)
x1(2) x2(2) · · · xm(2)

...
... · · ·

...
x1(m) x2(m) · · · xm(m)

.

Considering the characteristics of the data used, the method of determining the
coefficients does not always yield a positive result (det(∗) = 0). In such cases, it is
proposed to obtain the coefficients wi and b by solving an optimization problem using an
evolutionary algorithm:

argmin
wi ,b∈[−1;1]

(Wx − b) = 0. (14)

3. Materials and Methods
3.1. Interpretation of Results Obtained by DL Models through ML Models

In this work, we propose a novel XAI approach to the field of DL in general and
validate it through two DL models, namely, convolutional neural network (CNN) and
robustly optimized bidirectional encoder representations from transformers (RoBERTa).
The authors understand DL here as a subset of the ML field based on artificial neural
networks with feature learning. We put in the adjective “deep” the possibility of using
multiple layers in a deep neural network (DNN). Within the proposed approach, the input
information is the penultimate layer of the multilayer neural network. Such a layer can
be extracted from a trained model of any type of neural network, such as convolutions,
transformers, recurrent networks, autoencoders, etc.

3.1.1. Problem Statement and Proposed Solution Method

The rapid development of DL models based on various architectures, achieving results
with DNNs for the same tasks (datasets) that are better than those obtained with ML
models, on one hand, and the understandable explainability of results by ML models for
humans, has led to a situation where the task of explaining results obtained by DL through
ML models becomes highly relevant.

Let us consider a class of tasks where the input data are images, signals, etc., and
the output information is the classification of these data into classes. Let us also assume
that solutions to these tasks exist both through DL and ML means (for the same datasets).
That is, we apply two comparable models for the same dataset. Here, we also consider the
DL model as an FM, and the ML model as a MM. The side-by-side layout presented in
Figure 1 serves to compare the feature extraction methodologies of the DL and ML models
in capturing the informative attributes of the images.
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Figure 1. The process of feature extraction from a set of input data (first column) using two distinct
computational models. The second column, labeled “Formal model”, shows the feature vectors ex-
tracted by a DL model, denoted by aj

i , where i indexes the feature and j—the image. The third column,

labeled “Mental model”, depicts the feature vectors extracted by an ML model, indicated by bj
i . Each

row corresponds to a single image processed by both models, highlighting the different dimensions k
and l of the feature space represented by each model.

The approach described next correlates in a way with approximation, that is, describing
one function (even if presented in a tabular form) in terms of another function (possibly also
in tabular form). In this work, we propose to use a transition matrix between two models
of characteristic features (presented as matrices) for the same set of input data as such a
function and provide a mechanism for determining this transition matrix.

The proposed approach allows for mapping a vector composed of FM features (in the
sense that the features are not understandable to an end user) into a new feature vector,
whose features are obtained from MM (“white box” features that are understandable to an
end user), serving as an interpretation (approximation) of the problem’s solution. Here,
MM is a space consisting of feature vectors—l-dimensional vectors of numerical features
that represent a certain object. In our notation, FM is represented by matrix A (1), obtained
from the DL model, and MM—by matrix B (2). The feature vector of FM, a k-dimensional
vector of numerical features, could be, for example, a vector composed of the weight values
of neurons from the penultimate layer of a DNN.

The task of explaining the results obtained by the DL model is proposed to be achieved
through the transition matrix T (4) and transformation (10). This transition allows for
obtaining results in MM features, which are understandable to an end user. The proposed
method for obtaining the transition matrix T (4) is illustrated in Figure 2.

Below, we outline the main steps of the proposed method (Figure 2) for obtaining the
transition matrix T (4).

Input Information: From the same dataset, corresponding to each annotated sample,
matrix A is obtained as per structure (1) from the penultimate layer of a trained DNN, and
matrix B is obtained as per structure (2) from a trained ML model. Note that each row of
matrix A and the corresponding row of matrix B represents the same sample (object) from
the training subset.

Step 1: Using any VA tool designed for dimensionality reduction of the feature space
(for example, MDS), graphical representations of vectors as points on a plane [33,34] are
obtained. It must be ensured that the mutual arrangement of these points for different
models is similar (up to rotations), and the grouping of objects is formed according to the
input annotated classes.
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Step 2: The possibility of using Formulas (7), (8), or (9) for calculating A+ is explored.
Step 3: The transition matrix T is calculated using Formula (6).
Step 4: Using the obtained matrix T, it is calculated according to Formula (10) for all

vectors of the FM vector space. The vectors obtained by Formula (10) are compared with
the vectors of the MM space to ensure the validity of the obtained transition matrix T.

Output Information: The transition matrix T.
After obtaining the transition matrix T following the steps outlined above and after

obtaining the solutions from the trained DL model, we used Formula (10) to explain the
results in the form of MM.
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Next, we provide a numerical example with synthetic data, illustrating the method
steps. In the following Section 4, we show the results of experiments using the proposed
approach based on benchmark datasets.

3.1.2. Illustrative Numerical Example

To illustrate the formalism proposed above, we took fifteen vectors an
i , i = 1, k, n = 1, 15,

k = 5, from the FM vector space (15). Note that these vectors belonged to three classes.
Also, note that the features of these vectors are not understandable to humans:

Class 1 : a1 = (2.8, 1.8, − 2.8, 1.3,0.4), a2 = (2.9, − 1.9,−2.9, 1.4, 0.5),
a3 = (3, − 2, − 3, 1.5, 0.6), a4 = (3.1,−2.1,−3.1, 1.6, 0.7), a5 = (3.2,−2.2, − 3.2, 1.7, 0.8);
Class 2 : a6 = (−1.6,−2.5, 1.5, 0.2, 0.6), a7 = (−1.3,−2.7, 1.3, 0.4, 0.8),
a8 = (−1, − 3, 1.5, 0.6, 1), a9 = (−0.7,−3.2, 1.7, 0.8, 1.2), a10 = (−0.5,−3.5, 1.9, 1, 1.4);
Class 3 : a11 = (1.2,−1.2, 0.7,−0.3,−2.8), a12 = (1.1,−1.1, 0.8,−0.4,−2.9),
a13 = (1, − 1, 0.844444,−0.44444,−3), a14 = (0.9,−0.9, 0.85,−0.45,−3.1),
a15 = (0.8,−0.8, 0.9,−0.5,−3.2).

(15)
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It is noteworthy that vectors a3, a8, a13 were mutually perpendicular, i.e., a3⊥a8, a3⊥a13,
a8⊥a13. We took corresponding fifteen vectors (16) from the MM vector space (also note
that the meaning of these features is understandable to humans):

Class 1 : b1 = (2.8,−1.8,−2.8, 1.3, 0.4), b2 = (2.9,−1.9,−2.9, 1.4, 0.5),
b3 = (3, − 2, − 3, 1.5, 0.6), b4 = (3.1,−2.1,−3.1, 1.6, 0.7), b5 = (3.2,−2.2,−3.2, 1.7, 0.8);
Class 2 : b6 = (−1.6,−2.5, 1.5, 0.2, 0.6), b7 = (−1.3,−2.7, 1.3, 0.4, 0.8),
b8 = (−1, − 3, 1.5, 0.6, 1), b9 = (−0.7,−3.2, 1.7, 0.8, 1.2), b10 = (−0.5,−3.5, 1.9, 1, 1.4);
Class 3 : b11 = (1.2,−1.2, 0.7,−0.3,−2.8), b12 = (1.1,−1.1, 0.8,−0.4,−2.9),
b13 = (1, − 1, 0.844444,−0.44444,−3), b14 = (0.9,−0.9, 0.85,−0.45,−3.1),
b15 = (0.8,−0.8, 0.9,−0.5,−3.2).

(16)

Moreover, vectors b3, b8, b13 were also mutually perpendicular, i.e., b3⊥b8, b3⊥b13,
b8⊥b13.

Let us ensure that the mentioned vectors indeed form three classes. For this, we used
a dimensionality reduction tool MDS, R5 → R2 and R4 → R2 . The application results are
shown in Figure 3 (vectors a3, a8, a13, and b3, b8, b13, are marked with a “+” sign).

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 34 
 

 

Next, we provide a numerical example with synthetic data, illustrating the method 
steps. In the following Section 4 , we show the results of experiments using the proposed 
approach based on benchmark datasets. 

