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Abstract: The classification of time series using machine learning (ML) analysis and entropy-based
features is an urgent task for the study of nonlinear signals in the fields of finance, biology and
medicine, including EEG analysis and Brain–Computer Interfacing. As several entropy measures
exist, the problem is assessing the effectiveness of entropies used as features for the ML classification
of nonlinear dynamics of time series. We propose a method, called global efficiency (GEFMCC),
for assessing the effectiveness of entropy features using several chaotic mappings. GEFMCC is a
fitness function for optimizing the type and parameters of entropies for time series classification
problems. We analyze fuzzy entropy (FuzzyEn) and neural network entropy (NNetEn) for four
discrete mappings, the logistic map, the sine map, the Planck map, and the two-memristor-based
map, with a base length time series of 300 elements. FuzzyEn has greater GEFMCC in the classification
task compared to NNetEn. However, NNetEn classification efficiency is higher than FuzzyEn for
some local areas of the time series dynamics. The results of using horizontal visibility graphs
(HVG) instead of the raw time series demonstrate the GEFMCC decrease after HVG time series
transformation. However, the GEFMCC increases after applying the HVG for some local areas of
time series dynamics. The scientific community can use the results to explore the efficiency of the
entropy-based classification of time series in “The Entropy Universe”. An implementation of the
algorithms in Python is presented.

Keywords: chaotic maps; NNetEn; neural network entropy; horizontal visibility graphs; fuzzy
entropy; classification; entropy global efficiency; GEFMCC; Python

MSC: 37M10; 54C70; 68T01

1. Introduction

The classification of time series based on entropy analysis and machine learning (ML)
is a trending task in the study of nonlinear signals in the fields of finance, biology, and
medicine, for example, in EEG classification in diagnosing Alzheimer’s disease [1,2] and
Parkinson’s disease [3–6]. The creation of Brain–Computer Interfacing (BCI) [7] enables the
classification of the movements of body parts according to EEG signals. Such developments
may benefit people who lose their mobility due to the communication breakup between the
brain and limb muscles. BCI helps people to move their limbs with the help of an external
robotic device called the exoskeleton. Classifying temperature time series can help doctors
to classify patients as patients with fever and healthy individuals [8]. Using entropy to
analyze electromyography (EMG) signals is a necessary step in diagnosing neuromuscular
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diseases [9]. An alternative non-invasive and inexpensive diagnosis of the knee joint uses
vibration-artographic signals. Sound signals emitted by the patellofemoral joint contain
information that can characterize the pathological aspect of the knee joint lesion and are
classified by entropy characteristics [10]. Time series forecasting using entropy features is
widely used in the financial industry in applications such as the forecasting of stock market
prices and commodity prices [11].

There are many types of entropies, which in turn have several customizable parame-
ters; for example, sample entropy (SampEn) [12], cosine similarity entropy (CoSiEn) [13],
singular value decomposition entropy (SVDEn) [14], fuzzy entropy (FuzzyEn) [3,15–18],
permutation entropy (PermEn) [19], etc. A promising research direction is the develop-
ment of new types of entropies or modifications of known entropy types [20,21]. Recently,
Velichko et al. proposed the use of a LogNNet neural network [22] for neural network en-
tropy (NNetEn) calculation [1]. LogNNet neural network is a feedforward neural network
that uses filters based on the logistic function and a reservoir inspired by recurrent neural
networks, thus enabling the transformation of a signal into a high-dimensional space. Its
efficiency was validated on the MNIST-10 dataset [23]. This showed that the classification
performance is proportional to the entropy of the time series and has a stronger correlation
than the Lyapunov exponent of the time series used to feed the reservoir.

Before calculating an entropy function, several parameters should be initialized, for
example, embedding dimension m, tolerance threshold r, and time series length N. Al-
though these parameters are critical for calculations, there are no guidelines for optimizing
parameter values, as there is no generally accepted fitness function. Several authors have
conducted research on optimal parameters and types of entropy [24–28], and this research
does not claim to be general. The conclusions are of a local nature, characterized by the time
series databases and the entropies used. A wide variety of entropies exists: the EntropyHub
Guide lists 18 types of entropies [29,30], and the review by Ribeiro et al. [31] compares
40 types of entropies for various areas of application and coins the term “The Entropy Uni-
verse”. In this context, it is important to assess the effectiveness of the different entropies
when used as features in ML classification. In the current study, we assume that global
entropy efficiency can be calculated on model time series generated by chaotic mappings.
The method includes a wide range of time series with different dynamics, and the calcu-
lated entropy efficiency value (GEFMCC) can be considered a global entropy characteristic
for time series classification problems. The GEFMCC’s value is as a fitness function for
optimization problems when searching for the best entropies for time series classification
problems. We present a Python implementation for calculating the generalized efficiency
of FuzzyEn and NNetEn entropy for user-specified parameters. Using this method, it is
possible to not only rank the existing entropies, but also evaluate the effectiveness of new
types of entropies for time series classification problems.

