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Abstract: Large-scale wind farms incorporating doubly-fed induction generators (DFIGs) are con-
sidered a promising direction for modern energy supply systems due to their role in reducing
dependence on fossil energy sources. However, the dynamic interactions between DFIGs and AC
grids sometimes lead to sub-synchronous oscillation (SSO) that threatens the safe and stable operation
of wind power systems. Therefore, it is essential to develop a mathematical model and design an
algorithm to quantitatively design the control parameters. Such algorithms are helpful in preventing
or mitigating system stability problems coming from wind power connected to the grid and reducing
damage to power equipment. The traditional state-space model is mainly established to determine
the stable operating point and analyze the influence of parameters on the system operating mode.
However, this method does not provide the selection area for the system parameters. To address this
shortcoming, this paper introduces a modular state-space model for DFIGs containing series com-
pensation lines and proposes an algorithm for calculating the parameter selection area based on the
Guardian map method. First, a detailed modular state-space model based on the virtual synchronous
generator (VSG) control is established. The modular model helps to reflect the relationship between
state variables and focuses on describing the operating state of DFIGs in wind farms. Second, this
paper focuses on the influence of VSG control parameters and compensation capacitance on SSO.
It aims to clarify the role of the series compensation level and control parameters on SSO based on
VSG control. Then, an algorithm for the parameter selection area based on the Guardian map is
proposed and the area of the VSG-controlled DFIG is obtained. Finally, the accuracy and validity of
the algorithm are verified by time domain simulation in MATLAB/Simulink and HIL experiment.

Keywords: doubly-fed induction generator (DFIG); sub-synchronous oscillation (SSO); virtual
synchronous generator (VSG); parameter selection area

MSC: 94C60

1. Introduction

Recently, large-scale wind farms have garnered significant interest for their contribu-
tion to reducing reliance on fossil fuels. Among these, the DFIG stands out as a widely
utilized wind turbine in practical applications [1,2]. Grid-connected wind power sys-
tems, being a relatively new type of power system, encounter fresh operational challenges
stemming from their extensive use of power electronics [3–5]. The prevalence of issues
such as low inertia and weak damping has led to several instances of instability, posing a
considerable risk to the secure and stable operation of power systems [6–8].

To address these challenges effectively, VSG technology has been implemented [9,10]. In
contrast to power systems predominantly governed by centralized synchronous generators
(SGs), power electronics-dominated systems such as DFIG controlled by VSG may feature hun-
dreds of distributed converters. This can result in dynamic interactions between DFIGs and
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the AC grid, leading to resonance incidents that affect the safe and stable operation of wind
power systems [11,12]. Furthermore, the use of VSG control complicates the mechanism of
subsynchronous oscillation in wind power systems [13]. Practical engineering observations
indicate that the stable operational characteristics of DFIGs are influenced by the turbine
control parameters and the level of series compensation [14,15]. Large-scale DFIGs are
typically connected to the grid via series compensation lines in order to enhance the trans-
mission capacity of the AC system [16]. However, in series compensation lines, the control
system of the DFIG interacts with the compensation capacitor, rendering them susceptible
to subsynchronous oscillations and potentially causing large-scale off-grid scenarios [17].
Therefore, there is a pressing demand for a small-signal stability analysis method tailored
to the DFIGs system. This method should both ascertain the stability conditions (whether
the system is stable or unstable) and furnish solutions through parameter design-oriented
stability methods. Impedance-based analysis is a proven and straightforward method
for stability assessment [18–20]. Wang et al. [21] proposed a wind farm conductor and
provided nodal voltage equations for the entire integrated system. Sun et al. [20] developed
a model for a doubly-fed wind turbine with a multi-timescale controller, incorporating the
conductance and dynamics of the dc-bus between the rotor-side converter (RSC) and the
grid-side converter (GSC). Similar impedance models were developed in [22,23]. Another
study [24] introduced a wind farm aggregate impedance model based on a doubly-fed
converter, which accounts for nonlinearities introduced by the phase-locked loop (PLL)
and external control loop of the wind converter. While this model accurately captures low-
frequency dynamic interactions, it does not consider the influence of control parameters on
the impedance characteristics.

Time domain modal analysis employing state-space models has been extensively
utilized for decades to evaluate interactions among multiple machines and inter-area
oscillations in power systems where synchronous generators (SGs) are predominant [25].
Participation factors further clarify the dynamic contributions of state variables, assisting
in the control of system damping. This approach offers a comprehensive understanding of
system dynamics. Through examination of the eigenvalues and eigenvectors of the state
matrix, it furnishes valuable insights into oscillation modes, encompassing their frequencies,
damping ratios, and mode shapes [25–28]. Despite its merits, modal analysis finds limited
application in the stability assessment of large-scale power systems characterized by the
prevalence of power electronics.

Efforts have been made to simplify modeling via modularizing methodology. In [29],
each VSC control loop was modeled separately and then interconnected. However, in-
tegrating shared state variables among submodels within the state-space framework is
essential for ensuring the accuracy of the state matrix of the system. Without clear guide-
lines for combining these shared variables, significant effort is required to restructure the
submodels for seamless integration into the overall system representation. To address this
challenge, [30] introduced principles for combining two sub-state-space models with vary-
ing interconnections. Shared state variables can be individually represented, facilitating
interconnections between submodule components. This approach streamlines the process
of deriving the complete system model without the need to overhaul individual submodels
within the state-space framework.

