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Abstract: The rapid evolution of video programming tutorials as a key educational resource has
highlighted the need for effective code extraction methods. These tutorials, varying widely in video
quality, present a challenge for accurately transcribing the embedded source code, crucial for learning
and software development. This study investigates the impact of video quality on the performance
of optical character recognition (OCR) engines and the potential of large language models (LLMs) to
enhance code extraction accuracy. Our comprehensive empirical analysis utilizes a rich dataset of
programming screencasts, involving manual transcription of source code and the application of both
traditional OCR engines, like Tesseract and Google Vision, and advanced LLMs, including GPT-4V
and Gemini. We investigate the efficacy of image super-resolution (SR) techniques, namely, enhanced
deep super-resolution (EDSR) and multi-scale deep super-resolution (MDSR), in improving the quality
of low-resolution video frames. The findings reveal significant improvements in OCR accuracy with
the use of SR, particularly at lower resolutions such as 360p. LLMs demonstrate superior performance
across all video qualities, indicating their robustness and advanced capabilities in diverse scenarios.
This research contributes to the field of software engineering by offering a benchmark for code
extraction from video tutorials and demonstrating the substantial impact of SR techniques and LLMs
in enhancing the readability and reusability of code from these educational resources.

Keywords: OCR (optical character recognition); code extraction; programming screencasts; image
quality; pre-processing techniques; postprocessing techniques; large language models (LLMs); source
code denoising; video programming tutorials; empirical study in software engineering

MSC: 68T45

1. Introduction

Developers often turn to a variety of internet sources, including forums, blogs, and
Q&A websites like StackOverflow, to find support and knowledge for their programming
tasks. A significant part of their online activity—estimated between 20% and 30% of
their time—is dedicated to searching for reusable code snippets that they can directly
incorporate into their projects, highlighting the importance of these resources in their daily
development work [1,2]. Video programming tutorials have become a popular source
for developers seeking step-by-step visual instructions, offering a unique educational
experience by demonstrating programming concepts and practices [3–6]. However, the
code showcased in these videos is embedded within the video frames, making it inaccessible
for direct reuse. As a result, developers are often required to manually transcribe the code
from the videos, a process that is not only time-consuming but also prone to errors [6,7].

To reuse and enable developers to copy–paste the source code embedded in video
frames, we need to apply optical character recognition (OCR) to the code frames. This
method extracts the textual content from the images, facilitating the transformation of
pixelated code into a format that developers can easily integrate into their projects. Over the
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last decade, many efforts have been dedicated to facilitating the process of extracting source
code from video programming tutorials [7–16]. Several approaches have been proposed to
clean the extracted code, such as by (i) using statistical language models [10,16] for Java
language, (ii) verifying the extracted tokens using a dictionary-based approach [14,15,17],
and (iii) using the CodeT5 model [18] to correct Java code [13]. Other work focused on
developing an ensemble technique that improves OCR performance on specific domains,
such as extracting texts from (i) geology papers using Softmax regression and SVM [19],
(ii) raster images with Arabic script using SVM [20], and (iii) an IAM handwritten dataset
using CRNN, LSTM, and CTC [21].

Given the advancements in OCR technology for extracting source code from video
programming tutorials, a critical limitation of these previous efforts remains unaddressed:
(i) a study on the impact of image quality on OCR performance, (ii) the use of appropriate
image pre-processing techniques to enhance code recognition, and (iii) the selection of the
most suitable method to extract the source code from video frames. First, considering that
video programming tutorials are typically uploaded to YouTube (www.youtube.com) in
varying resolutions such as 360p, 480p, 720p, and 1080p, the efficacy of a specific OCR
method in extracting source code from low-quality video frames is still uncertain. Yet,
previous research has primarily relied on the Tesseract (https://github.com/tesseract-
ocr/tesseract), accessed on 1 February 2024, OCR engine for code extraction from images,
without a comprehensive evaluation of its effectiveness across different image quality
levels [8,9,12,16]. The second crucial aspect overlooked by prior studies is the potential of
image pre-processing to boost OCR performance for code extraction from programming
tutorials, aiming to eliminate noise that could originate from images with noisy pixels.
Yet, previous work has extracted the code from images, then created a custom model for a
specific programming language (e.g., Java) to detect and correct errors [10,13,16], without
initially addressing image quality or employing image denoising techniques. Finally,
previous work has relied on off-the-shelf OCR engines such as Tesseract [7,22] and Google
Vision [14,15,23] for extracting source code without investigating the state-of-the-art vision-
based large language models (LLMs), which could significantly enhance code extraction
performance dramatically.

In this paper, we investigate the impact of image quality and advanced deep-learning
techniques on code extraction from video programming tutorials. We explore the effec-
tiveness of optical character recognition (OCR) engines and large language models (LLMs)
across various video qualities and programming languages. Our comprehensive empirical
analysis compares performance across different resolutions and evaluates the enhancement
offered by image super-resolution (SR) techniques. The findings demonstrate the potential
of SR to significantly improve OCR accuracy, especially in lower-resolution videos, and
highlight the superior performance of LLMs in diverse scenarios.

