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Abstract: In this study, we introduce a novel model, the Combined Model, composed of a conditional
denoising diffusion model (SR3) and an enhanced residual network (EResNet), for reconstructing
high-resolution turbulent flow fields from low-resolution flow data. The SR3 model is adept at
learning the distribution of flow fields. The EResNet architecture incorporates a long skip connection
extending from the input directly to the output. This modification ensures the preservation of
essential features learned by the SR3, while simultaneously enhancing the accuracy of the flow field.
Additionally, we incorporated physical gradient constraints into the loss function of EResNet to ensure
that the flow fields reconstructed by the Combined Model are consistent with the direct numerical
simulation (DNS) data. Consequently, the high-resolution flow fields reconstructed by the Combined
Model exhibit high conformity with the DNS results in terms of flow distribution, details, and
accuracy. To validate the effectiveness of the model, experiments were conducted on two-dimensional
flow around a square cylinder at a Reynolds number (Re) of 100 and turbulent channel flow at
Re = 4000. The results demonstrate that the Combined Model can reconstruct both high-resolution
laminar and turbulent flow fields from low-resolution data. Comparisons with a super-resolution
convolutional neural network (SRCNN) and an enhanced super-resolution generative adversarial
network (ESRGAN) demonstrate that while all three models perform admirably in reconstructing
laminar flows, the Combined Model excels in capturing more details in turbulent flows, aligning the
statistical outcomes more closely with the DNS results. Furthermore, in terms of L2 norm error, the
Combined Model achieves an order of magnitude lower error compared to SRCNN and ESRGAN.
Experimentation also revealed that SR3 possesses the capability to learn the distribution of flow fields.
This work opens new avenues for high-fidelity flow field reconstruction using deep learning methods.

Keywords: deep learning; super-resolution reconstruction of turbulent flows; diffusion model;
residual network

MSC: 68T07

1. Introduction

High-precision flow field data have significant impacts on many areas, such as fluid
analysis, weather forecasting, and the optimization design of a flying wing [1]. Recon-
structing high-fidelity flow fields represents a significant challenge within the realms of
fluid dynamics and computational fluid dynamics (CFDs). It is expensive to obtain high-
precision turbulent flow fields using DNS [2] or experimental methods, due to its chaotic
behavior with multiple spatiotemporal scales. To rapidly predict high-fidelity flow field
data, Shi et al. [3] developed an adjoint method. Compared with the direct iterative reverse
automatic differentiation (RAD) method, the adjoint method gives an 84.6% saving in time.
Deep learning has a strong nonlinear fitting ability [4] and can mine useful information
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from massive, existing flow field data [5]. In this work, we aim to develop a deep learning
model capable of reconstructing high-fidelity fluid data from low-fidelity data. Given
that low-fidelity data can be generated with fewer computational resources or more read-
ily acquired via experimental methods, employing a deep learning model to reconstruct
high-fidelity data from such low-fidelity sources can markedly diminish the computational
expenses associated with obtaining high-quality flow fields.

Inspired by various research advances in the super-resolution deep learning of images,
such as the convolutional neural network-based (CNN-based) methods [6–10], the gen-
erative adversarial network-based (GAN-based) methods [11–13], the transformer-based
methods [14,15], and the diffusion-based methods [16–18], several neural network models
have been proposed to reconstruct a high-resolution (HR) flow field. We categorize the
recent super-resolution (SR) methods for flow fields into three categories:

1. Direct-mapping models: The direct-mapping models are always CNN-based models
which are trained to directly minimize the reconstruction loss between the ground
truth data and reconstructed flow in the sense of an Lp norm. The purpose of the
direct-mapping models is to reconstruct a flow field that is numerically close to the
real flow field. Many researchers have reconstructed HR flow by direct-mapping
methods. Fukami et al. [19,20] proposed a hybrid downsampled skip-connection
multi-scale (DSC/MS) model, which reconstructed HR flow data from grossly under-
resolved input data both in space and time. Onishi et al. [21] proposed a CNN-based
super-resolution (SR) method to reconstruct HR data from low-resolution (LR) urban
meteorological simulation data, and the reconstruction effect is much better than that
of traditional interpolation methods. A multiple path super-resolution convolutional
neural network (MPSRC) was proposed by Kong et al. [22,23] to fully capture the
spatial distribution features of temperature and supersonic flow field. The results
demonstrated that the MPSRC can provide a better reconstruction result with a lower
mean square error and a higher peak signal-to-noise ratio than CNN. Liu et al. [24]
proposed a multiple temporal path CNN to fully capture the temporal information
from consecutive fluid fields, which can reconstruct more details and improve the
spatial resolution compared to static CNN.