3.1.2. Illustrative Numerical Example 

To illustrate the formalism proposed above, we took fifteen vectors ,n
ia   = 1, ,i k  

= 1,15,n  = 5k , from the FM vector space (15). Note that these vectors belonged to three 
classes. Also, note that the features of these vectors are not understandable to humans: 
Class 1: ( )= −1 2.8,1.8, 2.8,1.3,0.4a , ( )= − −2 2.9, 1.9, 2.9,1.4,0.5a , 

( )= − −3 3, 2, 3,1.5,0.6a , ( )= − −4 3.1, 2.1, 3.1,1.6,0.7a , ( )= − −5 3.2, 2.2, 3.2,1.7,0.8a ; 
Class 2: ( )= − −6 1.6, 2.5,1.5,0.2,0.6a , ( )= − −7 1.3, 2.7,1.3,0.4,0.8a , 

( )= − −8 1, 3,1.5,0.6,1a , ( )= − −9 0.7, 3.2,1.7,0.8,1.2a , ( )= − −10 0.5, 3.5,1.9,1,1.4a ; 
Class 3: ( )= − − −11 1.2, 1.2,0.7, 0.3, 2.8a , ( )= − − −12 1.1, 1.1,0.8, 0.4, 2.9a , 

( )= − − −13 1, 1,0.844444, 0.44444, 3a , ( )= − − −14 0.9, 0.9,0.85, 0.45, 3.1a , 
( )= − − −15 0.8, 0.8,0.9, 0.5, 3.2a . 

(15) 

It is noteworthy that vectors 3 ,a   8 ,a   13a   were mutually perpendicular, i.e., 
⊥3 8 ,a a   ⊥3 13 ,a a   ⊥8 13.a a   We took corresponding fifteen vectors (16) from the MM 

vector space (also note that the meaning of these features is understandable to humans): 
Class 1: ( )= − −1 2.8, 1.8, 2.8,1.3,0.4b , ( )= − −2 2.9, 1.9, 2.9,1.4,0.5b , 

( )= − −3 3, 2, 3,1.5,0.6b , ( )= − −4 3.1, 2.1, 3.1,1.6,0.7b , ( )= − −5 3.2, 2.2, 3.2,1.7,0.8b ; 
Class 2: ( )= − −6 1.6, 2.5,1.5,0.2,0.6b , ( )= − −7 1.3, 2.7,1.3,0.4,0.8b , 

( )= − −8 1, 3,1.5,0.6,1b , ( )= − −9 0.7, 3.2,1.7,0.8,1.2b , ( )= − −10 0.5, 3.5,1.9,1,1.4b ; 
Class 3: ( )= − − −11 1.2, 1.2,0.7, 0.3, 2.8b , ( )= − − −12 1.1, 1.1,0.8, 0.4, 2.9b ,

( )= − − −13 1, 1,0.844444, 0.44444, 3b , ( )= − − −14 0.9, 0.9,0.85, 0.45, 3.1b , 
( )= − − −15 0.8, 0.8,0.9, 0.5, 3.2b . 

(16) 

Moreover, vectors 3 ,b   8 ,b   13b   were also mutually perpendicular, i.e., ⊥3 8 ,b b  
⊥3 13 ,b b  ⊥8 13.b b  

Let us ensure that the mentioned vectors indeed form three classes. For this, we used 
a dimensionality reduction tool MDS, →5 2R R   and →4 2R R  . The application results 
are shown in Figure 3 (vectors 3 ,a  8 ,a  13 ,a  and 3 ,b  8 ,b  13 ,b  are marked with a “+” 
sign). 

  
(a) (b) 

−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4

Formal Model

"Class 1" "Class 2" "Class 3"
−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4

Mental Model

"Class 1" "Class 2" "Class 3"

Figure 3. This figure contrasts the classification boundaries as determined by a Formal Model (FM)
and a Mental (Human) Model (MM). Part (a) shows how the FM distinguishes three classes, evident
by the clustering of class vectors in a two-dimensional feature space. Part (b) depicts the MM’s
classification, where similar clustering is observed, but with notable differences in the positioning
and overlap of class vectors. Here, base vectors are marked with “+”.

From Figure 3, it is evident that the vectors form three classes with quite wide inter-
class gaps and, with accuracy to rotations of the coordinate grid, have a similar topology.

To start, we built matrices A and B from the three vectors a3, a8, a13, and correspond-
ingly, b3, b8, b13:

A =

 3 −2 −3 1.5 0.6
−1 −3 1.5 0.6 1
1 −1 0.844444 0.44444 −3

,

B =

1.843907868 1.998187 −1.91286 −1.97511
1.992023578 −1.9238 0.706594 −1.54378
1.107744254 1.615476 1.723582 1.807615

.

We explored the possibility of using Formulas (7) or (8) to calculate A+ by calculating
det
(

AT A
)
. It equaled 0. Formula (7) was not suitable for the case under consideration

(vectors in rows). Instead, Formula (9) was utilized for further calculations.
We determined the singular decomposition matrices A = UΣVT as follows:
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U =

1 0 0
0 1 0
0 0 1

, Σ =

4.960846702 0 0 0 0
0 3.689173349 0 0 0
0 0 3.451176217 0 0

,

V =


0.604735478 0.271063435 0.289756285 0.57794 −0.377950
0.403156985 0.813190305 0.289756285 0.272881 0.133279
0.604735478 0.406595152 0.2446833085 0.630521 −0.107460
0.302367739 0.162638061 0.128780571 0.379846 0.849268
0.120947096 0.271063435 0.869268855 0.222893 −0.326480

.

Let us determine matrix Σ+:

Σ+ =


0.201578 0 0

0 0.271063 0
0 0 0.289756
0 0 0
0 0 0

.

Let us determine A+:

F+ = VΣ+UT =


0.121901666 0.073475386 0.083958705
0.081267777 0.220426157 0.083958705
0.121901666 0.110213079 0.070898426
0.060950833 0.044085231 −0.03731498
0.024380333 0.073475386 0.251876114

.

Next, we calculated the transition matrix T using Formula (6):

T = A+B =


0.278135369 0.520567817 0.140387778 0.024426
0.382248581 0.126035484 0.145008015 0.349038
0.522859856 0.341076002 0.433255464 0.198781
0.065904355 0.023301678 0.1497552201 −0.25589
0.177604706 −0.49953555 0.428847974 −0.61688

.

The calculations with the obtained matrix T using Formula (10) were conducted for all
fifteen vectors of the FM vector space. We obtained fifteen predicted vectors of the MM
space and compared them with the input values. The result is shown in Table 1.

Table 1. A comparison of predictions made by a Mental Model and those inferred by transforming a
Formal Model’s predictions using the transition matrix T to align with the Mental Model’s framework,
across fifteen instances.

#
Mental Model Formal Model → Mental Model

Diff
b1 b2 b3 b4 b’

1 b’
2 b’

3 b’
4

1 −1.97939 7.95931 −1.38111 −1.72964 −1.71146 1.95563 −1.71140 −1.69587 0.426
2 −1.97492 1.94851 −1.72661 −1.76121 −1.77768 1.97691 −1.81213 −1.83549 0.229
3 −1.84391 1.99818 −1.91285 −1.97511 −1.84391 1.99818 −1.91285 −1.97511 0
4 −1.99863 1.99967 −1.99844 −1.99976 −1.91013 2.01946 −2.01357 −2.11472 0.147
5 −1.99937 1.99889 −1.99960 −1.99891 −1.97636 2.04074 −2.11430 −2.25434 0.284
6 1.997776 −1.84400 1.660111 −1.37353 2.06518 −1.96399 0.94976 −1.03481 0.798
7 1.818753 −1.90968 1.20663 −1.40799 1.90491 −1.86938 0.73427 −1.31160 0.491
8 1.992024 −1.92380 0.70659 −1.54378 1.99202 −1.9238 0.70659 −1.54378 0
9 1.999174 −1.99759 0.21221 −1.58697 2.04090 −1.96562 0.66440 −1.74106 0.480

10 1.997854 −1.99941 −0.24340 −1.82758 2.15582 −2.0721 0.65076 −1.97568 0.922
11 0.851626 1.57420 1.58102 1.57393 1.00800 1.64037 1.55452 1.55364 0.173
12 1.008513 1.57079 1.59565 1.74176 1.07422 1.61909 1.65524 1.69325 0.112
13 1.107744 1.61547 1.72358 1.80761 1.10774 1.61547 1.72358 1.80761 0
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Table 1. Cont.

