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Abstract: Given a sequence of orthogonal polynomials {Ln}∞
n=0, orthogonal with respect to a positive

Borel ν measure supported on R+, let {Qn}∞
n=0 be the the sequence of orthogonal polynomials with

respect to the modified measure r(x)dν(x), where r is certain rational function. This work is devoted

to the proof of the relative asymptotic formula Q(d)
n (z)

L(d)
n (z)

⇒n ∏N1
k=1

( √
ak+i√

z+
√

ak

)Ak
∏N2

j=1

(√
z+
√

bj√
bj+i

)Bj

, on

compact subsets of C \ R+, where ak and bj are the zeros and poles of r, and the Ak, Bj are their
respective multiplicities.

Keywords: orthogonal polynomials; asymptotic behavior; rational modifications

MSC: 41A60; 42C05; 41A20

1. Introduction

Let µ be a positive, finite, Borel measure on R+ = [0,+∞), such that for all n ∈ Z+

(the set of all non-negative integers)

ηn =
∫ ∞

0
xn dµ(x) < ∞. (1)

If there is no other measure µ0, such that ηn =
∫ ∞

0
xn dµ0(x) for all n ∈ Z+, it is said

that the moment problem associated with {ηn}n∈Z+ is determined (see ([1] Ch. 4)). By a
classical result of T. Carleman (see ([1] Th. 4.3)), a sufficient condition in order to the
moment problem associated with the sequence {ηn}n∈Z+ in (1) to be determined is

∞

∑
n=1

1
2n
√

ηn
= +∞. (2)

We say that the measure µ belongs to the class M′[R+] if {ηn}n∈Z+ satisfies (2) and
µ′ > 0 a.e. on R+ with respect to Lebesgue measure.

Let r(z) =
α(z)
β(z)

be a rational function, where α and β are coprime polynomials with

respective degrees A and B. We say that dµr(x) = r(z)dµ(z) is a rational modification (for
brevity, modification) of the measure µ. Write

α(z) =
N1

∏
i=1

(z − ai)
Ai , β(z) =

N2

∏
j=1

(z − bj)
Bj ,
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where ai, bj ∈ C \R+, Ai, Bj ∈ N. A = A1 + · · ·+ AN1 and B = B1 + · · ·+ BN2 .
We denote by {Ln}∞

n=0 the sequence of monic orthogonal polynomials with respect
to dµ. Assume that {Qn}∞

n=0 is the sequence of monic polynomials of least degree, not
identically equal to zero, such that∫ ∞

0
xk Qn(x) r(x)dµ(x) = 0, for all k = 0, 1, 2, . . . , n − 1. (3)

The existence of Qn is an immediate consequence of (3). Indeed, it is deduced solving an
homogeneous linear system with n equations and n + 1 unknowns. Uniqueness follows
from the minimality of the degree of the polynomial. We call Qn the nth monic modified
orthogonal polynomial. In ([2] Th.1), explicit formulas are provided in order to compute
Qn when the poles and zeros of the rational modification have a multiplicity of one.

Suppose that {ai}N1
i=1, {bj}N2

j=1 ⊂ C \ [−1, 1]. If µ is a positive (finite Borel) measure
on [−1, 1], such that µ is on the Nevai class M(0, 1), in ([3] Th. 1) the authors prove the
following asymptotic formula

Q(d)
n (z)

L(d)
n (z)

⇒
n

N1

∏
i=1

(
φ(z)− φ(ai)

2(z − ai)

)Ai N2

∏
j=1

(
1 − 1

φ(z)φ(bj)

)Bj

, (4)

on K ⊂ C \ [−1, 1]. The notation fn ⇒n f , K ⊂ U means that the sequence of functions
fn converges to f uniformly on a compact subset K of the region U, f (d) denotes the dth
derivative of f , d ∈ Z+ is fixed and

φ(z) = z +
√

z2 − 1
(∣∣∣z +√z2 − 1

∣∣∣ > 1, z ∈ C \ [−1, 1]
)

.

In [3], the asymptotic formula (4) is pivotal in examining the asymptotic properties of
orthogonal polynomials across a broad range of inner products, encompassing Sobolev-type
inner products

⟨ f , g⟩S =
∫

f g dµ +
m

∑
j=1

dj

∑
i=0

λj,i f (i)(ζ j) g(i)(ζ j),

where λj,i ≥ 0, m, dj > 0, µ is certain kind of complex measure with compact support
is defined on the real line, and ζ j represents complex numbers outside the support of
µ. The authors compare the Sobolev-type orthogonal polynomials associated with this
measure to the orthogonal polynomials with respect to µ. These asymptotic results are of
interest for the electrostatic interpretation of zeros of Jacobi–Sobolev polynomials (cf. [4]).

On the other hand, the use of modified measures provides a stable way of computing
the coefficients of the recurrence relation associated to a family of orthogonal polynomials
(see ([5] Ch. 2)) and in [6,7] the interest of the modified orthogonal polynomials for the
study of the multipoint Padé approximation is shown.