2. Direct-mapping models with judgment: The direct-mapping models with judgment
are always GAN-based models which consist of a generator and a discriminator. The
generator is trained not only to minimize the reconstruction loss, but also to maximize
the loss of discriminator. The purpose of the direct-mapping models with judgment
is to generate a flow field that is numerically close to the real flow field and to make
the discriminator mistakenly believe that it is the real flow field. Yousif et al. [25,26]
proposed a multiscale ESRGAN model which can reconstruct high-fidelity turbulent
flow with extremely coarse data and predict the HR turbulent velocity fields of the
turbulent channel flow with a different Reynolds number without retraining the
network parameters. Xu et al. [27] presented a 3D-SRGAN to learn the topographic
information and infer a high-resolution 3D turbulent flame structure with a given LR
counterpart. Yu et al. [28] proposed the 3D-ESRGAN with tricubic interpolation-based
transfer learning to reconstruct 3D HR turbulent flows with limited training data. Xie
et al. [29] presented the first approach to synthesize four-dimensional physics fields.
They generated consistent and detailed results by using a novel temporal discriminator
based on a conditional GAN that is designed for the inference of three-dimensional
volumetric data.

3. Pure diffusion-based models: The pure diffusion-based models are denoising diffusion
probabilistic models which include two processes: diffusion process (adding noise
into the HR data) and inverse process (denoising from noisy data). Different from the
previous two kinds of models, DDPM cannot reconstruct the HR flow field according
to the LR flow field at one time but needs to denoise the concatenation of the LR flow
field and the noisy flow field T (T is a hyperparameter) times to reconstruct the HR
flow field. The goal of this model is to reconstruct an HR flow field that conforms to
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the probability distribution of the ground truth data. Shu et al. [30] presented the first
diffusion-based model, a physics-informed diffusion model, which could produce
accurate reconstruction results for two-dimensional (2D) Kolmogorov flow with a
Reynolds number of 1000.

The above deep learning models have achieved encouraging results in flow field
SR, but they still have some problems. Direct-mapping models and pure diffusion-based
models represent two extremes. The former are merely numerical approximations without
capturing the distribution of flow fields. Conversely, the latter focus exclusively on learning
the distribution of flow fields, yet their accuracy in reconstruction requires enhancement.
Furthermore, adding physical constraints to the pure diffusion-based models is challenging
because the diffusion model predicts the added noise rather than directly predicting the
flow field. For direct-mapping models with judgment, training GANs is notably difficult,
with the potential of converging to local minima. At these local minima, the HR flow fields
generated by GANs fail to accurately capture the true statistics of the training data. To
solve the aforementioned problems, we introduce an easily trainable Combined Model
that integrates SR3 and EResNet for the purpose of the super-resolution reconstruction of
flow fields. The SR3 model is utilized to comprehend the distribution of the flow field. The
EResNet further enhances precision based on the outcomes of SR3. Consequently, the HR
flow fields constructed by the Combined Model not only achieve high precision but also
agree the probability distribution of the DNS flow field. Experimental results demonstrate
that the Combined Model can successfully reconstruct HR turbulent flow fields from LR
flow data, achieving a high level of concordance with the DNS results.

2. Methods

We began with a dataset of input–output flow field pairs, denoted as D =
{

xi, yi}N
i=1,

where yi represents the HR flow field and xi represents the corresponding LR flow field.
The purpose of this work was to reconstruct HR flow y from the corresponding LR data
x. These LR data were obtained by downsampling high-resolution data. To achieve this
objective, we proposed a method that proceeds in two steps: first, learning the distribution
of the flow field; second, enhancing the accuracy of the flow field based on the results in
the first step,

⌣
y = F2(F1(x, θ1), θ2) (1)

where
⌣
y is the SR reconstructed result. F1 denotes the model used in the first step to learn

the distribution of the flow field. F2 denotes the model used in the second step to improve
the accuracy of the flow field. θ1 and θ2 denote the learnable parameters of the F1 and
F2, respectively.

