
Citation: Conejero, J.A.; Velichko, A.;

Garibo-i-Orts, Ò.; Izotov, Y.; Pham,

V.-T. Exploring the Entropy-Based

Classification of Time Series Using

Visibility Graphs from Chaotic Maps.

Mathematics 2024, 12, 938. https://

doi.org/10.3390/math12070938

Academic Editors: Andrey Gorshenin,

Mikhail Posypkin and Vladimir

Titarev

Received: 29 December 2023

Revised: 15 March 2024

Accepted: 20 March 2024

Published: 22 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Exploring the Entropy-Based Classification of Time Series Using
Visibility Graphs from Chaotic Maps
J. Alberto Conejero 1,* , Andrei Velichko 2 , Òscar Garibo-i-Orts 1,3 , Yuriy Izotov 2 and Viet-Thanh Pham 4

1 Instituto Universitario Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain;
osgaor@upv.es

2 Institute of Physics and Technology, Petrozavodsk State University, 185910 Petrozavodsk, Russia;
velichkogf@gmail.com (A.V.); izotov93@yandex.ru (Y.I.)

3 GRID—Grupo de Investigación en Ciencia de Datos, Valencian International University—VIU, Carrer Pintor
Sorolla 21, 46002 Valencia, Spain

4 Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 758307,
Vietnam; phamvietthanh@tdtu.edu.vn

* Correspondence: aconejero@upv.es

Abstract: The classification of time series using machine learning (ML) analysis and entropy-based
features is an urgent task for the study of nonlinear signals in the fields of finance, biology and
medicine, including EEG analysis and Brain–Computer Interfacing. As several entropy measures
exist, the problem is assessing the effectiveness of entropies used as features for the ML classification
of nonlinear dynamics of time series. We propose a method, called global efficiency (GEFMCC),
for assessing the effectiveness of entropy features using several chaotic mappings. GEFMCC is a
fitness function for optimizing the type and parameters of entropies for time series classification
problems. We analyze fuzzy entropy (FuzzyEn) and neural network entropy (NNetEn) for four
discrete mappings, the logistic map, the sine map, the Planck map, and the two-memristor-based
map, with a base length time series of 300 elements. FuzzyEn has greater GEFMCC in the classification
task compared to NNetEn. However, NNetEn classification efficiency is higher than FuzzyEn for
some local areas of the time series dynamics. The results of using horizontal visibility graphs
(HVG) instead of the raw time series demonstrate the GEFMCC decrease after HVG time series
transformation. However, the GEFMCC increases after applying the HVG for some local areas of
time series dynamics. The scientific community can use the results to explore the efficiency of the
entropy-based classification of time series in “The Entropy Universe”. An implementation of the
algorithms in Python is presented.

Keywords: chaotic maps; NNetEn; neural network entropy; horizontal visibility graphs; fuzzy
entropy; classification; entropy global efficiency; GEFMCC; Python

MSC: 37M10; 54C70; 68T01

1. Introduction

The classification of time series based on entropy analysis and machine learning (ML)
is a trending task in the study of nonlinear signals in the fields of finance, biology, and
medicine, for example, in EEG classification in diagnosing Alzheimer’s disease [1,2] and
Parkinson’s disease [3–6]. The creation of Brain–Computer Interfacing (BCI) [7] enables the
classification of the movements of body parts according to EEG signals. Such developments
may benefit people who lose their mobility due to the communication breakup between the
brain and limb muscles. BCI helps people to move their limbs with the help of an external
robotic device called the exoskeleton. Classifying temperature time series can help doctors
to classify patients as patients with fever and healthy individuals [8]. Using entropy to
analyze electromyography (EMG) signals is a necessary step in diagnosing neuromuscular

Mathematics 2024, 12, 938. https://doi.org/10.3390/math12070938 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12070938
https://doi.org/10.3390/math12070938
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3681-7533
https://orcid.org/0000-0002-9341-1831
https://orcid.org/0000-0001-8089-1904
https://orcid.org/0000-0002-4217-7969
https://doi.org/10.3390/math12070938
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12070938?type=check_update&version=2

Mathematics 2024, 12, 938 2 of 22

diseases [9]. An alternative non-invasive and inexpensive diagnosis of the knee joint uses
vibration-artographic signals. Sound signals emitted by the patellofemoral joint contain
information that can characterize the pathological aspect of the knee joint lesion and are
classified by entropy characteristics [10]. Time series forecasting using entropy features is
widely used in the financial industry in applications such as the forecasting of stock market
prices and commodity prices [11].

There are many types of entropies, which in turn have several customizable parame-
ters; for example, sample entropy (SampEn) [12], cosine similarity entropy (CoSiEn) [13],
singular value decomposition entropy (SVDEn) [14], fuzzy entropy (FuzzyEn) [3,15–18],
permutation entropy (PermEn) [19], etc. A promising research direction is the develop-
ment of new types of entropies or modifications of known entropy types [20,21]. Recently,
Velichko et al. proposed the use of a LogNNet neural network [22] for neural network en-
tropy (NNetEn) calculation [1]. LogNNet neural network is a feedforward neural network
that uses filters based on the logistic function and a reservoir inspired by recurrent neural
networks, thus enabling the transformation of a signal into a high-dimensional space. Its
efficiency was validated on the MNIST-10 dataset [23]. This showed that the classification
performance is proportional to the entropy of the time series and has a stronger correlation
than the Lyapunov exponent of the time series used to feed the reservoir.

Before calculating an entropy function, several parameters should be initialized, for
example, embedding dimension m, tolerance threshold r, and time series length N. Al-
though these parameters are critical for calculations, there are no guidelines for optimizing
parameter values, as there is no generally accepted fitness function. Several authors have
conducted research on optimal parameters and types of entropy [24–28], and this research
does not claim to be general. The conclusions are of a local nature, characterized by the time
series databases and the entropies used. A wide variety of entropies exists: the EntropyHub
Guide lists 18 types of entropies [29,30], and the review by Ribeiro et al. [31] compares
40 types of entropies for various areas of application and coins the term “The Entropy Uni-
verse”. In this context, it is important to assess the effectiveness of the different entropies
when used as features in ML classification. In the current study, we assume that global
entropy efficiency can be calculated on model time series generated by chaotic mappings.
The method includes a wide range of time series with different dynamics, and the calcu-
lated entropy efficiency value (GEFMCC) can be considered a global entropy characteristic
for time series classification problems. The GEFMCC’s value is as a fitness function for
optimization problems when searching for the best entropies for time series classification
problems. We present a Python implementation for calculating the generalized efficiency
of FuzzyEn and NNetEn entropy for user-specified parameters. Using this method, it is
possible to not only rank the existing entropies, but also evaluate the effectiveness of new
types of entropies for time series classification problems.

The effectiveness of using FuzzyEn and NNetEn was shown on EEG signals in diagnos-
ing Alzheimer’s disease [1]. The effectiveness of fuzzy entropy in diagnosing Parkinson’s
disease was also demonstrated in the paper by Belyaev et al. [3]. It was experimentally
shown that FuzzyEn has an advantage over other entropies when classifying EEG signals
with several elements in a time series of ~100–1000. As a result, the authors of this work had
the idea of studying whether or not the efficiency of FuzzyEn is universal and applicable to
a series of different dynamics. In this paper, the authors analyzed two entropies, FuzzyEn
and NNetEn, with the most effective settings taken from the works [1,3], and conducted a
test on artificially created databases based on chaotic mappings. In addition, we explored
the option of preprocessing time series using HVG transformation.

The natural visibility graph (NVG) was introduced in [32] as a simple and computa-
tionally efficient method to represent a time series as a graph. Visibility graphs preserve
the periodic and chaotic properties of the discrete map [32]; see [33–35]. For example,
periodic series result in regular graphs, random series in random graphs, and fractal series
in scale-free graphs. Horizontal visibility graphs (HVG) were introduced in [32] to simplify

Mathematics 2024, 12, 938 3 of 22

the previously described NVG. Visibility graphs (VG) reduce the complexity of calculations,
which depends on time series, while preserving the accuracy of the results; see [36–38].

In [39], the authors described the advantages of using the amplitude difference distri-
bution instead of the degree distribution to collect information from the network formed
by the horizontal visibility graph. Li and Shang introduced a combination of the amplitude
difference distribution with discrete generalized past entropy to present a new method
called discrete generalized past entropy based on the amplitude difference distribution of
the horizontal visibility graph (AHVG-DGPE). The authors note its efficiency in systems
evaluation and its higher accuracy and sensitivity rate than the traditional method in
characterizing dynamic systems; see [40–42].

In this paper, we propose a method for assessing the effectiveness of entropies using
chaotic mapping. We use it for analyzing the FuzzyEn and NNetEn entropies on four
discrete mappings: the logistic map, the sine map, the Planck map, and the two-memristor-
based map. We utilize the corresponding HVG degrees’ representation of these time series,
which implies that the resulting time series does not consist of real numbers but only of
integer numbers. The results of using horizontal visibility graphs (HVG) to classify time
series are also shown.

The major contributions of the paper are as follows:

• A concept for comparing the efficiency of classifying chaotic time series using entropy-
based features is presented. The developed methodology can be used in classification
problems for financial, biological, and medical signals.

• A new characteristic for assessing the global efficiency of entropy (GEFMCC) is pre-
sented. GEFMCC is calculated based on synthetic databases generated by four chaotic
mappings.

• The Python package for GEFMCC calculation is developed.
• A comparison of the effectiveness of FuzzyEn (m = 1, r = 0.2·d, r2 = 3, τ = 1) and

NNetEn (D1, 1, M3, Ep5, Acc) was investigated. FuzzyEn is shown to have improved
GEFMCC in the classification task compared to NNetEn. At the same time, there are
local areas of the time series dynamics in which the classification efficiency NNetEn
is higher than FuzzyEn. The Matthews correlation coefficient was used to evaluate
binary classification.

• The results of using HVG are shown. GEFMCC decreases after HVG time series trans-
formation, but there are local areas of time series dynamics in which the classification
efficiency increases after HVG.

This paper is organized as follows: Section 2 introduces the methods we have used. In
Section 3, we explain the results we obtained. Section 4 discusses the results and states the
conclusions, and outlines some ideas for future works.

2. Materials and Methods
2.1. The Workflow Diagram of the Proposed Method

Figure 1 presents the overall workflow diagram of the proposed method for assessing
the global entropy efficiency.

Stage 1: Synthetic databases are generated based on four types of discrete chaotic
maps: logistic map, sine map, Planck map, and two-memristor-based map.

Stage 2: The method for pre-processing synthetic time series is selected. In this
study, we used ‘no pre-processing’ in Stage 2a, and pre-processing based on the horizontal
visibility graphs transformation method in Stage 2b. In further studies, optional custom
pre-processing can be performed (Stage 2c), for example, by applying a combination of
adding noise and HVG transformation.

Mathematics 2024, 12, 938 4 of 22

Mathematics 2024, 12, x FOR PEER REVIEW 4 of 23

(m = 1, r = 0.2·d, r2 = 3, τ = 1) and NNetEn (Stage 3b) with parameters (D1, 1, M3, Ep5, ACC).
In further research (Stage 3c), any other type of entropy can be used, such as SampEn,
CoSiEn, SVDEn, PermEn, etc. After selecting the type and parameters of entropy, the en-
tropies of the time series in each synthetic dataset are calculated.

Figure 1. The workflow diagram of the proposed method of assessing the global efficiency of en-
tropy.

Stage 4: The databases are classified using the single feature threshold approach and
the MaĴhews correlation coefficient as a metric. The GEFMCC value for each chaotic map-
ping is calculated.

Stage 5: For all chaotic mappings, the average GEFMCC value is calculated and rep-
resents the efficiency of entropy.

In the following sections, we explain the individual steps of the method in more de-
tail.