To sum up, we make the following noteworthy contributions:

• We introduce state-of-the-art large language vision models (LLMs) specifically opti-
mized for extracting source code from video programming tutorials, demonstrating
superior performance in code extraction from video frames;

• We utilize advanced image super-resolution (SR) methods to enhance the quality of
video frames containing source code. These improvements significantly aid optical
character recognition (OCR) engines in accurately extracting source code from low-
resolution video frames;

• Our work includes a thorough empirical analysis comparing the performance of two
leading OCR engines and two LLMs in terms of their accuracy in extracting code from
programming tutorials across various video qualities;

• We conduct a detailed study of the effectiveness of image super-resolution (SR) tech-
niques in generating high-quality code images from their low-quality counterparts,
helping OCR engines to better extract code;

• We include a benchmark (included in our online appendix (https://zenodo.org/
records/10823097), uploaded on 15 March 2024, that contains (i) a collection of
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100 video programming tutorials across four distinct quality levels, (ii) cropped im-
ages showcasing the code section for each quality level, (iii) ground-truth source code,
(iv) the models utilized for super-resolution enhancement, and (v) extensive results,
including scripts for each phase of our study.

The rest of the paper is organized as follows. In Section 2, we discuss the related
work. This is followed by Section 3, where we provide an overview of our empirical study.
Section 4 is dedicated to presenting our results and key findings. The potential threats
to the validity of our study are addressed in Section 5. Finally, we conclude our work in
Section 6.

2. Related Work
2.1. Analyzing Video Programming Tutorials

A considerable amount of research has focused on the analysis of programming screen-
casts, with various approaches being explored to categorize and extract meaningful content
from video frames. Notably, convolutional neural networks (CNNs) have been widely
applied, as seen in the use of a CNN classifier to differentiate video frames that contain
code from those that do not [10,11,22,24,25]. However, a significant limitation of employing
CNN classifiers is their heavy reliance on large datasets of labeled frames for effective
training [26]. Similarly, Zhao et al. [27] developed ActionNet, leveraging a sophisticated
CNN architecture to identify various actions within programming screencasts [28], differ-
ent from earlier methods like VT-Revolution [3] that lacked automated action recognition.
Furthermore, the research landscape also includes efforts aimed at enhancing video content
accessibility, such as video tagging for better organization [29], linking existing source
code to relevant video segments [30], classifying video comments for insights [31], and
segmenting videos to improve searchability and navigation [32,33].

It is important to note that much of the existing research utilizes the source code dis-
played in videos for various purposes, including identifying actions [27,34,35], classifying
the source code [14], and tagging videos [29]. This underscores the necessity of selecting
the most effective OCR (optical character recognition) engines and LLMs (large language
models) tailored for extracting code from videos of varying quality, thereby facilitating
the reuse of code for diverse applications. In our study, we focus on this preliminary and
critical step by conducting an empirical study of OCR and LLMs combined with computer
vision techniques for code extraction from video programming frames.

2.2. Extracting Code from Video Programming Tutorials

Considerable efforts have been dedicated to extracting source code from programming
screencasts. Ponzanelli et al. [8] introduced CodeTube, a method for segmenting video
tutorials, leveraging code extracted from video frames using Tesseract to find relevant
video segments through code similarity analysis. Khandwala and Guo [7] developed
Codemotion, designed to retrieve source code and its dynamic modifications from tutorials.
Both methodologies, CodeTube and Codemotion, utilize the indexed code to refine video
search capabilities. Yadid and Yahav [16] presented ACE, a technique aimed at denoising
code extracted from video tutorials using statistical language models after applying the
Tesseract engine. Similarly, Malkadi et al. [13] utilized a Bert-based model to denoise the
extracted code. Recent work used Google Vision OCR to extract source code from videos
for restructuring complete Android XML files [14], extracting meta information [15], and
linking code to the relevant video fragment [30].

The work most aligned with our research is Malkadi et al.’s [12] investigation into the
efficacy of OCR engines for extracting code from images. While this study comprehensively
evaluated six OCR engines, it primarily focused on high-quality screenshots, overlooking
the critical role of image quality on OCR accuracy. Furthermore, it did not explore the
potential of large language models (LLMs), which possess the capability to surpass the
performance of conventional OCR technologies. In our research, we conduct a more
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extensive evaluation, taking into account the impact of image quality and integrating LLMs
to enhance the accuracy of code extraction.

2.3. LLMs in Software Engineering

Recently, the adoption of large language models (LLMs) for tackling software engi-
neering tasks has notably increased. Xu et al. [36] conducted a comprehensive review of
large language models’ (LLMs) effectiveness in coding contexts, revealing their significant
potential for code analysis and development tasks. Chaaben et al. [37] delved into the
capabilities of few-shot learning for enhancing model completion processes, showcasing
the substantial impact of prompt learning in such scenarios. Kang et al. [38] examined
the role of LLMs as few-shot testers, particularly for bug reproduction, thereby paving
new avenues for automated software testing. Sobania et al. [39] focused on ChatGPT’s
proficiency in automatic bug fixing, illustrating its adeptness in pinpointing and rectifying
coding errors, suggesting a promising direction for debugging. Akli et al. [40] applied
few-shot learning innovatively to forecast the categories of flaky tests, underscoring LLMs’
ability to enhance the reliability of test predictions. Lyu et al. [41] introduced Chronos, a
novel tool employing zero-shot learning to identify library vulnerabilities from reports,
further broadening LLMs’ utility in security applications. Le and Zhang [42] ventured into
log parsing using few-shot learning, highlighting LLMs’ flexibility in interpreting system
logs crucial for diagnostics. Nashid et al. [43] explored how strategic prompt selection
could optimize code-related learning tasks, emphasizing the nuanced role of prompts in
few-shot learning’s success. Lastly, Siddiq et al. [44] investigated zero-shot prompting for
assessing code complexity through GitHub Copilot, demonstrating LLMs’ effectiveness in
gauging coding task challenges.

While the literature has demonstrated the power of large language models (LLMs)
in different software engineering task, our study uniquely employs vision-based large
language models (LLMs) to extract source code, leveraging their advanced capabilities to
understand and interpret visual data.