Suppose a training dataset contains some flow field pairs, e.g., Dtrain =
{

xi, yi}M
i=1

(M < N), the training process of the model is equivalent to solving an optimization problem,

θ = argminθ1,θ2

1
M

M

∑
i=1
Lθ2(y ∼ Pθ1(y

i | xi), yi) (2)

where L, θ2 denote the loss function and learnable parameters of the F2; Pθ1(y | x) denotes
the probability distributions of y given x learned by F1. θ1 and y denote the learnable
parameters and the reconstructed results of the F1, respectively. θ denotes all the learnable
parameters of the model, where θ = θ1 + θ2. Once the training process is complete, θ
remains fixed during testing.

Therefore, we proposed the Combined Model to achieve the above objectives. The
Combined Model consisted of two parts: SR3 and EResNet. The overall framework of the
Combined Model is shown in Figure 1. First, the input low-resolution (LR) flow field is
processed by SR3 to generate a preliminary flow field consistent with the true flow field
distribution, and then the residual network further improves the accuracy of the flow
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field to obtain the final flow field result. Next, a detailed description of SR3 and EResNet
is provided.
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Figure 1. The framework of the Combined Model. For the sake of convenience, we showed only one
of the three velocity fields.

2.1. Conditional Denoising Diffusion Model

The SR3 model is a generative model and has some improvements based on the
denoising diffusion probabilistic model (DDPM). SR3 exhibits outstanding performance in
the super-resolution reconstruction of faces and natural images. This example demonstrates
the potential of a DDPM-based model in reconstructing HR flow data from LR flow data.
An overview of the primary HR flow data reconstruction framework with SR3 is shown in
Figure 2. More details of the SR3 model and how it is used for flow data reconstruction are
provided in the following subsections.
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Figure 2. There are two processes involved in the SR3 model: 1. the forward diffusion process q (left
to right) gradually adds Gaussian noise to the HR flow; 2. the reverse inference process p (right to
left) iteratively denoises the noisy flow, conditioned on an LR flow. For the sake of convenience, we
showed only one of the three velocity fields.

2.1.1. Forward Diffusion Process

Following [16,31,32], the definition of the forward Markovian diffusion process q:

q(y1:T | y0) :=
T

∏
t=1

q(yt | yt−1) (3)

q(xt | xt−1) = N(xt,
√

1− βtxt−1, βt I) (4)

where the scalar parameters β1:T are hyperparameters, subject to 0 < βt < 1, which
determine the variance in the noise added at each iteration. The distribution of yt given y0
can be characterized by marginalizing out the intermediate steps as:

q(yt | y0) = N (yt |
√

γty0, (1− γt)I) (5)
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where γt =
t

∏
i=1

αi,αt = 1 − βt. Furthermore, with some algebraic manipulation and

completing the square, one can derive the posterior distribution of yt−1 given (yt, y0) as:

q(yt−1 | y0, yt) = N (yt−1 | µ, σ2I)

µ =
√

γt−1(1−αt)
1−γt

y0 +
√

αt(1−γt−1)
1−γt

yt

σ2 = (1−γt−1)(1−αt)
1−γt

.

(6)

2.1.2. Optimizing the Denoising Model

As suggested by Meng et al. [33], the Markovian property of the backward inference
process implies that the process to generate y0 does not have to start from yT but can start
from yt given by adding noise into y0 t times, t ∈ {1, 2, . . . , T}. We optimized a neural
denoising model fθ1 that takes as input LR flow x and a noisy flow ỹ,

ỹ =
√

γy0 +
√

1− γϵ, ϵ ∼ N (0, I) (7)

and aims to recover the HR flow y0. In addition to an LR flow x and a noisy flow ỹ, the
denoising model fθ1 takes as input the sufficient statistics for the variance of the noise γ
and is trained to predict the noise ϵ added to y0. The SR3 architecture, which is a U-Net [34]
augmented with self-attention, is depicted in Figure 3. The proposed objective function
(refer to Appendix A) for training fθ1 is:

E(x,y)Eϵ,γ

∥∥∥ fθ1(x,
√

γy0 +
√

1− γϵ, γ)− ϵ
∥∥∥2

2
(8)Mathematics 2024, 12, x FOR PEER REVIEW 6 of 17 
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Figure 3. Depiction of U-Net architecture of SR3. The LR input flow x up-samples to the target
resolution using bicubic interpolation and concatenates with the noisy high resolution output flow yt.