2.2. Generation of Synthetic Time Series (Stage 1)
To generate synthetic time series, we used several types of discrete chaotic map. The

control parameter rj (j = 1… Nr) varied discretely with step dr.
1. Logistic map [43,44]:

1 (1)n j n nx r x x
, 3.4 ≤ rj ≤ 4, x−999 = 0.1, dr = 0.002, r1 = 3.4, Nr = 301 (1)

2. Sine map [45]:

1 sin()n j nx r x
, 0.7 ≤ rj ≤ 2, x−999 = 0.1, dr = 0.005, r1 = 0.7, Nr = 261 (2)

3. Planck map [45]:

3

1 1 n

j n
n x

r x
x

e

 , 3 ≤ rj ≤ 7, x−999 = 4, dr = 0.01, r1 = 3, Nr = 401
(3)

4. Two-memristor-based map (TMBM) [46]:

Generation of synthetic databases
based on chaotic mappings
1. Logistic map
2. Sine map
3. Planck map
4. Two-memristor based map

Preprocessing time series using the
Horizontal Visibility Graphs
transformation

NNetEn calculationFuzzyEn calculation

Preprocessing

Entropy calculation

Calculating the classification metric s
using single feature threshold approach
and Matthews orrelation oefficientC C
(MCC).
Global efficiency (GEFMCC)

 for:calculation
1. Logistic map
2. Sine map
3. Planck map
4. Two-memristor based map

Start

Average
GEFMCC
calculation

NNetEn parametersFuzzyEn parameters Entropy parameters

Entropy calculation

Custom
preprocessing

1

2a

2b2c

2

3

3a 3b 3c

4

5 Finish

Figure 1. The workflow diagram of the proposed method of assessing the global efficiency of entropy.

Stage 3: The type and entropy parameters for calculating GEFMCC values for each
chaotic mapping are selected. In this study, we used FuzzyEn (Stage 3a) with parameters
(m = 1, r = 0.2·d, r2 = 3, τ = 1) and NNetEn (Stage 3b) with parameters (D1, 1, M3, Ep5, ACC).
In further research (Stage 3c), any other type of entropy can be used, such as SampEn,
CoSiEn, SVDEn, PermEn, etc. After selecting the type and parameters of entropy, the
entropies of the time series in each synthetic dataset are calculated.

Stage 4: The databases are classified using the single feature threshold approach and
the Matthews correlation coefficient as a metric. The GEFMCC value for each chaotic
mapping is calculated.

Stage 5: For all chaotic mappings, the average GEFMCC value is calculated and
represents the efficiency of entropy.

In the following sections, we explain the individual steps of the method in more detail.

2.2. Generation of Synthetic Time Series (Stage 1)

To generate synthetic time series, we used several types of discrete chaotic map. The
control parameter rj (j = 1. . . Nr) varied discretely with step dr.

1. Logistic map [43,44]:

xn+1 = rj · xn · (1 − xn), 3.4 ≤ rj ≤ 4, x−999 = 0.1, dr = 0.002, r1 = 3.4, Nr = 301 (1)

2. Sine map [45]:

xn+1 = rj · sin(π · xn), 0.7 ≤ rj ≤ 2, x−999 = 0.1, dr = 0.005, r1 = 0.7, Nr = 261 (2)

3. Planck map [45]:

xn+1 =
rj · x3

n

1 + exn
, 3 ≤ rj ≤ 7, x−999 = 4, dr = 0.01, r1 = 3, Nr = 401 (3)

4. Two-memristor-based map (TMBM) [46]:
xn+1 = rj · a2 · (b · |yn| − 1) · (z2

n − 1) · xn + c
yn+1 = yn + xn
zn+1 = zn + rj · (b · |yn| − 1) · xn

, −1.7 ≤ rj ≤ −1.5

x−999 = 0.01, y−999 = 0.01, z−999 = 0.01, dr = 0.0005, r1 = −1.7, Nr = 401

(4)

The first 1000 elements (x−999. . . x0) are ignored due to the transient period. If n > 0,
then the time series are calculated for xn. To generate a class corresponding to one value
of rj, 100 time series were generated with a length of N = 300 elements. Elements in each

Mathematics 2024, 12, 938 5 of 22

series were calculated sequentially: (x1, . . ., x300), (x301, . . ., x600), etc. A set of NE = 100 time
series was generated at a given rj. The value rj ran through the entire range with a certain
step dr; see Equations (1)–(4).

2.3. Natural and Horizontal Visibility Graphs (Stage 2b)

In the present study, we explored the option of preprocessing time series using the
HVG transformation. Let us briefly describe its essence.

Given a time series {(n, xn)}n∈

Mathematics 2024, 12, x FOR PEER REVIEW 5 of 23

2
1 2

1

1

(1) (1)

(1)

n j n n n

n n n

n n j n n

x r a b y z x c

y y x

z z r b y x

 , −1.7 ≤ rj ≤ −1.5

x−999 = 0.01, y−999 = 0.01, z−999 = 0.01, dr = 0.0005, r1 = −1.7, Nr = 401

(4)

The first 1000 elements (x−999… x0) are ignored due to the transient period. If n > 0,
then the time series are calculated for xn. To generate a class corresponding to one value
of rj, 100 time series were generated with a length of N = 300 elements. Elements in each
series were calculated sequentially: (x1, …, x300), (x301, …, x600), etc. A set of NE = 100 time
series was generated at a given rj. The value rj ran through the entire range with a certain
step dr; see Equations (1)–(4).

2.3. Natural and Horizontal Visibility Graphs (Stage 2b)
In the present study, we explored the option of preprocessing time series using the

HVG transformation. Let us briefly describe its essence.
Given a time series {(n, xn)}n∈ℕ indexed on the set of natural numbers ℕ, such that at

time n, the time series takes the value xn, an association is found between each node and
each pair (n, xn) in order to obtain the graph associated with the time series. A natural
visibility graph (NVG) is constructed as follows: given two nodes (n, xn) and (m, xm), these
two nodes have visibility, and thus they are connected in the graph by an edge if any other
pair (c, xc) with n < c < m satisfies

()c m n m

m c
x x x x

m n

 (5)

Horizontal visibility graphs (HVG) were introduced in [32] to simplify the require-
ments described for NVG.

When computing the HVG, each time series value is related to a node in the resulting
graph, as in the case of NVG. Two nodes in this graph, (n, xn) and (m, xm), are connected if
a horizontal line can be drawn connecting their corresponding visibility index without
intersecting any intermediate value, that is, if xn, xm > xc for all n < c < m; see the examples
in Figure 2.

Figure 2. Illustrative example of the natural visibility graph representation for a time series (left)
and the horizontal visibility graph representation for the same time series (right). The arrows in the
images explains the projection of the visibility horizon when constructing the graph.

Python 3.11 library ts2vg (version 1.2.3) was used to calculate HVG (‘time series to
visibility graphs’) [47], which implements algorithms for ploĴing graphs based on time
series data. The package utilizes a highly effective C backend for its operations (using
Cython) and seamlessly integrates with the Python environment. As a result, ts2vg can
effortlessly process input data from various sources using established Python tools. Ad-
ditionally, it enables the examination and interpretation of the generated visibility graphs

indexed on the set of natural numbers

Mathematics 2024, 12, x FOR PEER REVIEW 5 of 23

2
1 2

1

1

(1) (1)

(1)

n j n n n

n n n

n n j n n

x r a b y z x c

y y x

z z r b y x

 , −1.7 ≤ rj ≤ −1.5

x−999 = 0.01, y−999 = 0.01, z−999 = 0.01, dr = 0.0005, r1 = −1.7, Nr = 401

(4)

The first 1000 elements (x−999… x0) are ignored due to the transient period. If n > 0,
then the time series are calculated for xn. To generate a class corresponding to one value
of rj, 100 time series were generated with a length of N = 300 elements. Elements in each
series were calculated sequentially: (x1, …, x300), (x301, …, x600), etc. A set of NE = 100 time
series was generated at a given rj. The value rj ran through the entire range with a certain
step dr; see Equations (1)–(4).

2.3. Natural and Horizontal Visibility Graphs (Stage 2b)
In the present study, we explored the option of preprocessing time series using the

HVG transformation. Let us briefly describe its essence.
Given a time series {(n, xn)}n∈ℕ indexed on the set of natural numbers ℕ, such that at

time n, the time series takes the value xn, an association is found between each node and
each pair (n, xn) in order to obtain the graph associated with the time series. A natural
visibility graph (NVG) is constructed as follows: given two nodes (n, xn) and (m, xm), these
two nodes have visibility, and thus they are connected in the graph by an edge if any other
pair (c, xc) with n < c < m satisfies

()c m n m

m c
x x x x

m n

 (5)

Horizontal visibility graphs (HVG) were introduced in [32] to simplify the require-
ments described for NVG.

When computing the HVG, each time series value is related to a node in the resulting
graph, as in the case of NVG. Two nodes in this graph, (n, xn) and (m, xm), are connected if
a horizontal line can be drawn connecting their corresponding visibility index without
intersecting any intermediate value, that is, if xn, xm > xc for all n < c < m; see the examples
in Figure 2.

Figure 2. Illustrative example of the natural visibility graph representation for a time series (left)
and the horizontal visibility graph representation for the same time series (right). The arrows in the
images explains the projection of the visibility horizon when constructing the graph.

Python 3.11 library ts2vg (version 1.2.3) was used to calculate HVG (‘time series to
visibility graphs’) [47], which implements algorithms for ploĴing graphs based on time
series data. The package utilizes a highly effective C backend for its operations (using
Cython) and seamlessly integrates with the Python environment. As a result, ts2vg can
effortlessly process input data from various sources using established Python tools. Ad-
ditionally, it enables the examination and interpretation of the generated visibility graphs

, such that
at time n, the time series takes the value xn, an association is found between each node
and each pair (n, xn) in order to obtain the graph associated with the time series. A natural
visibility graph (NVG) is constructed as follows: given two nodes (n, xn) and (m, xm), these
two nodes have visibility, and thus they are connected in the graph by an edge if any other
pair (c, xc) with n < c < m satisfies

xc < xm + (xn − xm)
m − c
m − n

(5)

Horizontal visibility graphs (HVG) were introduced in [32] to simplify the require-
ments described for NVG.

When computing the HVG, each time series value is related to a node in the resulting
graph, as in the case of NVG. Two nodes in this graph, (n, xn) and (m, xm), are connected
if a horizontal line can be drawn connecting their corresponding visibility index without
intersecting any intermediate value, that is, if xn, xm > xc for all n < c < m; see the examples
in Figure 2.

Mathematics 2024, 12, x FOR PEER REVIEW 5 of 23

2
1 2

1

1

(1) (1)

(1)

n j n n n

n n n

n n j n n

x r a b y z x c

y y x

z z r b y x

 , −1.7 ≤ rj ≤ −1.5

x−999 = 0.01, y−999 = 0.01, z−999 = 0.01, dr = 0.0005, r1 = −1.7, Nr = 401

(4)

The first 1000 elements (x−999… x0) are ignored due to the transient period. If n > 0,
then the time series are calculated for xn. To generate a class corresponding to one value
of rj, 100 time series were generated with a length of N = 300 elements. Elements in each
series were calculated sequentially: (x1, …, x300), (x301, …, x600), etc. A set of NE = 100 time
series was generated at a given rj. The value rj ran through the entire range with a certain
step dr; see Equations (1)–(4).

2.3. Natural and Horizontal Visibility Graphs (Stage 2b)
In the present study, we explored the option of preprocessing time series using the

HVG transformation. Let us briefly describe its essence.
Given a time series {(n, xn)}n∈ℕ indexed on the set of natural numbers ℕ, such that at

time n, the time series takes the value xn, an association is found between each node and
each pair (n, xn) in order to obtain the graph associated with the time series. A natural
visibility graph (NVG) is constructed as follows: given two nodes (n, xn) and (m, xm), these
two nodes have visibility, and thus they are connected in the graph by an edge if any other
pair (c, xc) with n < c < m satisfies

()c m n m

m c
x x x x

m n

 (5)

Horizontal visibility graphs (HVG) were introduced in [32] to simplify the require-
ments described for NVG.