3. Empirical Study

In this section, we outline the research questions (RQs) driving our empirical study,
elaborating on the procedures and criteria we followed to (i) collect programming videos
from YouTube and (ii) manually select and transcribe a frame that showcases a code snippet.
We then describe our methodology for extracting source code from these images, followed
by the RQs, where we explain our motivation and methodology for each RQ. Last, we
present the evaluation metrics we used to report the results.

RQ1 How does the quality of video programming tutorials influence the performance of OCR engines
in accurately extracting source code, and can LLMs enhance this accuracy?

RQ2 To what extent do variations in programming language syntax challenge the code extraction
capabilities of OCR engines and LLMs?

RQ3 Would the application of deep learning-based image enhancement techniques improve the code
extraction performance in lower-quality video tutorials?

Figure 1 presents a comprehensive summary of our study. In the sections that follow,
we engage in a thorough examination of each aspect highlighted in this overview.
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Figure 1. An overview of our empirical study on OCR and LLM accuracy across different video
programming qualities using super-resolution techniques.

3.1. Videos: Dataset Collection

We manually selected programming screencasts from YouTube, focusing on ensuring
a broad spectrum of content. Our dataset includes 100 videos, with 25 each from Python,
Java, C#, and PHP, to support generalizability across different programming languages. We
aimed for diversity in topics, employing search queries that combined the programming
language with “development” and specific topics like loops, arrays, and games. Addition-
ally, we have chosen programming video tutorials that introduce different levels of code
complexity and variety. These include tutorials on programming fundamentals, GUI devel-
opment, database management, asynchronous coding, API usage, animation, and more.
This approach ensures a comprehensive representation of various programming concepts
and practices, reflecting the broad syntax and structural diversity inherent in different
programming languages. To assess the impact of video quality on OCR performance, we
chose videos available in 360p, 480p, 720p, and 1080p resolutions, excluding any that did
not meet these criteria. Our collection also captures various IDEs and settings, including
Visual Studio and Android Studio, and different background themes to explore how these
factors affect code extraction accuracy. Our careful selection of videos aims to support a
detailed study of how well code can be transcribed from a variety of programming tutorials.

Table 1 shows a comprehensive summary of our programming screencasts across five
programming languages: C#, Java, Python, PHP, and SWIFT, focusing on both the duration
of videos in seconds and the number of code lines displayed and manually captured. C#
screencasts exhibit a broad duration range from 266 to 14,400 s, with an average length of
1752 s, and show between 13 and 24 lines of code, averaging 20 lines per video. Java videos
vary in length from 350 to 1188 s, averaging 816 s, and feature 11 to 19 lines of code with an
average of 15 lines. Python tutorials present the most considerable variation in duration,
ranging from 343 to 1107 s, with an average of 667 s, and include between 10 and 23 lines
of code, averaging 14 lines. PHP videos span from 265 to 1178 s, with an average duration
of 774 s, and display 11 to 25 lines of code, with an average of 19 lines. Lastly, SWIFT
screencasts have durations ranging from 284 to 25,517 s, with a significant average of 3066
s, and feature 10 to 20 lines of code, averaging 15 lines. This detailed analysis highlights
the diversity in our video programming dataset in terms of duration and lines of code.

In our dataset, the background color of the development environment (DE) within
the programming screencasts is an important factor for analyzing the accuracy of OCR
engines. Of the 100 videos we collated, 54 feature a black or dark background, while 46
have a white or light background. This distinction is critical, as it allows us to assess the
impact of background color on the OCR’s ability to accurately recognize and extract the
source code. The variation in background color will enable us to draw more comprehensive
conclusions about the performance of OCR technology under different visual conditions
commonly encountered in programming tutorials.
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Table 1. Overview of the dataset: detailed statistics of programming screencasts collected from
YouTube for evaluating RQ1,3.

Prog. Lang.
Duration (Seconds) Lines of Code

Min. Max. Average Min. Max. Average

C# 266 14,400 1752 13 24 20
Java 350 1188 816 11 19 15

Python 343 1107 667 10 23 14
PHP 265 1178 774 11 25 19

SWIFT 284 25,517 3066 10 20 15

3.2. Dataset Labeling: Code Transcribing from Video Frames

In this section, we detail our approach to dataset creation and labeling. Our process
involved selecting 100 unique frames, each from a distinct programming tutorial video,
and with a minimum of 10 lines of code. For every selected frame, we captured images at
four different resolutions: 360p, 480p, 720p, and 1080p. This approach yielded a total of
400 images. We then manually transcribed the source code from these images, creating a
ground truth dataset that pairs each image with its corresponding code. Below we explain
the process in more detail.

First, for the creation of our dataset, we meticulously selected video frames from
the collected tutorials, focusing on frames that displayed a minimum of 10 lines of code,
excluding blank lines. For each video representing different quality levels—360p, 480p,
720p, and 1080p—we extracted a single frame that met this criterion. Figure 2 showcases
a sample of a frame in our dataset with the four different qualities. The selected frames
were then manually cropped using consistent coordinates (xmin, xmax, ymin, and ymax)
to ensure that only the code was displayed, omitting any surrounding elements. More
specifically, we used the Supervisely (https://supervisely.com/), accessed on 1 February
2024, tool to annotate the code editing window with a bounding box for the selected frame
from each video (i.e., we opt for an image quality of 1080p, as they are identical to the
other images with different qualities). From these annotated images, we gathered all the
annotations in JSON format for a total of 100 images. Given that the dimensions (width
and height) of images can vary depending on their quality settings, we standardized the
bounding box annotations across different image qualities. To achieve this standardization,
we implemented a scaling mechanism for the bounding box annotations. This mechanism
involves adjusting the coordinates of the bounding box to align with the corresponding
dimensions of images of a different quality. All images in our dataset were cropped to
the code bounding box and named with their video ID and corresponding quality level.
This process yielded a comprehensive set of 400 images, which serves as the basis for
our dataset.