During training, to condition the model on the input x, we up-sampled the LR flow
to the target resolution using bicubic interpolation and concatenated with ỹ along the
channel dimension. Generally, larger values of T lead to better models, although they also
result in a longer backward inference process time. We set T to 200 and adopted a linear
noise schedule.

2.1.3. Reverse Inference Process

Inference under our model is defined as a reverse Markovian process, which goes in
the reverse direction of the forward diffusion process, starting from the concatenation of
LR flow and noisy flow:
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pθ1(y0:T | x) = p(yT)
T

∏
t=1

pθ1(yt−1 | yt, x) (9)

p(yT) = N (yT | 0, I) (10)

If the noise variances in the forward process steps are set as small as possible, i.e.,
α1:T ≈ 1, the optimal reverse process pθ1(yt−1 | yt, x) will approximate a Gaussian distribu-
tion [31].

pθ1(yt−1 | yt, x) = N (yt−1 | µθ1(x, yt, γt), σ2
t I) (11)

Recall that the denoising model fθ1 is trained to estimate ϵ, given any noisy flow ỹ
including yt. Thus, given yt, we approximated y0 by rearranging the terms in (4) as:

ŷ0 =
1√
γt

(
yt −

√
1− γt fθ1(x, yt, γt)

)
(12)

Following [32], we substituted our estimate ŷ0 into the posterior distribution of
q(yt−1 | y0, yt) in (4) to parameterize the mean of pθ1(yt−1 | yt, x) as:

µθ1(x, yt, γt) =
1√
αt

(
yt −

1− αt√
1− γt

fθ1(x, yt, γt)

)
(13)

Ho et al. [32] achieved the best results by fixing the variance σ2
t I rather than learning

it. We set the variance of the pθ1(yt−1 | yt, x) to 1− αt. Following this parameterization,
each iteration of iterative refinement under our model takes the form:

yt−1 ←
1√
αt

(
yt −

1− αt√
1− γt

fθ1(x, yt, γt)

)
+

√
1− αtϵt (14)

We can estimate the HR flow y0 by iterating.

2.1.4. SR3 Learns the Distribution of Flow Field

Currently, most reconstruction models are direct-mapping models that learn the
mapping between LR flow and HR flow by minimizing the reconstruction loss. Unlike
the direct-mapping models, the SR3 model could learn the overall distribution of the flow
field rather than a simple numerical approximation. Figure 4 demonstrates that during
the early stages of training, the SR3 model can learn the general outline and details of
the flow field. As the number of training epochs increases, the flow field generated by
the SR3 model becomes more similar to the true flow field. In contrast to other models, a
diffusion-based model is not trained to minimize the reconstruction loss directly using an
Lp norm. The model is trained to minimize the KL-divergence between the forward and
backward diffusion processes. This may be one reason why the SR3 model can learn the
flow field distribution so effectively.
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2.1.5. Reasons to Improve SR3 Flow Field Precision

Figure 4 demonstrates no significant improvement between the 3500th and 4000th
training epoch, indicating that the model has converged. However, there is potential for
additional refinement in the flow field accuracy. The reasons for this problem are as follows:

1. The input noisy flow yt includes the information of y0 during the training of the SR3
model. When using the pretrained SR3 model to generate the HR flow, the input data
is pure Gaussian noise and does not contain any information of y0.

2. In the reverse inference process, we used the mean of q(yt−1 | y0, yt) to replace the
mean of the pθ1(yt−1 | yt, x).

Therefore, there is a deviation between the HR flow field y0 generated by the SR3
model and the real HR flow field y0.

2.2. EResNet
2.2.1. EResNet Architecture

He et al. [35] proposed a residual network to address the degradation of the deep
network. The network is composed of residual blocks, as illustrated in Figure 5. A residual
block can be represented as:

xl+1 = xl +F (xl , Wl) (15)

where xl , xl+1, Wl denote the input, output, and weights of the residual block, respectively.
F (xl , Wl) denotes the residual between the input and the label.
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constructed by SR3, indicating an improvement in accuracy with the use of the Combined 
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Figure 5. Residual learning: a building block.