#
Mental Model Formal Model → Mental Model

Diff
b1 b2 b3 b4 b’

1 b’
2 b’

3 b’
4

14 1.089898 1.61136 1.88253 1.87352 1.11836 1.62421 1.76924 1.90428 0.121
15 1.290406 1.69528 1.95350 1.94625 1.15515 1.61882 1.84081 2.02117 0.206

The first half of Table 1 lists the predictions of vector values (b1, b2, b3, b4) by the
MM. The second half shows the corresponding vector values (b′1, b′2, b′3, b′4) by the FM,
translated into the MM’s perspective. The final column “Diff” shows the distance between
the corresponding vectors in Euclidean space (similarity), providing a clear metric for
comparison. Table 1 illustrates the variance in outcome between the two models, which
serves to understand the model agreement and the fidelity of translation between different
modeling approaches.

We plotted the initial and calculated vectors on a graph (Figure 4) using MDS.
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Figure 4. Part (a) shows the Mental (Human) Model’s classification points (“old”) alongside the
calculated points derived from the transition matrix T. Part (b) represents the Formal Model’s ability
to segregate three classes in the given feature space, mapping the underlying structure the model
has learned; for each class, the number of base vectors was increased from one to three. Here, base
vectors are marked with “+”.

As can be seen from Figure 4a, the newly calculated vectors are in their respective
classes. This scatter plot serves to illustrate the alignment between the human-generated
classifications and the model-calculated estimations, thereby providing insights into the ac-
curacy of the constructed transition matrix T in replicating human-like decision boundaries
in a multidimensional feature space. Such an outcome suggests that even for a transition
matrix composed of a few basis vectors, the result is satisfactory. Furthermore, we tried
to improve it by increasing the number of basis vectors for calculation from one to three
(Figure 4b)

Thus, matrix A and its corresponding matrix B take the following form:

A =



2.8 −1.8 −2.8 1.3 0.4
3.0 −2.0 −3.0 1.5 0.6
3.2 −2.2 −3.2 1.7 0.8
−1.6 −2.5 1.5 0.2 0.6
−1.0 −3.0 1.5 0.6 1.0
−0.5 −3.5 1.9 1.0 1.4
1.2 −1.2 0.7 −0.3 −2.8
1.0 −1.0 0.84 −0.44 −3.0
0.8 −0.8 0.9 −0.5 −3.2


,
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B =



−1.97939 1.959307524 −1.381119943 −1.729640979
−1.84391 1.99818664 −1.912855282 −1.97511053
−1.99937 1.998896097 −1.999605076 −1.9989167665
1.997776 −1.844000202 1.660111333 −1.373532039
1.992024 −1.923804827 0.706593926 −1.543784398
1.997854 −1.999410881 −0.243400633 −1.827587263
0.851626 1.574201387 1.581026838 1.573934081
1.107744 1.615475549 1.723582196 1.807614602
1.290406 1.695289797 1.953503509 1.946250271


.

The matrices of the singular decomposition F = UΣVT , matrices Σ+ and A+ are
provided in Appendix A.

Next, we calculated the transition matrix T using Formula (6):

T =


−0.965871046 0.268676970 −0.74950875 0.167864
0.040740026 0.228720439 −0.724028187 0.576260
0.473706824 −0.376589159 −0.511934821 0.463701
1.978539601 0.622906549 −1.45463279 0.357692
−0.84067070 −0.718752857 −0.530542751 −0.65073

.

We conducted calculations with the obtained matrix T using Formula (10) for all fifteen
vectors of the FM vector space. We obtained fifteen predicted vectors of the MM space and
compared them with the input values. The result is presented in Table 2.

Table 2. The predicted vectors of a Mental Model as approximated by a Formal Model across fifteen
instances. The table lists the component values of the vectors as predicted by the transition matrix
T from the Formal Model to the Mental Model. The last column, “Diff”, shows the distances in
Euclidean space (similarity) between the vectors of the Mental Model and those predicted by the
Formal Model.

#
Formal Model → Mental Model

Diff
b1 b2 b3 b4

1 −1.868316882 1.917325741 −1.465195993 −1.6609 0.160916565
2 −1.902561782 1.94939568 −1.615068122 −1.77742 0.133943398
3 −1.936806681 1.981465618 −1.76494025 −1.89393 0.19333596
4 −1.971051581 2.013535556 −1.914812378 −2.01044 0.089781324
5 −2.00529648 2.045605494 −2.064684507 −2.12696 0.151151106
6 2.045409347 −1.873238392 1.632130028 −1.33258 0.07472559
7 1.880332443 −1.782230819 1.257434896 −1.54882 0.206033576
8 1.900664267 −1.864730953 0.750368655 −1.6372 0.149932904
9 1.925070093 −1.924359043 0.170899595 −1.66796 0.138278882
10 2.041989021 −2.033726874 −0.261215771 −1.77314 0.08004815
11 0.88397757 1.609971462 1.532978489 1.549243 0.072418013
12 0.91822247 1.577901524 1.682850618 1.665757 0.146909333
13 1.03606919 1.601359125 1.780350637 1.776381 0.097646352
14 1.212437185 1.663686004 1.841190179 1.882882 0.139821386
15 1.321923723 1.681590851 1.943927409 1.994095 0.059680911

The “Diff” column in Table 2 contains the values of distances between the correspond-
ing vectors in Euclidean space (similarity). As it is seen from the table, the obtained results
were more promising compared to the previous ones. We obtained more similar vectors. In
the next section, for real models, we calculated the matrix T using such a number of basis
vectors from the training set to evenly cover the areas of the respective classes.
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3.2. Obtaining a Separating Hyperplane Using the Human-in-the-Loop Principle
3.2.1. Problem Statement and Improved Method

VA is often used for data exploration and analysis in classification tasks. One of the VA
tools for representing model objects in lower-dimensional spaces (to enable visualization)
correlates with MDS. With such approaches for models represented as a set of n-dimensional
feature vectors, corresponding feature vectors were obtained in Cartesian space. This allows
for a visual assessment of the modeling quality, feature quality, and the model’s ability to
present classes as separate clusters. Essentially, we obtained a model in Cartesian space
analogous to the input model.

Within the implementation of the HITL principle, having an analogous model in
Cartesian space allows a person to indicate additional points belonging to lines that separate
classes. This leads to the task of finding corresponding points in the input n-dimensional
space. Typically, approaches analogous to the inverse MDS were used for this task.

The authors propose an improved method for obtaining object coordinates in
n-dimensional space based on coordinates in Cartesian space. It involves using the transi-
tion matrix T with Formula (6). The method is outlined in Figure 5.
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Figure 5. The scheme of the improved method for obtaining a separating hyperplane for classification
tasks using a transition matrix based on VA and the HITL principle. The output of the method is
the set of hyperplane coefficients calculated per Formulas (13) or (14), which form the delineation of
decision boundaries in the feature space.

Below, we present the main steps of the improved method from Figure 5.
Input Information: From the input dataset, corresponding to each annotated sample,

matrix A is obtained as per structure (1). Using dimensionality reduction tools (e.g., MDS),
matrix B is received as per structure (2). Note that its dimensionality l = 2.

Step 1: The rows of matrix B are plotted on a graph. Visually, it is ensured that the
groups of necessary vectors are separate. Empirically, the coordinates of two points are
determined on the graph, based on which a line is drawn to separate the desired class
(group of points on the graph) from other classes. Based on these two points, additional
points are determined and located on the defined segment between the two found points.
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The total number of points should equal the dimensionality of the input feature
vector (matrix A). If we denote the found points as c1(x1, x2) and ck(x1, x2), then points ci,
i = 2, k − 1, are defined as:

ci =
c1 + (ck − c1)

k − 1
, i = 2, k − 1. (17)

Step 2: For matrices A and B, the transition matrix T is calculated using Formula (6).
Step 3: For points ci i = 1, k, using Formula (10), the corresponding points are deter-

mined for the model defined by matrix A (c∗i , i = 1, k).
Step 4: Using points c∗i , i = 1, k, and Formulas (13) or (14), the coefficients of the

hyperplane are finally determined.
Output Information: Coefficients of the hyperplane, which can be used to determine

the classes it separates.
Next, we provide a numerical example illustrating the steps of the method. Also,

in the following Section 4, an experiment using the improved method with a benchmark
dataset is described.