The effectiveness of using FuzzyEn and NNetEn was shown on EEG signals in diagnos-
ing Alzheimer’s disease [1]. The effectiveness of fuzzy entropy in diagnosing Parkinson’s
disease was also demonstrated in the paper by Belyaev et al. [3]. It was experimentally
shown that FuzzyEn has an advantage over other entropies when classifying EEG signals
with several elements in a time series of ~100–1000. As a result, the authors of this work had
the idea of studying whether or not the efficiency of FuzzyEn is universal and applicable to
a series of different dynamics. In this paper, the authors analyzed two entropies, FuzzyEn
and NNetEn, with the most effective settings taken from the works [1,3], and conducted a
test on artificially created databases based on chaotic mappings. In addition, we explored
the option of preprocessing time series using HVG transformation.

The natural visibility graph (NVG) was introduced in [32] as a simple and computa-
tionally efficient method to represent a time series as a graph. Visibility graphs preserve
the periodic and chaotic properties of the discrete map [32]; see [33–35]. For example,
periodic series result in regular graphs, random series in random graphs, and fractal series
in scale-free graphs. Horizontal visibility graphs (HVG) were introduced in [32] to simplify
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the previously described NVG. Visibility graphs (VG) reduce the complexity of calculations,
which depends on time series, while preserving the accuracy of the results; see [36–38].

In [39], the authors described the advantages of using the amplitude difference distri-
bution instead of the degree distribution to collect information from the network formed
by the horizontal visibility graph. Li and Shang introduced a combination of the amplitude
difference distribution with discrete generalized past entropy to present a new method
called discrete generalized past entropy based on the amplitude difference distribution of
the horizontal visibility graph (AHVG-DGPE). The authors note its efficiency in systems
evaluation and its higher accuracy and sensitivity rate than the traditional method in
characterizing dynamic systems; see [40–42].

In this paper, we propose a method for assessing the effectiveness of entropies using
chaotic mapping. We use it for analyzing the FuzzyEn and NNetEn entropies on four
discrete mappings: the logistic map, the sine map, the Planck map, and the two-memristor-
based map. We utilize the corresponding HVG degrees’ representation of these time series,
which implies that the resulting time series does not consist of real numbers but only of
integer numbers. The results of using horizontal visibility graphs (HVG) to classify time
series are also shown.

The major contributions of the paper are as follows:

• A concept for comparing the efficiency of classifying chaotic time series using entropy-
based features is presented. The developed methodology can be used in classification
problems for financial, biological, and medical signals.

• A new characteristic for assessing the global efficiency of entropy (GEFMCC) is pre-
sented. GEFMCC is calculated based on synthetic databases generated by four chaotic
mappings.

• The Python package for GEFMCC calculation is developed.
• A comparison of the effectiveness of FuzzyEn (m = 1, r = 0.2·d, r2 = 3, τ = 1) and

NNetEn (D1, 1, M3, Ep5, Acc) was investigated. FuzzyEn is shown to have improved
GEFMCC in the classification task compared to NNetEn. At the same time, there are
local areas of the time series dynamics in which the classification efficiency NNetEn
is higher than FuzzyEn. The Matthews correlation coefficient was used to evaluate
binary classification.

• The results of using HVG are shown. GEFMCC decreases after HVG time series trans-
formation, but there are local areas of time series dynamics in which the classification
efficiency increases after HVG.

This paper is organized as follows: Section 2 introduces the methods we have used. In
Section 3, we explain the results we obtained. Section 4 discusses the results and states the
conclusions, and outlines some ideas for future works.

2. Materials and Methods
2.1. The Workflow Diagram of the Proposed Method

Figure 1 presents the overall workflow diagram of the proposed method for assessing
the global entropy efficiency.

Stage 1: Synthetic databases are generated based on four types of discrete chaotic
maps: logistic map, sine map, Planck map, and two-memristor-based map.

Stage 2: The method for pre-processing synthetic time series is selected. In this
study, we used ‘no pre-processing’ in Stage 2a, and pre-processing based on the horizontal
visibility graphs transformation method in Stage 2b. In further studies, optional custom
pre-processing can be performed (Stage 2c), for example, by applying a combination of
adding noise and HVG transformation.
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Figure 1. The workflow diagram of the proposed method of assessing the global efficiency of entropy.

Stage 3: The type and entropy parameters for calculating GEFMCC values for each
chaotic mapping are selected. In this study, we used FuzzyEn (Stage 3a) with parameters
(m = 1, r = 0.2·d, r2 = 3, τ = 1) and NNetEn (Stage 3b) with parameters (D1, 1, M3, Ep5, ACC).
In further research (Stage 3c), any other type of entropy can be used, such as SampEn,
CoSiEn, SVDEn, PermEn, etc. After selecting the type and parameters of entropy, the
entropies of the time series in each synthetic dataset are calculated.

Stage 4: The databases are classified using the single feature threshold approach and
the Matthews correlation coefficient as a metric. The GEFMCC value for each chaotic
mapping is calculated.

Stage 5: For all chaotic mappings, the average GEFMCC value is calculated and
represents the efficiency of entropy.

In the following sections, we explain the individual steps of the method in more detail.

2.2. Generation of Synthetic Time Series (Stage 1)

To generate synthetic time series, we used several types of discrete chaotic map. The
control parameter rj (j = 1. . . Nr) varied discretely with step dr.