For measures supported on [0,+∞) (or (−∞,+∞)) that satisfy the Carleman condition,
G. López in ([8] Th. 4) (or ([8] Th. 3) for (−∞,+∞)) proves a quite general version of
the relative asymptotic formula (4). In this case, if the modification function, ρ, is a non-
negative function on [0,+∞) in L1(µ), such that there exists an algebraic polynomial G and
k ∈ N for which |G|ρ/(1 + x)k and |G|ρ−1/(1 + x)k belong to L∞(µ), then

Qn(z)
Ln(z)

⇒
n

S(ρ,C \ [0,+∞), z)
S(ρ,C \ [0,+∞), ∞)

, K ⊂ C \ [0,+∞); (5)
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where S(ρ,C \ [0,+∞), z) is the Szegő’s function for ρ with respect to C \ [0,+∞), i.e.,

S(ρ,C \ [0,+∞), z) =es(z), s(z) =
1

2π

∫ ∞

0
log ρ(x)

(√
−z

z − x

)
dx√

x
;

S(ρ,C \ [0,+∞), ∞) = lim
r→+∞

S(ρ,C \ [0,+∞),−r);

where the roots are selected from the condition
√

1 = 1. Additionally, it is requested that
f (z) = ρ(−((z + 1)/(z − 1))2) satisfies the Lipschitz condition in z = 1 and f (1) ̸= 0.

Asymptotic results, analogous to those obtained in [3], are obtained in [9] for the
particular case of (5), when dµ(x) = xae−xdx with a > −1 (the Laguerre measure).

The aim of this paper is to obtain an analog of (4) for measures supported on R+. We
prove the following theorem.

Theorem 1. Given a measure ν ∈ M′[R+], it holds in compact subsets of C \R

Q(d)
n (z)

L(d)
n (z)

⇒
n

N1

∏
i=1

( √
ai + i√

z +
√

ai

)Ai N2

∏
j=1

√
z +

√
bj√

bj + i

Bj

, (6)

for d ∈ Z+.

This situation is not a particular case of (5), because we consider ρ as a rational function
with complex coefficients and no necessarily ρ(x) ≥ 0 on R+.

The structure of the paper is as follows: Sections 2 and 3 are devoted to prove some
preliminary results on varying measures. On the other hand, in Section 4 we obtain an
essential theorem that allows us to finally prove Theorem 1 in Section 5.

2. Varying Measures and Carleman’s Condition

In this section, we introduce auxiliary results on varying measures and prove some
useful lemmas that allow us to extend results that hold for measures with bounded support
to the unbounded case. The following notations will be used throughout the paper:

Ψ(z) =
1 + z
1 − z

for z ∈ C \ [−1, 1].

Ψ−1(z) =
z − 1
z + 1

for z ∈ C \R+.

Φ(z) =
√

z + i√
z − i

where Φ(−1) = ∞ and z ∈ C \ [|z| ≤ 1].

(7)

If σ is a finite positive Borel measure on [−1, 1], we denote

dσn(t) =
dσ(t)

(1 − t)2n and ςn =
∫ 1

−1

dσ(t)
(1 − t)n . (8)

In this paper, we consider the principal branch of the square root, i.e.,
√

reiθ =
√

rei θ
2 , where

r > 0 and 0 ≤ θ < 2π.

Lemma 1. Let µ be a positive Borel measure supported on R+ and suppose that dσ(t) = (1 −
t) dµ(Ψ(t)). Then,

(a) µ′ > 0 a.e. on R+ implies that σ′ > 0 a.e. on [−1, 1],

(b) if
∞

∑
n=1

1
2n
√

ηn
= +∞, then

∞

∑
n=1

1
2n
√

ςn
= +∞,

where, as in (1), ηn denotes the nth moment of the measure dµ.
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Proof. To prove the first assertion note that if dσ(t) =
2

1 − t
µ′(Ψ(t))dt, then

dσ

dt
= (1 − t)

dµ(Ψ(t))
dt

=
2

1 − t
µ′(Ψ(t)) > 0 a.e. on [−1, 1].

The second part is derived using the change of variable t = Ψ−1(x) in the integral

ςn =
∫ 1

−1

(1 − t)
(1 − t)n dµ(Ψ(t)) =

∫ ∞

0

(
x + 1

2

)n−1
dµ(x)

=
∫ 1

0

(
x + 1

2

)n−1
dµ(x) +

∫ ∞

1

(
x + 1

2

)n−1
dµ(x)

≤ η0 +
∫ ∞

1
xn−1dµ(x) ≤ η0 + ηn. (9)

As
∞

∑
n=0

(ηn)
−1/2n = +∞, from (9) we have

∞

∑
n=0

(η0+ηn)
−1/2n = +∞, then

∞

∑
n=0

(ςn)
−1/2n = +∞.

Lemma 2. Assume that dν ∈ M′[R+], rk(x) =

(
x + 1

2

)k
and consider the modification

dνrk (x) = rk(x)dν(x). Then dνrk (x) ∈ M′[R+] for all k ∈ Z.

Proof. We now proceed by induction. Obviously, the initial case k = 0 is given by hypothesis.

• Case k > 0. Assume that dνrj(x) ∈ M′[R+] for all j ≤ k − 1. Since dνrk (x) =(
x + 1

2

)
dνrk−1(x), it is immediate that dνrk (x) is positive and

dνrk (x)
dx > 0 a.e. on R+.

Let mn,k be the nth moment of the measure dνrk (x), then

mn,k =
∫ ∞

0
xndνrk (x) =

∫ 1

0
xn
(

x + 1
2

)
dνrk−1(x) +

∫ ∞

1
xn
(

x + 1
2

)
dνrk−1(x),

≤
∫ 1

0
dνrk−1(x) +

∫ ∞

1
xn+1dνrk−1(x) ≤ m0,k−1 + mn+1,k−1,

where we use that xn
(

x + 1
2

)
≤ 1 for x ∈ [0, 1] and

(
x + 1

2

)
≤ x, for x ∈ [1,+∞). Then,

using induction hypothesis, we obtain that mn,k < ∞ and the sequence of moments for
dνrk (x) satisfies Carleman’s condition.

