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Abstract: It is often difficult to describe natural time series due to implicit dependences and correlated
noise. During anomalous natural processes, anomalous features appear in data. They have a
nonstationary structure and do not allow us to apply traditional methods for time series modeling. In
order to solve these problems, new models, adequately describing natural data, are required. A new
hybrid model of a time series (HMTS) with a nonstationary structure is proposed in this paper. The
HMTS has regular and anomalous components. The HMTS regular component is determined on the
basis of an autoencoder neural network. To describe the HMTS anomalous component, an adaptive
nonlinear approximating scheme (ANAS) is used on a wavelet basis. HMTS is considered in this
investigation for the problem of neutron monitor data modeling and anomaly detection. Anomalies in
neutron monitor data indicate negative factors in space weather. The timely detection of these factors
is critically important. This investigation showed that the developed HMTS adequately describes
neutron monitor data and has satisfactory results from the point of view of numeric performance. The
MSE model values are close to 0 and errors are white Gaussian noise. In order to optimize the estimate
of the HMTS anomalous component, the likelihood ratio test was applied. Moreover, the wavelet
basis, giving the least losses during ANAS construction, was determined. Statistical modeling results
showed that HMTS provides a high accuracy of anomaly detection. When the signal/noise ratio is
1.3 and anomaly durations are more than 60 counts, the probability of their detection is close to 90%.
This is a high rate in the problem domain under consideration and provides solution reliability of the
problem of anomaly detection in neutron monitor data. Moreover, the processing of data from several
neutron monitor stations showed the high sensitivity of the HMTS. This shows the possibility to
minimize the number of engaged stations, maintaining anomaly detection accuracy compared to the
global survey method widely used in this field. This result is important as the continuous operation
of neutron monitor stations is not always provided. Thus, the results show that the developed HMTS
has the potential to address the problem of anomaly detection in neutron monitor data even when
the number of operating stations is small. The proposed HMTS can help us to decrease the risks of
the negative impact of space weather anomalies on human health and modern infrastructure.

Keywords: nonstationary time series; neural networks; wavelet transform; correlated noise; anomaly
detection; space weather

MSC: 62C12; 62L20; 68T05

1. Introduction

Information retrieval from natural data includes stages for the construction of models,
methods and algorithms of analysis. The known problems in this field are nonstationary
data and incomplete a priori knowledge on the information component and noise. This
significantly complicates the process of model construction and methods for natural data
analysis. In some critical related fields (physics and technique, biology, medicine, etc.),
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such a problem results in the insufficient efficiency of existing methods. This is of high
significance regarding the problems of natural anomaly detection (earthquakes, space
weather anomalies, tsunamis, etc.) [1].

The object of research in this paper is the data from global network neutron monitors
recording intensity variations (particles per a minute) in cosmic rays (CRs). Neutron
monitor data time series contain regular cyclic components (22-year, 11-year, 27-day and
solar-diurnal variations) and anomalous features of nonstationary structures having the
form of bursts of different amplitudes and durations, series of spikes, etc. [2]. Generation
factors of such anomalies are coronal mass ejections (CMEs), high-speed solar wind streams
from coronal holes and anomalous processes in the near-Earth space. Neutron monitor data
anomalies indicate negative factors of space weather such as occurrences of Forbush effects
(sudden decreases and/or increases in cosmic ray intensity) or GLE events (ground-level
enhancement events—strong anomalous increases in cosmic ray intensity on the Earth’s
surface) [3]. During such anomalies, radiation hazards for astronauts, airplane crews and
passengers on polar routes increase. Space systems also undergo negative impacts due to
technique losses. Thus, the near-real-time detection of anomalies in neutron monitor data
is an important applied aspect of research [1].

The investigation of cosmic ray (CR) variations and the development of methods for
their analysis began in the first half of the 20th century and has continued through today.
One of the most successful and known methods for the investigation of CR parameters is the
global survey method [4]. This method includes the method of CR variation communication
functions, the method of particle trajectory calculations and spherical analysis for the
detection of particle significant spherical harmonics [4]. The global survey method makes
it possible to estimate CR flux characteristics with satisfactory accuracy in the case of
an uninterrupted operation of a certain number of recording stations. However, due to
calculation complexity, the method cannot be realized in automatic mode and it is not
effective for the detection of initial proton increases.

Threshold algorithms, used by the Australian Space Weather Service [5] and GLE
Alert system [6] to analyze CR variations, make short-term forecasts of radiation hazards
according to the data of neutron monitors in an on-line regime. However, the efficiency
of these algorithms is low due to their insensitivity to low-amplitude anomalies. The
investigations in [7] showed that the GLE Alert algorithm can give unreliable results.
Application of this algorithm for 3 years did not allow identification of more than 50% of
solar proton events.

