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Abstract: The asymptotic synchronization of quaternion-valued delayed neural networks with
impulses and inertia is studied in this article. Firstly, a convergence result on piecewise differentiable
functions is developed, which is a generalization of the Barbalat lemma and provides a powerful tool
for the convergence analysis of discontinuous systems. To achieve synchronization, a constant gain-
based control scheme and an adaptive gain-based control strategy are directly proposed for response
quaternion-valued models. In the convergence analysis, a direct analysis method is developed to
discuss the synchronization without using the separation technique or reduced-order transformation.
In particular, some Lyapunov functionals, composed of the state variables and their derivatives,
are directly constructed and some synchronization criteria represented by matrix inequalities are
obtained based on quaternion theory. Some numerical results are shown to further confirm the
theoretical analysis.
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1. Introduction

In recent decades, various types of real-valued neural networks (RV-NNs) have cap-
tured a lot of attention because of their distinctive structure, and they have been widely
applied in various fields including neuroscience technology, artificial intelligence and nat-
ural language processing [1-3]. To process multi-dimensional data efficiently and tackle
symmetry detection or XOR problems effectively, multi-valued neural networks have been
proposed recently, such as complex-valued neural networks (CV-NNs) and quaternion-
valued neural networks (QV-NNs) [4]. Compared with CV-NNs, QV-NNs have significant
advantages in high-dimensional data processing like color image processing [5], 3D wind
forecasting [6] and object recognition [7]. Currently, as a theoretical foundation, the dy-
namics and control of QV-NNs have drawn a great deal of attention and some valuable
research has been published [8,9].

As we know, synchronization plays a vital role in complex systems since it has the
function of regulating the rhythm of the entire system to achieve consistent behavior.
Actually, synchronization can not only account for many phenomena in nature, but also
has a wide range of applications such as image processing and secure communication [10].
Consequently, synchronization of neural network systems is an important research topic,
and various types of synchronization, such as exponential synchronization [11], quasi-
synchronization [12], projective synchronization [13] and finite-time synchronization [14],
have been widely discussed by virtue of quantized intermittent control [11], event-triggered
control [15] and adaptive control [16]. Meanwhile, delay is inevitable because of network
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parameter fluctuations during hardware operation, the limited speed of transmission of
signals and the switching of amplifiers. Currently, various QV-NN models with different
types of delays have been investigated, including mixed delay [17], leakage delay [18],
proportional delay [9,19] and time-varying delay [20].

Note that the main method adopted in the above results is the separation technique;
that is, the original QV-NNs are divided into two CV-NNs or four RV-NNs [17,21-23].
This method of separation is feasible, but it has some inevitable weaknesses. Firstly, the
separation of QV-NNs is inherently challenging, and it may significantly compromise
the overall system performance. In addition, the dimensions of the system obtained
by separation are two or four times that of the original QV-NNs, which undoubtedly
increases the difficulty of theoretical analysis and the complexity of the synchronization
conditions. Moreover, two or four control inputs must be designed for subsystems after
separation, which may pose a practical implementation challenge. To overcome these
shortcomings, some non-decomposition methods have been developed to analyze the
synchronization of QV-NNs. The authors investigated quasi-synchronization of fractional-
order fuzzy memristive QV-NNs by using a vector ordering approach [24]. The fixed-time
synchronization of QV-NNs with impulses was investigated in [25] by virtue of the non-
decomposition method and the implicit Lyapunov function technique.

In addition to the NN model characterized by the first-order differential equations,
the inertial neural network (INN) model has been widely studied since it was proposed in
1986 [26] due to its important practical background. For example, the charge on a capacitor,
the transverse motion of an extensible beam and the vibrations of hinged bars can be mod-
eled by second-order differential Equations [27], and the membrane behavior of hair cells
and the axon of squid can be described more accurately by INN systems compared with
first-order NN systems [28]. To date, many researchers have studied the synchronization of
diverse INNs and achieved many valuable results [29-32]. In [31], the authors discussed
asymptotic synchronization of memristive Cohen—Grossberg INNs with proportional de-
lays via variable transformations. In [32], the synchronization of memristive INNs with
time-varying delays and parameter disturbance was analyzed via variable transforma-
tions. Note that the above results were obtained by firstly converting the original INN into
two first-order differential systems and then designing two controllers for each first-order
system. In contrast to the cumbersome reduced-order transformation method, a direct
analysis technique was initially developed to discuss the stability and synchronization of
delayed INNs in [33] by creatively constructing a Lyapunov functional composed of the
state variable and its derivative. At present, the method of non-reduction has been widely
developed to study the synchronization of INNs [34-39]. In particular, an event triggering
controller was designed to investigate the synchronization of QV-INNs, and several criteria
were derived by making full use of the non-reduction method in [40]. In [41], a type of
full quaternion-valued inertial neural network (QV-INN) with time-varying delays was
considered, and based on the direct analysis method, the synchronization was studied via
PD control and its adaptive scheme.

During circuit implementation, it has been discovered that artificial neural networks
undergo mutations due to transient disturbances or voltage instabilities, which is known
as the impulse effect [42]. Evidently, the impulse inevitably affects the dynamic changes
of systems and it is valuable to investigate the dynamics and control of impulsive models.
The approximate controllability of impulsive differential systems with the effect of hemi-
variational inequalities was investigated in [43], and some criteria for the existence and
approximate controllability were derived by means of a multivalued map and a generalized
Clarke subdifferential approach. In [44], impulsive CV-INNs with proportional delays
were studied; exponential synchronization and lag synchronization were, respectively,
discussed by directly constructing an appropriate Lyapunov functional to replace the stan-
dard order-reduction transformation. In [45], based on nonlinear feedback control and the
method of order reduction, the synchronization problem of memristor-based QV-INNs
with impulses was addressed. Nevertheless, it is still challenging and valuable to explore
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the synchronization of impulsive QV-INNs under the framework of direct analysis without
utilizing reduced-order transformation and separation methods.