Figure 6 illustrates how EResNet maps information directly and constantly to the next
layer of the model through shortcut connections. The shortcut connections in this network
allow information to bypass the nonlinear layers, helping to solve the problem of vanishing
gradients. The loss function of EResNet is denoted as:

L = MSE(y− y∗) + λLgradient (16)

where Lgradient is a physical constraint to ensure that the gradient of the flow field generated
by the Combined Model is consistent with the real flow field, λ = 0.001. y and y∗ denote
the ground truth data and the reconstructed flow by EResNet, respectively.
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2.2.2. EResNet Closes the Deviation between the SR3 Result and Ground Truth Data

In a general EResNet, there are only skip connections between residual blocks to
prevent gradient vanishing. In EResNet, we added a long skip connection from the input to
the output. As shown in Figure 5, to ensure that Combined Model maintains the flow field
distribution obtained by SR3, the flow field reconstructed by SR3 can be directly integrated
into the output of EResNet via skip connections.

y∗ = y0 +F (y0, θ2) (17)

where F (y0, θ2) denotes the residual between the y0 and the y0. Therefore, EResNet can
learn the deviation δ between y0 and y0. As demonstrated in Figure 7a, the flow field
reconstructed by the Combined Model is more accurate than the flow field reconstructed
by SR3, indicating an improvement in accuracy with the use of the Combined Model.
Figure 7b illustrates a discrepancy between the probability density function (PDF) of the
flow field reconstructed by SR3 and the DNS results. In contrast, the PDF of the flow
field reconstructed by the Combined Model aligns with the DNS outcomes, as depicted in
Figure 7c.
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3. Results

In this study, the effectiveness of the Combined Model for the super-resolution recon-
struction of the turbulent flow field was evaluated by super-resolution reconstruction of the
2D laminar flow around a square cylinder and the turbulent channel flow in visualization
and statistics.

3.1. Dataset

The 2D laminar flow around a square cylinder with Re = 100 and the turbulent channel
flow with Re = 4000 from Yousif and Yu [25] are considered in this study for the training
and testing of our model. We obtained 1000 pairs of low- and high-resolution flow field
data each for the 2D laminar flow around a square cylinder and the turbulent channel flow
(2D slices), respectively. The HR flow field size are both (128 × 256). Following [25], we
select points at coarseness level (16 × 32) to obtain the LR flow field. The data are divided
into training, validation, and testing datasets in the ratio of 8:1:1, respectively.

3.2. The 2D Laminar Flow around a Square Cylinder

In this section, we explore the capability of the Combined Model in reconstructing HR
flow fields of 2D laminar flow around a square cylinder from coarse data. It is important
to note that all the results are derived from test data not included in the training set. The
reconstructed instantaneous velocity fields (U and V) and pressure fields generated by
various models, alongside the DNS results, are presented in Figure 8. Here, the veloc-
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ity components are normalized by U∞, and the dimensionless pressure is expressed as
CP = (P− P∞)/0.5ρU∞, where P∞ represents the freestream pressure and ρ denotes the
density. It is observed that the instantaneous flow fields of 2D laminar flow around a square
cylinder, as reconstructed by SRCNN, ESRGAN, and the Combined Model, correspond
closely with the DNS results.
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To further validate that the 2D flow field around a square cylinder reconstructed by the
Combined Model statistically conforms to the DNS results, we compared the PDFs of the
flow fields generated by different models with the results of DNS. Figure 9 shows the PDFs
of the reconstructed velocity components and pressure generated by SRCNN, ESRGAN,
and the Combined Model. The reconstruction results are in outstanding conformity with
the DNS-derived results, demonstrating the capability of these three models to accurately
reconstruct HR laminar flow around a square cylinder.

To investigate the flow characteristics, the profiles of the mean streamwise velocity and
mean pressure are derived from 1000 reconstructed HR flow. As illustrated in Figure 10a,b,
the mean streamwise velocity and pressure profiles from all three models demonstrate
commendable agreement with the results obtained via DNS.