Thus, the applied methods for neutron monitor data analysis do not satisfy modern
requirements and new approaches are needed in this field [8].

A high proportion of uncertainty in knowledge, the significant nonstationarity of
neutron monitor data and noise correlation make it difficult to apply classical methods
for time series analysis (ARIMA models, methods for time series decomposition, etc.)
and result in low efficiency [9]. At the present time, methods of artificial intelligence and
machine learning are actively applied in different applied fields to solve these problems.
For example, the authors of [10,11] suggested using neural networks to forecast the state of
oil pipelines. The approach in [10], based on the application of neural networks of direct
propagation, made it possible to forecast the conditions of oil pipeline exploitation and
to classify metal loss defects. In the research in [12], the authors proposed using neural
networks with Bayesian regularization in order to solve this problem. A new approach
was suggested in [12] to forecast the operation capability of a dry gas transmission system
and to classify whether the amount of metal loss was effective even in the case of the
absence of a priori data. For the problem of the diagnostics of rotating machine faults, a
group of researchers [13] developed a model of a neural network with deep momentum
transfer (SNN). The investigations in [13] showed that the developed method allows one to
carry out contactless processing of visual data event fluxes, distinguish features and make
diagnostics of machine faults.
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In the field of this investigation, the author of [14] studied the possibility of application
of graph neural networks to investigate the CR data energy spectrum. The neural network
approach in [14] made it possible to decrease the time and computational efforts and
showed more accurate results compared to the application of the likelihood function.
However, the method results in [14] significantly depend on CR primary energy and on the
configuration features of an applied detector.

The authors of [15] suggested a method for analysis of the arrival directions of super-
high energy cosmic ray fluxes using a deep convolutional neural network. The results
in [15] showed that the suggested method is more effective and more sensitive than the
approach based on the angle power spectrum. The advantages of the method are the low
generalization and efficiency decreases of the neural network when test models deviate
from those used for training.

At the present time, hybrid models are actively developing to solve the problems
indicated above. They combine classical statistical methods for data analysis and new
developments in the fields of artificial intellect, machine learning and signal digital process-
ing. The synthesis of mathematical techniques with adaptive modern tools allows one to
extend the capabilities of applied constructs and to improve their efficiency [8,16–22]. For
example, the paper [17] suggests a hybrid model based on the combination of the method of
empirical mode decomposition (EMD) and the deep LSTM neural network. The approach
proposed in [17] makes it possible to forecast the time series of climatic indexes and solar
spots with long-term periodic behavior. The forecast changeability (or uncertainty) is sug-
gested to be detected on the basis of the combination of the EMD method and the K-nearest
neighbor. The paper [21] proposes an approach to the forecast of total electron content in
the ionosphere (ionospheric parameter). This approach includes a combination of methods
for ensemble empirical mode decomposition, K-averages and the self-service LSTM neural
network. According to the estimates, the model suggested in [21] has a higher performance
compared to some typical forecast methods applied to this problem. A hybrid model of a
time series is suggested in [22]. It includes ARIMA components and multiple-scale wavelet
analysis (MSA) components. The combination of the time series classical models with the
MSA allowed one to obtain the adaptive model of an ionospheric parameters time series.

In this investigation, we propose a new hybrid model of a time series (HMTS) with
nonstationary structure. It includes a neural network component and a nonlinear adaptive
approximating scheme. The HMTS neural network component describes the data’s regular
time variation and its parameters are estimated on the basis of an autoencoder network.
The autoencoder is a nonlinear method of main components. It allows us to approximate
dependences of a priori unknown structure and suppress noise. Today the autoencoder
is successfully applied to solve different applied tasks. For example, in the paper [23] the
authors suggested a federated semi-supervised method for the diagnostics of data transfer
errors called targeted transfer learning through distribution barycenter medium (TTL-
DBM). The application of the autoencoder network in [23] made it possible to aggregate
key data distribution parameters and generate a distribution barycenter in an intermediate
link for federated adaptation.