Taking the above as inspiration, this article will study the synchronization problem of
QV-INNs with impulses and time delays by developing a direct analysis technique.

(1) A type of fully quaternion-valued impulsive INN model with time delays is intro-
duced, which extends the previous models of RV-INNs and CV-INNs [36,41,44,46,47].
In addition, a convergence result on piecewise differentiable functions is derived,
which is a generalization of the Barbalat lemma [48] and provides a vital tool for the
convergence analysis of impulsive models.

(2) Under constant gain-based control and adaptive gain-based control, two kinds of
quaternion-valued control schemes are directly developed for the response QV-INNs,
which are distinct from the control designs on the reduced-order systems of inertial
NNs in [31,32] and the control strategies on subsystems obtained by separation used
in [17,21-23].

(3) Without using the separation technique and reduced-order transformation proposed
in [17,21-23,31,32], a direct analysis method is developed to discuss the synchro-
nization of QV-INNSs. In particular, some Lyapunov functionals, composed of the
state variables and their derivatives, are directly constructed for the QV-INNs and
some synchronization conditions represented by matrix inequalities are obtained
based on quaternion theory and the established convergence result on piecewise
differentiable functions.

The rest of this article is as follows. Section 2 introduces the models of QV-INNs and
some preliminaries. The synchronization results are given in Section 3. Section 4 shows
numerical examples. The conclusion is drawn in Section 5.

Notations: In what follows, ® = {1,2,--- ,m}, N7 is the set of all non-negative
integers and R™ and R™ separately represent the set of all non-negative real numbers
and the space consisting of m-dimensional real vectors. Q™ is a set composed of all
m-dimensional quaternion vectors. & = €([—v,0],Q™) is a set composed of all contin-
uous functions on [—v,0]. The norm of quaternion a is defined as ||a|| = v/aa*, where
a* = aR —ali — a]j — aKk represents the conjugate of 4. w = (wy, - - ,wm)T e Q" wH
denotes its conjugate transpose and wT represents its transpose.

2. Model Description and Preliminaries

A category of QV-INNs with time delays and impulses is discussed here, which is
characterized as

Wq(s) = — &qwq(s) — gqwq(s) + Z(:azqrhr(wr(s))

+ Z lorpr(wr(s — 0r(8))) + Jq(8), 5 # sn, (1)
re®
we(sy) =Ngwy(sy), we(sh) = Nyg(sy), q€©, neNF,

in which w,(s) € Q is the state of the gth neuron in the time instant s, both §; € Q
and ¢; € Q are the feedback self-connection weights, z;, € Q, Iy € Q are the weights,
respectively, between neurons r and g without and with time delays, h,(-) and p,(-) : Q —
Q are QV activation functions of the rth neuron and v,(-) is a differentiable time-varying
delay satisfying 0 < v,(s) < 0r, 0 < 0,(s) < U, < 1, where 0, and v, are separately
the supremum values of delay v,(s) and its derivative. J;(-) : Q — Q is a continuous
function and represents the external input of the gth neuron, s, represents the impulsive
time instant and N; € R represents the impulsive strength. Suppose w;(s) and w;(s) are
right continuous at sy, i.e., wy(s;) = wy(sn) and wy(s;) = tg(sn)-
The initial conditions of system (1) are given as

we(t) = Ry(t), wy(t) = Sy(t), —v<t<0, g€O, @)
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where R(t) = (Ry(t), -, R ()T, I(t) = (S1(t), -+, S (1)) € &, v = maxreo{v,}-
Taking system (1) as the driving system, the corresponding response system is repre-
sented as

By(s) = = 8489 5) = 646y (5) + 1, zqrhi(6

re@®

+ Y arpr(0:(s — vr(s))) + Jg(5) + Ug(s), s # sn, @3)

re®
04(st) =Ngby(sy), b4(si) = Ngby(sy), 4 €O, ne N,

where 6,(s) € Q denotes the state variable of the response model, {l;(s) € Q is the external
controller, and other parameters are defined in model (1).
The initial conditions of model (3) are given by

0,(s) = Ry(s), 0,(s) =Sy(s), —v<s5<0,9€80O, (4)

where R(s) = (¥;(s),Ra(s),- -+, Rpu(s))T € 6, S(s) = (S1(5), 32(s),- -+, Sm(s))T € &.
Defining ¢;(s) = 0;(s) — wy(s), which denotes the synchronization error, then

&q(s):_gq.( _Qq +qurr

re®

+ ) Lyrpr(B:(s — vr(s)) + 8g(s), s # s, )
re®

8,(sh) =Ny (sy), Bg(sih) = Nydy(sy), 4€O, ne N,

where 71, (8;(s)) = hy (6;(s)) — B (wr(5)), pr(8 (s — vr(5))) = pr(6:(s — vs(s))) = pr(wi(s —
vr(s)))-

Assumption 1. The activation functions h.(-), p,(-) : Q — Q with r € © are Lipschitz
continuous; that is, there exist positive real numbers H, > 0, P, > 0 such that for any 6,, w, € Q,

1 (0r) = hr (wr) || < Hr[|0r = wrll, |[pr(6r) = pr(wr) || < Pr[|Or — wy .
Assumption 2. For q € ©, n € N, the impulsive weight of the qth neuron satisfies —1 < N, < 1.

Assumption 3. The impulse time series {sn, n € NT} is strictly increasing, lgn Sy = +ooand
n—oo

k = infyen+ {Sn — Sn_1} > 0, where sy = 0.