• Case k < 0. Repeating the previous arguments, we obtain that if dνrj(x) ∈ M′[R+] for

all 0 < j ≤ k + 1 then dνrk (x) is positive and
dνrk (x)

dx > 0 a.e. on R+.

For the nth moment of the measure dνrk (x), we have

mn,k =
∫ ∞

0
xndνrk (x) =

∫ 1

0
xn
(

2
x + 1

)
dνrk+1(x) +

∫ ∞

1
xn
(

2
x + 1

)
dνrk+1(x)

≤ 2 m0,k+1 + mn,k+1,

where we use that xn
(

2
x + 1

)
≤ 2 for x ∈ [0, 1] and

(
2

x + 1

)
≤ 1, for x ∈ [1,+∞). Then,

using induction hypothesis, we obtain that mn,k < ∞ and the sequence of moments for
dνrk (x) satisfies Carleman’s condition.
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Lemma 3. [7], Th. 4, Cor. 1. Let Pn,k be the kth monic orthogonal polynomial with respect to dσn.

If σ′ > 0 a.e. on [−1, 1] and
∞

∑
n=1

1
2n
√

ςn
= +∞, then, for each integer k

Pn,n−k+1

Pn,n−k
(z) ⇒

n

φ(z)
2

; K ⊂ C \ [−1, 1],

where φ(z) = z +
√

z2 − 1
(∣∣∣z +√

z2 − 1
∣∣∣ > 1 z ∈ C \ [−1, 1]

)
.

Lemma 4. Assume µ ∈ M′[R+] and dµm(x) =
(

2
x + 1

)2m
dµ(x), with m ∈ Z+.

(a) Let ℓm,n be the nth orthogonal polynomial with respect to µm, normalized by the condition
ℓm,n(−1) = (−1)n, then for d ∈ Z+, on K ⊂ C \R+ it holds

ℓ
(d)
m,n+m(z)

ℓ
(d)
k,n+k(z)

⇒
n

(
z + 1

4

)m−k
Φm−k(z) =

(√
z + i
2

)2(m−k)

. (10)

(b) Let Lm,n be the nth monic orthogonal polynomial with respect to µm, then on K ⊂ C \R+

it holds
L(d)

m,n+m(z)

L(d)
k,n+k(z)

⇒
n
(z + 1)m−kΦm−k(z) =

(√
z + i

)2(m−k). (11)

Proof. (Proof of a). Taking dσn(t) = (1 − t)1−2ndµ(Ψ(t)), from the assumptions and
Lemma 1, we obtain that dσn is a finite positive Borel measure on [−1, 1], σ′

n > 0 a.e. on

[−1, 1] and
∞

∑
n=1

ς
−1/(2n)
n = +∞, where ςn is as in (8).

Let Pn,k be the kth monic orthogonal polynomial with respect to dσn and denote

ℓ∗m,n+m(z) =
(

z + 1
2

)n+m
Pn,n+m

(
Ψ−1(z)

)
. After a change of variable x = Ψ(t) in the next

integral, we obtain

∫ ∞

0

(
x + 1

2

)k
ℓ∗m,n+m(x)dµm(x) =

∫ 1

−1

1

(1 − t)n+m+k Pn,n+m(t)(1 − t)2mdµ(Ψ(t))

=
∫ 1

−1
(1 − t)n+m−1−kPn,n+m(t)

dµ(Ψ(t))
(1 − t)2n−1

=
∫ 1

−1
(1 − t)n+m−1−kPn,n+m(t) dσn(t) = 0, (12)

for k = 0, 1, · · · , n + m − 1.

ℓ∗m,n+m(−1) = lim
z→−1

(
z + 1

2

)n+m
Pn,n+m

(
Ψ−1(z)

)
= (−1)n+m. (13)

From (12) and (13), we have ℓm,n+m = ℓ∗m,n+m. Therefore,

ℓm,n+m(z) =
(

z + 1
2

)n+m
Pn,n+m

(
Ψ−1(z)

)
, (14)

ℓm,n+m(z)
(1 + z)m−k ℓk,n+k(z)

=
Pn,n+m

(
Ψ−1(z)

)
2m−kPn,n+k(Ψ−1(z))

=
1

2m−k

m−1

∏
j=k

Pn,n+j+1
(
Ψ−1(z)

)
Pn,n+j(Ψ−1(z))

.
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From Lemma 3, for j = k, . . . , m − 1;

Pn,n+j+1
(
Ψ−1(z)

)
Pn,n+j(Ψ−1(z))

⇒
n

φ
(
Ψ−1(z)

)
2

; K ⊂ C \R+.

Thus,
ℓm,n+m(z)
ℓk,n+k(z)

⇒
n

(
z + 1

4

)m−k
φm−k

(
Ψ−1(z)

)
; K ⊂ C \R+,

which establishes (10) for d = 0. In order to proof (10) for d > 0, we proceed by induction
on d.

ℓ
(d+1)
m,n+m(z)

ℓ
(d+1)
k,n+k (z)

=
ℓ
(d)
m,n+m(z)

ℓ
(d)
k,n+k(z)

+
ℓ
(d)
k,n+k(z)

ℓ
(d+1)
k,n+k (z)

·

 ℓ
(d)
m,n+m(z)

ℓ
(d)
k,n+k(z)

′

.