The traditional state-space approach primarily aims to identify stable operating points
and analyze the constraints on parameter selection using the stability criterion method [31].
However, it does not inherently provide the parameter selection area for system parameters.
To address this gap, this paper introduces a modular state-space model based on the
Guardian map for DFIG containing the series compensation line and solves the parameter
selection area. This approach has the following main advantages:

(1) A detailed modular model of DFIGs is proposed. Compared with [30], it focuses more
on describing the operation status of DFIGs in wind farms and analyzing the structure
of the modularization matrix. This is helpful in reflecting the actual situation of the
wind farm and in performing the calculation of the parameter selection area.
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(2) Focusing on the investigation of the influence law of VSG control parameters on the
SSO, the proposed mechanism aims to clarify the role of the series compensation level
and control parameters in the subsynchronous oscillations under VSG control. This
can provide guidance for system stabilization and parameter selection. Finally, the
accuracy and validity of the mechanism analysis and theoretical analysis are verified
by time domain simulation.

The structure of this paper is as follows: Section 2 describes the system of DFIGs and
models the various parts of the system; Sections 3 and 4 describe the mathematical method
of the Guardian map used to obtain the parameter selection area and develop the algorithm
for DFIGs; Sections 5 and 6 provide the corresponding simulation and experimental results;
and Section 7 concludes the work.

2. The Small-Signal Model of DFIG Based on VSG

The DFIG is linked to the grid via a back-to-back converter, whereby the rotor-side
converter implements the VSG control strategy to regulate the output active and reactive
power of DFIGs. Meanwhile, the traditional vector control strategy is retained for the
grid-side converter to uphold the stability of the DC bus voltage. The influence of the
converter on the overall grid-connected system is minimal. Consequently, the converter
and the DC capacitor are substituted with a constant DC voltage source to simplify the
analysis, disregarding the impact of the grid-side converter. This paper solely establishes
the small-signal state-space model, encompassing the structure of the DFIGs, rotor-side
converter, and the series complementary line. Such modeling lays the groundwork for
subsequent analyses concerning the stability area of VSG-controlled DFIG units connected
to the grid via a series compensation line.

2.1. Stator and Rotor Models of DFIG

The DFIG is split into two components: the rotor and the stator. The equivalent
structural block diagrams for both the stator and rotor sides are depicted in Figure 1. It is
specified that the inflow current is directed positively on both the stator and rotor sides.

sqi

sdi

squ

sdu

sR
rR

rR

mL

mL

1 sq

1 sd
lsL lrL

lrLlsL 2 rq

2 rd

rdi

rqi

rdu

rqu

sR

Figure 1. Block diagram of stator and rotor structure of DFIG.

The voltage equation and the linkage equation of a DFIG in the d − q coordinate
system can be represented as follows:

usd = Rsisd − ωlψsq +
dψsd

dt

usq = Rsisq + ωlψsq +
dψsq

dt
urd = Rrird − ω2ψrq +

dψrd
dt

urq = Rrirq + ω2ψrd +
dψrq

dt

, (1)
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
ψsd = Lsisd + Lmird

ψsq = Lsisq + Lmirq

ψrd = Lrird + Lmisd

ψrq = Lrirq + Lmisq

. (2)

This is obtained by eliminating the motor stator–rotor magnetic chain by coupling
Equations (1) and (2):

Ls
disd
dt

+ Lm
dird
dt

= usd − Rsisd + ω1Lsisq + ω1Lminq

Ls
disq

dt
+ Lm

dirq

dt
= usq − Rsisq − ω1Lsisd − ω1Lmind

Lr
dird
dt

+ Lm
disd
dt

= urd − Rrird + ω2Lrirq + ω2Lmisq

Lr
dirq

dt
+ Lm

disq

dt
= urq − Rrinq − ω2Lrird − ω2Lmisd

. (3)

Equation (3) can be expressed in the following form after performing each differential
term with substitution:

σ dird
dt = Lsurd − Lmusd + RsLmisd − RsLsisd + (ω2 − ω1)LsLmisq + (ω2LrLs − ω1L2

m)irq

σ
dirq
dt = Lsurq − Lmusq + RsLmisq − RsLsirq + (ω1 − ω2)LsLmisd + (ω1Lm − ω2LrLs)ird

σ disd
dt = Lrusd − Lmurd − RsLrisd + RsLmird + (ω1LrLs − ω2L2

m)isq + (ω1 − ω2)LrLmirq

σ
disq
dt = Lrusq − Lmurq − RsLrisq + RrLmirq + (ω2L2

m − α1LrLs)isd + (ω2 − α1)LrLmird

, (4)

where σ = L2
m − LrLs.

The stator and rotor currents of the DFIG are selected as state variables, and
Equation (4) is linearized. The fourth-order state equation of the DFIG can then be obtained:

d
dt


∆ird
∆irq
∆isd
∆isq

 = ADFlG


∆ird
∆irq
∆isd
∆isq

+ BDFlG1

[
∆urd
∆urq

]
+ BDFlG2

[
∆usd
∆usq

]
, (5)

where ADFIG = 1
σ


−RrLs ω2LrLs − ω1L2

m RsLm (ω2 − ω1)LsLm
ω1L2

m − ω2LrLs −RrLs (ω1 − ω2)LsLm RsLm
RrLm (ω1 − ω2)LrLm −RsLr ω1LrLs − ω2L2

m
(ω2 − ω1)LrLm RrLm ω2L2

m − ω1LrLs −RsLr

,

BDFIG1 =
1
σ


Ls 0
0 Ls

−Lm 0
0 −Lm

, BDFIG2 =
1
σ


−Lm 0

0 −Lm
Lr 0
0 Lr

.