Definition 1. Let w(s) = (w1 (s), -+, wm(s))T, 6(s) = (61(5),- - - ,0m(s))T be the solutions of

the model (1) and system (3) with any different initial values of N(s), R(s), I(s), (s) € &, respec-

tively. If Er}: 16(s) — w(s)|| = 0, then systems (1) and (3) are used to achieve synchronization.
S (]

Lemma 1. Assume that the time series {sy } satisfies Assumption 3, the function g(s) : RT — Ris
differentiable on each interval [sy,_1,5v). If $(s) is uniform bounded for n € N and fs:w g(v)dv
is convergent, then ET g(s)=0.

s oo

Proof. Note that if ¢(s) is uniform bounded for n € NT, then there exists M > 0 such that
forany s € [s,_1,5n) withn € NT, it holds that [¢(s)| < M.
. . —+o00
For any & > 0, denote 77 = min{ %, 557 }. According to the convergence of fSO g(v)dv
there exists G > 0 such that for any s” > s’ > G, one has

/:”g(v)dv‘ < % (6)

/
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For any s > G + 1, obviously there exists i € N such thats € [s3_1,54). Two cases
are considered in the following.
If s + 1 > s, one has

Sa—1 <Sa—K <sz—2n <s—n<s<sz,

that is, [s —#,5] C [sa—1,5a). So, g(s) is continuous on [s — #,s] and differentiable on
(s —17,5) by means of the differentiability of g(s) on [sa_1,54). For v € [s — 1, 5], based on
Lagrange’s mean value theorem, there exists ¢ € (v, s) such that g(s) — g(v) = ¢(¢)(s — v).
Note thats > G +y and s — > G; it follows from inequality (6) that

/s g(v)dv‘ < I
—y 2

Therefore,

1

8(s)| =

v /:17 g(s)dv‘
1

<o [ Ise) = swlo+

v /:,7 g(v)dv‘
1

<y | JE@w=s)lav+ 3 ?)

€
< —

<e.

If s +1 < sg, then
Sa—1 <s<s+1<Ssa,

that is, [s,s + ] C [sa_1,5a4). Similarly, there exists ¢ € (s,v) such that g(v) — g(s) =
$(¢)(v —s), and it holds that

1 s+ 1 s+n
s, [ 1s6) — sl | [ g0y
1 /s+n €
S A GICEDIEIES-
<e. 8)

In conclusion, for any & > 0, there exists G 2 G + 7, such that |f(s)| < & for any s > G.
Hence, Er}g g(s)=0. O
S o0

Remark 1. At present, the Barbalat lemma has become an important method to discuss the conver-
gence of nonlinear systems [33,41,48], in which the differentiability of the function over the interval
[0, +00) is required. Evidently, it is not applicable to study impulsive models based on the traditional
Barbalat lemma. To try to solve this problem, a generalized version of it is presented in Lemma 1
motivated by the work in [49]. Here, the function is not differentiable at time points {sy }. The
generalized lemma provides a feasible tool to investigate the convergence of discontinuous systems.

Lemma 2 ([41]). Forany u,v € Q, (uv)* = v*u*, (u*)* = uand u + u* = 2uR < 2||ul.
Lemma 3 ([41]). Foranya, b,c € Q,

Jabe™ + ¢(ab)* — a® (be" + ™) | < (Ja’| + ol + " [) ([[6]* + [[e[|?).
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Lemma 4 ([41]). The matrix € = (¢;j)mxm € R™*™ is semi-negative definite, so wHew <0
forall W = (w1, ,0,)T € Q™

3. Synchronization with Constant Gain-Based Control

In this part, a type of control scheme with a constant gain will be developed to discuss
the synchronization of models (1) and (3).

3.1. Main Results

The constant gain-based control strategy is designed as

Ug(s) = —1q84(s )_Sq (s), €0, ©9)

where 17; > 0, ¢; > 0 are the control gains.

Theorem 1. Under Assumptions 1-3 and the control input (9), systems (1) and (3) achieve
synchronization if there exist constants oy > 0, 3¢5 > 0, g # 0 and By # 0 such that

Sq+ 2 My

%q:(m, 9@,)50’

in which

B = — taPatly — agbak + 2laaal(125] + 1231 + 1K)
(JaerBr| +ﬁ2)‘|qu“

+ ﬁz(lgq|+|€q|+|€q|) 22 by

re@)

+35 Z |"‘h3r|+ﬁ2 ||ZVqHHq+ Z “"qﬁq ||lqr||Pr+Hqu”Hr)
re@

Ry =agBqg — Breq — Bady + *|“qﬁq (1251 + 27| + &51)

+ ,32(|Gq|+|€q|+|€q zq Z zgr | Hr + || 1g¢]| Pr),
re@

1 1, 1 1, 1 .2 1,&
My =504+ 505 = 504Bqgeq — 5PgMg — 5%aPaby — 5 P56y

Proof. A Lyapunov functional is constructed as
V(S) =W (S) + VZ(S) + V3(S), (10)

where

Z 040 (s)),

qe@

+ lr S
io "1' _ifj)" e [ sy

qe@ re®

Va(s) = 5 L (@8 (5) + By (5)) (ag8y(s) + Bybi(s))",

q€0

When s € [s,_1,5q), after calculating the upper right-hand Dini derivative of V;(s),
one has

D Vi(s) :% Y 0 (8(s) (04(s))" + 04(s) (84(5))*)- (11)

qe0
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D+V3<S)

Similarly, when s € [s,_1,5n), it follows from the condition 0 < v,(s) < v, < 1 that

DLy ¥ Ichﬁqll +€q>ll lrll P {0:(5)(8,(5))"

qe@ re®

= 8,(s = 0,(9)) (8 (s — vr(6))* (1~ 01(5)) }
2
Dpap Hlf?)”l"’”%(s)(ﬂq(s))*

qe@ re@®

5 Z Z |“q/3q| +,32)||lqr||Pr By (s — vr(s)) (0r(s —vr(s)))" (12)

qe@ re®

When s € [s,_1,5xq), after calculating the upper right-hand Dini derivative of V3(s)
along with the solution of error system (5), one has

