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Abstract: We consider the two- and n-body problems on the two-dimensional conformal sphere M2
R,

with a radius R > 0. We employ an alternative potential free of singularities at antipodal points. We
study the limit of relative equilibria under the SO(2) symmetry; we examine the specific conditions
under which a pair of positive-mass particles, situated at antipodal points, can maintain a state of
relative equilibrium as they traverse along a geodesic. It is identified that, under an appropriate
radius–mass relationship, these particles experience an unrestricted and free movement in alignment
with the geodesic of the canonical Killing vector field in M2

R. An even number of bodies with pairwise
conjugated positions, arranged in a regular n-gon, all with the same mass m, move freely on a
geodesic with suitable velocities, where this geodesic motion behaves like a relative equilibrium.
Also, a center of mass formula is included. A relation is found for the relative equilibrium in the
two-body problem in the sphere similar to the Snell law.

Keywords: conformal sphere M2
R; the two-body problem; relative equilibria; antipodal points

MSC: 34D05; 70F15; 53Z05

1. Introduction

The study of the n-body problem on curved spaces, especially on spheres, introduces
unique challenges and phenomena not present in Euclidean spaces. The work of Borisov
et al. [1] provides essential insights into the dynamics of bodies on spaces of constant
curvature, foundational for our investigation.

In the realm of celestial mechanics, understanding the intricacies of motion in non-
Euclidean geometries is crucial. The research conducted by Ortega-Palencia and Reyes-
Victoria [2] and further expanded by Ortega Palencia et al. [3] delves into the n-body
problem in spaces of constant positive and negative curvature, offering valuable perspec-
tives that inform our approach.

Our study is also informed by the analysis presented by Diacu et al. [4], which
explores the n-body problem in spaces of constant curvature. Their findings provide
a broader context for our work, emphasizing the diversity of dynamics that different
geometric settings can induce.

The foundational principles laid out by Abraham and Marsden [5] in their seminal
work on mechanics provide the theoretical underpinnings for analyzing dynamical systems
in a geometric context, essential for our study.

Additionally, the exploration of antipodal equilibria in the two-dimensional sphere by
Ortega-Palencia et al. [6] and their further discussion in the arXiv preprint [7] offer impor-
tant precedents for our study. These works highlight the peculiarities of motion in curved
spaces and the significance of the chosen potential in determining the system’s behavior.
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Through this research, we aim to build on these foundational studies, extending the
understanding of the n-body problem in curved spaces and exploring new facets of relative
equilibria and their stability. Our work is particularly inspired by the recent developments
in the field and seeks to contribute to the ongoing dialogue within the scientific community
regarding the dynamics of celestial bodies in non-traditional settings.

We want to point out the possibility of having a relative equilibrium in antipodal
points, as stated in [8].

In celestial mechanics with curvature, specifically in the case of a sphere, there are
two types of singularities related to the classical cotangent potential [8]. One refers to
collisions, while the other refers to antipodal points.

Various researchers, including those cited as [9,10], have explored the behavior of
collisions in spaces with non-zero constant curvature by applying classical regularization
methods from Newtonian mechanics. Their findings align with those previously obtained
in this domain, marking the beginning of investigations into dynamic types.

Additionally, in classical celestial mechanics, an alternative system that helps un-
derstand certain movements is studied, such as the planar three-body problem with an
attractive potential of 1/r2 [11,12]. According to the Lagrange–Jacobi identity, where
Ï = 4H, for any solution that is bounded, it is required to possess zero energy and maintain
a constant moment of inertia I. This condition holds when the energy at the initial state
is zero and its derivative is zero, the solution is bounded, as observed in the Newtonian
potential 1/r.

The work on how to carry out the study of behavior analysis around a geometric
singularity, that is, by antipodal points, is just beginning. In this work, a geometric method
is proposed to be able to study this type of singularity in the antipodal points for the
problem of two bodies in a conformal sphere of dimension two, with one alternative
potential that satisfies the Laplace–Beltrami equality [13] and preserves the periodic orbits
as the classic cotangent potential in the curved problem.

Our study focuses on the motion of two interacting point particles with masses m1 and
m2 on the two-dimensional conformal sphere M2

R = Ĉ = C∪ {∞}. Consider the complex
variable w and its conjugate w̄, upon which we define a conformal metric of the form

ds2 =
4R4

(R2 + |w|2)2 dw dw̄, (1)

where R is a constant parameter determining the conformal properties of the metric.
We define the corresponding differentiable structure for this space in these coordinates

(for more details, refer to [14,15]).
By aligning the vector field within the Lie algebra that corresponds to the associ-

ated subgroup with the gravitational field in the cotangent space, we determine the
time-dependent algebraic criteria (t) required for solutions to achieve a state of rela-
tive equilibrium.

The techniques used in [8,16] are employed in this analysis.
In celestial mechanics on M2

R, it is common to use the cotangent potential as an exten-
sion of the Newtonian potential. This paper presents arguments justifying the introduction
of a suitable variant of this potential.

This document is organized as follows:
For an overview of the equations of motion, see Section 2, we have developed a

revised potential to tackle the issue, successfully overcoming the challenge of singularities
at antipodal points.