The L2 norm is employed to quantify the pointwise error between the reconstructed
flow and DNS results at each grid point, where n, m, yj,

⌣
y j represent the total number of

samples, the total number of grid points per sample, the DNS flow, and the reconstructed
results, respectively:

DL2(
⌣
y , y) =

1
n

n

∑
i=1

√√√√ 1
m

m

∑
j=1

(
⌣
y j − yj)

2
, (18)

The pointwise error for the case of flow around a square cylinder reconstructed by
different models is shown in the Table 1. In terms of L2 loss, SRCNN, ESRGAN, and
Combined Model have similar performance, which indicates the strength of data-driven
learning-based methods. Our method is slightly superior to the other two by a margin.
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Table 1. L2 norms of the reconstructed flow fields from Combined Model, ESRGAN, and SRCNN in
the case of flow around a square cylinder.

Flow Combined Model ESRGAN SRCNN

U+ 0.00141 0.00175 0.00453
V+ 0.00160 0.00179 0.00324
Cp 0.00177 0.00189 0.00245

3.3. Turbulent Channel Flow

In this section, the capability of the Combined Model to reconstruct high-resolution
turbulent flow fields is validated using a plane perpendicular to the streamwise direction
in the turbulent channel flow scenario, specifically the (y − z) plane. The reconstructed
instantaneous velocity fields (U+, V+, W+) reconstructed by SRCNN, ESRGAN, and the
Combined Model are shown in Figure 11. The results show that compared to SRCNN and
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ESRGAN, the turbulent channel flow field reconstructed by our model is more consistent
with the DNS results. Furthermore, the flow fields in Figure 11 also clearly show that
the Combined Model supplements more details and reconstructs finer structures than the
SRCNN and ESRGAN.
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Figure 11. Reconstructed instantaneous velocity fields for the case of turbulent channel flow.

To further verify that the results of the reconstructed turbulent channel flow velocity
field of our proposed model are in good agreement with DNS and superior to SRCNN and
ESRGAN, we calculated the PDFs for different velocity components of turbulent channel
flow, and the results are shown in Figure 12. The results show that the PDF of the velocity
component of the Combined Model reconstruction is in good agreement with the flow
direction, wall direction, and radial velocity results obtained by DNS. However, there is a
bias between the PDF and DNS results of the ESRGAN reconstruction velocity component,
especially the wall and span velocities. The deviation between the PDF and DNS results of
the SRCNN reconstruction speed component is more obvious, and only the reconstruction
effect of flow velocity is close to the DNS results. By comparing the velocity flow field
PDF reconstructed by the three models, it is found that the turbulent channel velocity field
reconstructed by the Combined Model is closest to the DNS results, indicating that the
ability of the Combined Model to reconstruct the turbulent flow field is better than that of
ESRGA and SRCNN.

Figure 13 shows the comparison of the statistics of the flow velocity field of the high-
precision turbulent channel generated by different models and the statistics of the DNS
results. It can be found that the root-mean-square (RMS) profiles of the velocity fields
in all three directions of the turbulent channel flow generated by our model are in good
agreement with the DNS results, and the performance is better than that of ESRGAN
and SRCNN. However, the RMS profiles of the streamwise and wall-normal velocity
components (u+

rms, v+rms) of the ESRGAN results are in good agreement with the DNS
results, as shown in Figure 13a,b, and the RMS profile of the spanwise velocity component
(w+

rms) is quite different from the DNS results, as shown in Figure 13c. The RMS profiles of
the velocity fields in the three directions generated by SRCNN are quite different from the
DNS results.
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The L2 error norms for the models are listed in Table 2. It can be seen that the error
norms of the Combined Model are much smaller than SRCNN and ESRGAN. The L2 error
norm of the Combined Model in the streamwise velocity is lower by about 77% and 88%
than SRCNN and ESRGAN. As for the wall-normal velocity, the Combined Model is lower
by about 75.4% and 86.7% than SRCNN and ESRGAN. As for the spanwise velocity, the
Combined Model is lower by about 73.3% and 86.6% than SRCNN and ESRGAN. Therefore,
the MTPC is the most accurate model.

Table 2. L2 norms of the reconstructed flow fields from Combined Model, ESRGAN, and SRCNN in
the case of turbulent channel flow.