=2 % { (@a09() + By (s)) (aqB4(5) + ByBy(5)) (13)

qe@

+ (g B3(5) + ByBy(5)) (aBy (s) + ByBy(s))" }

:Z 02— wgBagq — B2r1g) By () (94(5))" — 1 atgBynigBy(s) (8 (s))*

qE@ qe0

+ 5 Z(“ — 0gPgeq — 5q7q)l9q(s)(19q(5))*

qe@

+ ) (agBq — Bacq) Bq(s)(Jy(s))*

q€0

T By () O(6))" — & K aaBey(9)(GPy(s))"

qe@ qeo®
LY Bty (5)(2g(5))" — 3 X tgBay() 6484 (5))"
2 qe@ 2 q€@
2 :Bq‘:qﬁq E ﬁqﬂq gq&q(s))*
qe@ qe@
Z Bacada( Z B84(5)(6q04(5))*
q€® qe@
+5 2 Y agByzarhtr(8:(5)) (95(5))" + 5 2 Y agBqgBy(s) (2l (8:(5)))
qe@re@ qe@re@
T3 Z Y aqBalarr(8r(s — vr(s))) (9(5))"
qe@re@
+35 2 Y 2489 (s) (LgrPr (9 (s — vr(s))))”
qe@re@
+ = Z Zﬁ22q7~r r + Z Zﬁz (qu r( y(S)))*
qe@re@ qe@re@
t5 2 Y BalgrPr(8r(s — vr(5))) (J4(s))*
qe@re@
+5 Z Y B284(s) (lgrpr(9,(s — vr(s)))) ™ (14)

qe@ re®
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B % Z gBgGqDq(s)(Jq(s))" — % Z L AAOTEACHE
qe@ qeo®
== Z “qﬁqggﬁq(s)(ﬁq(s))*/
g€
- % Y B7Gq4(s) (9 2 B4 ( g(s))*
qe@ qe@
== %ﬁﬁﬁ%q(S)(ﬂq(S)) : (15)
g€
According to Lemma 3,
— 3 T aabilba( (806" — 5 X bty (5) (@b (s))
2 q€0 2 qe0
<-3 X wafalf (80(5) (9 + 84(5) (By(5)°)
qe
+3 2@ aqf] \f;,|+|aq|+|f;q|>(f’q<s><19q<s)>*+ﬂq<s><ﬁq<s>>*),
qE
3 X Faatil > L £30(5) (e )
qe@ qe@
2@[& 65 (84(5)(34(5))" wq(s)wq(s))*)
qE
+5 2 ﬁ2(|g,,| +I6h] + 16K 1) (94() (Bg(5))" + B5(5) (84(5))")- (16)
By using Lemma 2 and Assumption 1,
5 2@ L by (2077 (8:()) (84 (5))" + 04(5) (20 (8:(5))) )
5 ~ R
= T X agBy{ 2l (9:()) (8(5))" }
qeE®@rec®
<Y X lagByllzar i (8r(s) 111 (99 ()"
qeE®re®
< L X lagBylllzar 1 Hrll 8 ()1 (84 (5)) "
qe@re@
_2 2 Z |“q5q‘||zqr||Hr 8 (s)(0r 5 2 Z |“qﬁq‘||zqr||Hr ( ) (0 ( )"
qe@re@ qe@re@
:i Z@ Z@ (lacrBr | l|zrq | g + latg Byl llzgr || Hr) 89 (s) (84 (s)) " (17)
q€@ re
Similarly,

ST L Bz (o, >><6q<s>>*+ﬂq(s>(zq/ﬁr<w<s>>)*}

qe@ re®

<5 Z Y Ballzgrl | Hr 8y (8:(5)) (8 ()" + 5 E Y. Billzgrll HrBg(s)(89(s))*,  (18)

qeE@re® qe@ re®
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: 2 2 q‘Bq{lqur B (s —vr(5))(94(s))" +’~9q(5)(lqr(ﬁr(l9r(5 - Ur(s)))*}
2 cOre®
% Z |"‘qﬁq|||lqr||Pr r(s — Ur(s))(ﬁr(s - Ur(s)))*
€O
%2:2mwammawu<<», (19)
qeE®@re®
;Z%;){wWa‘ 0(5)) 9y 5))" + 85(6) (B (81 (5 — vr ()}
% L Bl P — 0r(5) (25 = or(s)) 0)
€O

I\)M—\m

Y Y BilllarlPrdg(s) (B4 (s))".
qe®@rec®

r

By combining the formulas (11)—(20),

DV(s) <3 X {oy + a2 — aaPacq — B2y — aqPalk — Bk }d(5)(84(5))"

q€0

1
+ X { = agBattg — taBosk + 3 lagBel (1251 + 1)1 + 1K)

qe@

(JarBr| + ,Bz)leqHPq
1—vq

+ ﬁq(lcq|+|€q|+|€q|) 22
re®

+5 Z ((lorBr] +5$)||qu||Hq + laeg Byl zgr || Hr )
re@

+5 Z |“qﬁq ||lquPr)}l9q( )(ﬁq(s))* (21)

re@

3 5 g+ @2~ aaoeg — By — agbak — Bk }o4(5) (8y(s))°

qe@

+ 5 {agby — Bieq — B8+ 5 loabal (1621 + 1251 + 1K)

qe@
+ ﬁq(|§q|+|€q|+|€q +5 Z;Bq||zqr“Hr+ Z@ﬁq||lqr||l)r}l9q( 5)(B4(s))*
=) (84(5), 04(5))Bg (B4 (s), — ) #gBy(s) (84(5))".
q€0 =)