1. Logistic map [43,44]:

xn+1 = rj · xn · (1 − xn), 3.4 ≤ rj ≤ 4, x−999 = 0.1, dr = 0.002, r1 = 3.4, Nr = 301 (1)

2. Sine map [45]:

xn+1 = rj · sin(π · xn), 0.7 ≤ rj ≤ 2, x−999 = 0.1, dr = 0.005, r1 = 0.7, Nr = 261 (2)

3. Planck map [45]:

xn+1 =
rj · x3

n

1 + exn
, 3 ≤ rj ≤ 7, x−999 = 4, dr = 0.01, r1 = 3, Nr = 401 (3)

4. Two-memristor-based map (TMBM) [46]:
xn+1 = rj · a2 · (b · |yn| − 1) · (z2

n − 1) · xn + c
yn+1 = yn + xn
zn+1 = zn + rj · (b · |yn| − 1) · xn

, −1.7 ≤ rj ≤ −1.5

x−999 = 0.01, y−999 = 0.01, z−999 = 0.01, dr = 0.0005, r1 = −1.7, Nr = 401

(4)

The first 1000 elements (x−999. . . x0) are ignored due to the transient period. If n > 0,
then the time series are calculated for xn. To generate a class corresponding to one value
of rj, 100 time series were generated with a length of N = 300 elements. Elements in each
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series were calculated sequentially: (x1, . . ., x300), (x301, . . ., x600), etc. A set of NE = 100 time
series was generated at a given rj. The value rj ran through the entire range with a certain
step dr; see Equations (1)–(4).

2.3. Natural and Horizontal Visibility Graphs (Stage 2b)

In the present study, we explored the option of preprocessing time series using the
HVG transformation. Let us briefly describe its essence.

Given a time series {(n, xn)}n∈
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, such that
at time n, the time series takes the value xn, an association is found between each node
and each pair (n, xn) in order to obtain the graph associated with the time series. A natural
visibility graph (NVG) is constructed as follows: given two nodes (n, xn) and (m, xm), these
two nodes have visibility, and thus they are connected in the graph by an edge if any other
pair (c, xc) with n < c < m satisfies

xc < xm + (xn − xm)
m − c
m − n

(5)

Horizontal visibility graphs (HVG) were introduced in [32] to simplify the require-
ments described for NVG.

When computing the HVG, each time series value is related to a node in the resulting
graph, as in the case of NVG. Two nodes in this graph, (n, xn) and (m, xm), are connected
if a horizontal line can be drawn connecting their corresponding visibility index without
intersecting any intermediate value, that is, if xn, xm > xc for all n < c < m; see the examples
in Figure 2.
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and the horizontal visibility graph representation for the same time series (right). The arrows in the
images explains the projection of the visibility horizon when constructing the graph.

Python 3.11 library ts2vg (version 1.2.3) was used to calculate HVG (‘time series
to visibility graphs’) [47], which implements algorithms for plotting graphs based on
time series data. The package utilizes a highly effective C backend for its operations
(using Cython) and seamlessly integrates with the Python environment. As a result, ts2vg
can effortlessly process input data from various sources using established Python tools.
Additionally, it enables the examination and interpretation of the generated visibility graphs
using a wide range of techniques including graph analysis, data science, visualization
packages, and tools compatible with Python. The HorizontalVG method was used to
construct the HVG.

2.4. FuzzyEn Calculation (Stage 3a)

FuzzyEn entropy was introduced as an advancement of the concepts of approximate
entropy (ApEn) and sample entropy (SampEn) to overcome some of their shortcomings,
such as dependence on data length and intrinsic biases. FuzzyEn is proposed as a measure
more robust to noise and is used for analyzing the complexity of time series data. Unlike
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ApEn and SampEn, which apply the Heaviside function to calculate differences between
vectors [48], FuzzyEn uses exponential functions with fuzzy boundaries.

Fuzzy entropy can be calculated as follows. For a given time series X = [x1, x2, . . . , xN ]
with given embedding dimension (m), Xm vectors will form as:

Xm(i) = [xi, xi+1, . . . , xi+m−1]− x0i (6)

These vectors represent m consecutive x values, starting with the ith point, with the
baseline x0i =

1
m ∑m−1

j=0 xi+j removed. Then, the distance between vectors Xm(i) and Xm(j),
dij,m can be defined as the maximum absolute difference between their scalar components.
Given n and r, the degree of similarity Dij,m of the vectors Xm(i) and Xm(j) is calculated
using fuzzy function.

Dij,m = µ
(
dij,m, r

)
= exp

(
−
(
dij,m

)n

r

)
(7)

The function ϕm is defined as

ϕm(n, r) =
1

N − m∑N−m
i=1

(
1

N − m − 1∑N−m
j=1,j ̸=i Dij,m

)
(8)

Repeating the same procedure from Equations (9) and (10) for the dimension to m + 1,
vectors Xm+1(i) are formed and the function ϕm+1 is obtained. Therefore, FuzzyEn can be
estimated as:

FuzzyEn(m, n, r, N) = lnϕm(n, r)− lnϕm+1(n, r) (9)

FuzzyEn represents a measure of irregularity in a time series, taking into account the
spatial and temporal characteristics of the data.