3.2.2. Illustrative Numerical Example

To illustrate the formalism proposed above, we took a set of vectors (15) from the
previous example and formed matrix B. Then, using MDS, matrix A was derived from
the data of matrix B as a reduction of the space dimensionality presented by matrix B to
two-dimensional space:

B =



2.8 −1.8 −2.8 1.3 0.4
2.9 −1.9 −2.9 1.4 0.5
3.0 −2.0 −3.0 −1.5 0.6
3.1 −2.1 −3.1 1.6 0.7
3.2 −2.2 −3.2 1.7 0.8
−1.6 −2.5 1.5 0.2 0.6
−1.3 −2.7 1.3 0.4 0.8
−1.0 −3.0 1.5 0.6 1.0
−0.7 −3.2 1.7 0.8 1.2
−0.5 −3.5 1.9 1.0 1.4
1.2 −1.2 0.7 −0.3 −2.8
1.1 −1.1 0.8 −0.4 −2.9
1.0 −1.0 0.84 −0.44 −3.0
0.9 −0.9 0.85 −0.45 −3.1
0.8 −0.8 0.9 −0.5 −3.2



, A =



−1.82751 −2.5721
−1.80564 −2.78901
−1.81244 −2.99995
−2.03578 −2.99999
−2.22591 −2.99983
2.151466 2.349429
2.146416 1.848879
2.335564 1.57277
2.512781 1.35009
2.808853 1.168351
−2.39704 2.674382
−2.41546 2.889855
−2.50885 2.999784
−2.62157 2.999927
−2.71964 2.998711



.

We plotted the vectors from matrix A on a graph (Figure 6), and on this graph, we
drew a segment separating Class 1 from Classes 2 and 3.

We empirically determined points c1(x1, x2) and ck(x1, x2), and calculated points
ci, i = 2, k − 1, using Formula (17). Thus, we obtained the following coordinates of points
that belonged to the line separating Class 1 from Classes 2 and 3: c1(2,−4), c2(0.5,−2.75),
c3(−1,−1.5), c4(−2.5,−0.25), c5(−4, 1).

Next, using Formulas (6) and (9), similarly to the previous example, we determined
the transition matrix T:

T =

(
−0.62654 −0.0371 0.388873 0.008528 0.622818
−0.31919 −0.09414 0.649254 −0.23858 −0.521214

)
. (18)

Using the obtained transition matrix T (18) and points ci, i = 1, k, with Formula (10),
we obtained the coordinates of corresponding points c∗i , i = 1, k, that belonged to the
hyperplane, as follows:
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c∗1
(
0.023677, 0.302352, −1.81927, 0.971392, 3.330592

)
,

c∗2
(
0.564504, 0.240333, −1.59101, 0.66037, 1.744817

)
,

c∗3
(
1.105331, 0.178314, −1.36275, 0.349349, 0.159041

)
,

c∗4
(
1.646158, 0.116295, −1.1345, 0.038327, −1.42673

)
,

c∗5
(
2.186986, 0.054277, −0.90624, −0.27269, −3.01251

)
.

Then, using Formula (13) and an evolutionary algorithm with Formula (14), we deter-
mined the coefficients of the hyperplane that belonged to it or were nearby: w1 = −0.43893,
w2 = −0.47443, w3 = −0.8868, w4 = −0.61264, w5 = −0.13863, b = −0.40266.
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We plotted the vectors from matrix A on a graph (Figure 6), and on this graph, we 
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Figure 6. This figure illustrates the empirical derivation of a decision boundary within a Formal
Model’s feature space. The model has classified data points into three groups, represented as ‘Class
1’, ‘Class 2’, and ‘Class 3’ with different colors. Here, base vectors are marked with “+”. A black line
is drawn to demarcate the separation between ‘Class 1’ and the other classes, based on the model’s
classification criteria. This line exemplifies the model’s decision-making process in differentiating
between the classes, providing a visual understanding of the model’s classification logic in a two-
dimensional representation.

We validated the obtained hyperplane coefficients: substitute the vectors’ coordinates
(rows of matrix B) into the found hyperplane equation Wx − b = 0. Here, we ensured that
the results of such substitution for vectors belonging to Class 1 had opposite values to the
results for vectors belonging to Classes 2 and 3 (Table 3).

Table 3. This table exhibits the coefficients of a hyperplane defined by matrix B and their validation
through a classification model. The coefficients b1, b2, b3, b4, and b5 correspond to features of a multidi-
mensional space, while the last column represents the evaluation of the hyperplane equation for each
instance. Instances are categorized into three classes, with each class having distinct coefficient patterns.

Classes
The Model by Matrix B

Wx − b = 0
b1 b2 b3 b4 b5

1

C
la

ss
1

2.8 −1.8 −2.8 1.3 0.4 0.853461
2 2.9 −1.9 −2.9 1.4 0.5 0.870563
3 3.0 −2 −3.0 1.5 0.6 0.887666
4 3.1 −2.1 −3.1 1.6 0.7 0.904769
5 3.2 −2.2 −3.2 1.7 0.8 0.921871
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Table 3. Cont.

Classes
The Model by Matrix B

Wx − b = 0
b1 b2 b3 b4 b5

6

C
la

ss
2

−1.6 −2.5 1.5 0.2 0.6 −0.05021
7 −1.3 −2.7 1.3 0.4 0.8 −0.0599
8 −1.0 −3.0 1.5 0.6 1.0 −0.37686
9 −0.7 −3.2 1.7 0.8 1.2 −0.74127
10 −0.5 −3.5 1.9 1.0 1.4 −1.01434

11

C
la

ss
3

1.2 −1.2 0.7 −0.3 −2.8 −0.40886
12 1.1 −1.1 0.8 −0.4 −2.9 −0.42597
13 1.0 −1.0 0.84 −0.44 −3.0 −0.42784
14 0.9 −0.9 0.85 −0.45 −3.1 −0.41905
15 0.8 −0.8 0.9 −0.5 −3.2 −0.42244

As seen from the Wx − b = 0 column in Table 3, the values for Class 1 vectors have
an opposite sign to the values for Classes 2 and 3 vectors. Therefore, we have found a
hyperplane that separates these classes.

3.3. Methodology and Experimental Setting

Computational experiments were conducted utilizing three renowned benchmark
datasets, MNIST [35], FNC-1 [36], and Iris [37]. The selection of these datasets was moti-
vated by their ability to facilitate the construction of relatively interpretable ML models.
This interpretability is crucial for an objective evaluation of the proposed method’s capacity
to elucidate the outcomes generated by DL models.

3.3.1. Datasets

The Modified National Institute of Standards and Technology dataset (MNIST) is a
large collection of handwritten digits widely used for training and testing in the field of ML
and image processing. Each image in the MNIST dataset is 28 pixels in height and 28 pixels
in width, for a total of 784 pixels. Each pixel has a single value associated with it, indicating
the lightness or darkness of that pixel. These pixel values are integers between 0 and 255,
inclusive. The digits are centered in a 28 × 28 image by computing the center of mass of
the pixels and translating the image to position this point at the center of the 28 × 28 field.
Each image is accompanied by a label indicating the actual digit it represents (from 0 to 9).
MNIST provides a standard for researchers to compare the performance of their ML and
DL models.

The Fake News Challenge Stage 1 (FNC-1) dataset is an essential benchmark for
evaluating stance detection, a subtask of fake news detection. We refer to the problem
statement of the stance detection task, which is defined in [38]. It contains 50,000 instances,
each composed of a headline and a body text pair. Derived from the Emergent dataset [39],
FNC-1 uses Emergent’s 300 labeled claims as headlines and splits the associated articles
into sentences to create body texts. The instances are labeled with four stances: “Agree”,
“Disagree”, “Discuss”, and “Unrelated”, with a distribution of 7.4%, 2.0%, 17.7%, and 72.8%,
respectively. Given its detailed annotations and the challenge of stance detection, FNC-1
serves as an excellent benchmark for assessing XAI approaches, as it requires models to
provide interpretable reasoning for their stance predictions, aiding in the transparency and
trustworthiness of fake news detection systems.

The Iris dataset, often referred to as Fisher’s Iris dataset, is a classic dataset in the field
of ML and statistics. The dataset is typically used for classification and pattern recognition
in the context of statistical learning. There are 150 instances in the dataset, with 50 instances
for each of the three Iris species. The dataset contains three classes, corresponding to
each Iris species: Iris setosa, Iris versicolor, and Iris virginica. The four numerical features
are sepal length, sepal width, petal length, and petal width. The Iris dataset allows for
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easy visualization of the data and relationships between features, aiding in understanding
feature importance and selection.