Note that B, < 0, then for s € [s,_1,5n), One gets

DTV(s) < =3 Y 9,(s)(84(s))* <0, (22)
qe0

whe;e » = mingce{sy}. Integrating both sides of the inequality (22) from si_ 1 to sy,
one has

L7 Tt <~ [T D Ve = Ve - Vis) @

n-1g€O » Jsi
and for any s € [s,_1,5n),

V(sy) < V(5) < V(sar). 4)



Mathematics 2024, 12, 949

10 of 22
In addition, when s = s,,,
V(su) :% ;B‘Tqﬁq(sn)(ﬁq(sn))* + % ;a("‘qﬁq(sn) + By04(sn)) (ag04(sn) + BgBg(sn))”
q q
Lgr
rry s WP P a0 an
qE@rE@ Sn—0r(5n)
g% ¥ i (53 (84(57)
+ = Zé ag Ny, (s ) + BaNgq (s ) (g N8y (s5) + BaNgDq(sy )™
2 ¢
1 (laegBql "’,Bz)qurH .
E@ rg@ T AR X ICA T 25)
% ) 949 (sn sn))
qe@
+5 Z@ "‘q “'ﬁq ( ))(“qﬁq(sx:) +,8ql9q(5;))*
2 ¢
1 (“"qﬁﬂ +,32)||lqu *
SLE G P 000
=V(sy)-

From the inequities (24) and (25), it can be concluded that

V(sn) < V(sy) < V(sno1) < V(s,_1) < ... < V(sp).

Note that for any s € R™, there exists a constant n € N such that s € [sz_1,55).
Then, according to (22), V(s) < V(sz_1) and also V(s) < V(sp). In addition, according to

inequalities (23) and (25),

IR
0 4q€®

—/ +/ +. +/5~ 8y ()" du

-1 qe@

<= [V(So) V(sy)+V(s1) =V(sy)+...+ V(sz_1) = V(s)]

»
1
<~ [V(s0) ~ V(s)]
1
< ;V(SO)/
which shows that
/ Y 0, (n Yedy < V(so)
50 ge®

Furthermore, by the construction of V(s), forany s € [s,_1,54) withn € N +,

Y 8,(5)(8,(5)) 2

< ——mMm—
e ~ mingco{og}

V(So),

(26)

(27)

(28)
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and there exists a real constant M > 0 such that

Z@l%(s)(é‘q(s))* <M. (29)
qe

According to Lemma 1,

which implies that system (1) and system (3) realize synchronization under the feedback
controller (9). O

3.2. Results for Some Spacial Cases
Particularly, if v, (s) = 0, in models (1) and (3), then

a

1
$0 = — agBally — tgPack + f|«qﬁq|<|z;| 15+ 1K)

+ ﬁ2<\gq|+|gq|+|gq| )+ 5 Z (locrBr| + B7) g | Py
re@

+ 3 5 Z (|acrBr| +52)||qu||Hq +3 Z g Bg| (11147 ]| Pr + llzgr || Hy)-
re®

Corollary 1. Under Assumptions 1-3 and the feedback control scheme (9), systems (1) and (3)
realize synchronization if there are constants oy > 0, 3¢5 > 0, a5 # 0, By # 0, such that

Proof. Constructing the following Lyapunov functional

V(s) =Va(s) + Vals) + 53 & L (lagfl + BDlPr [ 6,(0)(01(0)) o,

qeE®re®

Analogously, when s € [s,_1,5n),

DHV(s) <5 X {og + 02— agbaq — B — aaPollt — B }8q(s) (8 (5))"

qe0

1
+ ) { _“qﬁqﬂq_“qﬁq€5+§|lxqﬁq\(|§f;| + 18]+ 128D

=
+;ﬁ§(|€§|+|€£+|€§|)+;r§a(wrﬁr|+ﬁ3)llquIIPq

+3 1 ((eobrl + B2l Hy + iyl

+5 rgmﬁq ligr 1) }84(5) (84(s))*

+5 Ea {09+ a2 — wgyeq — Bitg — ool — B2k }04(5) (8 (5))"
+q62®{aqﬁq—ﬁésq—ﬁ§§§+;lwqﬁq|(|€§|+C£I+IC,§<I)

+ ﬁq(|€q|+|€q\+|€§| +5 %ﬁql\zqulHﬂL %ﬁql\lqulpr}ﬁq( 5)(B4(s))"
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2

= Z (1961(5)/l9q(5))%q(l9q(5)fl9q(5))H - Z ”fqﬂq(s)(ﬁq(s))*'
q€0 qeo

where » = mian@{%q}. Since %q < 0,whens € [s,_1,5n), One gets

DY V(s) < —@ ¥ 0,(s)(8,(s))* <O0.
qe@

The rest is analogous to that of Theorem 1, which is omitted here. [J

In what follows, consider a special case in which both system (1) and system (3)
are defined in the real-valued domain. In this case, Assumption 1 is reduced to the
following form.

Assumption 4. The activation functions h,(-), p;(-) : R — R are Lipschitz continuous; that is,
there exist positive real numbers H, > 0, P, > 0 such that for any 6,, w, € R,

|hy(0r) — hy(wr)| < Hyel0r —wy|, [pr(0r) — pr(wy)| < Prl6r — wyl.

In addition, denote

Y

1
§qg = —agBg(cq +1q) + 5 Z [|“q,3q|(‘zqr‘Hr + |lgr | Pr)
re®

(larBr| + B7) g
+(|“rﬁr||zrq|+,3$‘qu|)Hq+ ’ rl_aqr & Pq}/

v 1
%q :D(q’Bq — ﬁé(éq + Eq) + E %ﬁé(qurlHr + ‘lqr‘Pr)/
re
My =0y + af — agBq(Gq + €q) — By (Gq +1q)-
Theorem 2. Under Assumptions 2—4 and the controller (9), real-valued systems (1) and (3) are
synchronized if there exist a positive constant o, and constants ay # 0, B; # 0 such that S)V%q <0,
19,5, > 2.