We applied the autoencoder network for the first time to approximate the regular time
variation of neutron monitor data in the investigation in [24]. In the same paper [24] the
autoencoder efficiency was shown for anomaly detection based on the search for the change
points in a system. For the first time, we considered application of nonlinear approximating
schemes for detection of anomalies in CR variations in [25]. The results in [25] showed the
prospects of this approach for detection of multi-scale anomalies. Moreover, the possibility
of application of both the autoencoder and the nonlinear approximating schemes was
considered in the papers [24,25]. The investigations in [24,25] showed that the autoencoder
is more effective for the detection of narrow-band anomalies, and the nonlinear approxi-
mating scheme is more effective for the detection of short-period different-scale anomalies.
In the following research [26], we compared the method of singular spectral analysis (SSA)
with the autoencoder and adaptive threshold filtering (AADA algorithm). The study [26]
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showed that the SSA can be applied to detect CR variation components during the process
of dynamics analysis. However, the autoencoder and adaptive threshold wavelet filtering
are more effective for anomaly detection. This paper continues these investigations. The
combination of the autoencoder with the nonlinear approximating scheme in the form
of the hybrid model of a time series with nonstationary structure develops that theory.
This paper presents a formal form of the HMTS, and the methods to estimate its parame-
ters have been developed. In order to optimize the calculation of the HMTS anomalous
component, the likelihood ratio test was applied. The analytical expressions of threshold
function parameters were obtained. They minimize data approximation errors. Moreover,
the wavelet basis selection criterion, when constructing a nonlinear approximating scheme,
was proposed. This allowed us to improve the HMTS efficiency for anomaly detection.
Based on statistical modeling, the HMTS’s high efficiency was proved for the problem of
anomaly detection in neutron monitor data.

2. Materials and Methods
2.1. Hybrid Model of a Natural Time Series of a Nonstationary Structure

A natural time series of a nonstationary structure can be represented in the following
form:

f (t) = R(t) + A(t) + e(t) = ∑
r

Sr(t, θr) + ∑
m

a[m]⟨ f , gm⟩gm + e(t), (1)

where R(t) = ∑r Sr(t, θr) is the regular component, which has a parametric form and is a
linear combination of the components Sr(t, θr), r is the component number, θ = {θr} is the
parameter set, A(t) = ∑m a[m]⟨ f , gm⟩gm is the nonstationary component, which includes
local features of different forms and durations and is represented in the form of a nonlinear
approximating scheme [27], in which a[m] depends on ⟨ f , gm⟩, gm is the orthonormal basis,
⟨·⟩ is the scalar product, t is the time.

2.2. Determination of the Regular Component R(t) of Model (1)

The regular component R(t) of model (1) includes implicit complex regularities. Thus,
we represent it by means of the autoencoder neural network. The autoencoder is a nonlinear
method of main components, and it makes it possible to determine the form of hidden
regularities and estimate their parameters [28]. In terms of the autoencoder, we obtain the
following estimate for the regular component R(t) of model (1):

R̂(t) = ∑
r

Sr(t, θr) = Z
(

θr
(2)

(
H
(

θr
(1) f (t)

)))
, (2)

where Z, H are the activation functions of the neural network for output and inner layers,
respectively, θ =

{
θr

(i)
}

i=1,2
are the parameters, θr

(i) are the weight matrix of the i-th layer.

From ratio (2) we estimate the parameters θ̂ =
{

θ̂
(i)
r

}
i=1,2

of model (1) based on

minimizing the cost function [28].

CNET =
l

∑
k=1

∥∥∥R̂(t)− f (k)(t)
∥∥∥2

;θ̂ = argminθ∈Θ

l

∑
k=1

∥∥∥R̂(t)− f (k)(t)
∥∥∥2

, (3)

where f (k)(t) is the k-th example (data sampling), Θ is the parameter set.
To verify the adequacy of the estimated regular component R̂(t) (ratio (2)), for example,

Ljung–Box Q-statistics can be applied [29]. The Q-statistics tests the hypothesis on the
absence of model residuals’ autocorrelation. In order to test the normality of the model
residuals’ distribution, the Jarque–Bera test can be used [29].
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2.3. Determination of the Anomalous Component A(t) of Model (1)

The anomalous component A(t) of model (1) has a nonstationary structure and is
represented in the form of the nonlinear approximating scheme (1).