When computing the HVG, each time series value is related to a node in the resulting
graph, as in the case of NVG. Two nodes in this graph, (n, xn) and (m, xm), are connected if
a horizontal line can be drawn connecting their corresponding visibility index without
intersecting any intermediate value, that is, if xn, xm > xc for all n < c < m; see the examples
in Figure 2.

Figure 2. Illustrative example of the natural visibility graph representation for a time series (left)
and the horizontal visibility graph representation for the same time series (right). The arrows in the
images explains the projection of the visibility horizon when constructing the graph.

Python 3.11 library ts2vg (version 1.2.3) was used to calculate HVG (‘time series to
visibility graphs’) [47], which implements algorithms for ploĴing graphs based on time
series data. The package utilizes a highly effective C backend for its operations (using
Cython) and seamlessly integrates with the Python environment. As a result, ts2vg can
effortlessly process input data from various sources using established Python tools. Ad-
ditionally, it enables the examination and interpretation of the generated visibility graphs

Figure 2. Illustrative example of the natural visibility graph representation for a time series (left)
and the horizontal visibility graph representation for the same time series (right). The arrows in the
images explains the projection of the visibility horizon when constructing the graph.

Python 3.11 library ts2vg (version 1.2.3) was used to calculate HVG (‘time series
to visibility graphs’) [47], which implements algorithms for plotting graphs based on
time series data. The package utilizes a highly effective C backend for its operations
(using Cython) and seamlessly integrates with the Python environment. As a result, ts2vg
can effortlessly process input data from various sources using established Python tools.
Additionally, it enables the examination and interpretation of the generated visibility graphs
using a wide range of techniques including graph analysis, data science, visualization
packages, and tools compatible with Python. The HorizontalVG method was used to
construct the HVG.

2.4. FuzzyEn Calculation (Stage 3a)

FuzzyEn entropy was introduced as an advancement of the concepts of approximate
entropy (ApEn) and sample entropy (SampEn) to overcome some of their shortcomings,
such as dependence on data length and intrinsic biases. FuzzyEn is proposed as a measure
more robust to noise and is used for analyzing the complexity of time series data. Unlike

Mathematics 2024, 12, 938 6 of 22

ApEn and SampEn, which apply the Heaviside function to calculate differences between
vectors [48], FuzzyEn uses exponential functions with fuzzy boundaries.

Fuzzy entropy can be calculated as follows. For a given time series X = [x1, x2, . . . , xN]
with given embedding dimension (m), Xm vectors will form as:

Xm(i) = [xi, xi+1, . . . , xi+m−1]− x0i (6)

These vectors represent m consecutive x values, starting with the ith point, with the
baseline x0i =

1
m ∑m−1

j=0 xi+j removed. Then, the distance between vectors Xm(i) and Xm(j),
dij,m can be defined as the maximum absolute difference between their scalar components.
Given n and r, the degree of similarity Dij,m of the vectors Xm(i) and Xm(j) is calculated
using fuzzy function.

Dij,m = µ
(
dij,m, r

)
= exp

(
−
(
dij,m

)n

r

)
(7)

The function ϕm is defined as

ϕm(n, r) =
1

N − m∑N−m
i=1

(
1

N − m − 1∑N−m
j=1,j ̸=i Dij,m

)
(8)

Repeating the same procedure from Equations (9) and (10) for the dimension to m + 1,
vectors Xm+1(i) are formed and the function ϕm+1 is obtained. Therefore, FuzzyEn can be
estimated as:

FuzzyEn(m, n, r, N) = lnϕm(n, r)− lnϕm+1(n, r) (9)

FuzzyEn represents a measure of irregularity in a time series, taking into account the
spatial and temporal characteristics of the data.

The EntropyHub library [49] (version 0.2) allows for the reliable and standardized
calculation of FuzzyEn, essential for comparing results across different studies. EntropyHub
integrates the many established entropy methods into one package, available for Python,
MatLab and Julia users. In the computation of FuzzyEn, the embedding dimension m = 1
and tolerance r = 0.2 × std were used in the analysis, where std is a standard deviation of
xn, argument exponent (pre-division) r2 = 3, and time delay τ = 1.

2.5. NNetEn Calculation (Stage 3b)

The NNetEn calculation method is based on the reservoir neural network LogN-
Net [22,50], where the reservoir is filled with the time series under study, and the entropy
value is proportional to the classification metric of the reference database. The principle
of calculating entropy is fundamentally different from all known modifications of en-
tropy based on the probability distribution. Figure 3 shows the process for calculating
NNetEn [1]. The method involves several key steps, which are detailed below.

Step 1: The initial step encompasses inputting the time series X = [x1, x2, . . . , xN] of
length N into the reservoir.

Six main methods for filling the reservoir were researched in detail. The M1 to M6
methods involve various techniques for filling the reservoir. They are M1—row-wise filling
with duplication; M2—row-wise filling with an additional zero element; M3—row-wise
filling with time series stretching; M4—column-wise filling with duplication; M5—column-
wise filling with an additional zero element; and M6—column-wise filling with time
series stretching.

Mathematics 2024, 12, 938 7 of 22

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 23

column-wise filling with an additional zero element; and M6—column-wise filling with
time series stretching.

Figure 3. Main steps of NNetEn calculation [1]. The figure shows the main stages of calculation
NNetEn based on the reservoir neural network LogNNet, where the reservoir is filled with the time
series under study, and the entropy value is proportional to the classification metric of the reference
database.

Step 2: Selection of embedded dataset 1 (MNIST-10 [51]) or dataset 2 (SARS-CoV-2-
RBV1 [1]), upon which the classification metrics will be computed. These databases are
included in the Python library for NNetEn calculations and are selected with the param-
eter database = ‘D1’ or database = ‘D2’.

Step 3: Formation of the Y vector from the dataset, including a zero offset Y [0] = 1.
Step 4: Normalization of the Y vector.
Step 5: Multiplication of the Y vector with the reservoir matrix and the input vector

Sh = W × Y to convert it into the Sh vector.
Step 6: Feeding the Sh vector into the input layer of the classifier, with a dimension

of P_max = 25.
Step 7: Normalization of the vector Sh.
Step 8: Utilization of a single-layer output classifier.
Steps 9 to 10: The neural network is trained according to the backpropagation method

with a variable number of epochs (Ep) and then tested. The parameter of the entropy func-
tion is referred to as Ep.

Step 11: Transformation of the classification metric into NNetEn entropy.
The parameters used in this work to calculate the entropy of NNetEn are the MNIST

database dataset (database = ‘D1’ and mu = 1), the method for forming a reservoir from
the M3 time series (method = 3), the number of neural network training epochs (Ep = 5),
and the accuracy metric (‘Acc’). There is also a short description of NNetEn parameters
(D1, 1, M3, Ep5, Acc).

To calculate NNetEn, we used a Python library (version 1.0.8) hosted on GitHub [52].

2.6. Time Series Classification Metrics (Stages 4)
In this section, we elaborate on how to calculate the GEFMCC value based on a single

chaotic mapping.
To start with, we describe the method for calculating the classification metric for the

time series of a discrete map for neighboring sets corresponding to two neighboring par-
titions by r.

Figure 4a shows a section of the buffering diagram of the logistic mapping with two
adjacent sets of series corresponding to rj−1 = 3.634 and rj = 3.636; the distance between them
corresponds to dr. Each set contains 100 time series. Examples of the first time series (x1,
…, x300) for each set are shown in Figure 4b,c. FuzzyEn values for 100 time series in each
set are shown in Figure 4d. We denote the average entropy value in each set as En-
tropy_AV (FuzzyEn_AV or NNetEn_AV).

Figure 3. Main steps of NNetEn calculation [1]. The figure shows the main stages of calculation
NNetEn based on the reservoir neural network LogNNet, where the reservoir is filled with the
time series under study, and the entropy value is proportional to the classification metric of the
reference database.

Step 2: Selection of embedded dataset 1 (MNIST-10 [51]) or dataset 2 (SARS-CoV-2-
RBV1 [1]), upon which the classification metrics will be computed. These databases are
included in the Python library for NNetEn calculations and are selected with the parameter
database = ‘D1’ or database = ‘D2’.

Step 3: Formation of the Y vector from the dataset, including a zero offset Y [0] = 1.
Step 4: Normalization of the Y vector.
Step 5: Multiplication of the Y vector with the reservoir matrix and the input vector

Sh = W × Y to convert it into the Sh vector.
Step 6: Feeding the Sh vector into the input layer of the classifier, with a dimension of

P_max = 25.
Step 7: Normalization of the vector Sh.
Step 8: Utilization of a single-layer output classifier.
Steps 9 to 10: The neural network is trained according to the backpropagation method

with a variable number of epochs (Ep) and then tested. The parameter of the entropy
function is referred to as Ep.

Step 11: Transformation of the classification metric into NNetEn entropy.
The parameters used in this work to calculate the entropy of NNetEn are the MNIST

database dataset (database = ‘D1’ and mu = 1), the method for forming a reservoir from the
M3 time series (method = 3), the number of neural network training epochs (Ep = 5), and
the accuracy metric (‘Acc’). There is also a short description of NNetEn parameters (D1, 1,
M3, Ep5, Acc).

To calculate NNetEn, we used a Python library (version 1.0.8) hosted on GitHub [52].

2.6. Time Series Classification Metrics (Stages 4)

In this section, we elaborate on how to calculate the GEFMCC value based on a single
chaotic mapping.

To start with, we describe the method for calculating the classification metric for
the time series of a discrete map for neighboring sets corresponding to two neighboring
partitions by r.

Figure 4a shows a section of the buffering diagram of the logistic mapping with two
adjacent sets of series corresponding to rj−1 = 3.634 and rj = 3.636; the distance between
them corresponds to dr. Each set contains 100 time series. Examples of the first time series
(x1, . . ., x300) for each set are shown in Figure 4b,c. FuzzyEn values for 100 time series
in each set are shown in Figure 4d. We denote the average entropy value in each set as
Entropy_AV (FuzzyEn_AV or NNetEn_AV).

Mathematics 2024, 12, 938 8 of 22
Mathematics 2024, 12, x FOR PEER REVIEW 8 of 23

(a) (b)

(d) (c)

Figure 4. Section of the buffering diagram of the logistic map, on which two adjacent sets of series
are highlighted corresponding to rj−1 = 3.634 and rj = 3.636 (a), series (x1, …, x300) for rj−1 = 3.634 (b),
series (x1, …, x300) for rj = 3.636 (c), and FuzzyEn values for 100 time series for two classes (MCC = 1)
(d). The figure explains the method for calculating the classification metric for the time series of a
discrete map for neighboring sets corresponding to two neighboring partitions by r.

As a result, we compiled a database with two classes. Class 1 contains 100 entropy
values of time series generated at rj = 3.636, and Class 2 contains 100 entropy values gen-
erated at rj−1 = 3.634. To classify the two classes, we will use the threshold model.

The single feature threshold approach involves a simple ML model with a single
threshold Vth separating the two classes. A formula can represent the separation algorithm.

if Entropy value then Class 1) else Cl ((ass 2)thV (10)

The search for Vth was carried out by a sequential search within the limits of changes
in the entropy feature, with the determination of the maximum MCC (MaĴhews correla-
tion coefficient [53]) value. We calculated the MCC for the entire database without divid-
ing it into test and training data, equivalent to calculating the MCC on training data.

MCC is the correlation coefficient between observed and predicted classifications; it
returns a value between −1 and +1. A coefficient of +1 represents a perfect prediction, 0 is
a random prediction, and −1 indicates the opposite, inverted prediction. The higher the
MCC module, the more accurate the prediction is. A negative MCC value means that the
classes must be swapped. The MCC is calculated using the values of the confusion matrix,
as [53]:

(TP TN FP FN)
MСС

(TP FP) (TP FN) (TN FP) (TN FN)

 (11)

where TP, TN, FP, and FN stand for True Positive, True Negative, False Positive, and False
Negative, respectively. The MCC metric is a popular metric in machine learning, includ-
ing binary classification.