We express the equations of motion for the problem in complex coordinates in M2
R,

following the approach used in [8,16].
For insights into elliptic relative equilibria and their properties, consult Section 3:

utilizing the newly introduced potential, we formulate the algebraic equations that define
the elliptic relative equilibria in the general problem context.
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For a detailed exploration of the two-body problem, refer to Section 4: we classify
the relative equilibria for the two-body problem, following the approach of Borisov et al.
in [17], but considering the new potential.

Regarding the analysis of antipodal points, see Section 5: for any antipodal pair of
points in M2

R, we successfully derive limiting solutions by applying a regularized version
of the original equations of motion.

2. Dynamics Formulation and Conditions for Equilibrium

As discussed in [8], utilizing the stereographic projection method, the authors formu-
late the motion equations pertinent to this problem. This involves projecting the sphere
(with a radius of R) from its embedding in R3 onto the complex plane C, which utilizes the
specified metric (1).

In Ref. [5], the classical motion equations for particles with positive masses mk,
k = 1, . . . , n are discussed, situated within a Riemannian or semi-Riemannian manifold
characterized by coordinates xk, k = 1, . . . , N, endowed with a metric (gij) and an as-
sociated connection Γi

jk. The connection here, specifically the Levi-Civita connection, is
not arbitrary. It is determined by the specified metric (1) through the Christoffel sym-
bols, which are uniquely defined by the metric to ensure the connection is torsion-free
and metric-compatible.

Replacing the Levi-Civita connection with an arbitrary one could lead to a different
set of Christoffel symbols, altering the motion equations and, consequently, the particles’
trajectories and equilibrium states. Such changes would reflect a fundamental shift in the
geometric structure of the space in which the particles are moving.

These particles move under the influence of a pairwise-acting potential U.

Theorem 1. Consider a system of n particles with positive masses mk, k = 1, . . . , n, situated
within a Riemannian or semi-Riemannian manifold characterized by coordinates xk, k = 1, . . . , N,
and endowed with a metric (gij) as specified in (1) and an associated Levi-Civita connection Γi

jk.
The equations of motion for these particles under the influence of a pairwise-acting potential U are
given by

Dẋi

dt
= ẍi + ∑

l,j
Γi

l j ẋ
l ẋj = ∑

k
mkgik ∂U

∂xk , (2)

where i = 1, 2, . . . , N. If the potential U is constant across a connected domain, the particle
trajectories align with the geodesics of the manifold defined by the metric (1).

Proof. Given the manifold’s metric (gij) specified in (1) and the associated Levi-Civita

connection Γi
jk, the covariant derivative Dẋi

dt accounts for the curvature dictated by (1)

and ensures that the acceleration ẍi is defined in a coordinate-independent manner. The
equation of motion incorporates both the intrinsic geometry of the manifold, represented
by the Christoffel symbols Γi

l j, and the external force derived from the potential U. When

U is constant, the term ∑k mkgik ∂U
∂xk vanishes, indicating that the particles’ acceleration is

solely dictated by the manifold’s geometry as defined by (1), thus aligning their trajectories
with geodesics.

Remark 1. It is noted that in Equation (2) the covariant derivative of ẋi is represented on the
left-hand side, whereas the gradient of the potential within the specified metric is depicted on the
right-hand side. Should the potential remain constant, particle trajectories align with geodesics. If
a set of particles moves along a geodesic solution curve, then the right-hand side of Equation (2)
vanishes, such that the solution of the potential is constant on one connected domain.

In this section, we introduce the motion equations for the n-body problem within the
conformal sphere denoted as M2

R.
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2.1. Introducing the Novel Potential

Exploring the n-body problem on the sphere, we reference a potential frequently
encountered in contemporary research, expressed as follows:

U(θ) = cot(θ), (3)

in which θ is the angle at the center of the sphere, delineated by the position vectors of the

particles. This potential is attractive because
dU
d θ

(θ) = − csc2(θ) < 0, 0 < θ < π.
Here, we introduce a slight modification to the potential (3) and define it as the

new potential:

U(θ) = cot
(

θ

2

)
, (4)

which remains attractive over the entire interval (0, 2π).

Theorem 2. Consider a pair of particles with masses mk and mj positioned at locations Ak and
Aj on the sphere S2

R. If wk and wj are their respective stereographic projections onto M2
R, then the

potential Ukj
R experienced by the particles is given by

Ukj
R = mkmj

1
R

cot
( dkj

2R

)
= mkmj

|R2 + wkw̄j|
R2|wk − wj|

. (5)

Proof. Given the particles at Ak and Aj on S2
R, the geodesic distance dkj between them is

related to the angle θkj at the origin by dkj = Rθkj. From the trigonometric identity on the
sphere, we have

cos(θkj) =
Ak · Aj

R2 .

Applying the law of cosines for spherical trigonometry gives us

cot
( dkj

2R

)
=

√
R2 + Ak · Aj

R2 − Ak · Aj
.

Using the stereographic projection, the dot product Ak · Aj in terms of wk and wj is

Ak · Aj = R2

(
2R2(wkw̄j + w̄kwj) + (R2 − |wk|2)(R2 − |wj|2)

(R2 + |wk|2)(R2 + |wj|2)

)
.

Substituting this into the cotangent expression and simplifying yields the potential
experienced by the particles as

Ukj
R = mkmj

|R2 + wkw̄j|
R2|wk − wj|

,

which completes the proof.