In the transcription phase of our study, three professional software developers in-
dependently transcribed the code from each image. We provided them with the images,
instructing them to accurately transcribe the code. After transcription, we compared the
outputs from all three developers to ensure consistency. The transcription accuracy was
approximately 88% as per the kappa statistic, indicating a high level of agreement among
the transcribers. The main differences we found were in the transcription of non-code
elements, like “0 references”, and the occasional inclusion of extra whitespace characters.

https://supervisely.com/
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(a) Input Image (360p) (b) Input Image (460p)

(c) Input Image (720p) (d) Input Image (1080p)

Figure 2. Visual representation of images with varying resolutions within our Python dataset,
spanning from 360p to 1080p. These images showcase the diverse quality levels found in our dataset,
reflecting the range of available resolutions.

Consequently, our dataset comprises 100 manually transcribed code segments cor-
responding to 100 video frames, establishing a robust ground-truth for our empirical
evaluation. Furthermore, each video in our collection is represented by four frames span-
ning a quality that ranges from 360p to 1080p. These multi-quality frames are important
to our experiments, where we apply OCR engines to extract the code and then assess its
accuracy in terms of qualities against the ground-truth. This approach allows us to evaluate
the impact of video quality on OCR performance and explore advancements in image and
text processing techniques to improve video quality.

3.3. OCR Engines and Large Language Models

To extract source code from images, we need to carefully select an OCR engine that
is both effective in decoding images containing source code and resilient against the
distortions present in low-quality images. We note that some videos uploaded to YouTube
might be presented in a low quality, and thereby, the code presented in those videos might
not be visible to extract and reuse. In this section, we explain our methodology in extracting
the source code from our image dataset using both OCR engines and large language models
(LLMs) as follows.

First, similar to a previous study, we utilized the most two popular OCR engines for
extracting source code from images [8,12,13]. Namely, we used the open-source Tesseract
(https://github.com/tesseract-ocr/tesseract), which was released by Google and accesssed
on 1 Feburary 2024, given that previous researchers have relied on it for extracting source
code from images. Furthermore, we utilized Google Vision, as it was shown that it per-
formed very well in extracting source code from images [12,30].

Second, in our study, we broadened the scope beyond traditional OCR engines for
extracting source code from images by exploring the capabilities of large language models
(LLMs), specifically focusing on the recent developments in multimodal LLMs. A prime
example of this advancement is the introduction of GPT-4 with Vision (GPT-4V) by OpenAI.
This model stands out as the state of the art in the computer vision field, offering the
unique ability to process both images and text within a unified framework. To adapt this
technology for our purpose, we converted all images from our dataset into base-64 format.
This conversion was essential for utilizing the “gpt-4-vision-preview” model effectively.
We then crafted a prompt instructing the model to “act as an OCR that extracts the code
from the image”, ensuring that the model’s focus was finely tuned to our specific need for
accurate code extraction. The OCRed code was subsequently stored locally on our server
for further analysis and validation.

Third, we also delve into the capabilities presented by the Gemini-Pro-Vision model,
Google’s forefront in large language vision models (LLMs), designed to interact with both
text and visual modalities (e.g., images and videos). This exploration is motivated by

https://github.com/tesseract-ocr/tesseract
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Gemini’s recent enhancement to interpret images, marking it as a significant multimodal
LLMs. In leveraging Gemini for our study, we transformed the images from our dataset
into a compatible format with the help of the Gemini-API (https://makersuite.google.
com/app/apikey), accessed on 1 February 2024, library in Python. We engaged Gemini
by submitting prompts that directed the model to function as an OCR specifically tailored
for extracting programming code from the images and saved the OCRed code locally on
our server.

3.4. Image Super-Resolution (SR)

Dealing with image quality is a fundamental challenge in all image/video processing
applications, including code extraction from programming tutorials. Factors such as light-
ing, shadows, bleeding, overexposure, contrast, and particularly resolution can significantly
affect the quality of images extracted from video frames.

In the field of image processing, the problem of image super-resolution (SR), especially
single-image super-resolution (SISR), has been a focus of extensive research for many
years [45–48]. SISR seeks to reconstruct a high-resolution image from a single low-resolution
counterpart, which becomes particularly relevant when considering the extraction of source
code from video frames, where we assume the resolution of the image will directly impact
the performance of code extraction.

Our research takes inspiration from the groundbreaking work presented in [45], where
the authors introduce two advanced deep learning-based SR methods: the enhanced deep
super-resolution network (EDSR) and the multi-scale deep super-resolution system (MDSR).
These methods have set new benchmarks in the field, outperforming the existing state-of-
the-art approaches. The EDSR achieves this through an optimized network structure, by
discarding redundant modules found in traditional residual networks, and by increasing
the model size. On the other hand, the MDSR innovatively tackles the challenge of handling
multiple upscaling factors within a single model, offering a versatile solution for various
super-resolution scales. These methods have demonstrated exceptional performance in
benchmark datasets and were the winners of the NTIRE2017 Super-Resolution Challenge.

Exploring the application of these advanced deep learning-based techniques in our
context could significantly enhance the quality of source code extraction from video tutori-
als, thereby improving the overall effectiveness of the code extraction process.