The EntropyHub library [49] (version 0.2) allows for the reliable and standardized
calculation of FuzzyEn, essential for comparing results across different studies. EntropyHub
integrates the many established entropy methods into one package, available for Python,
MatLab and Julia users. In the computation of FuzzyEn, the embedding dimension m = 1
and tolerance r = 0.2 × std were used in the analysis, where std is a standard deviation of
xn, argument exponent (pre-division) r2 = 3, and time delay τ = 1.

2.5. NNetEn Calculation (Stage 3b)

The NNetEn calculation method is based on the reservoir neural network LogN-
Net [22,50], where the reservoir is filled with the time series under study, and the entropy
value is proportional to the classification metric of the reference database. The principle
of calculating entropy is fundamentally different from all known modifications of en-
tropy based on the probability distribution. Figure 3 shows the process for calculating
NNetEn [1]. The method involves several key steps, which are detailed below.

Step 1: The initial step encompasses inputting the time series X = [x1, x2, . . . , xN ] of
length N into the reservoir.

Six main methods for filling the reservoir were researched in detail. The M1 to M6
methods involve various techniques for filling the reservoir. They are M1—row-wise filling
with duplication; M2—row-wise filling with an additional zero element; M3—row-wise
filling with time series stretching; M4—column-wise filling with duplication; M5—column-
wise filling with an additional zero element; and M6—column-wise filling with time
series stretching.
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Figure 3. Main steps of NNetEn calculation [1]. The figure shows the main stages of calculation
NNetEn based on the reservoir neural network LogNNet, where the reservoir is filled with the
time series under study, and the entropy value is proportional to the classification metric of the
reference database.

Step 2: Selection of embedded dataset 1 (MNIST-10 [51]) or dataset 2 (SARS-CoV-2-
RBV1 [1]), upon which the classification metrics will be computed. These databases are
included in the Python library for NNetEn calculations and are selected with the parameter
database = ‘D1’ or database = ‘D2’.

Step 3: Formation of the Y vector from the dataset, including a zero offset Y [0] = 1.
Step 4: Normalization of the Y vector.
Step 5: Multiplication of the Y vector with the reservoir matrix and the input vector

Sh = W × Y to convert it into the Sh vector.
Step 6: Feeding the Sh vector into the input layer of the classifier, with a dimension of

P_max = 25.
Step 7: Normalization of the vector Sh.
Step 8: Utilization of a single-layer output classifier.
Steps 9 to 10: The neural network is trained according to the backpropagation method

with a variable number of epochs (Ep) and then tested. The parameter of the entropy
function is referred to as Ep.

Step 11: Transformation of the classification metric into NNetEn entropy.
The parameters used in this work to calculate the entropy of NNetEn are the MNIST

database dataset (database = ‘D1’ and mu = 1), the method for forming a reservoir from the
M3 time series (method = 3), the number of neural network training epochs (Ep = 5), and
the accuracy metric (‘Acc’). There is also a short description of NNetEn parameters (D1, 1,
M3, Ep5, Acc).

To calculate NNetEn, we used a Python library (version 1.0.8) hosted on GitHub [52].

2.6. Time Series Classification Metrics (Stages 4)

In this section, we elaborate on how to calculate the GEFMCC value based on a single
chaotic mapping.

To start with, we describe the method for calculating the classification metric for
the time series of a discrete map for neighboring sets corresponding to two neighboring
partitions by r.

Figure 4a shows a section of the buffering diagram of the logistic mapping with two
adjacent sets of series corresponding to rj−1 = 3.634 and rj = 3.636; the distance between
them corresponds to dr. Each set contains 100 time series. Examples of the first time series
(x1, . . ., x300) for each set are shown in Figure 4b,c. FuzzyEn values for 100 time series
in each set are shown in Figure 4d. We denote the average entropy value in each set as
Entropy_AV (FuzzyEn_AV or NNetEn_AV).
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Figure 4. Section of the buffering diagram of the logistic map, on which two adjacent sets of series are
highlighted corresponding to rj−1 = 3.634 and rj = 3.636 (a), series (x1, . . ., x300) for rj−1 = 3.634 (b),
series (x1, . . ., x300) for rj = 3.636 (c), and FuzzyEn values for 100 time series for two classes
(MCC = 1) (d). The figure explains the method for calculating the classification metric for the
time series of a discrete map for neighboring sets corresponding to two neighboring partitions by r.

As a result, we compiled a database with two classes. Class 1 contains 100 entropy
values of time series generated at rj = 3.636, and Class 2 contains 100 entropy values
generated at rj−1 = 3.634. To classify the two classes, we will use the threshold model.

The single feature threshold approach involves a simple ML model with a single
threshold Vth separating the two classes. A formula can represent the separation algorithm.

if Entropy value ≥ Vth then (Class 1) else (Class 2) (10)

The search for Vth was carried out by a sequential search within the limits of changes
in the entropy feature, with the determination of the maximum MCC (Matthews correlation
coefficient [53]) value. We calculated the MCC for the entire database without dividing it
into test and training data, equivalent to calculating the MCC on training data.

