
Citation: Mosleh, M.A.A.; Assiri, A.;

Gumaei, A.H.; Alkhamees, B.F.;

Al-Qahtani, M. A Bidirectional Arabic

Sign Language Framework Using

Deep Learning and Fuzzy Matching

Score. Mathematics 2024, 12, 1155.

https://doi.org/10.3390/

math12081155

Academic Editor: Michael Voskoglou

Received: 1 March 2024

Revised: 7 April 2024

Accepted: 9 April 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Bidirectional Arabic Sign Language Framework Using Deep
Learning and Fuzzy Matching Score
Mogeeb A. A. Mosleh 1,2 , Adel Assiri 3, Abdu H. Gumaei 4,* , Bader Fahad Alkhamees 5 and Manal Al-Qahtani 5

1 Department of Software Engineering, Faculty of Engineering and Information Technology, Taiz University,
Taiz 6803, Yemen; mogeebmosleh@taiz.edu.ye

2 Department of Computer Science, Faculty of Computer Science and Information Technology, International
University of Technology Twintech, Sana’a 7201, Yemen

3 Department of Informatics for Business, College of Business, King Khalid University,
Abha 61421, Saudi Arabia; adaseri@kku.edu.sa

4 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin
Abdulaziz University, Al-Kharj 11942, Saudi Arabia

5 Department of Information Systems, College of Computer and Information Sciences, King Saud University,
Riyadh 11543, Saudi Arabia; balkhamees@ksu.edu.sa (B.F.A.); 443203302@student.ksu.edu.sa (M.A.-Q.)

* Correspondence: a.gumaei@psau.edu.sa

Abstract: Sign language is widely used to facilitate the communication process between deaf people
and their surrounding environment. Sign language, like most other languages, is considered a
complex language which cannot be mastered easily. Thus, technology can be used as an assistive
tool to solve the difficulties and challenges that deaf people face during interactions with society.
In this study, an automatic bidirectional translation framework for Arabic Sign Language (ArSL)
is designed to assist both deaf and ordinary people to communicate and express themselves easily.
Two main modules were intended to translate Arabic sign images into text by utilizing different
transfer learning models and to translate the input text into Arabic sign images. A prototype was
implemented based on the proposed framework by using several pre-trained convolutional neural
network (CNN)-based deep learning models, including the DenseNet121, ResNet152, MobileNetV2,
Xception, InceptionV3, NASNetLarge, VGG19, and VGG16 models. A fuzzy string matching score
method, as a novel concept, was employed to translate the input text from ordinary people into
appropriate sign language images. The dataset was constructed with specific criteria to obtain 7030
images for 14 classes captured from both deaf and ordinary people locally. The prototype was
developed to conduct the experiments on the collected ArSL dataset using the utilized CNN deep
learning models. The experimental results were evaluated using standard measurement metrics such
as accuracy, precision, recall, and F1-score. The performance and efficiency of the ArSL prototype were
assessed using a test set of an 80:20 splitting procedure, obtaining accuracy results from the highest
to the lowest rates with average classification time in seconds for each utilized model, including
(VGG16, 98.65%, 72.5), (MobileNetV2, 98.51%, 100.19), (VGG19, 98.22%, 77.16), (DenseNet121, 98.15%,
80.44), (Xception, 96.44%, 72.54), (NASNetLarge, 96.23%, 84.96), (InceptionV3, 94.31%, 76.98), and
(ResNet152, 47.23%, 98.51). The fuzzy matching score is mathematically validated by computing
the distance between the input and associative dictionary words. The study results showed the
prototype’s ability to successfully translate Arabic sign images into Arabic text and vice versa, with the
highest accuracy. This study proves the ability to develop a robust and efficient real-time bidirectional
ArSL translation system using deep learning models and the fuzzy string matching score method.

Keywords: bidirectional Arabic sign language; deep learning; convolutional neural network (CNN);
fuzzy string matching score

MSC: 68T05; 03B52; 68T07; 68T09; 68T45; 68T50

Mathematics 2024, 12, 1155. https://doi.org/10.3390/math12081155 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12081155
https://doi.org/10.3390/math12081155
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5094-5561
https://orcid.org/0000-0001-8512-9687
https://orcid.org/0000-0001-7479-7102
https://doi.org/10.3390/math12081155
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12081155?type=check_update&version=2

Mathematics 2024, 12, 1155 2 of 43

1. Introduction

Deaf people suffer from several limitations that constrain them from performing
their daily social activities due to the lack of proper communication with their society.
A large population of deaf people lives without adequate support for the independent
performance of their daily activities, especially in developing Arabic countries. According
to recent World Health Organization (WHO) statistics, around 5% of people worldwide
are considered deaf [1]. Statistics show that in the Arab region, about 17 million people
are considered deaf, and most live in low- and middle-income countries [2]. Furthermore,
a research study [3] reported that more than one million people with disabilities live in
Saudi Arabia. Thus, people with hearing difficulties are considered a highly isolated
population with difficulties interacting with their society to gain experience, knowledge,
and relationships. Deaf and ordinary people mostly communicate using words, numbers,
phrases, lip movements, and facial changes to express themselves. However, the lack of
knowledge of sign language among ordinary people increases communication difficulties
for deaf people, and it is impossible to force them to learn sign language for several reasons.