3.3.2. Design of Computational Experiments

In this work, we primarily evaluated the quality of the proposed approach, as assessing
its effectiveness quantitatively is extremely challenging for the task of explanatory DL. The
proposed approach, which involves constructing a transition matrix between the feature
spaces of DL and ML models, as FMs and MMs, respectively, is a novel approach without
obvious analogs.

Furthermore, we assume DL as a subset of the ML field based on artificial DNNs with
feature learning. Within the proposed approach, the input information is the penultimate
layer of the multilayer neural network. Such a layer can be extracted from a trained
model of any type of DNN, such as transformers, recurrent networks, autoencoders, etc.
Accordingly, the proposed contribution also relates to other DL models.

Below, we describe the methodology of our computational experiments to validate
two proposed methods (see Figures 2 and 5).

To validate the proposed method based on a transition matrix, we constructed matrices
B and A from the MNIST dataset in the following manner:

1. Construction of matrix B. For ML model (or MM) experiments, 10,000 vectors from
the MNIST dataset training sample were randomly selected. These vectors were
obtained from 28 × 28 MNIST images by “slicing” and concatenating the image rows.
In other words, for matrix B, each 28 × 28 handwritten digit image was represented
as a vector (one-dimensional array) with 784 features. Consequently, matrix B had a
size of 10,000 × 784.

2. Construction of matrix A. A DL model (or FM) was created using a classic CNN
architecture. The neural network was trained on the full MNIST dataset of 60,000 items.
The architecture of the trained CNN is presented in Table A1 in Appendix B. From
the penultimate layer of the created neural network model (490 weight coefficients),
a vector was formed for each image from the formed sub-sample of 10,000, which
was sequentially added to matrix A. As a result of these actions, two experimental
matrices were obtained: matrix A10,000×490 = X10,000W490 and matrix B10,000×784.

3. Calculation of the Transition Matrix T: Using Formula (6), the transition matrix T was
calculated to find new representations for the rows of matrix A through basis B.

To further validate the proposed method based on a transition matrix for fake news
detection, we constructed matrices B and A from the FNC-1 dataset as follows:

1. Construction of Matrix B: We randomly selected 10,000 labeled headline and article
pairs from the training part of the FNC-1 dataset. Each article was preprocessed
by tokenizing the text, removing stop words, and applying stemming. The pro-
cessed text was then converted into a vector representation using the TF-IDF (Term
Frequency-Inverse Document Frequency) encoding, resulting in one-dimensional
vectors with a predefined number of features of 1024. As a result, we received matrix
B10,000×1024, which served as an ML (or MM) model.

2. Construction of Matrix A: A RoBERTa model fine-tuned for fake news detection was
crafted based on the architecture described in work [40]. The model was trained on
the full FNC-1 dataset. The architecture of the trained RoBERTa model is presented
in Table A2 in Appendix B. From the penultimate layer of the fine-tuned RoBERTa
model, a vector of 768 was formed for each pair “headline/article” from the formed
subsample of 10,000, sequentially added to matrix A. Consequently, two experimental
matrices were obtained: matrix A10,000×768 = X10,000W768 and matrix B10,000×784,
where 768 is the size of the penultimate (fully-connected) layer of the constructed
RoBERTa model.

3. Using Formula (6), the transition matrix T was calculated to find new representations
for the rows of matrix A through basis B. The transition matrix T in this case was of
768 × 1024.
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To validate an improved method for obtaining a separating hyperplane for classifica-
tion tasks, we constructed matrices A and B based on the Iris dataset as follows:

1. Four numerical features, sepal length, sepal width, petal length, and petal width,
formed matrix B150×4.

2. Dimensionality reduction of matrix B150×4 to a two-dimensional space was performed
using MDS, resulting in matrix A150×2.

3. Matrix A150×2 was visualized on a graph; a separating line was also added to the
graph to visually separate one class of the Iris dataset from all others.

4. Matrix A150×2 was used to construct the transition matrix T (6).
5. The transition matrix T was used to construct the separating hyperplane using For-

mula (13) and an evolutionary algorithm with Formula (14).

We propose our approach as a means of interpreting the DL model specifically for the
end user, not the developer, as in the known approaches. In this regard, we conducted
empirical validation based on a quantitative and qualitative comparison criterion (as
presented below in Section 4), that is, how different the result obtained by the proposed
method is from the results of the training and testing samples.

3.3.3. Quantitative Evaluation Criteria

To quantify the generated MNIST images within the experiments, we used the metrics
Structural Similarity Index Measure (SSIM) and Peak Signal-Noise Ratio (PSNR) [41],
providing a statistical analysis of the results.

The SSIM was used to assess the visual impact of three characteristics of an image:
luminance, contrast, and structure, with values ranging between 0 and 1, where 1 indicates
perfect similarity. The formula for SSIM is given by:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) , (19)

where µx, µy are the average intensities of images x and y, σ2
x , σ2

y are the variances, σxy is
the covariance, and c1, c2 are constants.

PSNR, on the other hand, measures the ratio between the maximum possible power of
a signal and the power of corrupting noise that affects its fidelity, typically expressed in a
logarithmic decibel scale. The PSNR is calculated by:

PSNR = 10· log10

(
MAX2

I
MSE

)
, (20)

where MAXI is the maximum pixel value of the image, and MSE is the mean squared error
between the original and the compressed image.

As for the FNC-1 dataset, given its imbalanced class distribution and the critical
importance of distinguishing between “Agree”, “Disagree”, and “Discuss” for identifying
fake news, the creators of FNC-1 recommended a weighted scoring approach [40]. Correctly
identifying an unrelated instance adds 0.25 to the score. For related instances (“Agree”,
“Disagree”, or “Discuss”), correctly labeling them as related in any way also adds 0.25.
However, if the model accurately identifies the exact label of a related instance, it gains an
additional 0.75. In summary, formulas for these weighted metrics are designed to reflect
these considerations as follows.

The F1-score is calculated using Precision and Recall of the test:

F1 = 2· Precision · Recall
Precision + Recall

, (21)

where Precision = TP
TP+FP , Recall = TP

TP+FN , TP is true positive, FP represents false positive,
and FN stands for false negative.
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The macro-average F1-score (F1m) is the average of the F1-scores for each class:

F1m =
F1Agree + F1Disagree + F1Discuss + F1Unrelated

4
. (22)

Weighted accuracy takes into account the imbalance of classes and is calculated as:

Weighted accuracy = 0.25·AccuracyRelated,Unrelated+

0.75·AccuracyAgree,Disagree,Discuss. (23)

4. Results and Discussion

This section includes a detailed description of computational experiments and their
results. The section also discusses the proposed method for explaining results obtained
by the DL model through the ML model and the improved method for constructing a
separating hyperplane using the HITL principle. The limitations of the proposed methods
are presented at the end of the section.

4.1. Results of Transitioning from the DL Model to the ML Model Using the Proposed Method
4.1.1. Visual Interpretation based on the MNIST Dataset

To demonstrate the ability of the proposed method to solve the set task, a subset
of 10,000 training samples and a subset of 1000 testing samples were extracted from the
MNIST dataset (see Section 3.3.2). The interpretation of the results was performed based on
qualitative and quantitative analyses. The qualitative analysis involved a pairwise visual
comparison of original MNIST handwritten digits with the handwritten digits generated
using matrix T. The quantitative statistical analysis was conducted using SSIM (19) and
PSNR (20) metrics, calculated for each pair of original MNIST vs. generated MNIST images.

A visual comparison between the original MNIST digits from the training dataset
and the corresponding digits generated by our approach reveals both similarities and
differences. For each digit in Figure 7, three images are presented: the original digit, the
generated digit, and the difference image highlighting the discrepancies.

From Figure 7, it is evident that the overall structure and shape of the generated digits
resemble the originals. This indicates that the transition matrix T accurately reproduces the
main forms and sizes of MNIST digits. Moreover, the placement of digits within the image
frame is consistent, indicating that the constructed matrix T aligns and centers the digits
similarly to the original dataset.
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Some of the generated digits have edges that are not as smooth and continuous as in
the originals. This difference is particularly noticeable in curved digits, such as 0, 2, 3, etc.
Some generated digits exhibit variations in line thickness, making certain parts of the digits
appear bolder or fainter than the corresponding parts in the original images. These artifacts
may be subtle but noticeable in different images.