Figure 4d shows an example in which the classes are easily separable and MCC = 1.
Figure 5 indicates an example of entropy distribution for classes with rj−1 = 3.688 and rj =
3.69. It can be seen that the classes are poorly separable and MCC ~ 0.45.

0 50 100 150 200 250 300

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x n

n

 r = 3.634

0 20 40 60 80 100
0.35

0.40

0.45

0.50

Class 1

 r = 3.634
 r = 3.636

E
nt

ro
p
y

time series number

Vth = 0.40753

Class 2 MCC=1

0 50 100 150 200 250 300

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x n

n

 r = 3.636

Figure 4. Section of the buffering diagram of the logistic map, on which two adjacent sets of series are
highlighted corresponding to rj−1 = 3.634 and rj = 3.636 (a), series (x1, . . ., x300) for rj−1 = 3.634 (b),
series (x1, . . ., x300) for rj = 3.636 (c), and FuzzyEn values for 100 time series for two classes
(MCC = 1) (d). The figure explains the method for calculating the classification metric for the
time series of a discrete map for neighboring sets corresponding to two neighboring partitions by r.

As a result, we compiled a database with two classes. Class 1 contains 100 entropy
values of time series generated at rj = 3.636, and Class 2 contains 100 entropy values
generated at rj−1 = 3.634. To classify the two classes, we will use the threshold model.

The single feature threshold approach involves a simple ML model with a single
threshold Vth separating the two classes. A formula can represent the separation algorithm.

if Entropy value ≥ Vth then (Class 1) else (Class 2) (10)

The search for Vth was carried out by a sequential search within the limits of changes
in the entropy feature, with the determination of the maximum MCC (Matthews correlation
coefficient [53]) value. We calculated the MCC for the entire database without dividing it
into test and training data, equivalent to calculating the MCC on training data.

MCC is the correlation coefficient between observed and predicted classifications; it
returns a value between −1 and +1. A coefficient of +1 represents a perfect prediction, 0 is
a random prediction, and −1 indicates the opposite, inverted prediction. The higher the
MCC module, the more accurate the prediction is. A negative MCC value means that the
classes must be swapped. The MCC is calculated using the values of the confusion matrix,
as [53]:

MCC =
(TP · TN − FP · FN)√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(11)

where TP, TN, FP, and FN stand for True Positive, True Negative, False Positive, and False
Negative, respectively. The MCC metric is a popular metric in machine learning, including
binary classification.

Figure 4d shows an example in which the classes are easily separable and MCC = 1.
Figure 5 indicates an example of entropy distribution for classes with rj−1 = 3.688 and
rj = 3.69. It can be seen that the classes are poorly separable and MCC ~ 0.45.

Mathematics 2024, 12, 938 9 of 22Mathematics 2024, 12, x FOR PEER REVIEW 9 of 23

Figure 5. Distribution of FuzzyEn in Classes 1 and 2 with rj−1 = 3.688 and rj = 3.69 (MCC~0.45). The
figure shows an example of entropy distribution for poorly separable classes and MCC ~ 0.45.

The MCC(rj) dependence was calculated for all neighboring rj−1 and rj within the
range of changes in the r of each mapping j = 2… Nr. Let us introduce the concept of global
efficiency (GEFMCC), which is calculated within the entire mapping under study using
the following formula:

2

()

1

Nr

j
jGEFMCC

MCC r

Nr

(12)

where j = 2… Nr is the partition index according to r, and Nr is the maximum number of
partitions; see Equations (1)–(4). The GEFMCC characteristic is the equivalent dependence
modulus MCC(rj) average value. It estimates the degree of entropy efficiency over the en-
tire variety of time series of the chaotic mapping.

2.7. Calculation of the Average GEFMCC Value (Stage 5)
The final entropy efficiency value is calculated as the average GEFMCC value over

all chaotic mappings.

(GEFMCC for each chaotic maps)
Average

4
GEFMCC

(13)

2.8. Python Package for GEFMCC Calculation
Following the block diagram in Figure 1, we created a Python script implementation

of the method to assess the effectiveness of entropy.
Stage 1: The function global_map_generator from module map_generate, using input

configuration base_config, is applied to generate synthetic datasets (see Listing 1).

Listing 1. An example configuration of the Python script and function global_map_generator.

> > > import map_generate
…..
> > > base_config = {

‘config_gen’: {
‘log_map’: {

‘N_ser’: 100,
‘N_el’: 300,
‘h1’: 3.4,
‘h2’: 4,
‘h_step’: 0.002,
‘n_ignor’: 1000,
‘x0’: 0.1

},

0 20 40 60 80 100
0.25

0.30

0.35

0.40

0.45

MCC~0.45

 r = 3.688
 r = 3.69

Class 1

Class 2

E
n
tr
o
p
y

time series number

Vth = 0.35761

Figure 5. Distribution of FuzzyEn in Classes 1 and 2 with rj−1 = 3.688 and rj = 3.69 (MCC~0.45). The
figure shows an example of entropy distribution for poorly separable classes and MCC~0.45.

The MCC(rj) dependence was calculated for all neighboring rj−1 and rj within the
range of changes in the r of each mapping j = 2. . . Nr. Let us introduce the concept of global
efficiency (GEFMCC), which is calculated within the entire mapping under study using the
following formula:

GEFMCC =

Nr
∑

j=2

∣∣MCC(rj)
∣∣

Nr − 1
(12)

where j = 2. . . Nr is the partition index according to r, and Nr is the maximum number of
partitions; see Equations (1)–(4). The GEFMCC characteristic is the equivalent dependence
modulus MCC(rj) average value. It estimates the degree of entropy efficiency over the
entire variety of time series of the chaotic mapping.

2.7. Calculation of the Average GEFMCC Value (Stage 5)

The final entropy efficiency value is calculated as the average GEFMCC value over all
chaotic mappings.

Average GEFMCC =
∑(GEFMCC for each chaotic maps)

4
(13)

2.8. Python Package for GEFMCC Calculation

Following the block diagram in Figure 1, we created a Python script implementation
of the method to assess the effectiveness of entropy.

Stage 1: The function global_map_generator from module map_generate, using input
configuration base_config, is applied to generate synthetic datasets (see Listing 1).

The configuration contains parameters for generating chaotic mappings in the con-
fig_gen (see Section 2.2). As a result, the global_map_generator from module map_generate
function creates a local folder with the argument name chaotic_map that contains Nr files.
Each of the files contains NE time series of N elements each. The names of the files corre-
spond to their numbering within Nr.

Stage 2: The pre-processing of synthetic time series takes place in the function gen-
erate_hvg_series from the module transform, which has the data parameters as input (see
Listing 2). After the procedure has been completed, a folder of the name chaotic_map +
’transform’ is created, for example, logistic_transform, and the folder contains the transformed
time series. If a transformation is not performed, the series retain their original values.

Mathematics 2024, 12, 938 10 of 22

Listing 1. An example configuration of the Python script and function global_map_generator.

> > > import map_generate
.
> > > base_config = {

‘config_gen’: {
‘log_map’: {

‘N_ser’: 100,
‘N_el’: 300,
‘h1’: 3.4,
‘h2’: 4,
‘h_step’: 0.002,
‘n_ignor’: 1000,
‘x0’: 0.1

},
.

},
‘config_entropy’: {

‘use_chaotic_map’: ‘log_map’,
‘type_entropy’: ‘fuzzy’,
‘process’: 20,
‘transform’: ‘hvg’,
‘fuzzyen_params’: {

‘fuzzy_m’: 1,
‘fuzzy_r1’: 0.2,
‘fuzzy_r2’: 3,
‘fuzzy_t’: 1

},
‘nneten_params’: {

. . ..
},

}
.
> > > map_generate.global_map_generator(base_config)

Listing 2. Command to transformation HVG.

> > > from transform import generate_hvg_series
. . ..
> > > time_series = generate_hvg_series(data)

Arguments:

• Data—unprocessed time series.

Stage 3: The function global_calculate_entropy from the module entropy, with input con-
figurations base_config (see Listing 3), is used for the entropy calculation. The configuration
specifies the type of entropy and which entropy parameters to use. Any type of entropy
can be used in further studies (Stage 3c), including SampEn, CoSiEn, SVDEn, PermEn, etc.

After the function has been completed, a folder with the name chaotic_map + ’entropy’
is created, for example ‘logistic_entropy’, containing files of entropy calculation results. To
speed up the process of calculating entropy and increase the efficiency of the algorithm,
multiprocessor data processing was used. Making parallel calculations of entropy val-
ues for several matrices simultaneously significantly reduces the overall processing time.
The number of threads used is specified by the ‘process’ argument in the configuration
base_config (see Listing 1). Also, the base_config configuration contains a transform pa-
rameter responsible for data pre-processing (Stage 2), which can take the values ‘hvg’ or
‘no_hvg’.

Mathematics 2024, 12, 938 11 of 22

Listing 3. An example of Python function global_calculate_entropy for entropy calculation.

> > > import entropy
. . ..
> > > entropy.global_calculate_entropy(base_config)

Arguments:

• base_config (see Listing 1).

Stage 4: The function global_calculate_gefmcc from the module classification (see
Listing 4) classifies datasets using a single feature threshold approach and the Matthews
correlation coefficient as a metric.

Listing 4. Command to classify using a single-feature threshold approach.

> > > import classification
. . ..
> > > classification.global_calculate_gefmcc(base_config)

Arguments:

• base_config (see Listing 1).

The GEFMCC value is calculated for each chaotic mapping. After the function has been
completed, a folder of the name chaotic_map + ’classifier’ is created, for example, ‘logistic_
classifier’, and it contains the MCC(rj) calculation results file. A chaotic_map + ’GEFMCC’
file is created and it contains the GEFMCC value.

Stage 5: The final script average_gefmcc initiates all the scripts for stages 1–4, for four
different chaotic mappings, and calculates the average entropy values using Equation (13).
After the script has been completed, a file ‘average_GEFMCC.txt’ is created, which contains
a string of GEFMCC values and the average GEFMCC value for all chaotic mappings, as
an estimate of the efficiency of entropy.

The Python package for GEFMCC calculation presented in this study is publicly
available on GitHub: https://github.com/izotov93/GEFMCC (accessed on 27 February
2024) (version 1.0.1).

3. Results

We present the results of calculating the dependencies between the FuzzyEn_AV(r)
and NNetEn_AV(r) for various discrete mappings before and after the HVG transformation
of the time series. This way, we can observe whether visibility graphs retain enough
information from the time series to calculate the entropies. The results of calculating the
MCC(r) dependencies from which the characteristics of the global efficiency of GEFMCC
from (8) is calculated are presented.

3.1. Results for Logistic, Sine, and Planck Maps

Figure 6a shows an example of a bifurcation diagram for a logistic map in the range
of the control parameter 3.4 ≤ r ≤ 4, with a sampling step dr = 0.002. Figure 6b shows
the FuzzyEn_AV(r) dependences before and after applying the HVG transformation. We
can see that the HVG transformation significantly increases the entropy value, while some
areas change their relative position. In regions A and B, we have reduced the entropies
after having computed the HVGs, which is natural since they consist of ordered time
series. The relative position of area C remained unchanged. The application of the HVG
transformation had virtually no effect on the shape of the NNetEn_AV(r) graph, causing
only a slight upward shift of entropies. The increase in FuzzyEn and NNetE values after
HVG is due, in our opinion, to the fact that HVG has filtering properties and reduces the
constant components of time series. However, FuzzyEn and NNetEn are sensitive to the
constant component of the time series, which can be seen, for example, from the entropy
values for r < 3.45.

https://github.com/izotov93/GEFMCC

Mathematics 2024, 12, 938 12 of 22

Mathematics 2024, 12, x FOR PEER REVIEW 12 of 23

constant component of the time series, which can be seen, for example, from the entropy
values for r < 3.45.