Proof. A Lyapunov functional is constructed as

where
A 1 1 (|lgBal + B2 lgr| s
() =5 ¥ ogs2s)+5 & L ‘7/341 : Bi)llar Pr/ 02 (0)do,
q€0 7€0 re® Ur s—v,(s)
. 1 ,
Va(s) = 5 ) (agdy(s) + Bgy(s)).

qeo®

When s € [s,_1,5n), after calculating the upper right-hand Dini derivative of V;(s),
one has

(JaegBgl +5$)|lqr|

DVi(s) = Z Uqﬂq(s)ﬂq(s) + % Z Z T % Prﬁf(s)
qe€0 gEO TEO r
« .
P )

|ocq Byl +/3¢27)|lqr|
-5,

<Y oyBy(s),(s) +% Yo ( P87 (s)

q€0 qeE®rec®



Mathematics 2024, 12, 949 13 of 22

122 (ltgBal + B2)llar B 82(5 — 0r(s). (30)
2 cOre®

In addition, from the error system (5),

D+V2(5) = Z ("‘qﬁq (s) + ﬁqﬁq(s))(“qﬁq(s) + ,qu(/iq(s))

qeo®
=) —aqBa(cq +19)85(s) + Y (agBg — B (Cq +29)) 05 (s)

qeo® geO®

+ ZC;) (“5 —agBq(8q+eq) — ,Bé(gq + Uq))ﬁq(s)ﬂq(s) (31)
e

+ Z 2 g Bqty +.Bq q(s ))quﬁr(ﬁr(sn
geEO@re®

+ 2 X (4gByBq(s) + B70(5))gr Pr(Br(s — vr(s))).
geEOrecO®

According to Assumption 4 and the mean-value inequality,

Y- Y aqByO(s)zgrhs(8:(s))

qe®@re®

<Y X laaBallzar [Hr |89 (s)[8:(s)]

qe®@re®

<Y X ‘“qﬁq||zqr|Hr(%l9§(S) + %ﬂ%(s))

qeE®rec®

1
=3 D 3 (lqByllzgr [ Hr + laeBrl|zrq | Hp) 05 (5). (32)
qeE®re®

By using a similar method,

Z Z,BZ qu r( 8(s))

qEOred®
1. 1
<L X BilzplH(585(s) + 587(5) (33)
qe@rE@
Z Y Bylzgr Hy () + 5 Z Y. Bilzwg | Hy3(s),
qe@re@ qe@re@

Y Y 2Ba%(8)lgrPr(9r(s — vr(s))

qe®@re®
1
< Z Z |“q,3q||lqr|Pr(*(l952;(5)> +‘93(5_Ur(5))) (34)
qe@re@
5 Z )y |“q13q||lqr|Prl92 )+ 5 Z Y. |0‘q/3q||lqr|Pr’-92(5_Ur( ),
qeEOred® qe@re@

L Y By8a($)lgrPr(B;(s = vi(s))

qe®@re®

<Y X ﬁzllqupr §2(s) + 07 (s — vr(s))) (35)

qe@ re@

ZEﬁzllquPrﬂz )+ 5 ZEﬁzllquprﬂz vr(s))-

ﬂ€® rc® qeG) =e)
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From (30)—(35), we have
DV(s) < ¥ { ~agbaleg +10) + 5 X [laghol(2gr Hr + 1r|P)
qeo® re@
(rBr| + B7)|1rg | P
o (arr|zrg] + B 2eg| ) Hy + ~— LT L 2(s)
q
+ ) (o + 0‘5 —agBq(Cq+eq) — 55(917 +1775))84(5)94(s)
qeo®
qeo® re@
=) i)v%qﬁg(s) + ) My B,(s)0,(s) + Y &,193(5)
q€0 q€0 PIe)
v om
=Y Ry (9y(5) + S5 19q MG b 93(s), (36)
qeO qe0 q

772

~ . m “ . ~
where N = mmqe@{ﬁ — 84}, and thus it can be seen that & > 0. So, when s € [s,_1,5n),

DV(s) < NZ&Z (37)
qe®

The rest is analogous to that of Theorem 1. O

4. Synchronization with Adaptive Gain-Based Control

In what follows, a quaternion-variable adaptive control protocol is designed to realize
synchronization of the addressed systems (1) and (3).

4.1. Main Results

The quaternion-variable adaptive control strategy is depicted as

ﬂq(s) = Wq(s)ﬂq(s) - sq(s)f’q(s),
Tig(s) =Cq(94(5) (95(5))" + (84(s) (84 () ")),
£4(5) =0q(B4(5)(B4(5))* + (85(s) (84(s))")"), (38)

where g € ©,; > 0,04 > 0.

Theorem 3. Based on Assumptions 1-3 and the adaptive controller (38), system (1) and system (3)
achieve synchronization.

Proof. The Lyapunov functional is constructed as
V(s) = Va(s) + Va(s) + Va(s) + Va(s),
where

¥ 2ol pp(e))?

qe0 é‘i

oy il e,

1
Vi(s) = 5
gc0 %1

2

where 74, €5, a4, B4 are undetermined parameters.
It follows from the adaptive scheme (38) that

DFVy(s) = = ) agBql (g — 119(5)) (94(5) (8g(5))" + (84(5) (85())") %) (39)

qe0
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DTV (s

= L lagBql (2 — £4(5)) (89(5) (B())" + (84() (B4 (5)) "))

q€0

Similar to the derivation of the formula (21), and combined with formula (39), one has

{aq—i—zx — agBgeq(s) — ﬁénq(s) _aqﬁng ,quq} 7(8)(94(s))"

NM—‘

Z
[0
%{*“qﬁqnq ) — agBak + 2laaBal(125) + 1231 + 1K)