MCC is the correlation coefficient between observed and predicted classifications; it
returns a value between −1 and +1. A coefficient of +1 represents a perfect prediction, 0 is
a random prediction, and −1 indicates the opposite, inverted prediction. The higher the
MCC module, the more accurate the prediction is. A negative MCC value means that the
classes must be swapped. The MCC is calculated using the values of the confusion matrix,
as [53]:

MCC =
(TP · TN − FP · FN)√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(11)

where TP, TN, FP, and FN stand for True Positive, True Negative, False Positive, and False
Negative, respectively. The MCC metric is a popular metric in machine learning, including
binary classification.

Figure 4d shows an example in which the classes are easily separable and MCC = 1.
Figure 5 indicates an example of entropy distribution for classes with rj−1 = 3.688 and
rj = 3.69. It can be seen that the classes are poorly separable and MCC ~ 0.45.
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Figure 5. Distribution of FuzzyEn in Classes 1 and 2 with rj−1 = 3.688 and rj = 3.69 (MCC~0.45). The
figure shows an example of entropy distribution for poorly separable classes and MCC~0.45.

The MCC(rj) dependence was calculated for all neighboring rj−1 and rj within the
range of changes in the r of each mapping j = 2. . . Nr. Let us introduce the concept of global
efficiency (GEFMCC), which is calculated within the entire mapping under study using the
following formula:

GEFMCC =

Nr
∑

j=2

∣∣MCC(rj)
∣∣

Nr − 1
(12)

where j = 2. . . Nr is the partition index according to r, and Nr is the maximum number of
partitions; see Equations (1)–(4). The GEFMCC characteristic is the equivalent dependence
modulus MCC(rj) average value. It estimates the degree of entropy efficiency over the
entire variety of time series of the chaotic mapping.

2.7. Calculation of the Average GEFMCC Value (Stage 5)

The final entropy efficiency value is calculated as the average GEFMCC value over all
chaotic mappings.

Average GEFMCC =
∑(GEFMCC for each chaotic maps)

4
(13)

2.8. Python Package for GEFMCC Calculation

Following the block diagram in Figure 1, we created a Python script implementation
of the method to assess the effectiveness of entropy.

Stage 1: The function global_map_generator from module map_generate, using input
configuration base_config, is applied to generate synthetic datasets (see Listing 1).

The configuration contains parameters for generating chaotic mappings in the con-
fig_gen (see Section 2.2). As a result, the global_map_generator from module map_generate
function creates a local folder with the argument name chaotic_map that contains Nr files.
Each of the files contains NE time series of N elements each. The names of the files corre-
spond to their numbering within Nr.

Stage 2: The pre-processing of synthetic time series takes place in the function gen-
erate_hvg_series from the module transform, which has the data parameters as input (see
Listing 2). After the procedure has been completed, a folder of the name chaotic_map +
’transform’ is created, for example, logistic_transform, and the folder contains the transformed
time series. If a transformation is not performed, the series retain their original values.
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Listing 1. An example configuration of the Python script and function global_map_generator.

> > > import map_generate
. . ...
> > > base_config = {

‘config_gen’: {
‘log_map’: {

‘N_ser’: 100,
‘N_el’: 300,
‘h1’: 3.4,
‘h2’: 4,
‘h_step’: 0.002,
‘n_ignor’: 1000,
‘x0’: 0.1

},
. . ...

},
‘config_entropy’: {

‘use_chaotic_map’: ‘log_map’,
‘type_entropy’: ‘fuzzy’,
‘process’: 20,
‘transform’: ‘hvg’,
‘fuzzyen_params’: {

‘fuzzy_m’: 1,
‘fuzzy_r1’: 0.2,
‘fuzzy_r2’: 3,
‘fuzzy_t’: 1

},
‘nneten_params’: {

. . ..
},

}
. . .. . .
> > > map_generate.global_map_generator(base_config)

Listing 2. Command to transformation HVG.

> > > from transform import generate_hvg_series
. . ..
> > > time_series = generate_hvg_series(data)

Arguments:

• Data—unprocessed time series.

Stage 3: The function global_calculate_entropy from the module entropy, with input con-
figurations base_config (see Listing 3), is used for the entropy calculation. The configuration
specifies the type of entropy and which entropy parameters to use. Any type of entropy
can be used in further studies (Stage 3c), including SampEn, CoSiEn, SVDEn, PermEn, etc.

After the function has been completed, a folder with the name chaotic_map + ’entropy’
is created, for example ‘logistic_entropy’, containing files of entropy calculation results. To
speed up the process of calculating entropy and increase the efficiency of the algorithm,
multiprocessor data processing was used. Making parallel calculations of entropy val-
ues for several matrices simultaneously significantly reduces the overall processing time.
The number of threads used is specified by the ‘process’ argument in the configuration
base_config (see Listing 1). Also, the base_config configuration contains a transform pa-
rameter responsible for data pre-processing (Stage 2), which can take the values ‘hvg’ or
‘no_hvg’.
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Listing 3. An example of Python function global_calculate_entropy for entropy calculation.