2.2. The VSG Control Model of DFIG

The VSG control is referenced to the active and reactive control loops of the DFIG; its
control block diagram is shown in Figure 2.
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Figure 2. Block diagram of the stator and rotor structure of a DFIG.
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Active power control means that the deviation of the output active power from the
given active power is controlled by inertia and damping to obtain the rotor excitation
voltage phase angle. Its control equation can be expressed as follows:{

Tj
dωvsg

dt = Ps−re f − Ps − D(ωvsg − ω1)
dθr
dt = ωb(ωvsg − ωr)

. (6)

Introducing the intermediate variables x1,x2, Equation (6) can be expressed as follows:
dx1
dt = Ps−re f − Ps − D(ωvsg − ωl)

dx2
dt = ωvsg − ωr

ωvsg = x1/Tj

θr = ωbx2

. (7)

Reactive power control means that the deviation of the actual output reactive power
from the given reference value of the reactive power is used to obtain the rotor excitation
voltage amplitude through PI control. The control equation can be expressed as follows:

Ur = (kpν +
kiν
s
)(Qs−re f − Qs). (8)

Introducing the intermediate variable x3, Equation (8) can be expressed as
dx3

dt
= Qs−re f − Qs

Ur = kpv
dx3

dt
+ kivx3

. (9)

Finally, the excitation control voltage Ur−abc of the rotor in the three-phase stationary
coordinate system can be obtained by vector synthesis, i.e.,

Urabc =
2
3
(Ura + ej 2

3 πUrb + ej 4
3 πUrc), (10)

where Ura = Ur cos(θr), Urb = Ur cos(θr − 2
3 π), and Urc = Ur cos(θr − 4

3 π).
The controller output is transformed from a three-phase stationary coordinate system

to a d − q coordinate system. It can be obtained as follows:{
urd = Ur cos θr

urq = Ur sin θr
. (11)

The small-signal linearization of Equation (11) yields{
∆urd = −Ur0 sin θr0∆θr + cos θr0∆Ur

∆urq = Ur0 cos θr0∆θr + sin θr0∆Ur
. (12)

Based on Equations (7) and (9) above, the VSG control can be expressed as a third-order
state equation, and its small-signal linearization yields

d∆x1
dt = −∆Ps − D∆ωvsg

d∆x2
dt = ∆ωvsg

d∆x3
dt = −∆Qs

, (13)
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where the expressions for active and reactive power are{
Ps = 1.5(Usd Isd + Usq Isq)

Qs = 1.5(Usq Isd − Usd Isq)
. (14)

The small-signal linearization of this can be expressed as follows:{
∆Ps = 1.5(Usd0∆isd + Usq0∆isq + Isd0∆usd + Isq0∆usq)

∆Qs = 1.5(Usq0∆isd − Usd0∆isq + Isd0∆usq − Isq0∆usd)
. (15)

The virtual angular frequency and rotor excitation voltage phase angle in Equation (7)
can be expressed after small-signal linearization as{

∆ωνsg = ∆x1/Tj

∆θr = ωb∆x2
. (16)

Then, the output rotor voltage amplitude can be expressed as

∆Ur = 1.5kpr(Usq0∆isd − Usd0∆isq + Isd0∆usq − Isq0∆usd) + kiv∆x3. (17)

Thus the small-signal expression for the output rotor voltage in the d − q coordinate
system can be obtained as follows:

∆urd = −Ur0 sin θr0aθ∆x2 + kr0 cos θr0∆x3

+1.5kpn cos θr0(Usq0∆isd − Usd0∆isq + Isd0∆usq − Isq0∆usd)

∆urq = Ur0 cos θr0ωb∆x2 + kr sin θr0∆x3

+1.5kpn sin θr0(Usq0∆isd − Usd0∆isq + Isd0∆usq − Isq0∆usd)

. (18)

Combining Equations (12)–(18), the state-space equations for VSG control can be
expressed as follows:

d
dt

∆x1
∆x2
∆x3

 = AVSG

∆x1
∆x2
∆x3

+ BVSG1

[
∆isd
∆isq

]
+ BVSG2

[
∆usd
∆usq

]
(19)

where AVSG =

 −D/Tj 0 0
1/Tj 0 0

0 0 0

, BVSG1 =

 1.5Usd0 1.5Usq0
0 0

1.5Usq0 −1.5Usd0

,

BVSG2 =

 1.5Isd0 1.5Isq0
0 0

−1.5Isq0 1.5Isd0

.