A(t) = ∑
m

a[m]⟨ f , gm⟩gm, (4)

where it is assumed that f ∈ L2(R), L2(R) is the Lebesgue space.
For nonparametric representation (4), the problem of estimation of the component

A(t) parameters is reduced to the filtering problem, which consists of the construction of
the operator DA minimizing the risk:

R(DA f , A) = in f
DA∈O

E
{
∥DA f − A∥2

}
, (5)

where E is the mathematical expectation, ∥·∥ is the norm in L2(R), O is the operator set.
In ratio (4), the nonlinear diagonal operator is considered as the operator DA [30], thus,

risk (5) is determined by the following value [27]:

R(DA f , A) = E
{∥∥Â − A

∥∥2
}
=

N

∑
m=1

E
{
|⟨A, gm⟩ − ⟨ f , gm⟩a[m]|2

}
, (6)

N is the series length.
Then, we assume that

f (t) = A(t) + eA(t), (7)

where the noise eA(t) is correlated and the noise coefficient dispersion σ2
m = E

{
|⟨eA, gm⟩|2

}
depending on gm, the mathematical expectation of noise E{eA(t)} = 0. Then, from ratio
(7), the risk R(DA f , A) (6) is minimum when [27]

a[m] =
|⟨A, gm⟩|2

|⟨A, gm⟩|2 + σ2
m

. (8)

If we assume that a[m] ∈ {0, 1}, the operator DA, minimizing the risk in (8), can be
determined as [30]

a[m] =

{
1, i f |⟨A, gm⟩| ≥ h × σm
0, i f |⟨A, gm⟩| < h × σm

, h =
√

2lnN. (9)

Taking into account (9), the risk [30]

R(DA f , A) = Rσm
(A) = E

{
∥DA f − A∥2

}
=

N

∑
m=0

min
(
|⟨A, gm⟩|2, σ2

m

)
. (10)

Then, applying the threshold estimate in the orthonormal wavelet basis
GΨ =

{
Ψk,n

}
(k,n)∈Z2 , Ψk,n(t) = 2

k
2 Ψ(2kt − n), the operator DAΨ

, minimizing the risk, is [31]

Â(t) = DAΨ
f (t) = ∑

k

N

∑
n=1

Pσk,n

(〈
f , Ψk,n

〉)
Ψk,n(t), (11)

where Pσk,n

(〈
f , Ψk,n

〉)
=

{〈
f , Ψk,n

〉
, i f

∣∣〈 f , Ψk,n
〉∣∣ ≥ h′ ∗ σk,n

0, i f
∣∣〈 f , Ψk,n

〉∣∣ < h′ ∗ σk,n
, σ2

k,n = E
{∣∣〈eAΨ

, Ψk,n
〉∣∣2}.

The operator DAΨ
in ratio (11) determines the nonlinear approximating scheme in the

wavelet basis.
Note. In ratio (11) the threshold dependence Tk,n = h′ ∗ σk,n is considered both on the

space variable n (time) and on the scale k. This makes it possible to optimize the threshold
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both to time and scale changes of data. Moreover, as is shown below, in this case, thresholds
close to optimal ones can be found based on the ratio criterion [32].

When joining the expression in (2) and (11), we obtain the hybrid model of a nonsta-
tionary time series (HMTS):

f (t) = R(t) + A(t) + e(t) = ∑
r

Sr(t, θr) + ∑
m

a[m]⟨ f , gm⟩gm + e(t) =

= Z
(

θr
(2)

(
H
(

θr
(1) f (t)

)))
+ ∑k ∑N

n=1 Pσk,n

(〈
f , Ψk,n

〉)
Ψk,n(t) + e(t),

(12)

where Z is the linear function of the network output layer activation, H is the signoidal
function of the network inner layer activation, θ =

{
θr

(i)
}

i=1,2
are the parameters of the

neural network determined in ratio (3), Pσk,n(·) is the threshold function with the thresholds
determined in ratio (11).

2.4. Optimization of the HMTS. Determination of the Wavelet Basis Giving the Least Errors

From ratio (10), the risks of the estimates Â(t) on the wavelet basis can be limited by
the value

RΨ

(
DAΨ

f , A
)
= E

{∥∥DAΨ
f − A

∥∥2
}
= ∑

k,n
min

(∣∣〈A, Ψk,n
〉∣∣2, σ2

k,n

)
≤ ∑

k,n
σ2

k,n. (13)

Ratio (13) makes it possible to control the risk of the estimate Â(t) based on noise
dispersion σ2

k,n. Moreover, having estimated the risk for different bases from the dictionary
Ω and using (13), we can determine the wavelet basis giving the least losses.