> > > import entropy
. . ..
> > > entropy.global_calculate_entropy(base_config)

Arguments:

• base_config (see Listing 1).

Stage 4: The function global_calculate_gefmcc from the module classification (see
Listing 4) classifies datasets using a single feature threshold approach and the Matthews
correlation coefficient as a metric.

Listing 4. Command to classify using a single-feature threshold approach.

> > > import classification
. . ..
> > > classification.global_calculate_gefmcc(base_config)

Arguments:

• base_config (see Listing 1).

The GEFMCC value is calculated for each chaotic mapping. After the function has been
completed, a folder of the name chaotic_map + ’classifier’ is created, for example, ‘logistic_
classifier’, and it contains the MCC(rj) calculation results file. A chaotic_map + ’GEFMCC’
file is created and it contains the GEFMCC value.

Stage 5: The final script average_gefmcc initiates all the scripts for stages 1–4, for four
different chaotic mappings, and calculates the average entropy values using Equation (13).
After the script has been completed, a file ‘average_GEFMCC.txt’ is created, which contains
a string of GEFMCC values and the average GEFMCC value for all chaotic mappings, as
an estimate of the efficiency of entropy.

The Python package for GEFMCC calculation presented in this study is publicly
available on GitHub: https://github.com/izotov93/GEFMCC (accessed on 27 February
2024) (version 1.0.1).

3. Results

We present the results of calculating the dependencies between the FuzzyEn_AV(r)
and NNetEn_AV(r) for various discrete mappings before and after the HVG transformation
of the time series. This way, we can observe whether visibility graphs retain enough
information from the time series to calculate the entropies. The results of calculating the
MCC(r) dependencies from which the characteristics of the global efficiency of GEFMCC
from (8) is calculated are presented.

3.1. Results for Logistic, Sine, and Planck Maps

Figure 6a shows an example of a bifurcation diagram for a logistic map in the range
of the control parameter 3.4 ≤ r ≤ 4, with a sampling step dr = 0.002. Figure 6b shows
the FuzzyEn_AV(r) dependences before and after applying the HVG transformation. We
can see that the HVG transformation significantly increases the entropy value, while some
areas change their relative position. In regions A and B, we have reduced the entropies
after having computed the HVGs, which is natural since they consist of ordered time
series. The relative position of area C remained unchanged. The application of the HVG
transformation had virtually no effect on the shape of the NNetEn_AV(r) graph, causing
only a slight upward shift of entropies. The increase in FuzzyEn and NNetE values after
HVG is due, in our opinion, to the fact that HVG has filtering properties and reduces the
constant components of time series. However, FuzzyEn and NNetEn are sensitive to the
constant component of the time series, which can be seen, for example, from the entropy
values for r < 3.45.

https://github.com/izotov93/GEFMCC
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Figure 6. Bifurcation diagrams for the logistic map (a); the dependence of entropy on the parameter r
for NNetEn_AV (b), and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

Figure 7a presents the MCC(r) dependences for FuzzyEn before and after HVG trans-
formation, as well as their difference in ∆MCC, which is computed as follows:

∆MCC = |MCC after HVG| − |MCC| (14)

Positive values of ∆MCC > 0 indicate that, for a given value of r, the degree of classifi-
cation of time series for rj−1 and rj increases due to the HVG transformation. Conversely,
negative ∆MCC values indicate a decrease in classification efficiency after HVG transfor-
mation. According to the lower figure (Figure 7, red line), the HVG transformation can lead
to both an increase and a decrease in classification efficiency for different rj. We provide
detailed calculations of the GEFMCC values in Table 1. The average GEFMCC values for
all chaotic mappings are given.
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Figure 7. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ∆MCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ∆MCC (b). Calculations were made for the logistic map.

Table 1. Comparison of GEFMCC value for different chaotic mappings and entropies, before and
after HVG. The average GEFMCC value for all chaotic mappings is given.

GEFMCC Average
Logistic Map Sine Map Planck Map TMBM Map GEFMCC

FuzzyEn no HVG 0.572 0.524 0.360 0.539 0.499

FuzzyEn after HVG 0.334 0.362 0.355 0.2271 0.331

NNetEn no HVG 0.461 0.439 0.485 0.253 0.409

NNetEn after HVG 0.273 0.268 0.288 0.216 0.261

Figure 7b shows the MCC(r) dependences for NeNetEn before and after HVG trans-
formation and their difference in ∆MCC. It can be seen that the amplitude of MCC for
FuzzyEn is more significant than for NNetEn, which also affects the GEFMCC value in
Table 1.

It is convenient to compare the local values of MCC(r) for FuzzyEn and NeNetEn
using their difference in ∆MCC (Figure 8).

∆MCC = |MCC for NNetEn| − |MCC for FuzzyEn| (15)
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Figure 8. ∆MCC(r) dependences for FuzzyEn and NeNetEn. Calculations were made for the
logistic map.
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Figure 8 shows local areas of the time series dynamics in which the classification
efficiency NNetEn is higher than FuzzyEn (∆MCC > 0), but most of the graph shows
∆MCC < 0.