Assume that formula (10) holds for d ∈ Z+, then
(
ℓ
(d)
m,n+m/ℓ(d)0,n

)′
is uniformly bounded on

compact subsets K ⊂ C \R+. Note that ℓ(d)0,n /ℓ(d+1)
0,n ⇒

n
0 on K ⊂ C \R+. This is proved

using an analogous of ([3] (2.9)), and the Bell’s polynomials version of the Faa Di Bruno
formula, see ([10] pp. 218, 219). The assertion (a) is proved.

(Proof of b). Write fd,m,n(z) =
ℓ
(d)
m,n+m(z)

zm ℓ
(d)
0,n(z)

and let κm,n+m be the leading coefficient of

ℓm,n+m. Hence, for d > 1

fd,m,,k,n(∞) =
(n + m) · · · (n + m − d + 1)κm,n+m

(n + k) · · · (n + k − d + 1)κk,n+k

f0,m,k,n(∞) =
κm,n+m

κk,n+k
.

From (10),

fd,m,k,n(z) ⇒
n

(
z + 1

4z

)m−k
Φm−k(z); K ⊂ C \R+, l ∈ Z+. (15)

lim
n→∞

fd,m,k,n(∞) = lim
n→∞

κm,n+m

κk,n+k
=

(
1
2

)2(m−k)
. (16)

As L(d)
m,n+m(z) =

ℓ
(d)
m,n+m(z)
κm,n+m

for d ≥ 1, from (15) and (16), we get (11).

Denote by M[−1, 1] the class of admissible measures in [−1, 1] defined in ([11] Sec. 5).
Let σn a positive varying Borel measure supported on [−1, 1] and

pn,m(w) = τn,mwm + · · · , τn,m > 0

be the mth orthonormal polynomial with respect to σn, then ([11] Th. 7)

lim
n→∞

τn,n+k+1

τn,n+k
= 2, k ∈ Z. (17)

Lemma 5. Let σn be an admissible measure, then for all v ∈ Z,∫ 1

−1

pn,n+v(t)pn,n(t)
w − t

dσn(t) ⇒
n

1

φ|v|(w)
√

w2 − 1
; K ⊂ C \ [−1, 1]. (18)
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Proof. This proof is based on the proof of ([3] Lemma 2). Without loss of generality, let
us consider v ∈ Z+. Applying the Cauchy–Schwarz inequality we have, for z ∈ K ⊂
C \ [−1, 1] ∣∣∣∣∫ 1

−1

pn,n+v(t)pn,n(t)
w − t

dσn(t)
∣∣∣∣ ≤ 1

d(K, [−1, 1])
< ∞,

where d(K, [−1, 1]) denotes the Euclidian distance between the two sets. Thus, for (fixed)
values of v ∈ Z+, the sequence of functions in the left hand side of (18) is normal. Thus,
we deduce uniform convergence from pointwise convergence. The pointwise limit follows
from ([11] Th. 9)

lim
n→∞

∫ 1

−1

pn,n+v(t)pn,n(t)
w − t

dσn(t) =
1
π

∫ 1

−1

Tv(t)
w − t

dt√
1 − t2

,

here, Tv is the vth Chebyshev orthonormal polynomial of the first kind. Therefore, (18)
holds if we prove that

1
π

∫ 1

−1

Tv(t)
w − t

dt√
1 − t2

=
1

φv(w)
√

w2 − 1
. (19)

Note that T0(t) = 1, T1(t) = x, and, for v ≤ 1,

2tTv(t) = Tv+1(t) + Tv−1(t),

or equivalently
Tv+1 = 2tTv − Tv−1. (20)

Next, proceed by induction. Start at v = 0, expression (18), is obtained from the residue
theorem and Cauchy’s integral formula. Then, for v = 1 we have

1
π

∫ 1

−1

T1(t)
w − t

dt√
1 − t2

=
w
π

∫ 1

−1

1
w − t

dt√
1 − t2

− 1
π

∫ 1

−1

dt√
1 − t2

=
w

w2 − 1
− 1 =

1

φ(w)
√

w2 − 1
.

Now, assume (19) holds for v = 0, 1, . . . , k; k ≥ 1, we will prove that it also holds for
v = k + 1. Combining (20) and the hypothesis of induction, we obtain

1
π

∫ 1

−1

Tk+1(t)
w − t

dt√
1 − t2

=
1
π

∫ 1

−1

2tTk(t)
w − t

dt√
1 − t2

− 1
π

∫ 1

−1

Tk−1(t)
w − t

dt√
1 − t2

=
2z
π

∫ 1

−1

Tk(t)
w − t

dt√
1 − t2

− 1
π

∫ 1

−1

Tk−1(t)
w − t

dt√
1 − t2

=
1

φk−1(w)
√

w2 − 1

(
2w

φ(z)
− 1
)

=
1

φk+1(w)
√

w2 − 1
,

which we wanted to prove.

Lemma 6. Let dµ(x) =
(

x+1
2

)A−B
dν(x), where A, B ∈ Z+, and dν ∈ M′[R+]. We have on

compact subsets of C \R+
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(v − 1)!τ2
n,n−B

∫ ∞

0

(
x + 1

2

)k ℓA−k,n+A−k(x)ℓ−B,n−B(x)
(x − z)v dν(x)

⇒
n

 −1

(1 + z)(2Φ(z))A+B−k
√
(Ψ−1(z))2 − 1

(v−1)

.

where ℓn,n+m is defined as in Lemma 4.

Proof. First, the sequence {ℓn,n+m}n≥0 is well defined because the measure dν ∈ M′[R+],
implies dµ ∈ M′[R+] (see Lemma 2).