(a)

(b)

(c)

Figure 6. Bifurcation diagrams for the logistic map (a); the dependence of entropy on the parameter
r for NNetEn_AV (b), and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

Figure 7a presents the MCC(r) dependences for FuzzyEn before and after HVG trans-
formation, as well as their difference in ΔMCC, which is computed as follows:

MCC MCC after HVG MCC
 (14)

Positive values of ΔMCC > 0 indicate that, for a given value of r, the degree of classi-
fication of time series for rj−1 and rj increases due to the HVG transformation. Conversely,
negative ΔMCC values indicate a decrease in classification efficiency after HVG transfor-
mation. According to the lower figure (Figure 7, red line), the HVG transformation can
lead to both an increase and a decrease in classification efficiency for different rj. We pro-
vide detailed calculations of the GEFMCC values in Table 1. The average GEFMCC values
for all chaotic mappings are given.

Figure 7b shows the MCC(r) dependences for NeNetEn before and after HVG trans-
formation and their difference in ΔMCC. It can be seen that the amplitude of MCC for
FuzzyEn is more significant than for NNetEn, which also affects the GEFMCC value in
Table 1.

3.4 3.5 3.6 3.7 3.8 3.9 4.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 B

F
uz

zy
E

n
_A

V

r

 FuzzyEn_AV for logistic map after HVG
 FuzzyEn_AV for logistic map

3.8363.743.628

AC

3.4 3.5 3.6 3.7 3.8 3.9 4.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
N

et
E

n
_
A

V

r

 NNetEn_AV for logistic map after HVG
 NNetEn_AV for logistic map

Figure 6. Bifurcation diagrams for the logistic map (a); the dependence of entropy on the parameter r
for NNetEn_AV (b), and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

Figure 7a presents the MCC(r) dependences for FuzzyEn before and after HVG trans-
formation, as well as their difference in ∆MCC, which is computed as follows:

∆MCC = |MCC after HVG| − |MCC| (14)

Positive values of ∆MCC > 0 indicate that, for a given value of r, the degree of classifi-
cation of time series for rj−1 and rj increases due to the HVG transformation. Conversely,
negative ∆MCC values indicate a decrease in classification efficiency after HVG transfor-
mation. According to the lower figure (Figure 7, red line), the HVG transformation can lead
to both an increase and a decrease in classification efficiency for different rj. We provide
detailed calculations of the GEFMCC values in Table 1. The average GEFMCC values for
all chaotic mappings are given.

Mathematics 2024, 12, 938 13 of 22Mathematics 2024, 12, x FOR PEER REVIEW 13 of 23

(a) (b)

Figure 7. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ΔMCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ΔMCC (b). Calculations were made for the logistic map.

Table 1. Comparison of GEFMCC value for different chaotic mappings and entropies, before and
after HVG. The average GEFMCC value for all chaotic mappings is given.

 GEFMCC Average
 Logistic Map Sine Map Planck Map TMBM Map GEFMCC

FuzzyEn no HVG 0.572 0.524 0.360 0.539 0.499
FuzzyEn after HVG 0.334 0.362 0.355 0.2271 0.331

NNetEn no HVG 0.461 0.439 0.485 0.253 0.409
NNetEn after HVG 0.273 0.268 0.288 0.216 0.261

It is convenient to compare the local values of MCC(r) for FuzzyEn and NeNetEn
using their difference in ΔMCC (Figure 8).

MCC MCC for NNetEn MCC for FuzzyEn

(15)

Figure 8. ΔMCC(r) dependences for FuzzyEn and NeNetEn. Calculations were made for the logistic
map.

Figure 8 shows local areas of the time series dynamics in which the classification ef-
ficiency NNetEn is higher than FuzzyEn (ΔMCC > 0), but most of the graph shows ΔMCC
< 0.

3.4 3.5 3.6 3.7 3.8 3.9 4.0

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 FuzzyEn MCC for logistic map

3.4 3.5 3.6 3.7 3.8 3.9 4.0

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for logistic map

3.4 3.5 3.6 3.7 3.8 3.9 4.0

-1.0

-0.5

0.0

0.5

1.0
 FuzzyEn MCC for logistic map after HVG

M
C

C

r
3.4 3.5 3.6 3.7 3.8 3.9 4.0

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for logistic map after HVG

3.4 3.5 3.6 3.7 3.8 3.9 4.0
-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for FuzzyEn

3.4 3.5 3.6 3.7 3.8 3.9 4.0
-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for NNetEn

3.4 3.5 3.6 3.7 3.8 3.9 4.0
-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

M

C
C

r

 (abs(MCC for NNetEn)-abs(MCC for FuzzyEn))

Figure 7. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ∆MCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ∆MCC (b). Calculations were made for the logistic map.

Table 1. Comparison of GEFMCC value for different chaotic mappings and entropies, before and
after HVG. The average GEFMCC value for all chaotic mappings is given.

GEFMCC Average
Logistic Map Sine Map Planck Map TMBM Map GEFMCC

FuzzyEn no HVG 0.572 0.524 0.360 0.539 0.499

FuzzyEn after HVG 0.334 0.362 0.355 0.2271 0.331

NNetEn no HVG 0.461 0.439 0.485 0.253 0.409

NNetEn after HVG 0.273 0.268 0.288 0.216 0.261

Figure 7b shows the MCC(r) dependences for NeNetEn before and after HVG trans-
formation and their difference in ∆MCC. It can be seen that the amplitude of MCC for
FuzzyEn is more significant than for NNetEn, which also affects the GEFMCC value in
Table 1.

It is convenient to compare the local values of MCC(r) for FuzzyEn and NeNetEn
using their difference in ∆MCC (Figure 8).

∆MCC = |MCC for NNetEn| − |MCC for FuzzyEn| (15)

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 23

(a) (b)

Figure 7. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ΔMCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ΔMCC (b). Calculations were made for the logistic map.

Table 1. Comparison of GEFMCC value for different chaotic mappings and entropies, before and
after HVG. The average GEFMCC value for all chaotic mappings is given.

 GEFMCC Average
 Logistic Map Sine Map Planck Map TMBM Map GEFMCC

FuzzyEn no HVG 0.572 0.524 0.360 0.539 0.499
FuzzyEn after HVG 0.334 0.362 0.355 0.2271 0.331

NNetEn no HVG 0.461 0.439 0.485 0.253 0.409
NNetEn after HVG 0.273 0.268 0.288 0.216 0.261

It is convenient to compare the local values of MCC(r) for FuzzyEn and NeNetEn
using their difference in ΔMCC (Figure 8).

MCC MCC for NNetEn MCC for FuzzyEn

(15)

Figure 8. ΔMCC(r) dependences for FuzzyEn and NeNetEn. Calculations were made for the logistic
map.

Figure 8 shows local areas of the time series dynamics in which the classification ef-
ficiency NNetEn is higher than FuzzyEn (ΔMCC > 0), but most of the graph shows ΔMCC
< 0.

3.4 3.5 3.6 3.7 3.8 3.9 4.0

-1.0

-0.5

0.0

0.5

1.0
M

C
C

r

 FuzzyEn MCC for logistic map

3.4 3.5 3.6 3.7 3.8 3.9 4.0

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for logistic map

3.4 3.5 3.6 3.7 3.8 3.9 4.0

-1.0

-0.5

0.0

0.5

1.0
 FuzzyEn MCC for logistic map after HVG

M
C

C

r
3.4 3.5 3.6 3.7 3.8 3.9 4.0

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for logistic map after HVG

3.4 3.5 3.6 3.7 3.8 3.9 4.0
-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for FuzzyEn

3.4 3.5 3.6 3.7 3.8 3.9 4.0
-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for NNetEn

3.4 3.5 3.6 3.7 3.8 3.9 4.0
-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

M

C
C

r

 (abs(MCC for NNetEn)-abs(MCC for FuzzyEn))

Figure 8. ∆MCC(r) dependences for FuzzyEn and NeNetEn. Calculations were made for the
logistic map.

Mathematics 2024, 12, 938 14 of 22

Figure 8 shows local areas of the time series dynamics in which the classification
efficiency NNetEn is higher than FuzzyEn (∆MCC > 0), but most of the graph shows
∆MCC < 0.

Similar results were obtained for the sine and Planck maps. Figure A1a (Appendix A)
shows an example of a bifurcation diagram for a sine map in the control parameter range
0.7 ≤ r ≤ 2, with a sampling step dr = 0.005. Figure A1b,c show the FuzzyEn_AV(r) and
NNetEn_AV(r) dependences before and after the application of the HVG transformation.
Figure A2 shows the MCC(r) dependences for FuzzyEn and NNetEn before and after HVG
transformation and their difference in ∆MCC.

Figure A3a (Appendix A) shows an example of a bifurcation diagram for a Planck
map in the control parameter range 3 ≤ r ≤ 7, with a sampling step dr = 0.01. Figure A3b,c
shows the FuzzyEn_AV(r) and NNetEn_AV(r) dependences before and after the application
of the HVG transformation. Figure A4 shows the MCC(r) dependences for FuzzyEn and
NNetEn before and after HVG transformation, and their difference in ∆MCC.

3.2. Results for TMBM Map

The TMBM map is multi-parametric and more complex than the mappings from
Section 3.1. Figure 9a shows an example of a bifurcation diagram for a TMBM map in the
control parameter range −1.7 ≤ r ≤ −1.5, with a sampling step dr = 0.0005.

Mathematics 2024, 12, x FOR PEER REVIEW 14 of 23

Similar results were obtained for the sine and Planck maps. Figure A1a (Appendix A)
shows an example of a bifurcation diagram for a sine map in the control parameter range
0.7 ≤ r ≤ 2, with a sampling step dr = 0.005. Figure A1b,c show the FuzzyEn_AV(r) and
NNetEn_AV(r) dependences before and after the application of the HVG transformation.
Figure A2 shows the MCC(r) dependences for FuzzyEn and NNetEn before and after
HVG transformation and their difference in ΔMCC.

Figure A3a (Appendix A) shows an example of a bifurcation diagram for a Planck
map in the control parameter range 3 ≤ r ≤ 7, with a sampling step dr = 0.01. Figure A3b,c
shows the FuzzyEn_AV(r) and NNetEn_AV(r) dependences before and after the applica-
tion of the HVG transformation. Figure A4 shows the MCC(r) dependences for FuzzyEn
and NNetEn before and after HVG transformation, and their difference in ΔMCC.

3.2. Results for TMBM Map
The TMBM map is multi-parametric and more complex than the mappings from Sec-

tion 3.1. Figure 9a shows an example of a bifurcation diagram for a TMBM map in the
control parameter range −1.7 ≤ r ≤ −1.5, with a sampling step dr = 0.0005.

(a)

(b)

(c)

Figure 9. Bifurcation diagrams for the TMBM map (a); the dependence of entropy on the parameter
r for NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

After applying the HVG transformation, there is a notable increase in the entropy
values of FuzzyEn_AV, as depicted in Figure 9b. Additionally, Figure 9c illustrates a con-
sistent decrease in NNetEn_AV across a wide range of r following the utilization of HVF.
Figure 10 shows the dependencies of MCC(r) and the discernible differences, denoted as

-1.70 -1.65 -1.60 -1.55 -1.50
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

F
uz

zy
E

n_
A

V

r

 FuzzyEn_AV for TMBM map after HVG
 FuzzyEn_AV for TMBM map

-1.70 -1.65 -1.60 -1.55 -1.50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
N

e
tE

n_
A

V

r

 NNetEn_AV for TMBM map after HVG
 NNetEn_AV for TMBM map

Figure 9. Bifurcation diagrams for the TMBM map (a); the dependence of entropy on the parameter r
for NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

After applying the HVG transformation, there is a notable increase in the entropy
values of FuzzyEn_AV, as depicted in Figure 9b. Additionally, Figure 9c illustrates a
consistent decrease in NNetEn_AV across a wide range of r following the utilization of

Mathematics 2024, 12, 938 15 of 22

HVF. Figure 10 shows the dependencies of MCC(r) and the discernible differences, denoted
as ∆MCC, before and after the HVG transformation for both FuzzyEn (refer to Figure 10a)
and NNetEn (refer to Figure 10b).