Similar results were obtained for the sine and Planck maps. Figure A1a (Appendix A)
shows an example of a bifurcation diagram for a sine map in the control parameter range
0.7 ≤ r ≤ 2, with a sampling step dr = 0.005. Figure A1b,c show the FuzzyEn_AV(r) and
NNetEn_AV(r) dependences before and after the application of the HVG transformation.
Figure A2 shows the MCC(r) dependences for FuzzyEn and NNetEn before and after HVG
transformation and their difference in ∆MCC.

Figure A3a (Appendix A) shows an example of a bifurcation diagram for a Planck
map in the control parameter range 3 ≤ r ≤ 7, with a sampling step dr = 0.01. Figure A3b,c
shows the FuzzyEn_AV(r) and NNetEn_AV(r) dependences before and after the application
of the HVG transformation. Figure A4 shows the MCC(r) dependences for FuzzyEn and
NNetEn before and after HVG transformation, and their difference in ∆MCC.

3.2. Results for TMBM Map

The TMBM map is multi-parametric and more complex than the mappings from
Section 3.1. Figure 9a shows an example of a bifurcation diagram for a TMBM map in the
control parameter range −1.7 ≤ r ≤ −1.5, with a sampling step dr = 0.0005.
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Figure 9. Bifurcation diagrams for the TMBM map (a); the dependence of entropy on the parameter r
for NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

After applying the HVG transformation, there is a notable increase in the entropy
values of FuzzyEn_AV, as depicted in Figure 9b. Additionally, Figure 9c illustrates a
consistent decrease in NNetEn_AV across a wide range of r following the utilization of
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HVF. Figure 10 shows the dependencies of MCC(r) and the discernible differences, denoted
as ∆MCC, before and after the HVG transformation for both FuzzyEn (refer to Figure 10a)
and NNetEn (refer to Figure 10b).
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Figure 10. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ∆MCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ∆MCC (b). Calculations were made for the TMBM map.

Figure 11 shows local areas of the time series dynamics in which the classification
efficiency NNetEn is higher than FuzzyEn (∆MCC > 0), but most of the graph shows
∆MCC < 0.
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Figure 11. ∆MCC(r) dependences for FuzzyEn and NeNetEn. Calculations were made for the
TMBM map.

4. Discussion and Conclusions

In this work, we proposed a method for assessing the effectiveness of entropy features
using chaotic mappings that enable the exploration of the efficiency of entropy-based
classifications of time series.

Table 1 shows that FuzzyEn and NNetEn have a better GEFMCC performance without
HVG transformation. This can be seen in the average GEFMCC values (last column of Table 1).
At the same time, there were local areas of the time series dynamics where the classification
efficiency of NNetEn was higher than that using FuzzyEn (Figures 8 and 11). Nevertheless,
despite reducing the amount of signal information after HVG transformations, there were
local areas of time series dynamics where the classification efficiency increased when an HVG
transformation was applied to the time series (Figures 7, 10, A2 and A4). As seen in other
contexts, HVGT transformations preserve the structural properties of the time series [33–35].
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All chaotic mappings analyzed in this work presented a similar GEFMCC trend when
applying HVGs and when comparing FuzzyEn and NNetEn. This indicates the universality
of this characteristic phenomenon and the fundamentality of the results obtained. As a
basic parameter when estimating entropy, we can take the average value of GEFMCC
values over all chaotic mappings (last column of Table 1). It is necessary to consider that
the results are given for specific entropy settings. Results may differ for other parameters
since the entropies’ effectiveness depends on the entropy calculation parameters. For future
research, different types of entropies can be compared under different parameters. In
addition, it is interesting to identify the dependence of GEFMCC on the length of the time
series. Further research should be conducted to explore other dynamical systems, as is the
case for fractional dynamical systems based on the logistic and sine maps [54–56], where
visibility graphs have already been considered [57].

Although we have shown that HVG representation generally reduces the classification
ability of entropy-based features, it is possible to continue researching the influence of HVG
transformation on the degree of classification of noisy signals by mixing weak noise into
a time series of chaotic maps. This opens up additional research opportunities. The use
of reference datasets based on chaotic mappings makes it possible to vary the length of
the series in any range. In addition, it eliminates random, 1/f, or white noise, which is
impossible to achieve in experimental databases that depend on experimental technology
and the materials used.

We have shown the local effects of increasing the classification efficiency of individual
time series when using NNetEn and HVG transformations. The finding contradicts the
global trend measured by the GEFMCC parameter. In the case of entropy, this could be
explained by the complexity of the entropy function that can be classified into individual
dynamic modes, with a statistical spread from the average trend. In the case of HVG
transformations, this explanation also applies. More research is needed into the effects
of time series length and the effects of extraneous noise to see the complete picture of
the effects.

The fact that FuzzyEn turned out to be more effective in classifying short (N = 300) time
series than NNetEn confirmed the results of our work on the classification of EEG signals [1].
Moreover, experimental work [1,3] showed that FuzzyEn was the most effective compared
to the other entropies, such as SampEn, SVDEn, and PermEn. However, individual pairs
of time series can be better classified by NNetEn; this was also confirmed in the EEG
experiment [1], where one channel performed better when using NNetEn as a feature. In
the same works on EEG signals [1,3], the idea was put forward that classifications based
on several features may perform better, and using FuzzyEn and NNetEn may lead to a
synergistic effect.