2.2. Equations of Motion

Designate w ∈ (M2
R)

n as the collective position vector for n particles, each with mass
mi > 0, situated at points wi for i = 1, 2, . . . , n, within the space M2

R.
The set of singularities within M2

R for the n-body problem, as defined by the cotangent
relation, comprises the solutions to the equation wj − wk = 0. Proceeding from this point,
the singular set is identified as

∆(C) =
⋃
kj

∆(C)kj, (6)
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where
∆(C)kj =

{
w ∈ (M2

R)
n | wk = wj, k ̸= j

}
(7)

represents instances of mutual collisions between particles having masses mj and mk.

Theorem 3 (Dynamics of n-Body Problem in M2
R). Consider a set of n point particles with

masses mi > 0 situated at points wi within the Riemannian manifold M2
R, where w ∈ (M2

R)
n

represents the collective position vector of these particles. The dynamics of each particle is governed
by the following equation:

ẅk −
2w̄kẇ2

k
R2 + |wk|2

=
(R2 + |wk|2)2

4R6

n

∑
j ̸=k

mj
(wj − wk)(R2 + w̄jwk)(R2 + |wj|2)

|wj − wk|3|R2 + w̄jwk|
, (8)

for k = 1, 2, . . . , n.

Proof. The proof follows from integrating the geodesic equations for M2
R and the gradients

computed from the potential UR, as detailed in the equations provided, into the dynamics
defined by the Vlasov–Poisson equations. The resulting second-order complex ordinary
differential equations dictate the motion of the particles, ensuring that the trajectories
remain within the specified domain, avoiding the singular set ∆(C).

Corollary 1 (Singular Set and Binary Collisions in M2
R). In the space M2

R, the singular set ∆(C)
for the n-body problem consists solely of points satisfying wj − wk = 0 for any pair of particles
j, k where j ̸= k, indicating binary collisions. Antipodal points satisfying R2 + wjw̄k = 0 are not
considered part of the singular set in terms of the equations of motion.

Proof. The characterization of the singular set stems from the definition of mutual collisions
between particles, which are the only points where the potential UR becomes undefined
or singular. The exclusion of antipodal points from the singular set is due to the specific
structure of the potential and the forces it dictates, which remain well defined for antipodal
configurations.

3. Elliptic Relative Equilibria

The group SU(2) is given by the Lie algebra su(2) generated by three matrices; for our
purposes we only work with the complex matrix:

Theorem 4. In the two-dimensional conformal sphere S2
R, the one-parameter subgroup generated

by exp(tX), where X =

(
i 0
0 −i

)
, induces a family of elliptic Möbius transformations. For any

point w in the disk D2
R of radius R in the complex plane, the trajectory under this transformation

is a circular path given by f (t, w) = e2itw, representing a rotation around the z-axis in R3. This
circular motion corresponds to the differential equation ẇ = 2iw, signifying the dynamical system’s
relative equilibrium state.

Proof. The exponential mapping applied to the line {tX : t ∈ R} yields the one-parameter

subgroup exp(tX) =

(
eit 0
0 e−it

)
. The modulus of the off-diagonal elements, |e±it|, is equal

to 1, characterizing elliptic transformations since e±it ̸= ±1 for t ∈ R. The action of this
subgroup on a point w in D2

R is described by the Möbius transformation f (t, w) = e2itw,
which geometrically corresponds to a rotation around the z-axis. The trajectory of w under
this transformation is a circular path in D2

R, aligning with the differential equation ẇ = 2iw.
This demonstrates that the system is in a state of relative equilibrium, as the trajectories are
circular paths dictated by the subgroup’s rotational action.
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The trajectories generated by the one-parameter subgroup exp(tX) in C, along with the
circular paths on the two-dimensional sphere situated in R3, are illustrated in
Figures 1 and 2.

Figure 1. Isosceles solutions.

Figure 2. Right-angled solutions.

Now, we can start our analysis of the so-called solutions of elliptic relative equilibria,
derived from the influence of the canonical one-dimensional parametric subgroup within
SU(2), corresponding to the differential equation ẇk = 2iwk. There is a study of the action
of the subgroup in [2,8,17] for the classic cotangent potential.

Definition 1. An elliptic relative equilibrium for the n-body problem in M2
R is a solution

w(t) = (w1(t), w2(t), · · · , wn(t)) of the equations of motion (8) that is invariant under the Killing
vector field ẇk = 2i wk.

We now present the following lemma:

Theorem 5. In the case of n point particles, each with positive masses mk, k = 1, . . . , n, moving
within M2

R, the requisite condition for w(t) to qualify as an elliptic relative equilibrium solution
under (8) is encapsulated by the subsequent rational complex functional equations, which are
time-dependent:

16R6 (R2 − |wk|2)wk
(R2 + |wk|2)3 =

n

∑
j=1,j ̸=k

mj(|wj|2 + R2)(R2 + w̄jwk)(wj − wk)

|R2 + w̄jwk||wj − wk|3
(9)

where the velocity at each point is given by ẇk = 2iwk, where wk represents the value of the k-th
component of the vector w.

Proof. Through direct calculations, we find that from equation ẇk = 2i wk, we have
ẅk = −4 wk. Substituting this into Equation (8) yields Equality (9).