3.5. RQ1: The Impact of Image Quality on Code Extraction

Motivation: The motivation behind this research question stems from the increasing
reliance on video programming tutorials for learning and sharing coding practices. These
tutorials, however, vary widely in quality, potentially affecting the effectiveness of OCR
engines in accurately extracting source code from video frames. As the quality of video
can significantly impact the accuracy of the extracted code (OCRed code), empirically
evaluating its impact is crucial for developing and/or choosing more robust code extraction
engines. Furthermore, the advent of large language models (LLMs) offers a new dimension
to this challenge. LLMs, with their advanced understanding of context and content, could
potentially enhance the accuracy of code extraction beyond the capabilities of traditional
OCR engines. This research question aims to explore these dynamics, evaluating both the
impact of video quality on OCR performance and the potential of LLMs to improve the
extraction process.

Methodology: To address this research question, our methodology leverages the
detailed dataset collection of programming screencasts and the manual transcription of
source code, as outlined in Sections 3.1 and 3.2. We conducted a series of experiments—
totaling 1600—by applying both traditional OCR engines, such as Tesseract and Google
Vision, and cutting-edge large language models, including GPT-4V and Gemini, to the
400 video frames at each of the four resolution levels (360p, 480p, 720p, 1080p). This
comprehensive empirical study allows us to not only measure the performance of OCR
technologies in extracting source code from video frames under varying quality conditions

https://makersuite.google.com/app/apikey
https://makersuite.google.com/app/apikey
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but also evaluate the enhancements offered by LLMs in improving the accuracy of the
extracted code. During our LLM experiments, we used zero-shot prompting for both
GPT-4V and Gemini, where we did not present the models with any explicit examples
and only asked both LLMs to extract code from the given image. For GPT-4V, we used
the gpt-4-vision-preview model, configuring the role as user and the type as image_url. Each
image was encoded as base64_image before passing it to the model for the code extraction.
The responses were received in JSON format, parsed to extract the content of the GPT-4v
reply, and subsequently saved as text files. As for Gemini, we employed the gemini-pro-
vision model for code extraction from images. Notably, Gemini includes the programming
language at the start of its reply. Consequently, we removed the initial line before saving
each response to the corresponding text file.

3.6. RQ2: The Impact of Programming Language Syntax on Code Extraction

Motivation: The motivation for this research question arises from the growing impor-
tance of accurate text extraction from programming video tutorials with diverse program-
ming language code snippets. As programming languages vary significantly in syntax,
structure, and conventions, existing OCR engines may encounter challenges in accurately
interpreting and extracting code from these diverse sources. Additionally, with the emer-
gence of powerful language models (LLMs), there is a potential opportunity to improve
code extraction accuracy by leveraging the contextual understanding and language mod-
eling capabilities of these models. Understanding the comparative performance of OCR
engines and LLMs across a range of programming languages is essential for identifying
their strengths, limitations, and potential synergies, thereby enabling future research on
code extraction, cleaning, and reusability.

Methodology: To explore the comparative performance of OCR engines and LLMs
across different programming languages, our methodology involves a structured evaluation
process. We used the collection of programming screencasts and the manual transcription
of source code, as outlined in Sections 3.1 and 3.2. We conducted a series of experiments,
totaling 1600 experiments, across four distinct OCR engines (Tesseract, Google Vision,
GPT-4V, and Gemini). For each programming language and OCR engine, we computed
the token-based NLD for the four resolution levels (360p, 480p, 720p, 1080p). Through
systematic evaluation and comparison, our study aims to examine the performance differ-
ences between OCR engines and LLMs when extracting code snippets from programming
tutorial videos across different programming languages.

3.7. RQ3: The Impact of Applying Image Super-Resolution (SR) on Code Extraction Performance

Motivation: The effectiveness of programming tutorials can be heavily compro-
mised by low-resolution videos, where text becomes difficult to read, particularly in a
low-resolution setting such as 360p. This not only hinders learning but also poses sig-
nificant challenges for optical character recognition (OCR) systems used in automated
code extraction. We assume the accuracy of an OCR systems will decline as the image
resolution decreases. This assumption posses the question of whether advanced deep
learning-based image super-resolution techniques, including the enhanced deep super-
resolution network (EDSR) and the multi-scale deep super-resolution system (MDSR),
offers a potential solution. These methods can substantially enhance the resolution of video
frames, potentially improving OCR accuracy, thereby making programming tutorials more
readable and learning more effective.

Methodology: To address the research question, we utilized a collection of program-
ming screencasts, as detailed in Sections 3.1 and 3.2. Our approach involved the application
of two super-resolution techniques, enhanced deep super-resolution (EDSR) and multi-
dimensional super-resolution (MDSR), the details of which are available in the GitHub
repository. We conducted a comprehensive set of experiments using four different optical
character recognition (OCR) engines, Tesseract, Google Vision, GPT-4V, and Gemini, to
compare their effectiveness in extracting code from videos.
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We systematically assessed and compared the performance of each OCR engine under
varying conditions at three different video resolutions: 360p, 480p, and 720p. Additionally,
we investigated the impact of using super-resolution (SR) techniques on OCR accuracy.
This involved comparing the OCR results obtained without SR (Tesseract-base) against
those enhanced through the application of SR at two different scales, 2× and 4×. Our goal
is to determine whether the incorporation of SR techniques could significantly improve the
accuracy of code extraction from low-resolution video screencasts.