The synergy effect of several entropies for signal classification can also be studied
using our presented model of artificial databases based on chaotic mappings. To do
this, it is necessary to replace the single feature threshold approach (Equation (6)) with a
more complex classification model, for example, multi-layer perceptron or support vector
classifiers. This may be a research direction for developing the GEFMCC entropy estimation
approach presented in this work.

The technique we developed has a precise mathematical formulation and can be used
to optimize entropy parameters, such in as the particle swarm optimization method. In this
sense, the problem of classification based on entropy-based features has a more rigorous
solution than assessing the magnitude of chaos and irregularity, which is often based on
intuitive premises [58].

The entropy comparison method proposed in this work is helpful from a theoretical
point of view and can be used in practice. Below, we show a comparison of the standard
approach and its modification.

Previous approaches to analyzing EEG signals and choosing the type of entropy
include the following:

(1) Selecting measurement duration and sampling frequency of the EEG signal.
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(2) Experimenting to obtain a set of time series data.
(3) Cutting time series using a specific length N. The value of N is often selected intuitively

or through the repetition of similar work.
(4) Selecting methods for processing time series, filter parameters, or wavelet transformations.
(5) Selecting entropy characteristics, entropies, and their parameters, often intuitively,

through the repetition of values from other works or by brute force.

The approach to analyzing EEG signals using the developed methodology included
the following:

(1) Finding the type of entropy and its parameters with the highest average GEFMCC
value for four chaotic mappings (Table 1, last column). The search for the type of
entropy and its parameters was carried out by enumeration or optimization using
the particle swarm method. Optimize GEFMCC(N) for several values of time series
length N. Select the minimum length N to correspond to the expected classification
accuracy and the capabilities of the experiment.

(2) Selecting the duration of measurements and sampling frequency of the EEG signal
based on the analysis of the results of point 1.

(3) Experimenting to obtain a set of time series data.
(4) Cutting time series at a specific length N, based on the results of point 1.
(5) Selecting methods for processing time series, filter parameters, or wavelet transformations.
(6) Selecting entropy features, entropies, and their parameters, based on the results of

point 1.

We chose four chaotic mappings (Section 2.2) because they all had different time
series dynamics, and the TMBM had a complex multi-parameter function. Time series
of any length can be reproducibly generated, while maintaining their inherent dynamics
determined by the parameters of chaotic mappings. The stability of time series dynamics is
difficult to reproduce in experimental data. Thus, artificial time series modeling is better
suited for comparing entropies according to the GEFMCC efficiency criterion. Averaging
the GEFMCC results over all mappings provides analytical results of the generalized
entropy efficiency.

This method addresses the fundamental importance of finding a tool for compar-
ing the effectiveness of entropies, which are used as features in classification problems.
The developed technique can be applied to select entropy for EEG signals and to create
Brain–Computer Interfacing and other applications for analyzing financial, biological, and
medical signals.
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Abbreviations and Acronyms

Acc Accuracy
AHVG-DGPE Discrete Generalized Past Entropy based on the Amplitude difference dis-

tribution of the Horizontal Visibility Graph
ApEn Approximate Entropy
BCI Brain–Computer Interfacing
CoSiEn Cosine Similarity Entropy
EEG Electroencephalogram
Ep Number of Epochs
FN False Negative
FP False Positive
FuzzyEn Fuzzy Entropy
GEFMCC Global Efficiency of entropy calculated using Matthews Correlation Coef-

ficient
HVG Horizontal Visibility Graph
LogNNet Logistic Neural Network
MCC Matthews Correlation Coefficient
ML Machine Learning
NNetEn Neural Network Entropy
NVG Natural Visibility Graph
PermEn Permutation Entropy
SampEn Sample Entropy
SVDEn Singular Value Decomposition Entropy
TMBM Two-Memristor-Based Map
TN True Negative
TP True Positive
VG Visibility Graphs
VIU Valencian International University
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FP False Positive 
FuzzyEn Fuzzy Entropy 
GEFMCC Global Efficiency of entropy calculated using MaĴhews Correlation Coefficient 
HVG Horizontal Visibility Graph 
LogNNet Logistic Neural Network 
MCC MaĴhews Correlation Coefficient 
ML Machine Learning 
NNetEn Neural Network Entropy 
NVG Natural Visibility Graph 
PermEn Permutation Entropy 
SampEn Sample Entropy 
SVDEn Singular Value Decomposition Entropy 
TMBM Two-Memristor-Based Map 
TN True Negative 
TP True Positive 
VG Visibility Graphs 
VIU Valencian International University 
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Figure A1. Bifurcation diagrams for sine map (a); the dependence of entropy on the parameter r
for NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.
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Figure A2. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ∆MCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ∆MCC (b). Calculations were made for sine map.
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Figure A3. Bifurcation diagrams for Planck map (a); the dependence of entropy on the parameter r
for NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.
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Figure A4. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ∆MCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ∆MCC (b). Calculations were made for Planck map.
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