The subsequent finding outlines prerequisites for the particles’ initial placements to
yield an elliptic relative equilibrium solution for Equation (9). These solutions depend on
the fixed points and their velocities.
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Corollary 2. In line with Theorem 5, the initial positions wk,0, k = 1, . . . , n fulfill a necessary and
sufficient criterion to produce an elliptic solution for the system (8), which remains invariant under
the Killing vector field ẇk = 2iwk, through this set of algebraic equations:

16R6 (R2 − |wk,0|2)wk,0

(R2 + |wk,0|2)3 =
n

∑
j ̸=k

mj(wj,0 − wk,0)(R2 + w̄j,0wk,0)(R2 + |wj,0|2)
|wj,0 − wk,0|3|R2 + w̄j,0wk,0|

. (10)

Furthermore, the required velocity for each particle is determined by the equation ẇk,0 = 2iwk,0,
where k ranges from 1 to n, where wk,0 represents the initial value of the k-th component of the
vector w.

Proof. Take wk = wk(t) = e2itwk,0 to represent the impact of the Killing vector field
ẇk = 2iwk at the initial position wk,0, corresponding to a velocity of ẇk,0 = 2iwk,0. By apply-
ing a multiplication of Equation (10) with e2it and incorporating the identity w̄j(t)wk(t) =
w̄j,0e−2itwk,0e2it = w̄j,0wk,0, the resultant system is derived:

16 R6 (R2 − |wk|2)wk
(R2 + |wk|2)3 =

n

∑
j=1,j ̸=k

mj (wj − wk)(R2 + w̄jwk)(R2 + |wj|2)
|wj − wk|3 |R2 + w̄jwk|

.

This demonstrates that wk(t) serves as a solution to (9). To establish the reverse
argument, one simply sets t = 0 within the framework of (9), thereby concluding the
corollary’s proof.

References [2,8] provide illustrative examples of the two- and three-body problems
situated on the conformal sphere M2

R with the classical cotangent potential.

4. Equilibria States in the Two-Body Problem Context

In the following segment, it is shown that relative equilibria exist in the context of
the two-body problem, specifically when employing potential (5), where the bodies are in
motion on the same circle or on two different circles. These results are consistent with the
findings in [1,2,8] for the classical cotangent potential.

Theorem 6. For the values of initial condition positions w1,0 = α and w2,0 = β (with 0 < α,
β < R), for the two-body problem with equal masses on the conformal sphere M2

R, the system (10)
yields only two types of relative equilibrium solutions:

1. Under the condition
3
√

3R3

2
≥ m, the particles position themselves diametrically opposite on

the same circle, with −β = α, termed as isosceles solutions (refer to Figure 1).
2. Given the condition 2R3 ≥ m, the particles occupy positions on separate circles, with

β = R
(α − R)
α + R

, creating a right angle, known as right-angled solutions (refer to Figure 2).

3. Both types of relative equilibria coincide for the value of α = (
√

2 − 1)R.

The solutions for β are in the interval (−R, 0).

Proof. Firstly, in positions w1,0 and w2,0, we note that the system (10) for the two-body
problem can be expressed as the following algebraic system:

16R6 (|w1,0|2 − R2)w1,0

(R2 + |w1,0|2)3 = m2
(w2,0 − w1,0)(R2 + w̄2,0w1,0)(R2 + |w2,0|2)

|w2,0 − w1,0|3|R2 + w1,0w̄2,0|
,

16R6 (|w2,0|2 − R2)w2,0

(R2 + |w2,0|2)3 = m1
(w1,0 − w2,0)(R2 + w̄1,0w2,0)(R2 + |w1,0|2)

|w1,0 − w2,0|3|R2 + w̄1,0w2,0|
. (11)

From Corollary 2, by performing a suitable rotation, a condition both necessary and
sufficient for the presence of invariant elliptic solutions influenced by the Killing vector field
ẇk = 2iwk dictates that the initial positions w1,0 = α and w2,0 = β (where 0 < α, β < R)
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must conform to system (11). Since R2 + βα > 0, when substituted into the system,
it becomes

16R6 (α
2 − R2)α

(α2 + R2)3 = m2
(β − α)(βα + R2)(β2 + R2)

|β − α|3|R2 + αβ| = m2
(β − α)(R2 + β2)

|β − α|3 ,

16R6 (β2 − R2)β

(R2 + β2)3 = m1
(α − β)(R2 + αβ)(R2 + α2)

|α − β|3|R2 + αβ| = m1
(α − β)(α2 + R2)

|α − β|3 . (12)

By equalizing the right- and left-hand sides of (12) and replacing w1,0 = α, w2,0 = β,
the following relation is derived:

m1(α − R)(α + R)(R2 + β2)2α + m2(β − R)(β + R)(R2 + α2)2β = 0. (13)

For m = m1 = m2, the solutions to the system outlined in (12), derived from
Equation (13), are as follows:

−β = α, β = R
(α − R)
α + R

, β = R2 1
α

, β = −R
(α + R)
α − R

,

which is readily apparent.

1. For the initial scenario where −β = α, the result is the isosceles configurations, and
by substituting it into any of the equations in system (12), we obtain the relation

R6(R2 − α2)α3

(R2 + α2)4 =
m
64

.

We consider the function

F(α) =
R6(R2 − α2)α3

(R2 + α2)4 ,

defined in the interval [0, R]. It has a maximum value of
3
√

3R3

128
at the critical point

√
3R
3

.

A simple analysis shows that there are isosceles solutions for this problem if
3
√

3R3

128
≥ m

64
,

which proves the first item.
2. In the subsequent case, consider ℓ as the geodesic distance between α and β = R (α−R)

α+R .