Ψop: RΨop
(

DAΨ
f , A

)
= min

Ψ∈Ω
RΨ

(
DAΨ

f , A
)
. (14)

2.5. Optimization of the Estimate of the Model Anomalous Component Â(t) by the Ratio Criterion

Derivation of an optimal estimate (10) is based on the assumption that E{eA(t)} = 0,
which for the correlated noise σm is not always realized. However, the function map-
ping into wavelet space gives an important advantage, which follows from the Jaffar
theorem [27]: an increase in the amplitude of wavelet coefficients

∣∣〈 f , Ψk,n
〉∣∣ indicates the

appearance of a local feature of the function f (t) in the vicinity of the point t = n; out
of the neighborhood, containing local features, wavelet coefficient amplitudes satisfy the
condition ∣∣〈 f , Ψk,n

〉∣∣ ≤ Qkq+0.5 = Πk, (15)

Q = const > 0, q is the Lipschitz index.
Thus, it follows from (15) that the values

∣∣〈 f , Ψk,n
〉∣∣ = ∣∣〈eAΨ

, Ψk,n
〉∣∣ with respect to

the argument n are close to zero. Thus, the following condition is provided in the wavelet
space: E

{
eAΨ

(t)
}
= 0. The

∣∣〈 f , Ψk,n
〉∣∣ = ∣∣ck,n

∣∣ value’s deviation from zero is the result of
noise effect in this case (Figure 1).

Then, using the ratio criterion [32], we assume that there is a local feature in the vicinity
of the point t = n if

W
(∣∣ck,n

∣∣Г1
)

W
(∣∣ck,n

∣∣Г0
) ≥ Tk,n, (16)

where W
(∣∣ck,n

∣∣Г0
)

and W
(∣∣ck,n

∣∣Г1
)

are the absolute value probability densities for the
coefficients

∣∣ck,n
∣∣ when a local feature is absent or is present, respectively. In its turn,

following the Neyman–Pearson criterion [32], the threshold

Tk,n = Tα,k,n (α is the probability of I-kind error) (17)

is determined from the condition
∫ 0

Φ W
(∣∣ck,n

∣∣Г0
)
d
∣∣ck,n

∣∣ = α, where Φ is the critical region
(Figure 1).
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Thus, from (11), (16), (17) we obtain the optimized estimate of the model anomalous
component in the form of the nonlinear adaptive approximating scheme (NAAS):

Â(t) = DAΨ
f (t) = ∑

k

N

∑
n=1

PTα,k,n(ck,n)Ψ
op
k,n(t), (18)

where PTα,k,n(ck,n) =

{
ck,n, i f

∣∣ck,n
∣∣ ≥ Tα,k,n

0, i f
∣∣ck,n

∣∣ < Tα,k,n
, Tα,k,n = t 1−α

2 , Mσ̂k,n, t 1−α
2 , M is the quantile of the

level 1−α
2 .

As the result, from (12), (18) we have the optimized hybrid model on a nonstationary
time series (HMTS):

f (t) = R(t) + A(t) + e(t) = ∑
r

Sr(t, θr) + ∑
m

a[m]⟨ f , gm⟩gm + e(t) =

= Z
(

θr
(2)

(
H
(

θr
(1) f (t)

)))
+ ∑

k

N
∑

n=1
PTα,k,n(ck,n)Ψ

op
k,n(t) + e(t),

(19)

Z, H are the activation functions, θ =
{

θr
(i)
}

i=1,2
are the model regular component

parameters, PTα,k,n(ck,n) are the threshold functions with the thresholds Tα,k,n = t 1−α
2 , Mσ̂k,n,

Ψ
op
k,n(t) = 2

k
2 Ψoп(2kt − n) is the wavelet.

3. Construction of the HMTS for Neutron Monitor Data

In the investigation, data from Nain, Inuvik, Oulu, Tule and South Pole stations were
used [33]. The choice of the stations was determined by the experience of the experts from
the applied subject field [4]. NM data record cosmic ray intensities (particles per minute).
In the HMTS terms (representation (19)), NM data time variation can be represented as

f (t) = R(t) + A(t) + e(t) = Z
(

θr
(2)

(
H
(

θr
(1) f (t)

)))
+ ∑

k

N

∑
n=1

PTα,k,n

(
ck,n

)
Ψk,n(t) + e(t), (20)

where the regular cyclic component R(t) = Z
(

θr
(2)

(
H
(

θr
(1) f (t)

)))
includes periodicities

of different amplitude and duration, shifts, spikes etc. (27-day and solar-diurnal, seasonal
variations, etc.).

The nonstationary (anomalous) component A(t) = ∑k ∑N
n=1 PTα,k,n(ck,n)Ψk,n(t) con-

tains different-scale anomalous features in the form of bursts, spikes of different amplitude
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and duration, etc., which characterize the occurrences of Forbush effects and GLE events
and are determined by anomalous processes on the Sun and in the near-Earth space; e(t) is
the noise.

The regular component of the NM data in the terms of the typical autoencoder neural
network has the following form (see Formula (20)).