2.3. Complete Model of a DFIG with the Series-Complementary Line

DFIGs are generally located in remote areas; in order to reduce the transmission line
impedance when accessing the grid, they are often accessed through series compensation
capacitors. However, the output impedance of DFIGs is often inductive, which is prone
to resonance with capacitive transmission lines, i.e., the SSR phenomenon. Therefore, in
order to analyze the grid stability of doubly-fed wind turbines under a series compensation
grid, it is necessary to analyze the turbine together with the transmission line model. The
small-signal state-space model of the DFIG, rotor-side converter, and its controller have
been established in the previous section. The transmission line model is established in the
following section to form the complete state-space model of a VSG-controlled DFIG under
a series compensation line to analyze the stability of the grid-connected system.
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The simplified structural block diagram of the DFIG connected to the grid by the series
compensation line is shown in Figure 3; the voltage–current relationship of line resistance,
inductance, and capacitance can be expressed as follows:

usd − ugd + ucd = ω1Lsisq − Rgigd − Lg
disd
dt

usq − usq + ucq = −ω1Lgisd − Rgisq − Lg
disq
dt

Cg
ducd

dt = isd + ω1Cgucq

Cg
ducq

dt = isq − ω1Cgucd

. (20)

DFIG Grid

gusu

gR gL gC gi

 The series compensation line

#1 #2 #n

Wind
The simplified structure of 

the DFIG

simplification

Figure 3. Block diagram of DFIG connected to the grid via series complementary capacitors.

The small-signal expression of Equation (20) can be expressed as follows:
∆usd + ∆ucd = ω1Lg∆iq − Rg∆isd − Lg

d∆igd
dt

∆usq + ∆ucq = −ω1Lg∆isd − Rg∆is−q − Lg
d∆isq

dt
Cg

d∆ucd
dt = ∆isd + ωlCg∆ucq

Cg
d∆ucq

dt = ∆isq − ωlCg∆ucd

. (21)

Because the grid-side converter along with its controller and DC bus capacitor are
replaced by a voltage source, only the rotor-side converter with VSG control is considered
for the DFIG system. At this time, the line current and the stator output current of the DFIG
are equal, i.e., igd = isd, igq = isq.

Thus, Equation (21) can be written in the following form:

d
dt

[
∆ucd
∆ucq

]
=


1

Cg
0

0 1
Cg

[∆isd
∆isq

]
+

[
0 ωl

−ωl 0

][
∆ucd
∆ucq

]
(22)

d
dt

[
∆isd
∆isq

]
=


−1
Lg

0

0
−1
Lg

[∆usd
∆usq

]
+


−Rg

Lg
ωl

−ωl
−Rg

Lg


[

∆isd
∆isq

]
+


−1
Lg

0

0
−1
Lg


[

∆ucd
∆ucq

]
. (23)

Equations (5), (18), (19), (22), and (23) are associated, and the inputs are substituted
equivalently. Thus, the standard small-signal state-space equation for n DFIGs containing
the series compensation line is as follows:

d∆xsys

dt
= Asys∆xsys, (24)

where the state variables are denoted as ∆xsys, Tsys is the characterization matrix of the
system, and the series compensation stability of the DFIG system can be determined by
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solving the eigenvalues of this characterization matrix. The structure of Tsys and ∆xsys is
shown in Figure 4.

∆xsys = [∆i1rd ∆i1rq ∆i1sd ∆i1sq ∆x1
1 ∆x1

2 ∆x1
3

∆i2rd ∆i2rq ∆i2sd ∆i2sq ∆x2
1 ∆x2

2 ∆x2
3 · · · · · ·

∆in
rd ∆in

rq ∆in
sd ∆in

sq ∆xn
1 ∆xn

2 ∆xn
3 ∆ucd ∆ucq]

T

(25)

Expandable Matrixs for Multiple 

DFIGs (self coupling)

DFIG-Line Matrix 

(mutual coupling)

Line Matrix

 (self and mutual coupling)

sysx

DFIG1x

DFIG2x

DFIGnx

Linex

Expandable DFIG 

State Variables

(7×7)

(7×7)

Series compensation 

line State Variables
2 2

sys

7n 7n

A

Figure 4. The structures of Asys and ∆xsys.

3. The Parameter Selection Area

At the point of equilibrium, the small-signal model of the system can be characterized
as follows:

∆ẋsys = Asys(ρ)∆xsys (26)

System stability is determined by ensuring that the real parts of all eigenvalues are
negative. The parameter selection significantly influences system stability. However, if
damping is insufficient and the oscillatory decay coefficient is minimal, instability can arise
despite the system being theoretically stable. Weak damping can lead the system close to
instability, making it prone to oscillations when perturbed. Thus, to prevent SSO induced
by the series compensation line, the eigenvalue vector of the DFIG system is manipulated
accordingly, denoted as follows:

λ = [λ1, λ2, · · · , λi, · · · , λn]. (27)

The eigenvalues are expressed as λi = ai + bi j, where ai represents the real part and bi
denotes the imaginary part of each eigenvalue.

The parameter selection area is described as the set of DFIGs that meet the following
two criteria:

Criterion I: The real part of the system’s eigenvalue ai, determined by the attenuation
coefficient ⩽ −ν1, where ν1 is a positive value.

Criterion II: The system’s damping ratio ⩽ ν2, where ν2 = sin(θ) and θ represents
an angle.

The damping ratio is defined as ξi:

ξi =
−ai√
a2

i + b2
i

. (28)

Figure 5 illustrates the boundaries of the parameter selection area, which are estab-
lished according to two criteria. Criterion I delineates the limits for the real parts of the
system’s eigenvalues, ensuring stability and rapid oscillatory decay, while Criterion II
establishes the threshold for the damping ratio at each stable operating point.
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1− 0 R

I



 Parameter Selection Area

Figure 5. The parameter selection area and its complex plane boundary.