Mathematics 2024, 12, x FOR PEER REVIEW 15 of 23

ΔMCC, before and after the HVG transformation for both FuzzyEn (refer to Figure 10a)
and NNetEn (refer to Figure 10b).

(a) (b)

Figure 10. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ΔMCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ΔMCC (b). Calculations were made for the TMBM map.

Figure 11 shows local areas of the time series dynamics in which the classification
efficiency NNetEn is higher than FuzzyEn (ΔMCC > 0), but most of the graph shows
ΔMCC < 0.

Figure 11. ΔMCC(r) dependences for FuzzyEn and NeNetEn. Calculations were made for the
TMBM map.

4. Discussion and Conclusions
In this work, we proposed a method for assessing the effectiveness of entropy fea-

tures using chaotic mappings that enable the exploration of the efficiency of entropy-
based classifications of time series.

Table 1 shows that FuzzyEn and NNetEn have a beĴer GEFMCC performance with-
out HVG transformation. This can be seen in the average GEFMCC values (last column of
Table 1). At the same time, there were local areas of the time series dynamics where the
classification efficiency of NNetEn was higher than that using FuzzyEn (Figures 8 and 11).
Nevertheless, despite reducing the amount of signal information after HVG transfor-
mations, there were local areas of time series dynamics where the classification efficiency
increased when an HVG transformation was applied to the time series (Figures 7, 10, A2

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 FuzzyEn MCC for TMBM map

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for TMBM map

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0
 FuzzyEn MCC for TMBM map after HVG

M
C

C

r

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for TMBM map after HVG

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for FuzzyEn

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for NNetEn

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC for NNetEn)-abs(MCC for FuzzyEn))

Figure 10. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ∆MCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ∆MCC (b). Calculations were made for the TMBM map.

Figure 11 shows local areas of the time series dynamics in which the classification
efficiency NNetEn is higher than FuzzyEn (∆MCC > 0), but most of the graph shows
∆MCC < 0.

Mathematics 2024, 12, x FOR PEER REVIEW 15 of 23

ΔMCC, before and after the HVG transformation for both FuzzyEn (refer to Figure 10a)
and NNetEn (refer to Figure 10b).

(a) (b)

Figure 10. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ΔMCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ΔMCC (b). Calculations were made for the TMBM map.

Figure 11 shows local areas of the time series dynamics in which the classification
efficiency NNetEn is higher than FuzzyEn (ΔMCC > 0), but most of the graph shows
ΔMCC < 0.

Figure 11. ΔMCC(r) dependences for FuzzyEn and NeNetEn. Calculations were made for the
TMBM map.

4. Discussion and Conclusions
In this work, we proposed a method for assessing the effectiveness of entropy fea-

tures using chaotic mappings that enable the exploration of the efficiency of entropy-
based classifications of time series.

Table 1 shows that FuzzyEn and NNetEn have a beĴer GEFMCC performance with-
out HVG transformation. This can be seen in the average GEFMCC values (last column of
Table 1). At the same time, there were local areas of the time series dynamics where the
classification efficiency of NNetEn was higher than that using FuzzyEn (Figures 8 and 11).
Nevertheless, despite reducing the amount of signal information after HVG transfor-
mations, there were local areas of time series dynamics where the classification efficiency
increased when an HVG transformation was applied to the time series (Figures 7, 10, A2

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 FuzzyEn MCC for TMBM map

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for TMBM map

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0
 FuzzyEn MCC for TMBM map after HVG

M
C

C

r

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for TMBM map after HVG

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for FuzzyEn

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for NNetEn

-1.70 -1.65 -1.60 -1.55 -1.50

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC for NNetEn)-abs(MCC for FuzzyEn))

Figure 11. ∆MCC(r) dependences for FuzzyEn and NeNetEn. Calculations were made for the
TMBM map.

4. Discussion and Conclusions

In this work, we proposed a method for assessing the effectiveness of entropy features
using chaotic mappings that enable the exploration of the efficiency of entropy-based
classifications of time series.

Table 1 shows that FuzzyEn and NNetEn have a better GEFMCC performance without
HVG transformation. This can be seen in the average GEFMCC values (last column of Table 1).
At the same time, there were local areas of the time series dynamics where the classification
efficiency of NNetEn was higher than that using FuzzyEn (Figures 8 and 11). Nevertheless,
despite reducing the amount of signal information after HVG transformations, there were
local areas of time series dynamics where the classification efficiency increased when an HVG
transformation was applied to the time series (Figures 7, 10, A2 and A4). As seen in other
contexts, HVGT transformations preserve the structural properties of the time series [33–35].

Mathematics 2024, 12, 938 16 of 22

All chaotic mappings analyzed in this work presented a similar GEFMCC trend when
applying HVGs and when comparing FuzzyEn and NNetEn. This indicates the universality
of this characteristic phenomenon and the fundamentality of the results obtained. As a
basic parameter when estimating entropy, we can take the average value of GEFMCC
values over all chaotic mappings (last column of Table 1). It is necessary to consider that
the results are given for specific entropy settings. Results may differ for other parameters
since the entropies’ effectiveness depends on the entropy calculation parameters. For future
research, different types of entropies can be compared under different parameters. In
addition, it is interesting to identify the dependence of GEFMCC on the length of the time
series. Further research should be conducted to explore other dynamical systems, as is the
case for fractional dynamical systems based on the logistic and sine maps [54–56], where
visibility graphs have already been considered [57].

Although we have shown that HVG representation generally reduces the classification
ability of entropy-based features, it is possible to continue researching the influence of HVG
transformation on the degree of classification of noisy signals by mixing weak noise into
a time series of chaotic maps. This opens up additional research opportunities. The use
of reference datasets based on chaotic mappings makes it possible to vary the length of
the series in any range. In addition, it eliminates random, 1/f, or white noise, which is
impossible to achieve in experimental databases that depend on experimental technology
and the materials used.

We have shown the local effects of increasing the classification efficiency of individual
time series when using NNetEn and HVG transformations. The finding contradicts the
global trend measured by the GEFMCC parameter. In the case of entropy, this could be
explained by the complexity of the entropy function that can be classified into individual
dynamic modes, with a statistical spread from the average trend. In the case of HVG
transformations, this explanation also applies. More research is needed into the effects
of time series length and the effects of extraneous noise to see the complete picture of
the effects.

The fact that FuzzyEn turned out to be more effective in classifying short (N = 300) time
series than NNetEn confirmed the results of our work on the classification of EEG signals [1].
Moreover, experimental work [1,3] showed that FuzzyEn was the most effective compared
to the other entropies, such as SampEn, SVDEn, and PermEn. However, individual pairs
of time series can be better classified by NNetEn; this was also confirmed in the EEG
experiment [1], where one channel performed better when using NNetEn as a feature. In
the same works on EEG signals [1,3], the idea was put forward that classifications based
on several features may perform better, and using FuzzyEn and NNetEn may lead to a
synergistic effect.

The synergy effect of several entropies for signal classification can also be studied
using our presented model of artificial databases based on chaotic mappings. To do
this, it is necessary to replace the single feature threshold approach (Equation (6)) with a
more complex classification model, for example, multi-layer perceptron or support vector
classifiers. This may be a research direction for developing the GEFMCC entropy estimation
approach presented in this work.

The technique we developed has a precise mathematical formulation and can be used
to optimize entropy parameters, such in as the particle swarm optimization method. In this
sense, the problem of classification based on entropy-based features has a more rigorous
solution than assessing the magnitude of chaos and irregularity, which is often based on
intuitive premises [58].

The entropy comparison method proposed in this work is helpful from a theoretical
point of view and can be used in practice. Below, we show a comparison of the standard
approach and its modification.

Previous approaches to analyzing EEG signals and choosing the type of entropy
include the following:

(1) Selecting measurement duration and sampling frequency of the EEG signal.

Mathematics 2024, 12, 938 17 of 22

(2) Experimenting to obtain a set of time series data.
(3) Cutting time series using a specific length N. The value of N is often selected intuitively

or through the repetition of similar work.
(4) Selecting methods for processing time series, filter parameters, or wavelet transformations.
(5) Selecting entropy characteristics, entropies, and their parameters, often intuitively,

through the repetition of values from other works or by brute force.

The approach to analyzing EEG signals using the developed methodology included
the following:

(1) Finding the type of entropy and its parameters with the highest average GEFMCC
value for four chaotic mappings (Table 1, last column). The search for the type of
entropy and its parameters was carried out by enumeration or optimization using
the particle swarm method. Optimize GEFMCC(N) for several values of time series
length N. Select the minimum length N to correspond to the expected classification
accuracy and the capabilities of the experiment.

(2) Selecting the duration of measurements and sampling frequency of the EEG signal
based on the analysis of the results of point 1.

(3) Experimenting to obtain a set of time series data.
(4) Cutting time series at a specific length N, based on the results of point 1.
(5) Selecting methods for processing time series, filter parameters, or wavelet transformations.
(6) Selecting entropy features, entropies, and their parameters, based on the results of

point 1.

We chose four chaotic mappings (Section 2.2) because they all had different time
series dynamics, and the TMBM had a complex multi-parameter function. Time series
of any length can be reproducibly generated, while maintaining their inherent dynamics
determined by the parameters of chaotic mappings. The stability of time series dynamics is
difficult to reproduce in experimental data. Thus, artificial time series modeling is better
suited for comparing entropies according to the GEFMCC efficiency criterion. Averaging
the GEFMCC results over all mappings provides analytical results of the generalized
entropy efficiency.

This method addresses the fundamental importance of finding a tool for compar-
ing the effectiveness of entropies, which are used as features in classification problems.
The developed technique can be applied to select entropy for EEG signals and to create
Brain–Computer Interfacing and other applications for analyzing financial, biological, and
medical signals.

Author Contributions: Conceptualization, J.A.C. and A.V.; methodology, J.A.C., A.V., Ò.G.-i.-O.,
Y.I. and V.-T.P.; software, A.V., Ò.G.-i.-O. and Y.I.; validation, J.A.C., A.V., Ò.G.-i.-O., Y.I. and V.-T.P.;
formal analysis, J.A.C., A.V., Ò.G.-i.-O., Y.I. and V.-T.P.; investigation, J.A.C., A.V., Ò.G.-i.-O., Y.I. and
V.-T.P.; resources, J.A.C., A.V., Ò.G.-i.-O., Y.I. and V.-T.P.; data curation, J.A.C., A.V., Ò.G.-i.-O., Y.I. and
V.-T.P.; writing—original draft preparation, J.A.C., A.V., Ò.G.-i.-O., Y.I. and V.-T.P.; writing—review
and editing, J.A.C., A.V., Ò.G.-i.-O., Y.I. and V.-T.P.; visualization, J.A.C. and A.V.; supervision, J.A.C.;
project administration, J.A.C.; funding acquisition, J.A.C. and A.V. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was supported by the Russian Science Foundation (grant no. 22-11-00055,
https://rscf.ru/en/project/22-11-00055/, accessed on 30 March 2023).

Data Availability Statement: The data used in this study can be shared with other parties, provided
that the article is cited. The Python package for NNetEn calculation involved in this study is publicly
available on GitHub: https://github.com/izotov93/NnetEn (accessed on 9 August 2023) (version
1.0.8). The Python package for GEFMCC calculation presented in this study is publicly available on
GitHub: https://github.com/izotov93/GEFMCC (accessed on 27 February 2024) (version 1.0.1).