3.8. Evaluation Metrics

To evaluate the accuracy of OCR engines, LLMs, and the processing steps, we used
the well-established Levenshtein distance (LD) metric [49]. LD quantitatively evaluates
the dissimilarity between two text sequences by calculating the minimum number of
operations—insertions, substitutions, and deletions—needed to transform one sequence
into the other. In our empirical evaluation, each video V in our dataset is represented
as V = { f1080p, f720p, f480p, f360p}, where fquality denotes a frame of a specified quality.
For each frame of a specific quality, we extracted the source code using a specific en-
gine, represented as OCREngine = {OCRed1080p, OCRed720p, OCRed480p, OCRed360p}, where
OCRedquality represents the OCRed code using a specific OCR engine applied on a video
frame with a specific quality. To compare the extracted code against the manually tran-
scribed ground truth, we employed the normalized Levenshtein distance (NLD). The NLD
metric refines LD by normalizing it to a value between zero and one, offering a measure of
similarity between the OCR-extracted code and the ground truth. This normalization is
crucial for our evaluation, providing a standardized scale for accuracy assessment across
different resolutions. The NLD is calculated as follows:

NLD(gtcode, OCRedcode) = 1 − LD(gtcode, OCRedcode)

max(len(gtcode), len(OCRedcode))
(1)

where gtcode is the manually transcribed ground-truth code from our input code images
and OCRedcode is the extracted code using an OCR engine or LLM.

4. Empirical Results
4.1. RQ1: The Impact of Image Quality on Code Extraction

Tables 2 and 3 offer a comprehensive analysis of OCR engines (Tesseract and Google Vi-
sion) and large language models (GPT-4V and Gemini) in extracting source code from video
tutorials, employing token-based and character-based normalized Levenshtein distance
(NLD) metrics across varying video resolutions (1080p, 720p, 480p, 360p). The analyses
highlight GPT-4V’s superior performance, achieving the highest NLD scores in both token
and character-based evaluations, demonstrating its exceptional accuracy in code extrac-
tion across all video qualities. Gemini and Google Vision also produce cleaner code than
Tesseract, showcasing strong capabilities in code extraction, closely matching GPT-4V’s
performance. In contrast, Tesseract’s accuracy markedly decreases with declining video
quality, highlighting its sensitivity to noise. However, Google Vision, GPT-4V, and Gemini
exhibit outstanding resilience to lower resolutions and noise, maintaining consistent and
robust performance. This resilience makes them significantly more reliable for extracting
readable and reusable code from video tutorials, especially in conditions where traditional
OCR engines like Tesseract underperform due to noise and reduced clarity.
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Table 2. Evaluation using token-based normalized Levenshtein distance (NLD) of OCR engines
(Tesseract and Vision) and large language models (GPT-4V and Gemini) across different video
qualities (1080p, 720p, 480p, 360p).

Quality
Tesseract Google Vision GPT-4V Gemini

Median Average Median Average Median Average Median Average

1080p 0.87 0.85 0.93 0.91 0.97 0.95 0.94 0.91
720p 0.83 0.81 0.93 0.91 0.97 0.95 0.93 0.91
480p 0.62 0.60 0.91 0.89 0.96 0.93 0.93 0.89
360p 0.25 0.31 0.88 0.83 0.93 0.89 0.91 0.86

Table 3. Evaluation using character-based normalized Levenshtein distance (NLD) of OCR engines
(Tesseract and Google Vision) and large language models (GPT-4V and Gemini) across different video
qualities (1080p, 720p, 480p, 360p).

Quality
Tesseract Google Vision GPT-4V Gemini

Median Average Median Average Median Average Median Average

1080p 0.96 0.92 0.96 0.94 0.99 0.96 0.97 0.93
720p 0.94 0.91 0.96 0.94 0.99 0.96 0.96 0.93
480p 0.82 0.77 0.95 0.94 0.98 0.94 0.96 0.91
360p 0.54 0.52 0.95 0.91 0.95 0.92 0.95 0.89

Figure 3 for both token-based and character-based normalized Levenshtein distance
(NLD) reveals distinct performance patterns across the OCR engines and language models
at various video resolutions. GPT-4V, Gemini, and Google Vision consistently maintain
high NLD scores with little fluctuation, evidencing their reliable code extraction across res-
olutions. Tesseract, however, shows a marked decrease in NLD scores with declining video
quality, especially at 360p, highlighting its vulnerability to noise and lower resolutions.
This is further illustrated by its wide interquartile ranges and the presence of numerous
outliers at lower resolutions, indicating a less-stable performance compared to the other
technologies. In sum, while Tesseract’s performance is notably affected by video quality,
the other engines and models demonstrate a robust ability to accurately extract code from
video tutorials, even in less-than-ideal conditions.

Based on the results, we noticed that by using large language models (LLMs) like
GPT-4V and Gemini for code extraction from video tutorials, several factors contribute
to the issues observed in their performance. One significant challenge is the tendency
of these models to “autocomplete” code, an inherent behavior due to their training on
predictive text generation. While this feature is valuable in many programming contexts, it
can introduce inaccuracies when extracting code from videos, as the models may generate
syntactically correct but contextually irrelevant code completions. To mitigate this, we
directed the model with an engineered prompt such as “Act as an OCR that extracts the code
from the image without explanation or adding any other information”.

Moreover, we observed a trend where the performance of all engines, including
OCRs and LLMs, degraded as the video quality decreased. This degradation suggests
that resolution plays a significant role in the accuracy of code extraction. Notably, the
images used for model input were provided without any form of pre-processing, which
could potentially enhance the models’ ability to interpret and transcribe code accurately.
The lack of pre-processing might have limited the engines’ performance, especially in
lower-resolution conditions where noise and artifacts are more prevalent. Therefore, there
is a clear need to experiment with various image pre-processing techniques that could
improve the visibility and clarity of code within videos.
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Figure 3. Boxplots showing how well OCRs and LLMs worked on different image qualities, measured
by NLD scores.

Answer to RQ1: Vision-based LLMs such as GPT-4V demonstrate superior performance
over conventional OCR engines like Tesseract in the task of code extraction, excelling across
all resolution levels and showing particularly notable improvements in lower-resolution
environments.