First, let us establish that β is always smaller than α within the interval
[

R (α−R)
α+R , α

]
.

To determine which is smaller in the interval
[

R (α−R)
α+R , α

]
, we compare R (α−R)

α+R with α.

• If α = R, then R (α−R)
α+R = 0, which is clearly smaller than α since α = R > 0.

• If α < R, then α − R < 0. This implies that R (α−R)
α+R is negative, and therefore,

smaller than α, which is positive.
• We analyze the difference α − R (α−R)

α+R :

α − R
(α − R)
α + R

=
α(α + R)− R(α − R)

α + R

=
α2 + αR − Rα + R2

α + R

=
α2 + R2

α + R
.

Since α2 + R2 > 0 and α+ R > 0 for α, R > 0, the difference is positive, indicating
that α is greater than R (α−R)

α+R .
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Therefore, in all cases within the interval
[

R (α−R)
α+R , α

]
, the point R (α−R)

α+R is always
smaller than α.
By defining the arc Γ that connects points β and α through a parametrization given by

x(t) = t, (14)

y(t) = 0, (15)

over the interval
[

R
(α − R)
α + R

, α

]
, the geodesic distance ℓ can be calculated as follows:

ℓ =
∫

Γ
dℓ = 2R2

∫ α

R (α−R)
α+R

dt
t2 + R2 (16)

= 2R
[

arctan
( α

R

)
− arctan

(
R(α − R)
R(α + R)

)]
(17)

= 2R arctan

(
α
R − α−R

α+R

1 + α
R

α−R
α+R

)
(18)

= 2R arctan(1) =
πR
2

. (19)

Now, let us consider the asymptotic behavior of ℓ as α approaches R and 0:
1. As α approaches R, the geodesic distance ℓ should theoretically approach 0 as the
two points converge.
2. As α approaches 0, the point β approaches −R, and the geodesic distance ℓ should
approach the maximum possible value on the circle, which is πR, corresponding to
half the circumference of the circle of radius R.
This analysis provides a deeper understanding of the geometric configuration of the
system and the behavior of the geodesic distance under different conditions.
This delineates the process and calculation of length ℓ for the specified path Γ within
the two-dimensional manifold M2

R.
Conversely, it is established that ℓ = θR, with θ denoting the angle between the

specified points in M2
R. Consequently, θ =

π

2
, classifying the solution as right-angled.

In this case, by substituting β = R(α−R)
α+R into any of the equations in the system (12),

we obtain the relation
R4(R2 − α2)α

(R2 + α2)2 =
m
8

.

We consider the function

G(α) =
R4(R2 − α2)α

(R2 + α2)2 ,

defined in the interval [0, R]. It has a maximum value of
R3

4
at the critical point

(
√

2 − 1)R. Once again, a simple analysis shows that there are right-angled solutions

for this problem if
R3

4
≥ m

8
, which proves the second item.

This concludes the proof.

In [1], in theorem 4.3 there is a discussion about the stability of the solutions obtained.
In this theorem, we establish a connection between the relative equilibria for the

two-body problem and Snell’s law of geometric optics.

Theorem 7. If two particles in the two-body problem are in relative equilibrium and the given
substitution conditions are met, then the relationship between their masses and positions is analogous
to Snell’s law, with the particularity that the “indices of refraction” are the masses and the “angles
of refraction” are related to the positions of the particles.
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Proof. Consider the following equation derived from the polynomial equation for the
two-body problem (see Equation (13)):

m1α(α2 − R2)

(α2 + R2)2 = −m2β(β2 − R2)

(β2 + R2)2 (20)

Here, tan(θ1) =
α
R and tan(θ2) =

β
R . Let us substitute α = R tan(θ1) and β = R tan(θ2)

into Equation (20):

m1R tan(θ1)(R2 tan2(θ1)− R2)

(R2 tan2(θ1) + R2)
2 = −m2R tan(θ2)(R2 tan2(θ2)− R2)

(R2 tan2(θ2) + R2)
2

Simplifying the equation, we obtain

m1 tan(θ1)(tan2(θ1)− 1) = −m2 tan(θ2)(tan2(θ2)− 1)

Using the trigonometric identity tan2(θ)− 1 = − cos(2θ), we can rewrite the equation as

m1 tan(θ1) cos(2θ1) = −m2 tan(θ2) cos(2θ2)

Now, using the double-angle formula sin(2θ) = 2 sin(θ) cos(θ), we can express
tan(θ) cos(2θ) in terms of sin(4θ):

m1 sin(4θ1) = −m2 sin(4θ2)

This relationship is analogous to Snell’s law, where the masses act as indices of refrac-
tion and the angles are related to the positions of the particles, thus proving the theorem.

5. Exploring Antipodal Solutions: Approaching through the Lens of Relative Equilibria

Within this segment, our focus shifts to the examination of antipodal solutions that
emerge in the context of the two-body problem when considering scenarios involving
bodies of identical mass.

Antipodal Solutions as a Limit of Relative Equilibria for Equal Masses

According to Theorem 6, there are two types of relative equilibria for equal masses,
and each type gives rise to a different solution as α approaches R.