R̂(t) = Z
(

θr
(2)

(
H
(

θr
(1) f (t) + b(1)

))
+ b(2)

)
, (21)

where the upper index (i) is the layer number, H is the nonlinear activation function of
the encoder (sigmoid), θr

(1) is the weight matrix of the network’s first layer, Z is the linear
activation function of the decoder (inner layer), θr

(2) is the weight matrix of the second
layer, b(i) are the shift vectors.

Taking into account the local natural factor effect, neural networks for each station were
trained separately. The neural networks were trained using the data from high-latitudinal
and polar ground stations of neutron monitors. The network architecture for each station
was typical [28] and included two layers. Taking into account data on diurnal variation,
the network output vector length was 1440 counts (minute sampling). The network hidden
layer length was determined empirically and was equal to 720 counts. The neural networks
were trained on the basis of backpropagation, taking into account the application of a
sparsity regularizer [28]. The training samples were formed from the neutron monitor data
for 2013–2015 during the periods of absence of anomalous processes in the near-Earth space
(calm periods). The calm periods were determined by the space weather data [34,35]. Solar
and diurnal cycles were also taken into account during the selection.

Table 1 presents the results of the estimates of the model’s regular component R̂(t)
adequacy (Formula (21)). Data for the calm periods were used, and the mean squared error
(MSE) was estimated. The results in Table 1 show that the MSE values are close to zero. We
should note that the MSE during high solar activity (SA) significantly exceeded that during
low solar activity. The highest MSE was obtained from the South Pole station data that is
likely to be associated with its geographical location (the South Pole station is polar and
the rest of the stations are high-latitudinal). The results from Table 1 confirm the adequacy
of the estimated regular component R̂(t) of the model.

Table 1. Estimate of the HMTS regular component R̂(t) adequacy.

1
N ∑

t=
¯

1,N

(
f(t)−R̂(t)

)2 Mean Squared Error

High SA (2013–2015) Low SA (2018–2020)

Inuvik st. 0.20418 0.17003

Nain st. 0.17231 0.15162

Tule st. 0.20212 0.16181

Oulu st. 0.19323 0.13104

South Pole st. 0.24245 0.19006

The model’s R̂(t) adequacy was verified using the Ljung–Box Q-statistics and the
Jarque–Bera test [29]. The Ljung–Box Q-statistic (Qstat) verifies the hypothesis on the joint
equality of all the autocorrelations of the model residuals series up to the order m inclusive.
The Jarque–Bera fit test (JB) was applied to verify the normality of the model residuals’
distribution. The test results are illustrated in Table 2. The results in Table 1 indicate that
the estimated model R̂(t) adequately describes the NM data’s regular time variation, and
the errors are the white Gaussian noise (column 1, Table 2). We should note that during
the anomalies, the network errors significantly increase (column 2, Table 2). During the
research, we also tried to train the network on the data containing anomalies (column 4,
Table 2). However, due to the great diversity of anomaly forms, it is impossible to obtain an
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adequate model and to estimate its parameters. This fact confirms the necessity of taking
into account the HMTS nonstationary (anomalous) component.

Table 2. Results of the neural network performance.

Results of a Network
Trained on Data without

Anomalies

Results of a Network
Trained on Data

without Anomalies

Results of a Network
Trained on Data with

Anomalies

NN input
Data without anomalies

JB = 4.44;
Qstat = 54.75;

Data with anomalies
JB = 104.61;

Qstat = 3.85 × 104

Data with anomalies
JB = 104.61;

Qstat = 3.85 × 104

NN output JB = 2.77;
Qstat = 3.2 × 103;

JB = 209.95;
Qstat = 1.428 × 104

JB = 225.86;
Qstat = 2.11 × 104

NN errors JB = 2.33;
Qstat = 30.23

JB = 232.45;
Qstat = 8.836 × 103

JB = 68.64;
Qstat = 9.25 × 104

The anomalous component A(t) parameters of the model were estimated using the
NM data during the periods containing anomalous events in cosmic rays (Forbush effects)
and observed during the disturbances in the near-Earth space (magnetic storms). The
data were transformed by the discrete wavelet transform and threshold functions (see
Formula (20)):

f (t) =
K

∑
k=0

N

∑
n=1

PTα,k,n(ck,n)Ψk,n(t), (22)

where Ψk,n(t) = 2
k
2 Ψ

(
2kt − n

)
are basic wavelets, n, k ∈ N, ck,n =

〈
f (t), Ψk,n

〉
are the coeffi-

cients of the f (t) function’s decomposition into a series, PTα,k,n(ck,n) =

{
ck,n, i f

∣∣ck,n
∣∣ ≥ Tα,k,n

0, i f
∣∣ck,n

∣∣ < Tα,k,n
is the threshold function, N is the signal length, K is the largest scale.