4.2. RQ2: The Impact of Programming Language Syntax on Code Extraction

Figure 4 summarizes the results we obtained after applying the two OCR engines
and the other two LLMs to each programming language for each quality. As depicted in
Figure 4, Google Vision consistently achieves high accuracy across various programming
languages and video qualities with minimal variability. Tesseract exhibits moderate per-
formance, particularly excelling in higher-resolution videos. GPT-4V demonstrates robust
performance, maintaining high accuracy levels across different video qualities. Gemini
(Bard) also performs well, showing consistency in accuracy levels but with a slightly lower

Figure 3. Boxplots showing how well OCRs and LLMs worked on different image qualities, measured
by NLD scores.

Answer to RQ1: Vision-based LLMs such as GPT-4V demonstrate superior performance
over conventional OCR engines like Tesseract in the task of code extraction, excelling across
all resolution levels and showing particularly notable improvements in lower-resolution
environments.

4.2. RQ2: The Impact of Programming Language Syntax on Code Extraction

Figure 4 summarizes the results we obtained after applying the two OCR engines
and the other two LLMs to each programming language for each quality. As depicted in
Figure 4, Google Vision consistently achieves high accuracy across various programming
languages and video qualities with minimal variability. Tesseract exhibits moderate per-
formance, particularly excelling in higher-resolution videos. GPT-4V demonstrates robust
performance, maintaining high accuracy levels across different video qualities. Gemini
(Bard) also performs well, showing consistency in accuracy levels but with a slightly lower
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mean accuracy compared to GPT-4V. Overall, each OCR engine showcases unique strengths
and areas for improvement, with GPT-4V standing out for its consistent high performance.

(a) Tesseract (b) Google Vision

(c) GPT-4V (d) Gemini

Figure 4. Boxplots showing how well OCRs and LLMs worked on different image qualities, measured
by NLD-Token scores on different programming languages.

Answer to RQ2: The fluctuating accuracy across programming languages highlights the im-
pact of syntax and structure on OCR efficiency. For example, at lower resolutions, languages
like Python exhibit greater variability in accuracy compared to C# for all approaches.

Notably, the performance in terms of programming language varies across all four
OCR engines. While some languages consistently yield higher accuracy scores regardless
of the OCR engine used, others show more variability. For example, C# and Java tend to
exhibit relatively higher accuracy scores across all engines, while PHP and Python show
more variability in performance. This suggests that certain programming languages may
be better-suited for OCR tasks, potentially due to language-specific syntax or structural
characteristics. However, further analysis would be needed to draw conclusive insights
into the relationship between programming language and OCR performance.

4.3. RQ3: The Impact of Applying Image Super-Resolution (SR) on Code Extraction Performance

We report our findings for the Tesseract OCR engine in Table 4, Vision in Table 5,
GPT-V4 in Table 6, and finally, Gemini in Table 7. Our analysis reveals that image
super-resolution (SR) enhances performance across all baseline models, with more ob-
served improvements at lower resolutions, such as 360p compared to 720p, as depicted in
Figures 5 and 6.

Table 4. Evaluation using token-based normalized Levenshtein distance (NLD) of Tesseract OCR
engine on raw and enhanced images using super-resolution techniques across different video qualities
(720p, 480p, 360p).

Quality
Tesseract-Base Tesseract-EDSR-×2 Tesseract-EDSR-×4 Tesseract-MDSR-×2 Tesseract-MDSR-×4

Median Average Median Average Median Average Median Average Median Average

720p 0.83 0.81 0.88 0.86 0.87 0.84 0.87 0.86 0.87 0.84
480p 0.62 0.60 0.83 0.80 0.83 0.80 0.83 0.80 0.83 0.81
360p 0.25 0.31 0.75 0.69 0.75 0.69 0.73 0.68 0.75 0.69
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Table 5. Evaluation using token-based normalized Levenshtein distance (NLD) of Vision OCR engine
on raw and enhanced images using super-resolution techniques across different video qualities (720p,
480p, 360p).

Quality
Vision-Base Vision-EDSR-×2 Vision-EDSR-×4 Vision-MDSR-×2 Vision-MDSR-×4

Median Average Median Average Median Average Median Average Median Average

720p 0.93 0.91 0.94 0.89 0.93 0.90 0.94 0.90 0.93 0.91
480p 0.91 0.89 0.92 0.89 0.92 0.89 0.92 0.89 0.92 0.89
360p 0.88 0.83 0.88 0.84 0.89 0.84 0.89 0.84 0.90 0.84

Table 6. Evaluation using token-based normalized Levenshtein distance (NLD) of GPT-4V on raw and
enhanced images using super-resolution techniques across different video qualities (720p, 480p, 360p).

Quality
GPT-Base GPT-EDSR-×2 GPT-EDSR-×4 GPT-MDSR-×2 GPT-MDSR-×4

Median Average Median Average Median Average Median Average Median Average

720p 0.97 0.95 0.97 0.96 0.97 0.95 0.97 0.95 0.96 0.95
480p 0.96 0.93 0.96 0.94 0.96 0.95 0.97 0.94 0.96 0.95
360p 0.93 0.89 0.96 0.94 0.96 0.94 0.96 0.94 0.95 0.93

Table 7. Evaluation using token-based normalized Levenshtein distance (NLD) of Gemini on raw and
enhanced images using super-resolution techniques across different video qualities (720p, 480p, 360p).