Conflicts of Interest: The authors declare no conflicts of interest.

https://rscf.ru/en/project/22-11-00055/
https://github.com/izotov93/NnetEn
https://github.com/izotov93/GEFMCC

Mathematics 2024, 12, 938 18 of 22

Abbreviations and Acronyms

Acc Accuracy
AHVG-DGPE Discrete Generalized Past Entropy based on the Amplitude difference dis-

tribution of the Horizontal Visibility Graph
ApEn Approximate Entropy
BCI Brain–Computer Interfacing
CoSiEn Cosine Similarity Entropy
EEG Electroencephalogram
Ep Number of Epochs
FN False Negative
FP False Positive
FuzzyEn Fuzzy Entropy
GEFMCC Global Efficiency of entropy calculated using Matthews Correlation Coef-

ficient
HVG Horizontal Visibility Graph
LogNNet Logistic Neural Network
MCC Matthews Correlation Coefficient
ML Machine Learning
NNetEn Neural Network Entropy
NVG Natural Visibility Graph
PermEn Permutation Entropy
SampEn Sample Entropy
SVDEn Singular Value Decomposition Entropy
TMBM Two-Memristor-Based Map
TN True Negative
TP True Positive
VG Visibility Graphs
VIU Valencian International University

Appendix A

Mathematics 2024, 12, x FOR PEER REVIEW 18 of 23

1.0.8). The Python package for GEFMCC calculation presented in this study is publicly available on
GitHub: hĴps://github.com/izotov93/GEFMCC (accessed on 27 February 2024) (version 1.0.1).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations and Acronyms
Acc Accuracy

AHVG-DGPE
Discrete Generalized Past Entropy based on the Amplitude difference distribu-
tion of the Horizontal Visibility Graph

ApEn Approximate Entropy
BCI Brain–Computer Interfacing
CoSiEn Cosine Similarity Entropy
EEG Electroencephalogram
Ep Number of Epochs
FN False Negative
FP False Positive
FuzzyEn Fuzzy Entropy
GEFMCC Global Efficiency of entropy calculated using MaĴhews Correlation Coefficient
HVG Horizontal Visibility Graph
LogNNet Logistic Neural Network
MCC MaĴhews Correlation Coefficient
ML Machine Learning
NNetEn Neural Network Entropy
NVG Natural Visibility Graph
PermEn Permutation Entropy
SampEn Sample Entropy
SVDEn Singular Value Decomposition Entropy
TMBM Two-Memristor-Based Map
TN True Negative
TP True Positive
VG Visibility Graphs
VIU Valencian International University

Appendix A

(a)

(b)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

F
u
zz

yE
n_

A
V

r

 FuzzyEn_AV for sin map after HVG
 FuzzyEn_AV for sin map

Figure A1. Cont.

Mathematics 2024, 12, 938 19 of 22Mathematics 2024, 12, x FOR PEER REVIEW 19 of 23

(c)

Figure A1. Bifurcation diagrams for sine map (a); the dependence of entropy on the parameter r for
NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

(a) (b)

Figure A2. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ΔMCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ΔMCC (b). Calculations were made for sine map.

(a)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
N

e
tE

n
_
A

V

r

 NNetEn_AV for sin map after HVG
 NNetEn_AV for sin map

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 FuzzyEn MCC for sin map

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for sin map

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0
 FuzzyEn MCC for sin map after HVG

M
C

C

r
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for sin map after HVG

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for FuzzyEn

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for NNetEn

Figure A1. Bifurcation diagrams for sine map (a); the dependence of entropy on the parameter r
for NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 23

(c)

Figure A1. Bifurcation diagrams for sine map (a); the dependence of entropy on the parameter r for
NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

(a) (b)

Figure A2. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ΔMCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ΔMCC (b). Calculations were made for sine map.

(a)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
N

e
tE

n
_
A

V

r

 NNetEn_AV for sin map after HVG
 NNetEn_AV for sin map

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 FuzzyEn MCC for sin map

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for sin map

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0
 FuzzyEn MCC for sin map after HVG

M
C

C

r
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for sin map after HVG

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for FuzzyEn

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for NNetEn

Figure A2. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ∆MCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ∆MCC (b). Calculations were made for sine map.

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 23

(c)

Figure A1. Bifurcation diagrams for sine map (a); the dependence of entropy on the parameter r for
NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

(a) (b)

Figure A2. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ΔMCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ΔMCC (b). Calculations were made for sine map.

(a)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
N

e
tE

n
_
A

V

r

 NNetEn_AV for sin map after HVG
 NNetEn_AV for sin map

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 FuzzyEn MCC for sin map

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for sin map

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0
 FuzzyEn MCC for sin map after HVG

M
C

C

r
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0
M

C
C

r

 NNetEn MCC for sin map after HVG

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for FuzzyEn

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for NNetEn

Figure A3. Cont.

Mathematics 2024, 12, 938 20 of 22Mathematics 2024, 12, x FOR PEER REVIEW 20 of 23

(b)

(c)

Figure A3. Bifurcation diagrams for Planck map (a); the dependence of entropy on the parameter r
for NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

(a) (b)

Figure A4. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ΔMCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ΔMCC (b). Calculations were made for Planck map.

References
1. Velichko, A.; Belyaev, M.; Izotov, Y.; Murugappan, M.; Heidari, H. Neural Network Entropy (NNetEn): Entropy-Based EEG

Signal and Chaotic Time Series Classification, Python Package for NNetEn Calculation. Algorithms 2023, 16, 255.
hĴps://doi.org/10.3390/a16050255.

2. Aoki, Y.; Takahashi, R.; Suzuki, Y.; Pascual-Marqui, R.D.; Kito, Y.; Hikida, S.; Maruyama, K.; Hata, M.; Ishii, R.; Iwase, M.; et al.
EEG Resting-State Networks in Alzheimer’s Disease Associated with Clinical Symptoms. Sci. Rep. 2023, 13, 3964.
hĴps://doi.org/10.1038/s41598-023-30075-3.

3 4 5 6 7
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

F
uz

zy
E

n
_A

V

r

 FuzzyEn_AV for Planck map after HVG
 FuzzyEn_AV for Planck map

3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
N

e
tE

n
_
A

V

r

 NNetEn_AV for Planck map after HVG
 NNetEn_AV for Planck map

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 FuzzyEn MCC for Plank map

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for Planck map

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0
 FuzzyEn MCC for Planck map after HVG

M
C

C

r

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for Planck map after HVG

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for FuzzyEn

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for NNetEn

Figure A3. Bifurcation diagrams for Planck map (a); the dependence of entropy on the parameter r
for NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 23

(b)

(c)

Figure A3. Bifurcation diagrams for Planck map (a); the dependence of entropy on the parameter r
for NNetEn_AV (b); and FuzzyEn_AV before and after HVG transformation (c). The figures show
changes in the dynamics and irregularity of time series depending on the parameter.

(a) (b)

Figure A4. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ΔMCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ΔMCC (b). Calculations were made for Planck map.

References
1. Velichko, A.; Belyaev, M.; Izotov, Y.; Murugappan, M.; Heidari, H. Neural Network Entropy (NNetEn): Entropy-Based EEG

Signal and Chaotic Time Series Classification, Python Package for NNetEn Calculation. Algorithms 2023, 16, 255.
hĴps://doi.org/10.3390/a16050255.

2. Aoki, Y.; Takahashi, R.; Suzuki, Y.; Pascual-Marqui, R.D.; Kito, Y.; Hikida, S.; Maruyama, K.; Hata, M.; Ishii, R.; Iwase, M.; et al.
EEG Resting-State Networks in Alzheimer’s Disease Associated with Clinical Symptoms. Sci. Rep. 2023, 13, 3964.
hĴps://doi.org/10.1038/s41598-023-30075-3.

3 4 5 6 7
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

F
uz

zy
E

n
_A

V

r

 FuzzyEn_AV for Planck map after HVG
 FuzzyEn_AV for Planck map

3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
N

e
tE

n
_
A

V

r

 NNetEn_AV for Planck map after HVG
 NNetEn_AV for Planck map

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 FuzzyEn MCC for Plank map

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for Planck map

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0
 FuzzyEn MCC for Planck map after HVG

M
C

C

r

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

M
C

C

r

 NNetEn MCC for Planck map after HVG

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for FuzzyEn

3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

M

C
C

r

 (abs(MCC HVG)-abs(MCC)) for NNetEn

Figure A4. MCC(r) dependences for FuzzyEn before and after HVG transformation, as well as their
difference in ∆MCC (a); MCC(r) dependences for NNetEn before and after HVG transformation, as
well as their difference in ∆MCC (b). Calculations were made for Planck map.

References
1. Velichko, A.; Belyaev, M.; Izotov, Y.; Murugappan, M.; Heidari, H. Neural Network Entropy (NNetEn): Entropy-Based EEG

Signal and Chaotic Time Series Classification, Python Package for NNetEn Calculation. Algorithms 2023, 16, 255. [CrossRef]
2. Aoki, Y.; Takahashi, R.; Suzuki, Y.; Pascual-Marqui, R.D.; Kito, Y.; Hikida, S.; Maruyama, K.; Hata, M.; Ishii, R.; Iwase, M.; et al.

EEG Resting-State Networks in Alzheimer’s Disease Associated with Clinical Symptoms. Sci. Rep. 2023, 13, 3964. [CrossRef]
3. Belyaev, M.; Murugappan, M.; Velichko, A.; Korzun, D. Entropy-Based Machine Learning Model for Fast Diagnosis and

Monitoring of Parkinsons Disease. Sensors 2023, 23, 8609. [CrossRef]
4. Yuvaraj, R.; Rajendra Acharya, U.; Hagiwara, Y. A Novel Parkinson’s Disease Diagnosis Index Using Higher-Order Spectra

Features in EEG Signals. Neural Comput. Appl. 2018, 30, 1225–1235. [CrossRef]

https://doi.org/10.3390/a16050255
https://doi.org/10.1038/s41598-023-30075-3
https://doi.org/10.3390/s23208609
https://doi.org/10.1007/s00521-016-2756-z

Mathematics 2024, 12, 938 21 of 22

5. Aljalal, M.; Aldosari, S.A.; Molinas, M.; AlSharabi, K.; Alturki, F.A. Detection of Parkinson’s Disease from EEG Signals Using
Discrete Wavelet Transform, Different Entropy Measures, and Machine Learning Techniques. Sci. Rep. 2022, 12, 22547. [CrossRef]

6. Han, C.-X.; Wang, J.; Yi, G.-S.; Che, Y.-Q. Investigation of EEG Abnormalities in the Early Stage of Parkinson’s Disease. Cogn.
Neurodyn. 2013, 7, 351–359. [CrossRef]

7. Roy, G.; Bhoi, A.K.; Bhaumik, S. A Comparative Approach for MI-Based EEG Signals Classification Using Energy, Power and
Entropy. IRBM 2022, 43, 434–446. [CrossRef]

8. Cuesta-Frau, D.; Miró-Martínez, P.; Oltra-Crespo, S.; Jordán-Núñez, J.; Vargas, B.; González, P.; Varela-Entrecanales, M. Model
Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy
2018, 20, 853. [CrossRef]

9. Vallejo, M.; Gallego, C.J.; Duque-Muñoz, L.; Delgado-Trejos, E. Neuromuscular Disease Detection by Neural Networks and Fuzzy
Entropy on Time-Frequency Analysis of Electromyography Signals. Expert Syst. 2018, 35, e12274. [CrossRef]

10. Nalband, S.; Prince, A.; Agrawal, A. Entropy-Based Feature Extraction and Classification of Vibroarthographic Signal Using
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise. IET Sci. Meas. Technol. 2018, 12, 350–359. [CrossRef]

11. Wu, D.; Wang, X.; Su, J.; Tang, B.; Wu, S. A Labeling Method for Financial Time Series Prediction Based on Trends. Entropy 2020,
22, 1162. [CrossRef]

12. Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol.
Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef]

13. Chanwimalueang, T.; Mandic, D. Cosine Similarity Entropy: Self-Correlation-Based Complexity Analysis of Dynamical Systems.
Entropy 2017, 19, 652. [CrossRef]

14. Li, S.; Yang, M.; Li, C.; Cai, P. Analysis of Heart Rate Variability Based on Singular Value Decomposition Entropy. J. Shanghai Univ.
2008, 12, 433–437. [CrossRef]

15. Xie, H.-B.; Chen, W.-T.; He, W.-X.; Liu, H. Complexity Analysis of the Biomedical Signal Using Fuzzy Entropy Measurement.
Appl. Soft Comput. 2011, 11, 2871–2879. [CrossRef]

16. Simons, S.; Espino, P.; Abásolo, D. Fuzzy Entropy Analysis of the Electroencephalogram in Patients with Alzheimer’s Disease:
Is the Method Superior to Sample Entropy? Entropy 2018, 20, 21. [CrossRef]

17. Mu, Z.; Hu, J.; Min, J. EEG-Based Person Authentication Using a Fuzzy Entropy-Related Approach with Two Electrodes. Entropy
2016, 18, 432. [CrossRef]

18. Kumar, P.; Ganesan, R.A.; Sharma, K. Fuzzy Entropy as a Measure of EEG Complexity during Rajayoga Practice in Long-Term
Meditators. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 10–13
December 2020; pp. 1–5.

19. Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 174102.
[CrossRef]

20. Chakraborty, S.; Paul, D.; Das, S. t-Entropy: A New Measure of Uncertainty with Some Applications. In Proceedings of the 2021
IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021; pp. 1475–1480.

21. Chen, Z.; Ma, X.; Fu, J.; Li, Y. Ensemble Improved Permutation Entropy: A New Approach for Time Series Analysis. Entropy 2023,
25, 1175. [CrossRef]

22. LogNNet Neural Network|Encyclopedia MDPI. Available online: https://encyclopedia.pub/entry/2884 (accessed on 27
February 2024).

23. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

24. Xiong, J.; Liang, X.; Zhu, T.; Zhao, L.; Li, J.; Liu, C. A New Physically Meaningful Threshold of Sample Entropy for Detecting
Cardiovascular Diseases. Entropy 2019, 21, 830. [CrossRef]

25. Zhao, L.; Wei, S.; Zhang, C.; Zhang, Y.; Jiang, X.; Liu, F.; Liu, C. Determination of Sample Entropy and Fuzzy Measure Entropy
Parameters for Distinguishing Congestive Heart Failure from Normal Sinus Rhythm Subjects. Entropy 2015, 17, 6270–6288.
[CrossRef]

26. Udhayakumar, R.K.; Karmakar, C.; Li, P.; Palaniswami, M. Effect of Embedding Dimension on Complexity Measures in Identifying
Arrhythmia. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 6230–6233.

27. Myers, A.; Khasawneh, F.A. On the Automatic Parameter Selection for Permutation Entropy. Chaos Interdiscip. J. Nonlinear Sci.
2020, 30, 33130. [CrossRef]

28. Cuesta-Frau, D.; Murillo-Escobar, J.P.; Orrego, D.A.; Delgado-Trejos, E. Embedded Dimension and Time Series Length. Practical
Influence on Permutation Entropy and Its Applications. Entropy 2019, 21, 385. [CrossRef]

29. EntropyHub/EntropyHub Guide.Pdf at Main MattWillFlood/EntropyHub GitHub. Available online: https://github.com/
MattWillFlood/EntropyHub/blob/main/EntropyHubGuide.pdf (accessed on 14 March 2024).

30. Flood, M.W.; Grimm, B. EntropyHub: An Open-Source Toolkit for Entropic Time Series Analysis. PLoS ONE 2021, 16, e0259448.
[CrossRef]

31. Ribeiro, M.; Henriques, T.; Castro, L.; Souto, A.; Antunes, L.; Costa-Santos, C.; Teixeira, A. The Entropy Universe. Entropy 2021,
23, 222. [CrossRef]

https://doi.org/10.1038/s41598-022-26644-7
https://doi.org/10.1007/s11571-013-9247-z
https://doi.org/10.1016/j.irbm.2021.02.008
https://doi.org/10.3390/e20110853
https://doi.org/10.1111/exsy.12274
https://doi.org/10.1049/iet-smt.2017.0284
https://doi.org/10.3390/e22101162
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.3390/e19120652
https://doi.org/10.1007/s11741-008-0511-3
https://doi.org/10.1016/j.asoc.2010.11.020
https://doi.org/10.3390/e20010021
https://doi.org/10.3390/e18120432
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.3390/e25081175
https://encyclopedia.pub/entry/2884
https://doi.org/10.1109/5.726791
https://doi.org/10.3390/e21090830
https://doi.org/10.3390/e17096270
https://doi.org/10.1063/1.5111719
https://doi.org/10.3390/e21040385
https://github.com/MattWillFlood/EntropyHub/blob/main/EntropyHubGuide.pdf
https://github.com/MattWillFlood/EntropyHub/blob/main/EntropyHubGuide.pdf
https://doi.org/10.1371/journal.pone.0259448
https://doi.org/10.3390/e23020222

Mathematics 2024, 12, 938 22 of 22

32. Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuño, J.C. From Time Series to Complex Networks: The Visibility Graph. Proc.
Natl. Acad. Sci. USA 2008, 105, 4972–4975. [CrossRef]

33. Lacasa, L.; Toral, R. Description of Stochastic and Chaotic Series Using Visibility Graphs. Phys. Rev. E 2010, 82, 36120. [CrossRef]
34. Luque, B.; Lacasa, L.; Ballesteros, F.J.; Robledo, A. Feigenbaum Graphs: A Complex Network Perspective of Chaos. PLoS ONE

2011, 6, e22411. [CrossRef]
35. Flanagan, R.; Lacasa, L.; Nicosia, V. On the Spectral Properties of Feigenbaum Graphs. J. Phys. A Math. Theor. 2019, 53, 025702.

[CrossRef]
36. Requena, B.; Cassani, G.; Tagliabue, J.; Greco, C.; Lacasa, L. Shopper Intent Prediction from Clickstream E-Commerce Data with

Minimal Browsing Information. Sci. Rep. 2020, 10, 16983. [CrossRef]
37. Casado Vara, R.; Li, L.; Iglesias Perez, S.; Criado, R. Increasing the Effectiveness of Network Intrusion Detection Systems (NIDSs)

by Using Multiplex Networks and Visibility Graphs. Mathematics 2022, 11, 107. [CrossRef]
38. Akgüller, Ö.; Balcı, M.A.; Batrancea, L.M.; Gaban, L. Path-Based Visibility Graph Kernel and Application for the Borsa Istanbul

Stock Network. Mathematics 2023, 11, 1528. [CrossRef]
39. Li, S.; Shang, P. Analysis of Nonlinear Time Series Using Discrete Generalized Past Entropy Based on Amplitude Difference

Distribution of Horizontal Visibility Graph. Chaos Solitons Fractals 2021, 144, 110687. [CrossRef]
40. Hu, X.; Niu, M. Degree Distributions and Motif Profiles of Thue–Morse Complex Network. Chaos Solitons Fractals 2023, 176,

114141. [CrossRef]
41. Gao, M.; Ge, R. Mapping Time Series into Signed Networks via Horizontal Visibility Graph. Phys. A Stat. Mech. Its Appl. 2024,

633, 129404. [CrossRef]
42. Li, S.; Shang, P. A New Complexity Measure: Modified Discrete Generalized Past Entropy Based on Grain Exponent. Chaos

Solitons Fractals 2022, 157, 111928. [CrossRef]
43. May, R.M. Simple Mathematical Models with Very Complicated Dynamics. Nature 1976, 261, 459–467. [CrossRef]
44. Sedik, A.; El-Latif, A.A.A.; Wani, M.A.; El-Samie, F.E.A.; Bauomy, N.A.; Hashad, F.G. Efficient Multi-Biometric Secure-Storage

Scheme Based on Deep Learning and Crypto-Mapping Techniques. Mathematics 2023, 11, 703. [CrossRef]
45. Velichko, A.; Heidari, H. A Method for Estimating the Entropy of Time Series Using Artificial Neural Networks. Entropy 2021, 23,

1432. [CrossRef]
46. Pham, V.-T.; Velichko, A.; Van Huynh, V.; Radogna, A.V.; Grassi, G.; Boulaaras, S.M.; Momani, S. Analysis of Memristive Maps

with Asymmetry. Integration 2024, 94, 102110. [CrossRef]
47. Carlos Bergillos Varela Ts2vg. Available online: https://pypi.org/project/ts2vg/ (accessed on 27 February 2024).
48. Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Trans. Neural Syst.

Rehabil. Eng. 2007, 15, 266–272. [CrossRef]
49. EntropyHub. An Open-Source Toolkit for Entropic Time Series Analysis. Available online: https://www.entropyhub.xyz/

(accessed on 27 February 2024).
50. NNetEn Entropy|Encyclopedia MDPI. Available online: https://encyclopedia.pub/entry/18173 (accessed on 27 February 2024).
51. MNIST Handwritten Digit Database, Yann LeCun, Corinna Cortes and Chris Burges. Available online: http://yann.lecun.com/

exdb/mnist/ (accessed on 16 August 2020).
52. GitHub—Izotov93/NNetEn: Python Package for NNetEn Calculation. Available online: https://github.com/izotov93/NNetEn

(accessed on 15 February 2024).
53. Chicco, D.; Warrens, M.J.; Jurman, G. The Matthews Correlation Coefficient (MCC) Is More Informative than Cohen’s Kappa and

Brier Score in Binary Classification Assessment. IEEE Access 2021, 9, 78368–78381. [CrossRef]
54. Wu, G.C.; Baleanu, D. Discrete Fractional Logistic Map and Its Chaos. Nonlinear Dyn. 2014, 75, 283–287. [CrossRef]
55. Wu, G.C.; Niyazi Cankaya, M.; Banerjee, S. Fractional Q-Deformed Chaotic Maps: A Weight Function Approach. Chaos 2020, 30,

121106. [CrossRef] [PubMed]
56. Wu, G.C.; Baleanu, D.; Zeng, S. Da Discrete Chaos in Fractional Sine and Standard Maps. Phys. Lett. A 2014, 378, 484–487.

[CrossRef]
57. Conejero, J.A.; Lizama, C.; Mira-Iglesias, A.; Rodero, C. Visibility Graphs of Fractional Wu–Baleanu Time Series. J. Differ. Equations

Appl. 2019, 25, 1321–1331. [CrossRef]
58. Xiao, H.; Mandic, D.P. Variational Embedding Multiscale Sample Entropy: A Tool for Complexity Analysis of Multichannel

Systems. Entropy 2022, 24, 26. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1103/PhysRevE.82.036120
https://doi.org/10.1371/journal.pone.0022411
https://doi.org/10.1088/1751-8121/ab587f
https://doi.org/10.1038/s41598-020-73622-y
https://doi.org/10.3390/MATH11010107
https://doi.org/10.3390/math11061528
https://doi.org/10.1016/j.chaos.2021.110687
https://doi.org/10.1016/j.chaos.2023.114141
https://doi.org/10.1016/j.physa.2023.129404
https://doi.org/10.1016/j.chaos.2022.111928
https://doi.org/10.1038/261459a0
https://doi.org/10.3390/math11030703
https://doi.org/10.3390/e23111432
https://doi.org/10.1016/j.vlsi.2023.102110
https://pypi.org/project/ts2vg/
https://doi.org/10.1109/TNSRE.2007.897025
https://www.entropyhub.xyz/
https://encyclopedia.pub/entry/18173
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/izotov93/NNetEn
https://doi.org/10.1109/ACCESS.2021.3084050
https://doi.org/10.1007/s11071-013-1065-7
https://doi.org/10.1063/5.0030973
https://www.ncbi.nlm.nih.gov/pubmed/33380011
https://doi.org/10.1016/j.physleta.2013.12.010
https://doi.org/10.1080/10236198.2019.1619714
https://doi.org/10.3390/e24010026
https://www.ncbi.nlm.nih.gov/pubmed/35052052

	Introduction
	Materials and Methods
	The Workflow Diagram of the Proposed Method
	Generation of Synthetic Time Series (Stage 1)
	Natural and Horizontal Visibility Graphs (Stage 2b)
	FuzzyEn Calculation (Stage 3a)
	NNetEn Calculation (Stage 3b)
	Time Series Classification Metrics (Stages 4)
	Calculation of the Average GEFMCC Value (Stage 5)
	Python Package for GEFMCC Calculation

	Results
	Results for Logistic, Sine, and Planck Maps
	Results for TMBM Map

	Discussion and Conclusions
	Appendix A
	References