Overall, like for the training MNIST dataset, the transition matrix T accurately repro-
duces the general appearance of MNIST digits and thus provides decent explainability for
the CNN model. However, the presence of artifacts such as edge roughness, line thickness
variations, and extraneous marks suggests the transitioning could be improved.

A visual analysis of original MNIST digits from the testing dataset and corresponding
generated digits are presented in Figure 8.
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From Figure 8, it is clear that generated digits maintain the general shape and structure
of the original digits. The size and proportions of the generated digits match the originals,
indicating that the matrix T keeps the essential dimensions of each digit. Some generated
digits from the testing dataset have a different inner texture or pattern, especially noticeable
in digits like 2, 3, and 5, where significant discrepancies within the digit are visible in
difference images (the third column). In some cases, the stroke thickness of generated
digits differs from the original. In difference images, they stand out as isolated spots
(Figure 8 (right)), especially in the background.

Consequently, based on the qualitative analysis, our approach allows for rigid repli-
cating MNIST digits and gives a robust tool for explaining the outcome of the DL model.

Next, we carried out the interpretation and implications of statistical indicators ob-
tained from the original and generated MNIST images. The SSIM and PSNR scores for
1000 testing objects represent the degree of similarity of the generated MNIST handwritten
digits to the originals and demonstrate statistics that are listed in Table 4.

Table 4. A statistical summary of image quality assessments using the SSIM and PSNR metrics based
on the testing dataset. The table lists the mean, standard deviation, minimum, and specific percentiles
(25th, 50th/median, 75th) along with the maximum values for both indicators.

Title 1 SSIM PSNR

Mean 0.697 17.94
Standard Deviation 0.087 1.84

Minimum 0.352 11.46
25th Percentile 0.643 16.78

Median (50th Percentile) 0.702 17.76
75th Percentile 0.758 18.94

Maximum 0.898 24.08
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From Table 4, we see that the average SSIM score of 0.697 indicates a rough similarity
of the generated digits to the original MNIST digits. According to the SSIM scores, the
generated digits are quite like the originals. The average and median PSNR values are
relatively high, 17.94 and 17.76, respectively, indicating that on average the generated
digits closely resemble the original MNIST digits. Overall, based on data in Table 4, the
higher average and median indicate that the generated digits are of acceptable quality. The
relatively low standard deviation suggests that our approach’s execution is quite stable
across different digits.

The distribution of SSIM scores, visualized through a histogram and a box plot in
Figure 9, allows us to draw key conclusions.
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substantial variability in the results generated by the obtained transition matrix T. 

Figure 9. A visual representation of the distribution of SSIM scores across a dataset. Part (a) is
a histogram displaying the frequency of SSIM scores, indicating the commonality of each score
within the range observed. Part (b) is a box plot that summarizes the distribution of SSIM scores,
highlighting the median, quartiles, and potential outliers.

The distribution in Figure 9 is roughly normal but slightly left-skewed (−0.388),
indicating a concentration of scores around the mean and a tail of lower scores. This
also points to several objects with lower similarity indicators. The kurtosis coefficient is
about 0.186, suggesting a peak distribution close to normal. A significant number of scores
cluster around the mean, indicating stable operation of the digit generation method for a
considerable part of the dataset. Meanwhile, the range of scores from 0.35 to 0.90 indicates
substantial variability in the results generated by the obtained transition matrix T.

The distribution of PSNR scores, presented in Figure 10 as a histogram and a box plot,
provides valuable information on our approach’s performance.

Specifically, the histogram in Figure 10a shows an approximately bell-shaped distri-
bution, indicating that most PSNR scores are concentrated at the mean value, which is
approximately 18. The histogram’s peak around the mean value suggests that a significant
portion of generated digits has PSNR values in this range, indicating stable model per-
formance. There are no significant long tails on either side of the distribution that would
indicate a significant number of extremely low or high scores.

Overall, from the values of SSIM and PSNR, we see that the proposed method with a
transition matrix demonstrates an adequate level of reproducing original MNIST digits.
Therefore, the conducted analysis confirms the functionality of our method in terms of
explaining results obtained with a formal DL model through an ML model.
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highlighting outliers.

4.1.2. Interpreting Stance Detection Based on the FNC-1 Dataset

To see how well the transition matrix could explain the decisions made by the RoBERTa
model when it comes to spotting fake news, we looked closely at the features after they
were transformed and compared them to the original features based on TF-IDF. Our goal
was to check if the transformed features could effectively link the headlines of articles to
their main content. We conducted tests on detecting the stance of texts as follows.

First, we broke down the headlines and the main text into smaller pieces, changing
the full text into a list of separate tokens (as detailed in Section 3.3.2). In this process, we
removed common filler words and used stemming on the tokens to strip them down to
their base forms. This step helps in treating similar words alike (for instance, changing
“running” into “run”) and makes the text data more uniform. Then, we transformed this
cleaned-up text into the vector form using TF-IDF, which then became the input for our ML
model (or MM) to produce matrix B.

We used a version of the RoBERTa model that was specifically adjusted for the FNC-1
dataset, as mentioned by [40], to tackle the task of detecting the stance. The penultimate
(fully-connected) layer of this adjusted RoBERTa model gave us the feature vectors, forming
FM space and thus creating matrix A.

Lastly, we constructed the transition matrix T using Formula (6). This matrix allowed
us to change the feature vectors from FM space (the RoBERTa’s penultimate layer) into MM
space, meaning the TF-IDF features.

To evaluate the validity of our approach for the stance-detection task, we carried out
computational experiments using the FNC-1 dataset and compared our findings with the
leading approaches in identifying the stance of texts. This comparison included: (i) the
original FNC-1 challenge baseline [42] that used feature engineering, (ii)–(iv) the top three
systems from the FNC-1 challenge [43–45] as determined by their confusion matrices,
(v) a recent study by Zhang et al. [46] that had notable success with the FNC-1 dataset,
(vi) current state-of-the-art by Sepulveda-Torres et al. [40] in this task using the FNC-1
dataset, and (vii) our proposed approach that works by pulling out weights from the
penultimate layer of the RoBERTa model and putting together the transition matrix T. The
key metrics for comparison include the F1-score (21) for four stance categories (“Agree”,
“Disagree”, “Discuss”, and “Unrelated”) and two overall performance indicators: the
macro-average F1m (22) and weighted accuracy (23). The results shown in Table 5 are from
applying all these approaches to the FNC-1 dataset.
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Table 5. The proposed approach performance and its comparison with state-of-the-art systems
over the testing split of the FNC-1 dataset. This table contains the performance for the class-wise
F1, macro-average F1m, and weighted accuracy. The bolded numbers indicate the best-performing
approach by the corresponding metric.

Approach
F1-Score, %

F1m, %
Weighted
Accuracy,

%Agree Disagree Discuss Unrelated

FNC-1 baseline [42] 45.62 12.46 62.32 92.40 51.60 74.67
Talos [43] 50.13 3.33 69.16 93.44 55.88 84.63

Athene [44] 45.29 14.21 70.98 93.62 57.98 85.01
UCLMR [45] 44.58 10.75 67.98 92.97 55.97 84.06

Zhang et al. [46] 62.75 66.42 76.35 92.98 77.68 89.40
Sepulveda-Torres et al. [40] 69.02 60.43 78.26 93.35 77.71 89.42

Our approach 68.96 60.44 78.22 93.37 77.76 89.38

Looking at Table 5, our approach shows a strong F1m score of 77.76%, which is just
below the result of Sepulveda-Torres et al. [40] at 77.71%. This suggests that, on average,
the performance of our transition model (from the RoBERTa to TF-IDF features) across all
categories is consistent and robust compared to the fine-tuned RoBERTa model. The weighted
accuracy of our approach is 89.38%, which is competitive and ranks third among all listed
models. It slightly trails Sepulveda-Torres et al. [40] (89.42%) and Zhang et al. [46] (89.40%).

Overall, our approach based on the constructed transition matrix T demonstrates a
balanced performance across various classes and overall metrics, suggesting it is a strong
model for stance detection. Yet, there remains a slight scope for improvement in the “Agree”
category and in maximizing the overall weighted accuracy. The results indicate a high
performance in distinguishing “Disagree”, which is often challenging due to the subtle
cues that must be discerned, showcasing the effectiveness of our approach in handling
complex linguistic patterns.