Corollary 3. In the context of right-angled relative equilibria, as α approaches R a state of equilib-
rium for the system is achieved. In this state, one particle is positioned at the origin of coordinates,
while the other follows a geodesic circular path with a radius of |w| = R, moving at a velocity of
ẇ = 2iw.

Proof. The assertion is derived from the observation that as α tends towards R, β converges
to 0, as demonstrated by

lim
α→R

β = lim
α→R

R(α − R)
α + R

= 0,

as α nears R.

Next, we examine the scenarios involving conjugate (antipodal) points within the
two-body problem, considering them as limiting cases of isosceles configurations. This
analysis becomes particularly relevant when α nears R and the criterion for the radius–mass

relationship,
3
√

3R3

2
≥ m, is met.

We present the following result, which demonstrates that the family of relative equi-
libria converges to the geodesic circle (equator), acting as a unified relative equilibrium
since it remains invariant under the canonical Killing vector field. However, while it does
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not serve as a solution to the overarching system (8), it constitutes a geodesic within M2
R,

where the potential exerted along this trajectory is nullified.
Nevertheless, a solution to the regularized system derived from (8) exists on this geodesic.

Theorem 8. In the limit as α approaches R, the family of isosceles relative equilibria becomes an
equilibrium with equal masses, where the particles are located at antipodal points. These particles
move along the geodesic circle where |w| = R, possessing a velocity given by ẇ(t) = 2iw(t), and
behave as a single (limit) relative equilibrium.

Proof. We note that for the two-body problem involving equal masses, the potential is
described as follows:

UR(w, w̄) =
m2
∣∣R2 + w2w̄1

∣∣
R2|w2 − w1|

. (21)

Let w1(t) = αe2it and w2(t) = −αe2it constitute the elements of the relative equilibrium:

w(t) = (αe2it,−αe2it).

Substituting these values into Equation (21), we obtain

UR(w, w̄) =
m2

R2
|R2 + (−αe2it)(αe−2it)|

|2αe2it|

=
m2

2α

(R2 − α2)

R2 .

This shows that the potential along the family of relative equilibria decreases and
converges to zero as α approaches R.

If we denote z1(t) = Re2it and z2(t) = −Re2it as the components of the function:

z(t) = (z1(t), z2(t)) = (Re2it,−Re2it), (22)

where each coordinate maps out the geodesic circle with radius R, moving at a velocity of
ż(t) = 2iz(t), then

lim
α→R

w(t) = lim
α→R

(αe2it,−αe2it) = (Re2it,−Re2it) = z(t).

Given the potential’s continuity and that conjugate points cease to be singularities for
the potential, it follows that

UR(z, z̄) = lim
α→R

UR(w, w̄)

= lim
α→R

(
m2

2αR2

(
R2 − α2

))
= 0.

This illustrates that the potential becomes null along the geodesic circle (22).

Inserting β = −R and α = R into Equation (13) confirms it as a solution to both
that equation and the regularized system derived from the relative equilibria condition
system (12), specified as follows:
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16R6α
(α2 − R2)

(R2 + α2)3 |R2 + αβ| = m2
(β − α)(R2 + βα)(R2 + β2)

|β − α|3 ,

16R6β
(β2 − R2)

(R2 + β2)3 |R2 + αβ| = m1
(α − β)(R2 + αβ)(R2 + α2)

|α − β|3 .

Clearly, the function (22) does not resolve the general system (8). Nonetheless, through
straightforward substitution it fulfills the criteria of the regularized system derived from
(8) by circumventing singularities, including those arising from conjugate antipodal points:(

ẅ1 −
2w̄1ẇ2

1
R2 + |w1|2

)
|R2 + w̄2w1|
(R2 + |w1|2)2 = m2

(w2 − w1)(R2 + w̄2w1)(R2 + |w2|2)
4R6|w2 − w1|3

,

(
ẅ2 −

2w̄2ẇ2
2

R2 + |w2|2

)
|R2 + w̄1w2|
(R2 + |w2|2)2 = m1

(w1 − w2)(R2 + w̄1w2)(R2 + |w1|2)
4R6|w1 − w2|3

.

This concludes the proof.

Corollary 4. In the limit as particles approach antipodal positions on the sphere, the interaction
potential between them tends to zero, and the particles behave as if they are in a relative equilibrium
state without mutual influence. This occurs along the geodesic circle where |w| = R, with the
particles possessing a velocity given by ẇ(t) = 2iw(t).

Proof. From the theorem’s proof, we note that as α approaches R, the potential UR(w, w̄)
converges to zero. This indicates that the interaction force between the particles diminishes
and vanishes in the limit. Therefore, when the particles are at antipodal points, they move
along the geodesic circle without influencing each other, maintaining a constant velocity
ẇ(t) = 2iw(t), characteristic of a relative equilibrium in the system.

Corollary 5. Any pair of antipodal point particles with equal masses, satisfying the condition

on the radius–mass relation
3
√

3R3

2
≥ m, can move freely along the geodesic associated with the

(finite) direction of the Killing vector field in the two-dimensional sphere M2
R.

Proof. Given system (12) and polynomial Equation (13), we analyze the case where
m = m1 = m2. For the solutions outlined, we particularly focus on the scenario where
−β = α. Substituting this into the system yields the relation

R6(R2 − α2)α3

(R2 + α2)4 =
m
64

. (23)

Consider the function F(α) = R6(R2−α2)α3

(R2+α2)4 defined in the interval [0, R]. It reaches a

maximum at α =
√

3R
3 with a value of 3

√
3R3

128 .