The thresholds Tα,k,n = t 1−α
2 , Mσ̂k,n (Formula (22)) where determined with the sig-

nificance level α = 0.05 (Neyman–Pearson criterion). The standard deviation σ̂k,n =√
1
M ∑M

n=1(ck,n − ck,n)
2 was estimated in the time window of the length M = 1440 (de-

termined by the solar-diurnal cycle). Orthonormal wavelets of Coiflets and Daubechies
families were used as the basic wavelets. Table 3 shows the results of the estimates of the
NM data approximation errors using different wavelets (Formula (13)). The estimates show
that the least error was obtained when using the Coiflet 2 and Daubechies 2 wavelets. When
selecting the wavelet basis, the carrier size and the wavelet smoothness order were taken
into consideration besides the errors. It is known [27] that the carrier size determines the
vicinity dimensions containing the boundary effect. The smoothness order characterizes
the capability of a wavelet to detect high-order features. Taking into account the wavelet
properties indicated above, the Coiflet 2 wavelet was determined as the best one.

Table 3. Estimates of the data approximation error using different wavelets.

∑
k,n

σ2
k,n/∥f∥ Wavelets

coif_1 coif_2 coif_3 db_1 db_2

st. Inuvik
High SA 0.0175 0.0170 0.0176 0.0178 0.0174

Low SA 0.0177 0.0175 0.0174 0.0178 0.0177

st. Oulu
High SA 0.0189 0.0187 0.0188 0.0190 0.0189

Low SA 0.0202 0.0202 0.0201 0.0203 0.0200

Carrier size 6 12 18 2 4

Smoothness order 2 4 6 1 2
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4. Application of the HMTS to Detect Anomalies

As illustrated above (column 2, Table 2), data time variation is disturbed during
anomaly occurrences, and, as a consequence, modeling errors increase. Thus, detection
of anomalies in NM data can be based on data modeling using the autoencoder (Formula
(13)) and on the determination of the periods of neural network error increases. Then,
to estimate anomaly parameters, the nonlinear approximating scheme on the wavelet
basis was constructed (Formula (14)). The anomaly intensity was estimated from wavelet
coefficient absolute values as

En =
K

∑
k=0

PTα,k,n(ck,n), (23)

where K = 250 is the largest scale analyzed.
The control-flow chart realizing the proposed method is illustrated in Figure 2.
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As an example, Figure 3 shows the results of the NM data modeling at Oulu station
during an anomaly occurrence. Analysis of the results in Figure 3 shows the neural network
error increase during the anomalous period that confirms the method’s efficiency.

The method’s efficiency was estimated using the neutron monitor data for 2013–2023.
The data samples were formed for the periods containing the anomalies in cosmic ray
variations (anomalous periods). The statistical modeling was performed. Both initial
natural data and model data, formed on the basis of the natural data, were used in the
estimates. The model data were formed using the wavelet packet operations [27] as follows:

(1) the data time series with the length of 1440 counts (diurnal variations) were formed,
each count was equal to the corresponding median value of the neutron monitor’s initial
data during calm periods;
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(2) the obtained time series were decomposed into wavelet packets up to the 7th scale
level (using Coiflet 1 wavelet; the 7th scale level was determined taking into account the
series length);

(3) wavelet reconstruction of the time series’ smoothed components was carried out
not taking into account the details (Xtrend);

(4) local features of triangle-pulse form and the Gaussian-modeled pulse, which had
different amplitude and duration (Xanom), were added to the obtained time series;

(5) additive correlated noise (Xnoise) was added to the formed time series.
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The graphs of anomaly detection probabilities, depending on anomaly amplitude
(signal–noise ratio) and on anomaly duration, are illustrated in Figure 4. The analysis of
the results shows that the detection probability for the anomaly, having the duration of
20 counts, is more than 80% for the signal–noise ratio of 1.5 (at the false alarm rate α = 0.05).
When the anomaly is more than 60 counts, the detection probability is close to 90% for the
signal–noise ratio of 1.3. The results show the high accuracy of the method.
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Figure 4. Graphs of the anomaly detection probabilities.

Figure 5 shows the results of the detection of a low-amplitude anomaly (signal–noise
ratio is 1.2) in the model signal against the background of correlated noise (pink noise was
added). We should note that the anomaly in the noised model signal (Figure 5b) is not
observed visually. The obtained result (Figure 5d) (see Formula (23)) confirms the high
accuracy of the method for detection of anomalies including low-amplitude anomalies.