The Guardian map method for identifying parameter selection areas is restricted
to systems with stable matrices, where all the eigenvalues possess negative real parts.
Adapting this method for irregular regions such as the parameter selection area requires
mapping the negative half-plane onto the target region. This process entails subdividing
the area and identifying their intersections with the mapping, as illustrated in Figure 6. If
the eigenvalue set of the target system matrix falls within Area 1, it corresponds to Criterion
I. Alternatively, if it falls within Area 2 or Area 3, it aligns with Criterion II.

Area 1

1− 0 R

I

0



R

I

0



R

I
Area 2 Area 3

Figure 6. Decomposition of the parameter selection area.

To project the negative side onto Area 1, the transformation is represented as follows:

υ1 : Atranslation = Ale f t + ε1E (29)

where Ale f t stands for a fixed matrix with no variables, Atranslation denotes the translation
transformation of the matrix stability region for this system, and E indicates the identity matrix.

To project the negative side onto Areas 2 and 3, the rotations are indicated as follows:

υ2 : Arotation1 = Ale f t × eiθ , (30)

υ3 : Arotation2 = Ale f t × e−iθ , (31)

where Arotation1 and Arotation2 correspondingly represent two rotations in the clockwise and
counterclockwise directions within the selection region and θ denotes the angle of rotation.

When Atranslation, Arotation1, and Arotation2 have been acquired, the method for calculat-
ing the parameter selection region using Guardian mapping can be utilized to identify the
respective regions. The region targeted in this study is the overlapping part of the three
regions fulfilling the aforementioned two stability criteria.

4. Algorithm for the Parameter Selection Area of DFIGs

In this section, an algorithm is introduced for determining the parameter selection
region for DFIGs. Expanding upon the earlier discussion, it is demonstrated that if the
Atranslation, Arotation1, and Arotation2 respectively produced from the translation and two
rotation mappings yield Hurwitz matrices, then the system will uphold its stability and
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demonstrate favorable performance attributes. Additionally, identifying the stable opera-
tional region can be reframed as a problem of identifying an associated Hurwitz matrix.

In the preceding section, the multiparameter state-space matrix (Atranslation, Arotation1,
and Arotation2) can be represented as

Asys = Asys(ρ1, ρ2, · · · , ρm) = A0 + ρi

m

∑
i=1

Asys,i, (32)

where ρ1, ρ2, · · · , ρm denote the variation coefficients, A0 represents the fixed matrix with-
out fluctuations in parameters, and Tg,i stands for the transformation matrix influenced by
the fluctuations ρi.

To streamline the variables in Equation (32), the issue can be resolved by employing
the polar coordinate transformation technique outlined in Lemma 1.

Lemma 1 ([32]). Considering a vector (ρ1, ρ2, · · · , ρm)
T ∈ Um with m ≥ 2, there exist two real

numbers r and m − 1 scalar quantities, satisfying the following conditions:

(ρ1, ρ2, · · · , ρm)
T = rκ(θ) (33)

where θ = (θ2, · · · , θm)
T ∈ [0, π)m−1 and

κ(θ) = (cos θ2, cos θ3 sin θ2, cos θ4 sin θ3 sin θ2, · · · ,

cos θm−1 · · · sin θ3 sin θ2, cos θk · · · sin θ3 sin θ2)
T

∈ [−1, 1]m
. (34)

Utilizing Lemma 1, the multi-parameter system matrix can be condensed to

Asys = A0 + rTκ(θ). (35)

Theorem 1. Given an open range T0, where Aκ(θ) ⊆ Ω and A0 ̸= 0, let A0 ≜ 2A0 ⊙ E and
Aκ(θ) ≜ 2Aκ(θ) ⊙ E. Then, for all r ∈ U and 0 ∈ U such that Asys = A0 + rAκ(θ) forms
a Hurwitz matrix, the necessary and sufficient conditions are that A0 is a Hurwitz matrix and
0 ∈ U ∈ Φ(A−1

0 Aκ(θ))
⋂

Φ(A−1
0 Aκ(θ)).

The proof of Theorem 1 has been established in [33] and will not be reiterated in
this paper.

Consider the set defined as follows:

Ω(θ) =
⋃

i∈Γ(θ)

(ri, ri+1), (36)

where ri and ri+1 respectively represent consecutive elements within Φ(A0
−1 Aκ(θ)) with

i ∈ [0, 1, · · · , m − 1, m] and Γ(θ) denotes an index set Γ(θ) = i : For ri
′ ∈ (ri, ri+1). Here,

A0 + r′i Aκ(θ) is assumed to be a Hurwitz matrix. The delineation of the system parameter’s
selection area is elaborated further as follows:

Γ′
∈(θ) =

{
∪

θ∈[0,π)m−1
{v(θ) ∈ Um : v(θ) = rκ(θ), r ∈ Γ∈(θ)

}
. (37)

Only when (r1, r2, · · · , rm)
T ∈ Γ′

∈(θ) does A0 + ri
m
∑

i=1
Asys,i form a Hurwitz matrix.

Given Equation (32), the small-signal state-space matrix represents a linear relationship
with the parameters. Hence, Algorithm 1 provides the solution process for determining the
parameter selection area of Cg and kiv.
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Algorithm 1 The parameter selection area of Cg and kiv.