In addition to assessing the model’s quality through its weighted accuracy as seen in
Table 5, we also explored the possibility of gaining insights into the reasoning behind specific
classification choices by examining the neural attention weights tied to both the sentence and
the hierarchical encoders used for processing news article content. Our investigation into
the model’s logic involved looking at the transformed feature vector within the MM space to
decode the steps leading to its final prediction. Key areas of focus included:

• Identifying crucial elements (such as specific words or phrases) within the transformed
vector that played a significant role in the model’s decision-making process.

• Matching these essential features against the original headline and article body to see
if the model’s attention was rightly placed on the main components of the text.

• Conducting a qualitative analysis of how interpretable the model’s decisions were,
based on the examination of the transformed features. We evaluated if the features
identified as important within the MM space offered a clear and intuitive rationale for
the model’s predictions. For instance, a prediction of “Agree” supported by features
that drew parallels between the headline and body text would signify that the model’s
reasoning was understandable and aligned with human logic.

• Checking for consistency in the model’s focus across similar cases. If the model reliably
pinpointed the same meaningful features as relevant in various instances of stance
detection, it would indicate that our method, i.e., the use of the transition matrix T,
ensured dependable interpretability.

Figure 11 shows a comparison between the attention weights calculated by the fine-
tuned RoBERTa model (specifically from its penultimate layer) and those determined by
our suggested transition matrix T for a single example taken from the FNC-1 testing dataset.
Here, the darker shades highlight the words as red and sentences as green that the model
deemed more important by assigning them higher weights.
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Figure 11. The comparison highlights the attention weights calculated using (a) the fine-tuned
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deemed more significant by the models, as shown by the heavier weights assigned to them.

The example presented in Figure 11, in which both the fine-tuned RoBERTa model
and our approach using the proposed transition matrix T accurately classified an instance
example into the “Agree” category, shows an interesting observation. In this illustration,
it is evident that both approaches allocated similar levels of importance to certain parts
of the text, as shown by the matching shades of red. Moreover, both the headline and
the article’s body include specific words like “saturated”, “fat”, “risk”, and “disease” that
strongly suggest a link between the headline’s message and the main text, highlighting
their relevance in determining the article’s stance.

In sum, the obtained quantitative (Table 5) and qualitative (Figure 11) results with the
FNC-1 dataset confirm the effectiveness of using the proposed transition matrix T for tasks
involving the modeling/matching of long pieces of text. Based on the obtained results,
we may conclude that the proposed approach can be a feasible solution to explaining the
results obtained by DL models for the stance-detection task.

4.2. Results and Discussion for Obtaining a Separating Hyperplane Using the
Human-in-the-Loop Principle

The ability of the improved method to construct a separating hyperplane was demon-
strated using the Iris dataset as a reference. This was achieved using the VA method based
on the HITL principle.

As per the computational methodology described in Section 3.3.2, matrices A and B
for this task were constructed in the following way:

1. Four numerical features, i.e., sepal length, sepal width, petal length, and petal width,
formed matrix B150×4.

2. Dimensionality reduction of matrix B150×4 to a two-dimensional space was performed
using MDS, resulting in matrix A150×2.

3. Matrix A150×2 was visualized on a graph. Also, following the HITL principle, a
separating line was added to the graph, visually separating one class of the Iris
dataset from all others. The visualization result is demonstrated in Figure 12.
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Figure 12. A scatter plot is used for visual analytics, with human-in-the-loop interaction facilitating the
classification of three different species of the Iris flower. The data points are color-coded to represent
“setosa” (red, label—“0”), “versicolor” (green, label—“1”), and “virginica” (blue, label—“2”), plotted
against two feature axes, X1 and X2. A manually drawn dividing line (black) is included to show
the decision boundary as determined by human analysis, which separates the “setosa” species from
the others.

In Figure 12, we observe a clear separation of class 0 “setosa” from the other two
classes—class 1 “versicolor” and class 2 “virginica.”

4. Matrix A150×2 was used to construct the transition matrix T (6) using the approach
proposed in this work.

5. Finally, the transition matrix T was used to construct the separating hyperplane using
Formula (13) and an evolutionary algorithm with Formula (14). The coefficients of
the hyperplane are as follows: w1 = 0.5 × 10−5, w2 = 3 × 10−5, w3 = −4.3 × 10−5,
w4 = −1.8 × 10−5, b = −3.1 × 10−5.

Validation of the obtained hyperplane coefficients was performed similarly to the
synthetic example (see Section 3.2.2): the coordinates of vectors (rows of matrix B) were
substituted into the found hyperplane equation Wx− b = 0. The results of such substitution
for vectors belonging to class 0 have opposite values to the results of substitution for vectors
belonging to classes 1 and 2 (Table 6).

Table 6. This table details the validation of the linear classifier’s hyperplane coefficients derived
from the Iris dataset. It lists the sepal length, sepal width, petal length, and petal width for
15 out of 150 samples of three Iris classes—“setosa” (Class 0), “versicolor” (Class 1), and “virginica”
(Class 2)—against the model’s predictions. The last column evaluates whether each sample shown in
the table belongs to one class (sign “+”) or all other classes (sign “−”).

Classes
The Model by Matrix B

Wx − b = 0
Sepal Length Sepal Width Petal Length Petal

Width

1

C
la

ss
0

5.1 3.5 1.4 0.2 0.000036713
2 4.9 3.0 1.4 0.2 0.000020684
3 4.7 3.2 1.3 0.2 0.000029910
4 4.6 3.1 1.5 0.2 0.000017786
5 5.0 3.6 1.4 0.2 0.000039177

. . . . . . . . . . . . . . . . . .
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Table 6. Cont.

Classes
The Model by Matrix B

Wx − b = 0
Sepal Length Sepal Width Petal Length Petal

Width

51

C
la

ss
1

7.0 3.2 4.7 1.4 −0.000125944
52 6.4 3.2 4.5 1.5 −0.000122347
53 6.9 3.1 4.9 1.5 −0.000139889
54 5.5 2.3 4.0 1.3 −0.000128922
55 6.5 2.8 4.6 1.5 −0.000138092
. . . . . . . . . . . . . . . . . .

101
C

la
ss

2
6.3 3.3 6.0 2.5 −0.000202593

102 5.8 2.7 5.1 1.9 −0.000173582
103 7.1 3.0 5.9 2.1 −0.000195748
104 6.3 2.9 5.6 1.8 −0.000184621
105 6.5 3.0 5.8 2.2 −0.000196451
. . . . . . . . . . . . . . . . . .

As seen from the Wx − b = 0 column in Table 6, the values for class 0 vectors have an
opposite sign (“+”) compared to the values for classes 1 and 2 vectors (“−”). As a result,
the constructed hyperplane correctly separates these classes in the Iris dataset.

4.3. Limitations of the Proposed Methods

The proposed approach has certain limitations that are worth noting. First, our
approach relies heavily on the quality of the input DL models. For it to be effective in
particular cases, there needs to be a good degree of separability between the classes in the
model’s learned feature representations. If the classes are not well separated, even applying
dimensionality reduction for visualization becomes very challenging. Since our methods
are part of VA techniques, their usefulness depends on the model being able to accurately
represent the data with distinct class separations.

Another issue is that to explain a DL model, we need an interpretable ML model to map
the deep representations to. Thus, the interpretability is restricted by the characteristics of
the interpretable model used. If this model is oversimplified compared to a corresponding
DNN, we may lose fidelity in the explanations.

Next, for the method concerning the derivation of hyperplane coefficients, the model
must have a class configuration that allows for feasible separation by a hyperplane or a
set of hyperplanes. However, such a configuration is not universally attainable across all
spatial arrangements of class distributions.

Finally, the examples we used focused primarily on classification tasks, which can be
interpreted through other techniques like Class Activation Mapping (CAM) and Shapley
additive explanations (SHAP) values [12,14,25]. A key advantage of our transition matrix
approach is producing a global, model-level explanation spanning all classes, whereas
methods like CAM and SHAP tend to be more localized. However, we agree that more
validation is needed, including regression problems.

Overall, while using just MNIST, FNC-1, and Iris benchmarks limits the empirical
validation, we aimed to first establish the core methodology. Going forward, we plan
extensive experiments across diverse datasets and real-world sensitive scenarios, such as
medical imaging, fake news detection, and financial forecasting, to comprehensively assess
our method’s effectiveness, robustness, and advantages over existing techniques.