(larBr| + B7) g || Py

+ ﬁz(lgq|+|€q|+|€q|) 22

re® 1_U‘7
3 I (Uil Bl + bl )
5 X oabyl(l 1P o 9 05
3 5 (o 0 Baals)— Bl el B )0y

+ 5 {ugby — Bieq(s) — BER+ 3lagbal (23] + Ieh] + 1K)

qe@

+ ﬁ2(|9q|+|€q|+|€q| +5 Zﬁzllzqr\lHr+ ZﬁzlllquIPr} 9(s)(B4(s))"

re@)
- Zé |agBql (7g — ﬂq(S))(ﬁq(S)(ﬁq(S))* + (8(5)(B4(5)))")
qe
- Z@ |91 (8g — £4(5)) (Bq(5) (B ()™ + (I (5) (94(5))")").
ge

Set ay = B4 > 0. Then,

1 — - Q *
D*V(s) <5 2@ {aq +a2 — a2y — a2ijy — a22K - aéglj}ﬁq(S)(ﬁq(S))
qe

_ 1
+ Y { — o2y — a2k + a2 (121 + )] + I2K)
qge0

a7 || g
S0 (lsgl +lehl + s + X 5 & rg P,
re@

+ Z D‘EHqu”Hq + % 2 "‘q(”lquPr + ||qu||Hr)}19q(s)(’~9q(5))*

re@ re®

+ = Z {O'q + g — agEg — agily — arls — a%gg}ﬁq(s)(ﬁq(s))*

qe@

+ ¥ {2~ ooy — 268+ Sad(t] + 161+ 1K)

qc0

1 . . %
sz (loh| + Iehl + ¢k 1) + 5 2 g (llzgr | Hr + ||lqr||Pr)}l9q(S)(l9q(S)) -

re®

Forg € ©, let

To=— b+ 5121+ [2)) + |<:£,<|>

E(ng|+lgq|+lg +

(40)
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1
+ Z 2 ||qu||Hq +35 Z | 1ge || Pr + l|zgr || Hr) + 2
re® Li q

gy =1 &8+ S (125) + le)l + |«:5

1
+ 5 (leql + g5l + lsf ) + 5 Z zgr| Hr + Lgr | P2),
re@

g :aé(éq + 1+ QI; + G{; —-1).
Evidently, o; > 0, and for s € [s4_1,5n), one has

D*V(s) < — ) (s
q€0

By using a similar analysis to Theorem 1, it can be obtained that

lim Z l9q =0.

s%+00

Hence, system (1) and system (3) are synchronized under the adaptive controller (38). O

4.2. Results for Some Special Cases

Similar to Corollary 1 and Theorem 2, the following results can be obtained from

Theorem 3.

Corollary 2. Based on Assumptions 1-3 and the adaptive controller (38), systems (1) and (3) with

vy (s) = Uy are synchronized.

Theorem 4. Under Assumptions 2—4 and the adaptive controller (38), the real-valued systems (1)

and (3) are synchronized.

Proof. The Lyapunov functional is constructed as
V(s) = Vi(s) + Va(s) + Va(s),

Here,

0r(s) =5 & Pl g e 2 o Pl o2,

jeo G gc0 %1

where 74, €5, a4, Bq are undetermined parameters.
Similar to the derivation of the Formula (36), when s € [s,_1,5n),

D*V(s Z { aqBq(Gq +114(s)) + ; Z [|"‘q5q|(|zqr|Hr+ |Lr| Pr)

qe@ re®

rPr % I
] + By -+ DDA
+ Z (Uq + 065 — “qﬁq(gq +£q(5)) - ,B%;(gq + Uq(s)))ﬂq(s)ﬁq(s)

q€0

q€0

- 2 loeg Bgl (775 — 11,7(5))(195(5) + 85(s)94(s))

q€0

- Z g Bql(8g — eq(S))(f’ﬁ(S) + 9,(s)84(s)).

q€0

+ 1 {eaby — Bi@a-+eq(s)) + 5 T Bzl oo+l )}
re
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Set a; = B;. Then, when s € [s,_1,54),

_ 1
D*V(s) <) { —af(cq+ 1) + 5 Yy [a§(|zqr|Hr+ |lgr| Pr)
qe0 re®

202|1,4|P,
+ 202|209 | H + ”7@"’} }192(5)
Ug

1— q
+ Z@(O'q + (xé - aé(éq +&) — 0‘2(@17 +177q))84(s)84(s)
q€
i 1 ;
+ Y a5 [1— (&g + &) + 5 X (Izgr [ He + [Larl P)] 85 (6)-
qe® re®
Set
B 1 [T |l"‘1|P‘7 1
flg=—6q+ 5 |qu|Hr+‘lqr‘Pr+2(*) (|ZW|H‘7+ ~ ) + 5
2 rg) [ &g 1-— Ugq } a%
_ 1
Eg=1-¢4+ 5 Z (|qu|Hr + |lqr|Pr)f
re®

05 = (&g +¢q+8 + 7y — 1)ag.
It can be concluded that for s € [s,_1,5q),

D*V(s) <—) 193(5).
qe®

The rest is analogous to that of Theorem 1. O

Remark 2. In [17,21-23], the synchronization of QV-NNs has been discussed, in which the models
of QV-NNs were rewritten as real-valued or complex-valued submodels via the separation method,
and then each submodel was controlled to achieve synchronization. Different from the analysis
method of separation before control, two types of quaternion-valued control schemes are directly
proposed for the response QV-NNs in this article, and convergence analysis is achieved without
using the separation technique.

Remark 3. In this paper, a direct analysis method is developed to discuss the synchronization
of QV-INNs without using the previous reduced-order transformation proposed in [31,32]. In
particular, some Lyapunov functionals, composed of the state variables and their derivatives, are
directly constructed for the QV-INNs and some synchronization conditions represented by matrix
inequalities are obtained based on the quaternion theory and Lemma 1.