1: Initialization: U1 is the universal set, Asys = Atranslatiao.
2: while (i ≤ p) do
3: Utilize the current stable operating point to conduct small-signal expansion, yielding

the stable matrix A0 and the perturbation matrix Asys,i consisting of Cg and kiv.
4: Define Cg = r sin(θ); kiv = r cos(θ), and simplify the system matrix into the form

Asys = A0 + rAκ(θ).

5: Compute the eigenvalues of A0, Aκ(θ), and A−1
0 Aκ(θ), where θ ∈ [0, π

2 ]

6: Establish Ω(θ) = (r0, r1, · · · , rk+1) according to the Definition.
7: For each r′i ∈ (ri, ri+1), verify whether the matrix A0 + r′i Aκ(θ) forms a Hurwitz

matrix. If affirmative, the system within this open range maintains stability.
8: Aggregate all stable open intervals U1 = U1

⋂
U1i to obtain the stability domain U1i

of the control parameters.
9: Increment i by one.

10: end while

Illustrated in Figure 7 is the execution flow of the parameter selection area. First,
the setup initializes the initial conditions. Subsequently, it iterates through calculating
the system’s steady-state matrix and perturbation matrix, simplifying the system matrix,
computing the eigenvalues, constructing the ensemble, and checking the system stability.
System stability is assessed based on the fulfillment of the Hurwitz matrix conditions, and
stable parameter intervals are appended to the set. This loop continues until all parameter
combinations are checked, resulting in the stable parameter set. Moreover, Algorithm 1
allows the parameter selection areas U2 and U3 to be derived using matrices Arotation1 and
Arotation2. Consequently, the parameter selection area is expressed as the intersection of U1,
U2, and U3, denoted as U = U1

⋂
U2

⋂
U3.

 Initialization

 i=1,     is the empty set1iU

 Calculate the system steady state 

matrix and the perturbation matrix

  Mark the set as stable and add 

Construct the collection： ( )Construct the collection： ( )

0 ( )iA rA +

 
    If matrix  

   is a Hurwitz matrix

1iU

True

True

i=i+1

 Output   1 1 1iU U U=

i m
False

False
0 ( )iA r A +

i m

Figure 7. The computational flow of the algorithm in calculating the DFIG parameter selection area
based on the Guardian map.
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5. Simulation Experiments

The computational example in this paper uses a grid-connected wind farm system
containing three DFIGs with the parameters shown in Table 1 and the other parameters
in [34]. In the initial state, each DFIG has the same parameter settings and all of them
operate at the unit power factor. The correctness of the theoretical derivation in Section 4 of
this paper is verified by model analysis and time domain simulation.

Table 1. Simulation parameters of DFIG and grid line.

Parameters Symbols Values

DFlG parameters

Rated voltage Ub 690 V
Rotor resistance Rr 0.081 pu

Rotor leakage inductance Lr 0.75 pu
Excitation inductance Lm 17.21 pu

Active power Ps 100 MW
Reactive power Qs 0 MW

DC voltage Udc 1150 V
Stator resistance Rs 0.092 pu

Stator leakage inductance Ls 0.45 pu

VSG control parameters

Rated Voltage Tj 0.5
Rotor resistance D 20

Rotor leakage inductance kpv 30
Excitation inductance kiv 5

Grid line parameters

Grid resistance Rg 0.1 pu
Grid Inductance Lg 2 pu

Compensation Capacitance Cg 3.5 pu

5.1. Validation of the Root-Locus in the Parameter Selection Area

First, the study was carried out in an ideal situation where the wind farm parameter
settings and operating conditions are exactly the same. A detailed electromagnetic transient
time domain simulation model was built in MATLAB/SIMULINK to verify the results of
the model analysis. As the parameters of each DFIG are the same, the small differences
in the DFIG inlet currents and voltages are ignored. The output voltage, output current,
active power, reactive power voltage, and DC port voltage waveforms of the DFIG in the initial
state are shown in Figure 8, respectively. According to the simulation results, the system
under the series compensation capacitance value Cg = 3.5 pu and the integral coefficient
kiv = 10 is shown to be stable. As shown in Figure 9, the parameter selection area is calcu-
lated from Algorithm 1, provided in Section 4. Because the parameter coordinates at this
point are located within the selection area, the system is judged to be stable according to the
methodology of this paper. This result is the same as the simulation results. Furthermore,
the operating points of the system located in the parameter stabilization region are drawn
in the figure using the point-by-point test method (indicated by the blue “*”). The accuracy
of the strategy proposed in this paper is confirmed by the fact that almost all of the test
points are located within the range of the parameter selection area.
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Figure 8. The time domain simulation result for initial state ((Cg,kiv) = (3.5 pu, 10)).

gC

Unstable Region

Parameter Selection Area

ivk

Initial state Case 1

Case 2Case 3

RSSSR by Pan et al. (2018)

Boundary points of the stability region

Points of Simulation Verification

Points by the point-by-point test method

Boundary points of the stability region

Points of Simulation Verification

Points by the point-by-point test method

Figure 9. The parameter selection area of Cg and kiv [35].