The condition for the existence of solutions is 3
√

3R3

128 ≥ m
64 . Since this aligns with the

condition provided in the corollary,
3
√

3R3

2
≥ m, the statement is proven for the specified

configuration.

6. Relative Equilibrium for the n-Body Problem

Corollary 6. An even number of point particles with pairwise conjugated positions wj(t), arranged
in a regular n-gon and with equal masses, move freely on a geodesic with velocities ẇj = 2iwj(t).
This geodesic movement behaves as a relative equilibrium.
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Proof. We observe that from Remark 1, a necessary and sufficient condition for a set of n
particles with masses mk to move along a geodesic solution curve, where the right-hand
side of Equation (2) vanishes along such a solution, is given by the system of equations, we
can approximate R2 + w̄jwk by R2 + w̄jwk + ϵ for some sufficiently small ϵ:

0 =
n

∑
j<k

mj
(wj − wk)(R2 + w̄jwk + ϵ)(R2 + |wj|2)

|wj − wk|3|R2 + w̄jwk + ϵ| =
n

∑
j<k

mj
(wj − wk)(R2 + w̄jwk + ϵ)

|wj − wk|3|R2 + w̄jwk + ϵ| , (24)

where the sum is taken over j, k = 1, 2, · · · , n.
Therefore, for the n-body problem with equal mass particles moving along a geodesic

circle, we have the equality

0 =
n

∑
j<k

(wj − wk)(R2 + w̄jwk + ϵ)

|wj − wk|3|R2 + w̄jwk + ϵ| . (25)

Using the same method of applying a rotation for conjugate points into the line as
in Theorem 8 for an n-even number of equal masses arranged in a regular n-gon along a
geodesic, and considering that the acting forces for any elements wk and wj cancel in pairs,
we obtain the equation

(wj − wk)(R2 + w̄jwk + ϵ)

|wj − wk|3|R2 + w̄kwj + ϵ| +
(wk − wj)(R2 + w̄kwj + ϵ)

|wk − wj|3|R2 + w̄jwk + ϵ| = 0. (26)

This leads us to the result, which complements the one obtained in Theorem 5 in [4]
for an odd number of particles with equal masses moving along a geodesic.

Remark 2. In remark 3 in [4], the authors parameterize the relative equilibria using a relation
between angular velocity, the equal masses of the bodies, and their positions on the sphere. This
leads to the observation that the velocity approaches infinity as the particles tend to the equator.
However, we believe it is not physically possible to speak of this scenario in our universe for the
following reasons:

1. When the angular light velocity ẇ(0) = ±2i α∞ is reached for the initial condition w(0) = ± α∞,
the masses corresponded to elementary particles and such quantities vanish.

2. The annular region
Ω = {w ∈ M2

R | α∞ < |w| < R + α∞}

containing the equator |w| = R does not admit any other real relative equilibria for this problem.

7. Center of Mass on a Two-Dimensional Sphere

In the study presented in [6], the concept of the center of mass for particles on a
spherical surface S2

R was explored. Here, we formalize this concept into a theorem and
provide a demonstration of the underlying principle.

Theorem 9. Given two particles on S2
R, it is always possible to map them to the equator determined

by their intersection with the xy-plane using an isometry, which is a composition of two rotations.
This mapping allows the problem of finding the center of mass on S2

R to be reduced to calculating
it on the one-dimensional sphere S1

R. When considering the stereographic projection of S1
R onto

the real axis, a point P(x, y) on S1
R corresponds to a point u on the real axis, where u = Rx

R−y and
P(0, R) = ∞. The inverse projection is given by

P−1(u) =

(
2R2u

u2+R2

R(u2−R2)
u2+R2

)
.
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Proof. The proof involves demonstrating the isometry that maps the points on S2
R to S1

R.
First, we consider two rotations: one that aligns the axis passing through the two points
with the z-axis, and another that rotates the points to the xy-plane. This process does
not alter the relative distances between points, preserving the center of mass due to the
invariance under isometries.

Next, we consider the stereographic projection from S1
R to the real line. A point

P(x, y) on S1
R is mapped to a point u on the real axis using the formula u = Rx

R−y . The

inverse mapping, P−1(u), is necessary to retrieve the original points on the sphere from
their projections.

By applying these transformations, the calculation of the center of mass on S2
R is

effectively reduced to a simpler problem on S1
R and further to a calculation on the real line

via stereographic projection.

7.1. Arc Length from the South Pole

Theorem 10. Let S1
R be a sphere of radius R. The arc length s, extending from the south pole to a

specific point (x, y) on S1
R, whose stereographic projection is u, is calculated by

s = 2R arctan
( u

R

)
.

More generally, the arc length s from point Q1(x1, y1) to point Q2(x2, y2) on S1
R, whose

stereographic projections are u1 and u2, respectively, (with u1 < u2), is given by

s = 2R
(

arctan
(u2

R

)
− arctan

(u1

R

))
.

Proof. For the first case, consider the integral representing the arc length from the south
pole to a point whose stereographic projection is u:

s = 2R2
∫ u

0

1
t2 + R2 dt.

Using the definite integral of the arctangent function, we obtain

s = 2R2
[

1
R

arctan
(

t
R

)]u

0
= 2R

[
arctan

( u
R

)
− arctan(0)

]
= 2R arctan

( u
R

)
.