Flow Combined Model ESRGAN SRCNN

U+ 0.00585 0.02540 0.04839
V+ 0.00300 0.01219 0.02241
W+ 0.00373 0.01394 0.02781
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4. Conclusions

In this study, we propose a Combined Model of a diffusion model (SR3) and an en-
hanced residual network (EResNet) for reconstructing high-resolution (HR) instantaneous
turbulent flow field from low-resolution (LR) data. We divided an HR flow field reconstruc-
tion task into two steps by combining SR3 and EResNet: SR3 reconstructs an initial flow
field consistent with the real flow distribution, while EResNet improves the accuracy of flow
fields while preserving its distribution. To maximize the preservation of the distribution of
flow fields in the second step, we propose an EResNet with long skip connections, directly
linking the flow field generated by SR3 to the output layer of EResNet. Additionally, we
have incorporated physical constraints into the loss function of EResNet to generate more
realistic flow fields. The capabilities of the model to reconstruct laminar flows around a
two-dimensional square cylinder at a Reynolds number (Re) of 100 and wall turbulence in
channel flows at Re = 4000 were evaluated using data from direct numerical simulations
(DNSs). Compared with other deep learning-based reconstruction methods, our model has
a slight advantage in reconstructing the flow around a square cylinder, but in the more
complex turbulent channel flow reconstruction, our model can generate an HR flow field
with higher accuracy, more detail, and more consistent statistical results with DNS results.
The experiment results show that as for L2 error norms, our model results are lower by
more than 70% and 80% than the enhanced super-resolution generative adversarial network
(ESRGAN) and super-resolution convolutional neural network (SRCNN).

Due to the diffusion model requiring T iterations (in this study, T = 200) to generate
high-resolution flow fields, the reconstruction time for our model is longer compared to
SRCNN-based and SRGAN-based models. With identical model parameters, the time to
reconstruct high-precision flow fields is approximately T times that of the other models. To
overcome this limitation, we can consider applying acceleration strategies for sampling
process of diffusion model to our model in the future.
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Nomenclature

y high resolution flow
x low resolution flow
yt noisy flow field
yi the i-th high-resolution flow field sample
xi the i-th low-resolution flow field sample
F functional mapping
T the number of iterations in the reverse process
Greek letters
θ model parameters
λ the coefficient of the gradient loss function
Abbreviations
EResNet enhanced residual network
CFD computational fluid dynamics
DNS direct numerical simulation
CNN convolutional neural network
GAN generative adversarial network
HR high-resolution
LR low-resolution
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SR super-resolution
PDF probability density function
RMS root-mean-square

Appendix A

Given the known training sample data, the parameters of the model can be estimated
using maximum likelihood estimation,

L = Eq[− log pθ(y0 | x)] (A1)

For neural network models, the general optimization approach is to find the minimum
of the network model through the loss function, and maximizing expectation is not very
effective. Therefore, by changing the approach to seek the maximum likelihood estimation
of the model, it is equivalent to minimizing the variational upper bound of the negative
log-likelihood Lυlb,

E[− log pθ(y0 | x)] ≤ Eq[− log
pθ(y0:T | x)
q(y1:T | y0)

] =: Lvlb (A2)

Rewrite the Lυlb according to the KL divergence,

Lvlb = L0 + L1 + . . . + LT−1 + LT (A3)

where
L0 = − log pθ(y0 | y1, x) (A4)

Lt−1 = DKL(q(yt−1 | yt, y0)∥pθ(yt−1 | yt, x)) (A5)

LT = DKL(q(yT | y0)∥p(yT)) (A6)

In Lvlb, each term (except L0) compares two Gaussian distributions, and hence they
can be calculated in closed form. LT is a constant and can be ignored during training since

q has no learnable parameters, and yT is the Gaussian noise. Ho et al. in 2020 modeled
L0 using a separate discrete decoder, which is derived from N (y0; θθ(y1, 1), Σθ(y1, 1))

Recall Equation (11), the variance σ2
t I of pθ1(yt−1 | yt, x) has been replaced by 1− αt.

The KL divergence Lt−1 can be converted into

Lt−1 ∝ ∥µ̃t(yt, y0)− µθ(yt, x, t)∥2 (A7)

where µ̃t(yt, y0) is the mean of q(yt−1 | yt, y0). µθ(yt, x, t) is the training objective of
the model.

In practical tests, researchers found that training the model to predict the noise compo-
nent at any given time step t yields better results. Thus, we obtained an objective function
for predicting noise:

L(θ) := Et,x,y0,ϵ[∥ϵ− ϵθ(
√

γy0 +
√

1− γϵ, x, t)∥2] (A8)
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