Quality
Gemini-Base Gemini-EDSR-×2 Gemini-EDSR-×4 Gemini-MDSR-×2 Gemini-MDSR-×4

Median Average Median Average Median Average Median Average Median Average

720p 0.93 0.91 0.94 0.91 0.94 0.90 0.94 0.90 0.94 0.91
480p 0.93 0.89 0.93 0.90 0.94 0.90 0.94 0.89 0.94 0.90
360p 0.91 0.86 0.92 0.88 0.93 0.88 0.93 0.89 0.93 0.88

Answer to RQ3: The effectiveness of super-resolution (SR) in enhancing OCR accuracy
scales with the decrease in video quality, with the most significant gains, up to a 200%
increase in performance, seen at the 360p resolution.

(a) Tesseract (b) Google Vision

(c) GPT-4V (d) Gemini

Figure 5. Boxplots showing how well OCRs and LLMs worked on different image qualities, measured
by NLD-Token scores on pre-processed images using super-resolution.
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(a) Input image without processing (360p) (b) Processed image EDSR-× 2 (360p)

(c) Input image without processing (360p) (d) Processed image EDSR-×4 (360p)

(e) Input image without processing (360p) (f) Processed image MDSR-×2 (360p)

(g) Input image without processing (360p) (h) Processed image MDSR-×4 (360p)

Figure 6. A sample of Python code images with a 360p resolution processed using EDSR-×2 and
EDSR-×4 as part of our super-resolution techniques.

Specifically, at 360p resolution, SR significantly boosts OCR models’ performance.
For instance, the Tesseract-Base showed a 200% improvement in median and 122.5% in
average scores at 360p. Conversely, the improvement in large language models (LLMs)
was less striking, with the highest enhancement being a 3% median and 17% average
increase in the Gemini model. This lesser degree of improvement in LLMs can be attributed
to their inherent robustness, resulting in minimal performance variation across different
image qualities. In contrast, Tesseract proved to be more sensitive to image resolution, thus
benefiting more from the SR image enchantment.

Moreover, our observations indicate that the application of the SR technique yields
the greatest improvement when implemented at a 2× scale, while lesser effects are noted at
higher scales, such as 4×.



Mathematics 2024, 12, 1036 16 of 19

Notably, GPT-V4 consistently outperformed other models across all image resolutions
and in all its variants. The top-performing models were GPT-EDSR-×2 and GPT-MDSR-×2,
further underscoring the advanced capabilities of GPT-V4 in varied resolution scenarios.

5. Threats to Validity

Our study encountered a few primary challenges that could impact the reliability
of our findings. We break these challenges into internal, construct, and external validity
concerns and explain them below.

5.1. Internal Validity

Firstly, we had to manually determine the area covering the source code in each video
frame, ensuring it encompassed all the code while excluding any extraneous elements
like line numbers. To address this, each frame was annotated by one researcher and then
cross-checked by another. Secondly, the transcription of the source code needed to be
error-free. To ensure accuracy, three individuals transcribed the code, after which one
researcher reviewed and corrected it, followed by a final verification by a second researcher.

5.2. Construct Validity

As for the construct validity, it pertains to the accuracy metric used in evaluating the
two OCR engines and the other two LLMs models with the two super-resolution techniques.
We addressed this potential issue by using established edit-based metrics, commonly
utilized in various research fields for assessing OCR performance. Given that OCR errors
often occur at the character level and could be at the token level as well, we employed both
the character and token level in reporting the accuracy of our comprehensive experiments.

5.3. External Validity

Regarding external validity, our OCR evaluations and super-resolution techniques may
not cover all possible scenarios in terms of programming languages, topics, IDE themes,
numbers of lines of code, and image resolutions. To mitigate these threats, we (i) selected
five different programming languages, (ii) formulated various queries for searching videos,
(iii) selected a frame with at least ten lines of code, and (iv) selected videos with black and
white background IDE that could be downloaded in four resolutions.

6. Conclusions

In the evolving landscape of software engineering, video programming tutorials have
become a crucial educational resource, offering step-by-step visual instructions that demon-
strate programming concepts and practices. However, the code embedded within these
video frames is often inaccessible for direct reuse, presenting a significant challenge in
the field. This study addresses the critical task of extracting source code from such video
tutorials, focusing on the impact of image quality on optical character recognition (OCR)
and the efficacy of large language models (LLMs) in this context. We present a compre-
hensive empirical analysis across various video resolutions, evaluating the performance of
traditional OCR engines and advanced LLMs, and examining the enhancement potential of
image super-resolution (SR) techniques.

Our findings reveal that vision-based large language models (LLMs) like GPT-4V
significantly outperform traditional OCR engines such as Tesseract in code extraction
tasks. We also found that the syntax and structure of different programming languages
considerably impact OCR efficiency. Furthermore, our study highlights the pivotal role of
super-resolution (SR) techniques in enhancing OCR accuracy, particularly in lower-quality
videos, with performance gains up to 200% observed at 360p resolution. These findings
suggest a shift towards integrating more advanced technologies like LLMs and SR in
processing educational video content, paving the way for more effective and accessible
programming learning resources. This research contributes to the software engineering
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domain by providing a benchmark for code extraction from video tutorials and showcasing
the significant role of SR and LLMs in improving code readability and extraction accuracy.

While our study makes significant strides in understanding code extraction from
video tutorials, it does have limitations. For instance, the focus on a select number of
programming languages and video qualities might not fully represent the diverse scenarios
encountered in software engineering education. Additionally, the manual transcription
process, though thorough, introduces human subjectivity. Future work should look into
broadening the scope to include a wider array of programming languages and video
qualities. Exploring automated methods for transcription and labeling could also enhance
the objectivity and scalability of the dataset creation. Moreover, there is an opportunity
to integrate and test emerging OCR and LLM technologies, continually refining the tools
and techniques for more effective code extraction from educational video content. This
ongoing evolution will further contribute to the advancement of learning resources in
software engineering.
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