Let us use the connection formula (14) and the change of variable (7) to obtain

(v − 1)!τ2
n,n−B

∫ ∞

0

(
x + 1

2

)k ℓA−k,n+A−k(x)ℓ−B,n−B(x)
(x − z)v dν(x),

= (v − 1)!τ2
n,n−B

∫ 1

−1

Pn,n+A−k(t)Pn,n−B(t)
(Ψ(t)− z)v

dσ(t)
(1 − t)2n+A−B ,

f (v−1)
n (z) =

(v − 1)!τn,n−B

τn,n+A−k

∫ 1

−1

1
1 − t

pn,n+A−k(t)pn,n−B(t)
(Ψ(t)− z)v dσn(t).

where we use

dσn(t) =
dµ(Ψ(t))
(1 − t)2n−1 =

(1 − t)B−Adν(Ψ(t))
(1 − t)2n−1

Take the (v − 1) primitive with respect to z of the previous expression

fn(z) =
τn,n−B

τn,n+A−k

∫ 1

−1

1
1 − t

pn,n+A−k(t)pn,n−B(t)
Ψ(t)− z

dσn(t). (21)

Since we know that

(1 − t)(Ψ(t)− z) = (1 + z)
(

t − Ψ−1(z)
)

,

we rewrite (21) as

τ2
n,n−B

1 + z

∫ 1

−1

Pn,n+A−k(t)Pn,n−B(t)
t − Ψ−1(z)

dσn(t),

=
τn,n−B

(1 + z)τn,n+A−k

∫ 1

−1

pn,n+A−k(t)pn,n−B(t)
t − Ψ−1(z)

dσn(t).

Then, we use Lemma 5 and (17) to obtain on compact subsets of C \R+,

τn,n−B

(1 + z)τn,n+A−k

∫ 1

−1

pn,n+A−k(t)pn,n−B(t)
t − Ψ−1(z)

dσn(t)

⇒
n

 −1

(1 + z)(2φ(Ψ−1(z)))A+B−k
√
(Ψ−1(z))2 − 1

 = f (z).
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Note that by the Cauchy–Schwarz inequality we have for z ∈ C \R+∣∣∣ f (v−1)
n (z)

∣∣∣ = ∣∣∣∣ (v − 1)!τn,n−B

τn,n+A−k

∫ 1

−1

1
1 − t

pn,n+B−k(t)pn,n−A(t)
(ψ(t)− z)v dσn(t)

∣∣∣∣
≤ B

d(K,R+)
.

Then, for each v, the family
{

f (v−1)
n

}
n

is uniformly bounded in each K ⊂ C \R+,

which means by Montel’s theorem (c.f. [12], §5.4, Th. 15) that
{

f (v−1)
n

}
n≥0

is normal (see

([12] §5.1 Def. 2)), i.e., we have that from each sequence N ⊂ N we can take a subsequence
N1 ⊂ N such that

f (v)n ⇒
n

g(v); n ∈ N1, K ⊂ C \R+.

Now, taking the (v − 1) derivative and using the uniqueness of the limit we obtain

(v − 1)!τn,n−B

τn,n+A−k

∫ 1

−1

1
1 − t

pn,n+A−k(t)pn,n−B(t)
(Ψ(t)− z)v dσn(t)

⇒
n

 −1

(1 + z)(2Φ(z))A+B−k
√
(Ψ−1(z))2 − 1

(v−1)

= f (v−1)(z),

on compact subsets K ⊂ C \R+, which establishes the formula.

3. Relative Asymptotic within Certain Class of Varying Measures

In this section, we obtain the asymptotic relation between orthogonal polynomials

with respect to different measures of the class
(

x+1
2

)m
dµ(x), where µ is any measure of

M′[R+] and m ∈ Z. Note that, because of Lemma 2, the elements of this class belong to
M′[R+].

To maintain a general tone in the expositions in this section we use µ and ν as two
measures in M′[R+] having no relation with the previous use of the notation.

Consider m ∈ Z+ and let hm,n(z) be the nth orthogonal polynomial with respect to(
x+1

2

)m
dν(x), normalized as hm,n(−1) = (−1)n. Consider the following relations

∫ ∞

0

(
x + 1

2

)k
h0,n(x)dν(x) = 0,

for k = 0, . . . , n − 1. Apply the change of variable Ψ(t) = z given in (7) to obtain

0 =
∫ 1

−1

(
1

1 − t

)k
h0,n(Ψ(t))dν(Ψ(t))

=
∫ 1

−1
(1 − t)n−k−1(1 − t)nh0,n(Ψ(t))

(1 − t)dν(Ψ(t))
(1 − t)2n .

Note that the polynomial Hn,n(t) = (1 − t)nh0,n(Ψ(t)) is the nth monic orthogonal
polynomial with respect to the varying measure modified by a polynomial term

(1 − t)dσ∗
n (t) =

(1 − t)dν(Ψ(t))
(1 − t)2n .

Following the same reasoning, we obtain that

H∗
n,n(t) = (1 − t)nh1,n(Ψ(t)),
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is the nth monic orthogonal polynomial with respect to dσ∗
n (t). It is not hard to prove that

the system {σ, {(1 − t)2n}, 0} is an admissible system, see ([11] Def. p 213). Therefore,
by ([11] Th. 10), we have

Hn,n(t)
H∗

n,n(t)
⇒
n

φ(t)− φ(1)
t − 1

; K ⊂ C \ [−1, 1]. (22)

Theorem 2. Under the previous hypothesis we have on compact subsets of C \R+

h0,n(z)
h1,n(z)

⇒
n

(
z + 1

4

)
(1 − Φ(z)), (23)

hv,n(z)
hw,n(z)

⇒
n

(
z + 1

4

)w−v
(1 − Φ(z))w−v, (24)

where v, w ∈ Z.