In order to verify the correctness of the theoretical approach in this paper, the corre-
sponding 23 × 23 order model of the example system in Figure 3 was constructed and the
oscillation mode of the full-order model was calculated. The value of the series compensa-
tion capacitor Cg was varied in the range of 3.5 pu 1 pu, while the rest of the parameters
remained unchanged. The root-locus of the model at this point was calculated, as shown
in Figure 10a. From the figure, it is evident that as the value of the series compensation
capacitance (denoted as the series compensation coefficient) increases, the λ2,3 mode shifts
towards the right half-plane, indicating a tendency towards system instability coupled
with an increase in oscillation frequency. This correlation is validated by the time domain
simulation results depicted in Figure 10c. The alterations in the output power waveform
of the system are observed with series compensation capacitor values of 3.5 pu, 2.5 pu,
and 1 pu, respectively. Notably, a lower Cg results in more pronounced oscillations in the
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output power waveform of the system and is accompanied by a significant increase in
oscillation frequency, consistent with the characteristics observed in the eigenvalue analysis.
Consequently, it can be inferred that as the series compensation capacitance decreases,
signifying an increase in the series compensation level, the control bandwidth decreases as
well, leading to heightened system oscillations.

2 3,

7 8

2 3,

4 5,7

  

3 5gC . pu=

2 5gC . pu=

 

3 5gC . pu=

2 5gC . pu=

8

a

c

b

d

1gC pu=

10ivk =

15ivk =

20ivk =

2 3,

7 8

2 3,

4 5,7

  

3 5gC . pu=

2 5gC . pu=

8

a

c

b

d

1gC pu=

10ivk =

15ivk =

20ivk =

Figure 10. The root-locus and output active power waveforms when parameters are changed. (a) the
root-locus when Cg decrease from 3.5 pu to 1 pu; (b) The root-locus when kiv increase from 10 to 20;
(c) the output active power waveforms for Cg = 1 pu, 2.5 pu, 3.5 pu; and (d) the output active power
waveforms for kiv = 20, 15, 10.

We next set the integration gain Kiv of the reactive power loop to vary from 10 to
20 while keeping the rest of the parameters unchanged and calculated the root-locus of
the model at this time, as shown in Figure 10b. From the figure, it is apparent that as the
integral gain increases, the stability of the λ2,3 mode weakens, accompanied by an increase
in the oscillation frequency. Additionally, there are λ4,5 modes that shift towards the right
with the increasing integral gain, positioning themselves on the right side of the imaginary
axis. Subsequent time domain simulation validated the aforementioned observations. The
changes in the output active power waveform of the system when setting the integral gain
to 10, 15, and 20, respectively, are depicted in Figure 10d. Notably, the oscillation of the
output power waveform of the system becomes more pronounced with larger integral gain
values, aligning with the characteristic root trend. Hence, it can be inferred that the system
tends towards destabilization as the integral gain of the reactive power loop increases.

5.2. Validation of the Nonlinear Simulation in the Parameter Selection Area

The validity of the proposed method was further verified under different operating
conditions and different turbine parameter settings. Table 2 provides the results of the
parameter coordinates (Cg, kiv) and the numerical analysis method when the DFIG operat-
ing parameters Cg and kiv were changed. The position of each parameter is labeled in the
selection area of Figure 9.
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Table 2. Results of the numerical analysis of the four cases.

Situations (Cg , kiv)
Whether in
the Stability

Region

Oscillation
Mode

Attenuation
Coefficient

The
Damping

Ratio

Initial state (3.5, 10) YES −0.12 ± 0.72i 0.12 0.2252
Case 1 (3.5, 30) NO 0.17 ± 1.54i NONE NONE
Case 2 (1.5, 30) YES −0.24 ± 0.53i −0.24 0.709
Case 3 (1.5, 10) NO 0.05 ± 0.98i NONE NONE

The modeling approach for the parameters outlined in the table above aligns with
the findings of the parameter selection area analysis. This demonstrates that the proposed
method accurately assesses the small-signal stability of the DFIG across varying parameters.
Moreover, based on the distribution of the four-parameter settings within the selection
area, as illustrated in Figure 11, it is evident that the initial state and case 2 both reside
within the selection area, whereas case 1 and case 3 are located outside the selection
area. Consequently, the method proposed in this study can effectively evaluate the risk of
instability and the stability margin of the DFIG under diverse parameter configurations,
offering valuable guidance for parameter adjustment. Figures 11–13 depict the time domain
simulation results for the three parameter values corresponding to case 1, case 2, and case 3,
representing the three states of system instability, stability, and instability, respectively.
Moreover, the initial conditions are stable but not within the RSSSR of [35]. Therefore, the
method of calculating the parameter selection area in this paper has low conservatism. The
algorithm expands the parameter selection area as much as possible to improve flexibility
while ensuring its stability.

Figure 11. Time domain simulation result for case 1 ((Cg,kiv) = (3.5 pu, 30)).
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Figure 12. Time domain simulation result for case 2 ((Cg,kiv) = (1.5 pu, 30)).

Figure 13. Time domain simulation result for case 3 ((Cg,kiv) = (1.5 pu, 10)).

By comparing Figures 11–13, it is evident that the stability outcomes from nonlinear
simulation mirror those obtained from the stability analysis. This further substantiates the
accuracy of the parameter selection area algorithm proposed in this paper.

6. HIL Experiments

The effectiveness of the proposed method for computing the DFIG parameter selection
area was further validated experimentally. Hardware-in-the-loop (HIL) experiments were
conducted utilizing a setup comprising a PC host computer, DSP controller, NI PXIe-1082,
and oscillograph. The core of the hardware control system is the NI real-time simulator,
which handles sensor signal processing and control command execution. Specifically,
the NI PXIe-1082 operates the power system. Meanwhile, the DSP controller executes
the control algorithm for the power system. The PC host computer is responsible for
developing simulation control strategies and constructing the main circuit for the power
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system. It establishes connections with the DSP controller and the NI real-time simulator,
as illustrated in Figure 14, facilitating the transfer of control algorithms to the DSP and
power circuit configurations to the NI simulator.