Figure 6 shows the results of the method (Figure 6d,e) on the model data with corre-
lated (pink) noise (Figure 6b). In order to make the comparison, the results of application of
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a continuous wavelet transform (CWT) are illustrated (Figure 6c,d). The CWT results agree
well with the method results. However, due to the correlated noise effect (including the
solar-diurnal cycle), it is impossible to detect an anomaly in the data based on the CWT.
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Figure 6. Processing results: (a) model signal; (b,c) results of the CWT application; (d,e) results of the
suggested method.

Figure 7 illustrates the results of the suggested method using the NM data from Oulu
station (Figure 6a) and using the model data (Figure 7e). Based on the data [34], the Forbush
effect was recorded at 05:59 UT on 16 July 2017. The magnetic storm [35] was recorded at
Novosibirsk station at 06:00 UT on 17 July 2017. The period, containing anomalous changes,
is marked by a red dashed-line oval. The results show that application of the suggested
method makes it possible to detect anomalies both in natural (Figure 7c,d) and in model
data (Figure 7g,h).

Figure 8 illustrates the results of the suggested method with the NM data from different
stations. An example, containing the period of Forbush decrease in cosmic ray variations
(Figure 8 on the left) and the period containing an anomalous decrease in cosmic ray
intensity (Figure 8 on the right), is shown. The times of the magnetic storm commencements
are indicated in Figure 8 by yellow lines. The time of the Forbush decrease according to



Mathematics 2024, 12, 1079 13 of 15

the data [34] (global survey method was applied) is indicated in Figure 8 by a red line.
The results in Figure 8 illustrate that the proposed method made it possible to detect the
anomalies in cosmic ray variations timely. We should also note that the Forbush decrease
occurrence was determined by the suggested method much earlier (Figure 8 on the left,
marked by blue) compared to the global survey method (Figure 8 on the left, marked by a
red line). Moreover, the comparison of the results from different stations shows the high
sensitivity of the HMTS method and the ability to detect anomalies by the data from each
separate station. That indicates high efficiency of the method and the possibility to minimize
the number of engaged stations when detecting anomalies in cosmic ray variations. This is
an important advantage of the HMTS compared to the global survey method.
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Figure 7. Processing results: (a) NM signal at Oulu station; (b) trend of NM signal; (c,d) results of the
method with NM data; (e) the model signal; (f) trend of the model signal; (g,h) results of the method
with the model data.
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results of the method with NM data.



Mathematics 2024, 12, 1079 14 of 15

5. Conclusions

The paper suggested the hybrid model of a nonstationary time series (HMTS) including
the neural network component and the nonlinear adaptive approximating scheme. The
HMTS parameters were estimated using the data of neutron monitor ground stations,
recording cosmic ray intensities in the near-Earth space. To estimate the HMTS efficiency,
model data were also used. Their structure corresponded to neutron monitor data. The
estimates showed the high accuracy of the method in the problem of anomaly detection:

1. The HMTS regular component adequately describes neutron monitor time series
during the periods of anomaly absence. The MSE model values are close to 0 and
errors are the Gaussian noise.

2. During the anomalous periods, the neural network model errors increase that makes
it possible to detect anomalies effectively.

3. The detection probability of the anomaly, lasting for 20 counts, is more than 80% for
the signal–noise ratio of 1.5 (at the false alarm rate α = 0.05). When the anomaly lasts
for more than 60 counts, the detection probability is close to 90% for the signal–noise
ratio equal to 1.3.

Comparison of the HMTS with continuous wavelet transform confirmed the HMTS
efficiency in the problems of data analysis and anomaly detection. In the result of the
correlated noise effect (including the solar-diurnal cycle of the neutron monitor data), it was
impossible to detect an anomaly in the data based on the continuous wavelet transform.
Application of the method allowed us to detect the anomaly against the background of
correlated noise.

The processing results for the data from different neutron monitor stations showed
the high sensitivity of the HMTS. Application of the HMTS made it possible to detect the
anomalies based on the data from each separate station compared to the widely applied
method of global survey. This shows the possibility to minimize the number of engaged
stations when detecting anomalies in cosmic ray variations. The continuous operation of
neutron monitor stations is not always provided, thus, this result is important.

The developed HMTS can be recommended for anomaly detection in neutron monitor
data, and it is effective even for a small number of operating stations. Moreover, the
HMTS can be recommended for the modeling and analysis of nonstationary time series
including regular components of nonlinear structures and local features of different form
and duration.
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