Proof. From (22) and taking the change of variable (7) we have

h0,n(Ψ(t))
h1,n(Ψ(t))

=
(1 − t)nh0,n(Ψ(t))
(1 − t)nh1,n(Ψ(t))

=
Hn,n(t)
H∗

n,n(t)
⇒
n

φ(t)− φ(1)
t − 1

=
Φ−1(z)− 1

Ψ(z)− 1
.

To prove (24), note that from Lemma 2.

dµk =

(
x + 1

2

)k
dµ ∈ M′[R+] if µ ∈ M′[R+].

The only hypothesis needed to obtain (23) is dν ∈ M′[R+]. Thus if we let now

dν =
(

x+1
2

)k
dµ = dµk, then

(
x+1

2

)
dν =

(
x+1

2

)k+1
dµ = dµk+1, where dν ∈ M′[R+].

Therefore, h0,n = hk,n and h1,n = hk+1,n, where hk,n and hk+1,n are the orthogonal
polynomials with respect to the measures dµk and dµk+1, respectively, normalized by
having the value (−1)k at −1. Therefore, we have

hk,n(z)
hk+1,n(z)

⇒
n

−
(

z + 1
4

)
(Φ(z)− 1). (25)

Note that, without loss of generality, we can asume w > v, otherwise the relation between
the measures can be reverted, and they still belong to M′[R+]. Stack formula (25) as

hv1,n(z)
hw1,n

=
hv1,n(z)
hv1+1,n

·
hv1+1,n(z)
hv1+2,n

· · · · ·
hw1−1,n(z)

hw1,n
,

where v1 = v + k and w1 = w + k. Since the measure µ ∈ M′[R+], (24) holds.

4. Asymptotic for Orthogonal Polynomials with Respect to a Measure Modified by a
Rational Factor

Let r = α/β, after canceling out common factors, where

α(z) =
N1

∏
i=1

(z − ai)
Ai , β(z) =

N2

∏
j=1

(z − bj)
Bj ,

ai ∈ C \ (R+ ∪ {−1}), bj ∈ C \R+, Ai, Bj ∈ N,

A =
N1

∑
i=1

Ai, B =
N2

∑
j=1

Bj.

(26)
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Given a measure ν ∈ M′[R+], denote by dµ(x) =
(

x+1
2

)A−B
dν(x) a modified mea-

sure, note that according to Lemma 2 it holds ν ∈ M′[R+].
Assume Sn is the polynomial of least degree not identically equal to zero, such that

0 =
∫ ∞

0
p(x)Sn(x)r(x) dν(x), p ∈ Pn−1, (27)

normalized such that Sn(−1) = (−1)n, and Ln is the nth orthogonal polynomial with
respect to dν, normalized such that Ln(−1) = (−1)n. We are interested in the asymptotic
behavior of Sn/Ln, n ∈ Z+ in compact subsets of C \R+.

Theorem 3. Let µ ∈ M′[R+] and α and β defined as before. Then for all sufficiently large n, for all
fixed d ∈ Z+, in compact subsets of C \R+, it holds

Sn(z)
ℓ0,n(z)

⇒
n

(−1)Aα(−1)
4A(z + 1)−A

N1

∏
i=1

(
Φ(z)− Φ(ai)

z − ai

)Ai N2

∏
j=1

(
1 − 1

Φ(z)Φ(bj)

)Bj

. (28)

Proof. First we focus on (27) for α(x) =
(

x + 1
2

)k
β(x) where k = 0, . . . , n− B− 1, we have

0 =
∫ ∞

0

(
x + 1

2

)k
Sn(x)α(x)dν(x),

now, using the change of variables (7) and considering the expression dµ(Ψ(t)) = (1− t)B−Adν(Ψ(t)),
the previous integral becomes

0 =
∫ 1

−1
(1 − t)n−B−k−1(1 − t)n+ASn(Ψ(t)) α(Ψ(t))

dµ(Ψ(t))
(1 − t)2n−1 . (29)

for k = 0, . . . , n − B − 1. Define the (n + A)-degree polynomial Rn+A as

Rn+A(t) := (1 − t)n+ASn(Ψ(t)) α(Ψ(t)).

Thus, we can consider dσn(t) =
dσ(t)

(1−t)2n−1 with dσ(t) = dν(Ψ(t)). The measure dσn(t)
defines a varying orthogonal polynomial system, satisfying Lemma 3. We denote by
Pn,n+A−k the (n + A − k)th monic orthogonal polynomial with respect to dσn(t). According
to (29), we have the following quasi-orthogonality of order n − A

Rn+A(t) := (1 − t)n+ASn(Ψ(t)) α(Ψ(t)) =
A+B

∑
k=0

λn,kPn,n+A−k(t). (30)

Back to (30), we use the connection formula (14) and the change of variables (7)
to obtain (

2
z + 1

)n+A
Sn(z)α(z) =

A+B

∑
k=0

λn,kPn,n+A−k

(
Ψ−1(z)

)
=

A+B

∑
k=0

λn,k

(
2

z + 1

)n+A−k
ℓA−k,n+A−k(z),

Sn(z)α(z) =
A+B

∑
k=0

λn,k

(
z + 1

2

)k
ℓA−k,n+A−k(z). (31)
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Note that λn,0 = λ0 = (−1)Aα(−1) or Sn has deg Sn < n. Dividing this relation by ℓ−B,n−B
we get

Sn(z)α(z)
ℓ−B,n−B(z)

=
A+B

∑
k=0

λn,k

(
z + 1

2

)k ℓA−k,n+A−k(z)
ℓ−B,n−B(z)

. (32)

Set λ∗∗
n,k = λn,k/λ0, λ∗

n =

(
A+B

∑
k=0

|λ∗∗
n,k|
)−1

< ∞ and introduce the polynomials

pn(z) =
A+B

∑
k=0

λ∗∗
n,kzA+B−k, p∗n = λ∗

n pn(z).