Oscillograph

NI PXle-1082

Samping Signal

DSP Controller

PC host computer 

Control Algorithm

Power Circuit

DFIG Grid

gu
su

gR gL gC gi

DFIG

DFIG

DFIG Grid

gu
su

gR gL gC gi

DFIG

DFIG

Oscillograph

NI PXle-1082

Samping Signal

DSP Controller

PC host computer 

Control Algorithm

Power Circuit

DFIG Grid

gu
su

gR gL gC gi

DFIG

DFIG

Figure 14. The experimental setup.

Initially, the series compensation level and control parameter were the same as in
Section 5. The area of Cg and kiv is illustrated in Figure 9, where the green domain indicates
system stability. For the selected parameters ((Cg,kiv) = (3.5 pu, 10)), the DFIGs system is
stable, as demonstrated by the stable AC voltage and current in Figure 15a; however, when
the parameters are changed to ((Cg,kiv) = (3.5 pu, 30)) and ((Cg,kiv) = (1.5 pu, 10)), the DFIGs
system becomes unstable, as shown in Figure 15b,c. These experimental results confirm that
the system remains stable when the series compensation level and control parameter fall
within the parameter selection area, and that it can become unstable when the parameters
lie outside this area. Moreover, in the conservativeness verification, ((Cg,kiv) = (3.5 pu, 10)),
((Cg,kiv) = (3.5 pu, 30)) and ((Cg,kiv) = (1.5 pu, 10)) are not within the RSSSR of [35]. How-
ever, ((Cg,kiv) = (3.5 pu, 10)) is stabilized in the HIL experiment. Compared with other
benchmark algorithms, this paper’s algorithm for calculating the parameter selection area has
lower conservativeness. In the accuracy verification, only ((Cg,kiv) = (3.5 pu, 10)) is located
within the area where neither ((Cg,kiv) = (3.5 pu, 30)) nor ((Cg,kiv) = (1.5pu,10)) are located
in the point-by-point testing method. The stable operation of ((Cg,kiv) = (3.5 pu, 10)) in
the experimental results confirms the accuracy of the algorithm. In conclusion, the conser-
vatism and accuracy of the algorithm are well verified. The algorithm provides valuable
guidance for selecting appropriate series compensation levels and control parameters in
real-time applications.
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Current:6A/div Time:40ms/div

Voltage:0.5pu/div Time:20ms/divVoltage:0.5pu/div Time:20ms/divVoltage:0.5pu/div Time:20ms/div

Time:20ms/divCurrent:0.5pu/div Time:20ms/divCurrent:0.5pu/div

Voltage:2.5pu/div Time:40ms/divVoltage:2.5pu/div Time:40ms/divVoltage:2.5pu/div Time:40ms/div
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Voltage:0.5pu/div Time:20ms/div

Time:20ms/divCurrent:0.5pu/div

Voltage:0.5pu/div Time:20ms/divVoltage:2.5pu/div Time:40ms/divVoltage:2.5pu/div Time:40ms/divVoltage:2.5pu/div Time:40ms/div

Time:40ms/divCurrent:0.5pu/div Time:40ms/divCurrent:0.5pu/div Current:0.5pu/div Time:20ms/divCurrent:0.5pu/div Time:20ms/div

( , ) (3.5 ,10)g ivC k pu= ( , ) (3.5 ,30)g ivC k pu= ( , ) (1.5 ,10)g ivC k pu=

Figure 15. HIL experimental results: (a) output voluage and current waveforms for Cg = 3.5 pu
kiv = 10; (b) output voluage and current waveforms for Cg = 3.5pu kiv = 30; and (c) output voluage
and current waveforms for Cg = 1.5 pu kiv = 10.

7. Conclusions

Over the past several years, a series of unstable events have occurred in grid-connected
wind power systems, posing a significant threat to the safe and stable operation of power
grids. To counteract or alleviate the system stability issues arising from grid-connected wind



Mathematics 2024, 12, 1044 18 of 19

power, it is imperative to develop effective analysis methods and accurately characterize the
parameter selection area of the system. This paper introduces a modular state-space model
based on the Guardian map for DFIGs containing series compensation lines and solves the
problem of quantitative analysis of the parameter selection area. First, a detailed modular
state-space model for VSG control is established. The modularity of this model facilitates
the depiction of the interplay among state variables, focusing on delineating the operational
state of DFIGs in wind farms. Additionally, it is centered on discerning the impact of VSG
control parameters on SSO, aiming to elucidate the effects of the series compensation level
and control parameters on SSO. Subsequently, a methodology for computing the parameter
selection area based on the Guardian map is introduced, leading to the determination of
the parameter selection of DFIGs. Simulations and HIL experiments demonstrate that the
established state-space model precisely captures the time domain characteristics of the
entire wind field while proving instrumental in addressing the challenge of quantitatively
analyzing the parameter selection area. The area delineated in this study serves as a
foundation for designing the parameters and effectively enhancing the stability of wind
power systems. Moreover, the proposed strategy for calculating the selection area based
on the Guardian map offers valuable insights for devising SSO suppression strategies in
wind farms.
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