Remark 4. In this paper, if the impulsive strength Ny = 1, then the impulse is invalid and
the obtained results here can be used to determine the synchronization of continuous QV-INNs.
Particularly, Theorem 1 in this paper is consistent with the conclusion of Theorem 2 in [41] when
N;=1landag = B; = 17,?; Theorem 2 in [33] is consistent with Theorem 2 in this paper if Ny = 1
and v(s) = U and J;(s) = J;. Hence, our results can be regarded as some generalizations of
previous synchronization results given in [33,41].

5. Numerical Simulation

A numerical example is used in this section to verify the obtained results by means of
Matlab R2014b (The MathWorks, Inc., Natick, MA, USA).

Consider the drive model (1) and the response system (3), where ® = {1,2},
¢1 = —38—-28—35/—35k ¢ = —25—-35i—35j—28k ¢y = —1.5—-3.8i —4.8j —
2.5k, ¢ = —2.8—2.8i —25j— 25k, Ji(s) = Jo(s) = 0, Ny = Np = 0.55, hy(e) =
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ho(e) = tanh(eR) +isin(e!) + jtanh(e/) 4 ksin(eX), p1(e) = p2(e) = tanh(eR) + i tanh(e!)
+jsin(e/) + ktanh(eX),

Z = (20 )0n = 1.85+1.5i +22j +52k 2.6+ 2.8i +2j + 1.2k
T2\ 1954 15i+j4+ 15k 195429+ 1.4j+ 15k )’

L= (s = [ 25+ 1.5i +2.6j + 2.6k 1.8+ 2.5i + 2.6] + 2.5k
T2\ 0940.8i+26j+08k 2.8+1.8i+38j+28k )

The dynamic evolution of the drive model (1) is given in Figures 1-4, in which the
initial values Nq(t) = —1 —1i —2.2j — 0.2k, S1(t) = —0.5—1.3i — 0.2j — 0.1k, R (t) =
0.3 —0.4i +0.8j — 0.25k, 3(t) = 0.39 —0.2i + 0.75j — 0.5k for t € [—1,0].

-15¢1

-2
-400 -300 -200 -100 0 100 200 300
wii(s)

Figure 1. Dynamic evolution of wX(s) and wX(s).

3(s)
o

-15¢1

-2
-300 -200 -100 0 100 200 300
wi(s)

Figure 2. Dynamic evolution of w! (s) and w}(s).

15

051

051

15 L L L L L L L L L
-250 -200 -150 -100 -50 0 50 100 150 200 250
J
wi(s)

Figure 3. Dynamic evolution of w{ (s) and wé(s)
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wi(s)
<)

0.2

-0.4r1

-0.6

08 . . . . .
-150 -100 -50 0 50 100 150
wi(s)

Figure 4. Dynamic evolution of wX (s) and wk (s).

Firstly, the synchronization between systems (1) and (3) is verified based on the control
protocol (9). By simple calculation, P; = P, = Hy = Hy =1,v = 1,01 = 0, = 0.25. Set
ny = —1.85,00 =475, 1 = B2 =1, and oy = 0.3,02 = §; then, by using the LMI toolbox in
Matlab software, B, < 0 when 11 = 95.319, 17, = 32.0226, ¢1 = 40.2984 and ¢, = 5.8706. So,
by Theorem 1, systems (1) and (3) realize synchronization, which is revealed in Figure 5.

4

3

1,2

3y(s), q

Figure 5. The evolution of synchronization errors d;(s).

Next, adaptive synchronization will be verified. Choose a; = —1.85,ap = 4.75,
,31 = ‘32 =1, o = 0.3, 0y = 8 and 7]1(0) = 172(0) = 81(0) = 82(0) = 0. By Theorem 3,
systems (1) and (3) achieve adaptive synchronization via the adaptive control law (38),
which is demonstrated by Figures 6 and 7.

1,2

y(s), g

0 1 2 3 4 5 6 7 8 9 10

Figure 6. The evolution of synchronization errors d;(s).
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30

—m(s)
72(s)
25 ei(s)| 1
—ea(s)

™ 20
~

= 15t

PIOR

10

o 1 2 s 4 5 & 7 8 s 10
Figure 7. The evolution of control gains 77,(s) and g4(s).

6. Conclusions

The synchronization problem of quaternion-valued delayed neural networks with
impulse and inertia was studied in this paper. In all, a direct analysis method was developed
to ensure synchronization, which is mainly reflected in two aspects. First of all, the control
design is straightforward; that is, a kind of linear control scheme and its adaptive form were
directly designed in the quaternion domain for the response quaternion-valued inertial
systems, which are distinct from the control schemes for the reduced-order systems of
inertial neural networks in [31,32] and the control strategies for subsystems obtained by
separation used in [17,21-23]. Secondly, a convergence analysis is performed directly,
that is, without separating the quaternion-valued systems into real-valued systems or
transforming the inertial networks into first-order models, and some Lyapunov functionals
are constructed directly based on the quaternion-valued error states and their derivatives
to analyze the synchronization. In addition to developing a direct analysis technique, a
generalization result of the Barbalat lemma is derived in Lemma 1. Here, the function is
not necessarily differentiable everywhere; it provides a feasible method to investigate the
stability of discontinuous models.

In addition to asymptotic synchronization, the fixed-time synchronization of INNs
is also a hot issue at present [35,47,50]. However, there seems to be only a few reports on
the fixed-time synchronization of QV-INNs with impulses based on the direct analysis
approach. Moreover, as indicated in [10,27], the stochastic feature is universal in diverse
fields including ecology, engineering and electrical systems, so it would be valuable to
investigate the synchronization of stochastic QV-INNs with impulses. These interesting
problems will be explored in a future study.
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