We will prove that

pn(z) ⇒
n

p̂(z) =
N1

∏
i=1

(
z − Φ(ai)

2

) N2

∏
j=1

(
z − 1

2Φ(bj)

)
; K ⊂ C.

To this end, it suffices to show that

p∗n(z) ⇒
n

cp̂(z) = c
(

zA+B + λ∗∗
1 zA+B−1 + · · ·+ λ∗∗

A+B

)
, (33)

where

c = lim
n→∞

λ∗
n =

(
A+B

∑
k=0

|λk|
)−1

. (34)

Now, note that {p∗n}, for n ∈ Z+ is contained in PA+B and the sum of the coefficients of
p∗n for each n ∈ Z+, is equal to one. Therefore, this family of polynomials is normal. This
means that (33) can be prove if we check that, for all Λ ⊂ Z+ such that

lim
n→∞
n∈Λ

p∗n(z) = pΛ, (35)

pΛ(z) = cp̂(z), where p̂(z) and c are defined as above. Since pΛ ∈ PA+B and pΛ ̸≡ 0,
we can uniquely determine pΛ if we find its zeros and leading coefficient. Note that the
leading coefficient of pΛ is positive and the sum of the absolute value of its coefficients
is one. Therefore, we conclude that the leading coefficient is uniquely determined by the
zeros. This automatically implies that pΛ(z) = cp̂(z) if and only if it is divisible by p̂(z).

Note that the factor β is in (32) and all the zeros of ℓ−B,n−B concentrate on R+. Thus,
we immediately obtain the following A equations, for n ≥ n0:

0 =
A+B

∑
k=0

λ∗
nλ∗∗

n,k

[(
z + 1

2

)k( ℓA−k,n+A−k

ℓ−B,n−B

)](v)
(ai),

for i = 1, . . . , N1 and v = 0, . . . , Aj − 1.
From Lemma 4 it follows that, for compact subsets K ⊂ C \R+, it holds[(

z + 1
2

)k( ℓn+A,n+A−k(z)
ℓ−B,n−B(z)

)](v)
⇒
n

[(
z + 1

2

)A+B(Φ(z)
2

)A+B−k
](v)

. (36)

Relations (35) and (36), together with the fact that Φ is holomorphic with Φ′ ̸= 0 in C \R+,
imply, using induction on v, that

p(v)Λ

(
Φ(ai)

2

)
= 0, i = 1, . . . , N1, v = 0, . . . , Ai − 1; (37)
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pΛ(z) = c
(

z + 1
2

)A+B A+B

∑
k=0

λ∗∗
k

(
Φ(z)

2

)A+B−k
.

On the other hand, take p(z) = β(z)ℓ−B,n−B(z)/(z − bj)
v in (27), j = 1, . . . , N2;

v = 1, . . . , Bj. Using (31) and multiplying by (v− 1)! λ∗
n

λ0
τ2

n,n−B we have the additional relations

0 =
λ∗

n
λ0

τ2
n,n−B

∫ ∞

0

(v − 1)!
(x − bj)v ℓ−B,n−B(x)Sn(x)α(x)dν(x),

=τ2
n,n−B

∫ ∞

0

(v − 1)!
(x − bj)v ℓ−B,n−B(x)

A+B

∑
k=0

λ∗
nλ∗∗

n,k

(
x + 1

2

)k
ℓA−k,n+A−k(x)dν(x),

0 =
A+B

∑
k=0

λ∗
nλ∗∗

n,k(v − 1)!τ2
n,n−B

∫ ∞

0

(
x + 1

2

)k ℓA−k,n+A−k(x)ℓ−B,n−B(x)
(x − bj)v dν(x), (38)

for each bj.
Relations (33), (38) and Lemma 6 together with the fact that 1/Φ is holomorphic with

(1/Φ)′ ̸= 0 and 1/
√
(ψ−1(z))2 − 1 ̸= 0 in C \R+, give by induction

p(v)Λ

(
1

2Φ(bj)

)
= 0, j = 1, . . . , N2, v = 0, . . . , Bj − 1.

From the previous expression and (37) it follows that pΛ is divisible by p0(z). Therefore
(33) and (34) hold and

pn(z) ⇒
n

p0(z), K ⊂ C.

From the previous expression, the definition of pn, (32), (36) with v = 0, we obtain

Sn(z)α(z)
ℓ−B,n−B(z)

⇒
n
(−1)Aα(−1)

(
z + 1

2

)A+B
p̂
(

Φ(z)
2

)
.

Use the asymptotic formula (10) in the previous expression and group conveniently to obtain

Sn(z)
ℓ−B,n−B(z)

· ℓ−B,n−B(z)
ℓ0,n(z)

⇒
n

(
z + 1

2

)A (−1)Aα(−1)Φ(z)−B

α(z)
N1

∏
i=1

(
Φ(z)− Φ(ai)

2

)Ai N2

∏
i=1

(
Φ(z)

2
− 1

2Φ(bj)

)Bj

and (28) follows for v = 0. To prove the formula for d ∈ Z+, apply the same technique of
the proof of Lemma 4.