For the general case, the arc length between two points Q1 and Q2 is calculated by
considering the difference between the arc lengths from the south pole to each point:

s = 2R
(

arctan
(u2

R

)
− arctan

(u1

R

))
.

This is directly deduced from the additive property of the arc length and the arctangent
function, providing a consistent way to calculate the distance along the sphere between
any two given points.

7.2. Center of Mass

Theorem 11. Consider two masses mk, k = 1, 2, located at points Qk, k = 1, 2, respectively. Let
Qc(xc, yc) be the point that satisfies the lever rule on the sphere m1s1 = m2s2. Then, the following
equality holds:

arctan
(uc

R

)
=

1
m1 + m2

(
m1 arctan

(u1

R

)
+ m2 arctan

(u2

R

))
. (27)



Mathematics 2024, 12, 1025 15 of 17

Proof. Given the lever rule on the sphere m1s1 = m2s2, we can express this relationship as

2Rm1

(
arctan

(uc

R

)
− arctan

(u1

R

))
= 2Rm2

(
arctan

(u2

R

)
− arctan

(uc

R

))
.

By simplifying this equation, we isolate arctan
( uc

R
)
:

2Rm1 arctan
(uc

R

)
− 2Rm1 arctan

(u1

R

)
= 2Rm2 arctan

(u2

R

)
− 2Rm2 arctan

(uc

R

)
.

2R(m1 + m2) arctan
(uc

R

)
= 2Rm1 arctan

(u1

R

)
+ 2Rm2 arctan

(u2

R

)
.

arctan
(uc

R

)
=

1
m1 + m2

(
m1 arctan

(u1

R

)
+ m2 arctan

(u2

R

))
.

This concludes the proof, demonstrating that the point Qc(xc, yc) indeed satisfies the
lever rule with respect to the given masses and positions on the sphere.

Theorem 12. Consider, n point masses mk, k = 1, . . . , n situated at the coordinates (xk, yk, zk),
k = 1, . . . , n on S2

R, all lying on the same geodesic. Further, let their stereographic projections be
w1, w2, . . . , wn in C. Consider the equation

arctan
(wc

R

)
=

1
m

n

∑
k=1

mk arctan
(wk

R

)
,

If we multiply both sides by R and take the limit as R → ∞, we obtain

wc =
1
m

n

∑
k=1

mkwk. (28)

This matches the expression for the center of mass in the Euclidean complex plane, specifically
within the complex plane (or R2), characterized by a Euclidean metric and null curvature.

Proof. In a broader context, consider n point masses mk, k = 1, . . . , n situated at the coordi-
nates (xk, yk, zk), k = 1, . . . , n on S2

R, all lying on the same geodesic. Let their stereographic
projections be w1, w2, . . . , wn in C. Then, if wc is their spherical center of mass, the following
relationship is satisfied:

arctan
(wc

R

)
=

1
m

n

∑
k=1

mk arctan
(wk

R

)
,

where m = ∑n
k=1 mk.

Consider the equation given in the theorem. We multiply both sides by R to facilitate
the application of L’Hôpital’s rule:

R · arctan
(wc

R

)
=

R
m

n

∑
k=1

mk arctan
(wk

R

)
.

As R → ∞, we encounter an indeterminate form ∞ · 0 on both sides of the equation.
To resolve this, we apply L’Hôpital’s rule by differentiating the numerator and the denomi-
nator with respect to R. This involves computing the derivative of arctan

(w
R
)

with respect
to R, which gives − w

R2+w2 .
Applying L’Hôpital’s rule, we have

lim
R→∞

arctan
(wc

R
)

1
R

=
1
m

n

∑
k=1

mk lim
R→∞

arctan
(wk

R
)

1
R

.
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After applying the rule and simplifying, we find

lim
R→∞

R2

R2 + w2
c

wc =
1
m

n

∑
k=1

mk lim
R→∞

R2

R2 + w2
k

wk,

which simplifies to the desired result as R → ∞:

wc =
1
m

n

∑
k=1

mkwk,

matching the expression for the center of mass in the Euclidean complex plane.

8. Conclusions

The document focuses on the relationship between spherical geometry and the n-body
problem on a two-dimensional conformal sphere, M2

R. The main conclusions drawn from
the results, theorems, and corollaries are summarized below:

1. Radius–mass relationship: A specific condition related to the radius–mass relationship
of the particles is established. Under this condition, two antipodal point particles with
positive mass move unrestrictedly in a state of relative equilibrium along a geodesic
associated with the canonical Killing vector field in M2

R.
2. Relative equilibrium: The exploration of how variations in the sphere’s radius and

the particles’ masses affect the behavior of relative equilibrium provides a deeper
understanding of the relationships between the system’s parameters and its dynamics.

3. Geodesic movement: It is concluded that an even number of point particles, with pair-
wise conjugated positions and arranged in a regular n-gon with equal masses, move
freely on a geodesic with particular velocities, behaving as a relative equilibrium.

4. Center of mass on the sphere: An approach to determining the center of mass on a
two-dimensional sphere is discussed, using stereographic projection and relating it to
the calculation of the center of mass on the one-dimensional sphere S1

R.
5. Arc length: A method is provided to calculate the arc length from the south pole to a

specific point on S1
R, crucial for understanding the geometry involved in the n-body

problem on a sphere.
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