5. Conclusions

In summary, the presented research addresses the challenge of enhancing the explain-
ability of DL models. We proposed a novel approach that employs VA and a transition
matrix methodology to improve the transparency and explainability of DL models. We
validated our approach with experiments on the MNIST, FNC-1, and Iris datasets using a
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qualitative and quantitative comparison criterion, that is, how different the results obtained
by our approach are from the results of the training and testing samples. The quantitative
results demonstrated that the proposed method based on the transition matrix T effectively
replicated MNIST digits, achieving high similarity scores (SSIM: 0.697, PSNR: 17.94) and
consistent performance with low standard deviations (SSIM: 0.087, PSNR: 1.84), proving to
be a robust explanation tool for DL models. With an F1m score of 77.76% and a weighted
accuracy of 89.38%, our approach also showed strong performance in the stance-detection
task based on the FNC-1 dataset. Furthermore, the qualitative results, particularly in
recognizing critical words that bridge headlines and article bodies, complemented our
quantitative achievements by illustrating our method’s ability to capture nuanced textual
relationships. In the classification task of the Iris dataset through a separating hyperplane,
our improved method demonstrated enhanced accuracy and explainability, facilitating a
deeper understanding of the model’s decision-making process. Overall, our study marks a
significant step towards making DL models more interpretable and accessible to end users,
laying the groundwork for future advancements in XAI.

Our approach is limited by the quality of input DL models and the need for an
interpretable ML model, along with the requirement for a class configuration that allows for
hyperplane separation. To sum up, the transition matrix approach provides a global, model-
level explanation, offering an advantage over more localized methods. Nonetheless, further
validation, including regression problems, is necessary to fully assess its effectiveness.

Future work will explore the integration of the proposed approach with more complex
DNN architectures, including deeper CNNs and transformers. Moreover, investigating the
approach’s application more thoroughly in real-world sensitive scenarios, such as medical
imaging, fake news detection, and financial forecasting, will be crucial to understanding its
practical implications and potential for societal impact.

Author Contributions: Conceptualization, O.B. and I.K.; methodology, O.B. and P.R.; software, P.R.;
validation, P.R. and E.M.; formal analysis, O.B. and E.M.; investigation, O.B. and P.R.; resources, P.R.;
data curation, P.R.; writing—original draft preparation, O.B. and P.R.; writing—review and editing,
E.M.; visualization, P.R. and E.M.; supervision, I.K. and O.B.; project administration, I.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/radiukpavlo/transition-matrix-dl (accessed on 17 March 2024).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations included in the text are reported alphabetically:

AI Artificial Intelligence
CAM Class Activation Mapping
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
FACTS Fairness, Accountability, Confidentiality, Transparency, and Safety
FM Formal Model
FNC Fake News Challenge
HITL Human-in-the-Loop
MAX Maximum Pixel Value
MDS Multidimensional Scaling
ML Machine Learning
MM Mental Model
MNIST Modified National Institute of Standards and Technology

https://github.com/radiukpavlo/transition-matrix-dl


Mathematics 2024, 12, 1024 29 of 32

MSE Mean Squared Error
PSNR Peak Signal-Noise Ratio
RoBERTa Robustly Optimized Bidirectional Encoder Representations from Transformers
SHAP SHapley Additive exPlanations
SSIM Structural Similarity Index Measure
TF-IDF Term Frequency-Inverse Document Frequency
VA Visual Analytics
XAI Explainable Artificial Intelligence

Appendix A

U =



0.52550 0.00993 0.02162 − 0.11637 0.33471 − 0.22843 0.71421 0.18061 − 0.05279
0.57238 − 0.00810 − 0.00094 − 0.06214 − 0.00136 0.30882 − 0.48291 0.57966 − 0.06210
0.61926 − 0.02613 − 0.02351 − 0.00791 − 0.33743 − 0.11937 − 0.15999 − 0.67604 0.06692
− 0.08930 − 0.49606 0.00709 − 0.71195 0.013792 0.05130 − 0.04140 − 0.10743 − 0.47215
− 0.00468 − 0.56303 − 0.00791 − 0.14997 0.087621 − 0.03326 − 0.02198 0.06644 0.80419
0.04501 − 0.65954 − 0.01190 0.65543 − 0.10516 − 0.02907 0.08224 0.06473 − 0.33223
0.04149 − 0.02699 0.55941 0.10925 0.43612 0.61605 0.04456 − 0.31745 0.01245
0.00042 − 0.00684 0.57862 0.02570 0.26943 − 0.66970 − 0.37025 0.04514 − 0.06538
− 0.03136 0.01669 0.59242 − 0.10475 − 0.70170 0.07481 0.28820 0.22664 0.06631


,

Σ =



8.66605 0 0 0 0
0 6.54804 0 0 0
0 0 5.96371 0 0
0 0 0 0.077947 0
0 0 0 0 0.09993
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,

V =


0.61393 0.24125 0.28641 0.63737 0.27677
− 0.39214 0.81248 − 0.2790 0.27440 − 0.18152
− 0.60287 − 0.42332 0.23615 0.63369 0.00259
0.30254 − 0.17365 − 0.12562 0.22232 − 0.90172
0.11962 − 0.26890 − 0.87668 0.25974 0.27810

,

Σ+ =


0.115393 0 0 0 0 0 0 0 0

0 0.152717464 0 0 0 0 0 0 0
0 0 0.167681045 0 0 0 0 0 0
0 0 0 1.282922562 0 0 0 0 0
0 0 0 0 10.00747 0 0 0 0

,

A+ =


0.87056 − 0.01436 − 0.89930 − 0.56822 0.09860 0.22300 1.32611 0.79484 − 2.00234
− 0.67256 − 0.04627 0.58002 − 0.33353 − 0.28124 0.33844 − 0.78519 − 0.50832 1.21357
− 0.12227 − 0.08988 − 0.05750 − 0.53988 − 0.08324 0.56916 0.12114 0.05121 − 0.07879
− 3.03603 0.01475 3.06553 − 0.31764 − 0.81853 1.15518 − 3.91402 − 2.43598 6.28816
0.89645 − 0.01611 − 0.92868 − 0.18077 0.21811 − 0.04479 1.16965 0.67365 − 2.07603

.
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Appendix B

Table A1. The architecture of the utilized CNN model for the MNIST visualization task. The table
demonstrates the model’s main layers and their corresponding hyperparameters.

Component Layer Type Input Channels Output
Channels Kernel Size Stride Padding Additional

Details

conv_block_1 Conv2d 1 10 3 × 3 1 1 -
ReLU - - - - - -

Conv2d 10 10 3 × 3 1 1 -
ReLU - - - - - -

MaxPool2d - - 2 × 2 2 0 -
conv_block_2 Conv2d 10 10 3 × 3 1 1 -

ReLU - - - - - -
Conv2d 10 10 3 × 3 1 1 -
ReLU - - - - - -

MaxPool2d - - 2 × 2 2 0 -

Classifier Block Flatten - - - - - start_dim = 1,
end_dim = −1

Linear - - - - -
in_features = 490,
out_features = 10,

bias = True

Table A2. The architecture of the employed RoBERTa model for the stance detection task. The table
shows the model’s main encoder blocks and the corresponding number of features in each block.

Component Layer Type Input Features Output Features Additional Details

Embedding Block Embedding Layer Token IDs 768 Positional Embedding,
Token Type Embedding

Encoder Block 1
Self-Attention 768 768 12 attention heads,

Layer Normalization

Feed-Forward 768 768 GELU Activation,
Layer Normalization

Encoder Block 2
Self-Attention 768 768 12 attention heads,

Layer Normalization

Feed-Forward 768 768 GELU Activation,
Layer Normalization

Encoder Block 3
Self-Attention 768 768 12 attention heads,

Layer Normalization

Feed-Forward 768 768 GELU Activation,
Layer Normalization

... ... ... ... ...

Encoder Block 12
Self-Attention 768 768 12 attention heads,

Layer Normalization

Feed-Forward 768 768 GELU Activation,
Layer Normalization

Classifier Head Linear 768 Number of
classes

Dropout,
SoftMax Activation

Each encoder block in Table A2 consists of a self-attention layer and a feed-forward
network, with layer normalization applied after each sublayer. This pattern repeats for each
of the encoder blocks, though the specifics of each sublayer are consistent across blocks.
Table A2 is truncated with “. . .” to indicate that blocks 4 through 11 are similar to blocks
1, 2, 3, and 12. The Classifier Head here is a linear layer that maps the output of the last
encoder block to the number of classes for the stance detection task, with a dropout layer
for regularization and a SoftMax layer for outputting probabilities.
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