Remark 1.

1. The proof depends on the assumption of α(−1) ̸= 0, we will remove this restriction in
Section 5.

2. We suppose that α, β are monic. We can remove that restriction without loss of generality due
to the fact that orthogonal polynomial systems are invariant under the constant modification
of measures.
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Theorem 3 gives the ratio asymptotic between the orthogonal polynomials with respect
to a rational modification of kind r(x)dν(x) (a general rational modification with no zeros
at −1) denoted as Sn and those orthogonal with respect to a modified measure of type(

x + 1
2

)A−B
, denoted as ℓ0,n.

To obtain the general formula we must find the following limit

lim
n→∞

ℓ0,n(z)
Ln(z)

,

on compact subsets of C \R+, where Ln(z) is the nth orthogonal polynomial with respect
to dν ∈ M′[R+] normalized such that Ln(−1) = (−1)n.

5. Proof of Theorem 1

Next, we obtain an analogous of (4) for measures with support on R+. Define α̂ as

α̂(z) =
(

z + 1
2

)C
α(z)

wherein α is defined in (26) and C ∈ Z+ is the multiplicity of the zero −1 in α̂/β. With-
out loss of generality we can assume that there are more zeros than poles on −1, if not C = 0.
Also, let Ln be the nth orthogonal polynomial with respect to dν̂ ∈ M′[R+], normalized by
the condition Ln(−1) = (−1)n. Denote by Qn the nth orthogonal polynomial with respect
to r̂dν̂, where r = α̂/β, normalized as usual, Qn(−1) = (−1)n.

Note that if C = 0, r̂ = r and Qn = Sn, as defined in Section 4. Under this notation,
(6) is written as

Q(d)
n (z)

L(d)
n (z)

⇒
n

(
2i√
z + i

)C N1

∏
i=1

( √
ai + i√

z +
√

ai

)Ai N2

∏
j=1

√
z +

√
bj√

bj + i

Bj

,

in compact subsets of C \R, for d ∈ Z+.

Proof of Theorem 1. Let us first observe that Qn is orthogonal with respect to
(

x+1
2

)C
α
β dν̂.

Then if we set

dν̂ =

(
x + 1

2

)−C
dν, (39)

we obtain that Qn is orthogonal with respect to α
β dν, and satisfies the hypotheses of

Theorem 3, thus we have on compact subsets of C \R+

Qn(z)
ℓ0,n(z)

⇒
n

F(z),

where F(z) is given in (28).

On the other hand, ℓ0,n is orthogonal with respect to
(

x+1
2

)A−B
dν. This means by (39)

that ℓ0,n is orthogonal with respect to
(

x+1
2

)A−B+C
dν̂. Thus, taking into account Theorem 2,

we have
ℓ0,n(z)
Ln(z)

⇒
n

(
z + 1

4

)B−A−C
(1 − Φ(z))B−A−C.

Multiply the expressions corresponding to(
z + 1

4

)B−A−C
(1 − Φ(z))B−A−C · F(z), (40)
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Let us break down this expression into the following terms

F(z) =
(−1)Aα(−1)
4A(z + 1)−A

N1

∏
i=1

(
Φ(z)− Φ(ai)

z − ai

)Ai N2

∏
i=1

(
1 − 1

Φ(z)Φ(bj)

)Bj

.

(−1)Aα(−1) =
N1

∏
i=1

(1 + ai)
Ai

(1 − ϕ(z)) = − 2i√
z − i

Φ(z)− Φ(ai)

z − ai
=

−2i
(
√

z − i)(
√

ai − i)(
√

ai +
√

z)

1 − 1
Φ(z)Φ(bj)

=
2i
(√

bj +
√

z
)

(
√

z + i)
(√

bj + i
) .

On the other hand

N1

∏
i=1

(
Φ(z)− Φ(ai)

z − ai

)Ai

=

(
−2i√
z − i

)A N1

∏
i=1

(
1

(
√

ai − i)(
√

ai +
√

z)

)Ai

N2

∏
j=1

(
1 − 1

Φ(z)Φ(bj)

)Bj

=

(
2i√
z + i

)B N2

∏
j=1


√

bj +
√

z√
bj + i

Bj

Combining these terms in (40) we obtain(
z + 1

4

)B−A−C
(1 − Φ(z))B−A−C · F(z)

=
1

4A

N1

∏
i=1

(1 + ai)
Ai

(
−2i√
z − i

)B−C−A( z + 1
4

)B−C( −2i√
z − i

)A( 2i√
z + i

)B

·
N1

∏
i=1

(
1

(
√

ai − i)(
√

ai +
√

z)

)Ai N2

∏
j=1


√

bj +
√

z√
bj + i

Bj

.

Finally, taking into account

N1

∏
i=1

( √
ai + i

√
ai +

√
z

)Ai

=
N1

∏
i=1

(1 + ai)
Ai ·

N1

∏
i=1

(
1

(
√

ai − i)(
√

ai +
√

z)

)Ai

(
2i√
z + i

)C
=

1
4A

(
−2i√
z − i

)B−C−A( z + 1
4

)B−C( −2i√
z − i

)A( 2i√
z + i

)B

we obtain (6) for d = 0. To prove (6) for d ≥ 1, use induction in d and the method from the
proof of Lemma 4. The proof is complete.
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