Recently, technology has attempted to bridge the gap by assisting deaf people to
communicate and interact with their society. However, in the Arab region, the situation is
relatively different due to several issues, such as the lack of government consideration for
disabled people, the limited number of assistive technologies available, and the complexity
of the Arabic language itself [4]. Researchers have tried to create a standard sign language
for Arabic, consisting of 1600 basic and common Arabic signs [5]. However, the problem
still exists because each country has modified sign language. Different signs can be found
for the same word within distinct cities in the region [6]. A few types of research have been
conducted on Arabic Sign Language (ArSL) translation, which suffers from several issues,
such as the limitations of bidirectional translation, vocabulary words, and small datasets,
due to the complexity of the Arabic language with the limitations of existing Arabic signs
in context and an insufficient Arabic sign language dataset. Thus, this research is designed
to facilitate communication between deaf and ordinary people by developing a robust
framework for Arabic signs.

The significance and contributions of this study are to propose a framework for an
automatic bidirectional ArSL translation system using various deep-learning methods with
a fuzzy matching score model. Then, a prototype will be developed and evaluated based
on the proposed framework. The objectives of this research can be listed as follows:

• Proposing a bidirectional Arabic sign translation framework using image processing
approaches, CNN transfer learning, and the fuzzy string matching score method.

• Extracting the essential features of Arabic sign images using several effective transfer
learning-based pre-trained CNN models.

• Designing a lightweight, efficient, and optimized Custom DNN model to classify
Arabic sign language images into corresponding Arabic text words. The Custom DNN
model is built with a minimum number of hidden layers and neurons.

• Developing a fuzzy string matching score-based method to translate Arabic words’ syn-
onyms and spelling errors into appropriate and meaningful Arabic sign
language images.

• Constructing an ArSL dataset containing a large number of Arabic sign images of
Arabic words that can be used for further research to enhance the ArSL
recognition techniques.

• Evaluating the performance and efficiency of the ArSL prototype for each
module individually.

The main contribution of this study is to propose a bidirectional framework for trans-
lating the Arabic sign images and input text into appropriate, meaningful words and
sign images, respectively. The proposed framework is built to be suitable for real-time
translation applications between deaf and ordinary people, and to be implemented on
mobile devices. According to our previous research on sign language recognition [7,8], this
study can be considered a preliminary study on adapting a bidirectional translator to facili-

Mathematics 2024, 12, 1155 3 of 43

tate bidirectional communication between the deaf and ordinary people. In addition, the
study evaluates the performance and efficiency of the different CNN deep learning models
within the context of sign language recognition. This study uses the fuzzy matching score
model to translate the input text from ordinary people into sign images. It was adapted
to improve the efficiency of sign language translation and solve some of the existing sign
language issues.

This work is organized as follows: Section 2 briefly investigates the relevant previous
studies on sign language. Section 3 gives the mathematical background and preliminaries
about the methods used in the proposed framework. Then, the methodology of the
proposed framework and prototype development is explained in Section 4. Section 5
presents the experimental results and discusses them. Finally, Section 6 provides the
conclusion of the research work.

2. Literature Review

The deaf, hard-of-hearing, and hearing loss communities cannot express themselves
well through speech or text, instead using sign language through hand gestures, facial
expressions, and body movements. Sign languages are considered visual communication
languages, which differ significantly from spoken languages in terms of both models and
structure. Sign languages do not translate spoken words directly due to their constraints
in sequences, structure, and syntax [9]. Sign language is considered a nonlinear language
where communication is performed in parallel through several items such as hand direction
and orientation, use of space, facial expression, eye, lip, and eyebrow movements, body
posture, and facial expression [9].

Research has indicated that sign language differs from spoken language in terms of
grammar, phonology, syntax, and morphology, where the phenotypics of hand signs have
different morphemes. In addition, the morphological structure of sign language is not
unique, making the linguistic features of the sign language variant significant [10].

Considerable research has recently been undertaken to develop a machine interpreter
for recognizing different sign languages. Significant improvements in machine translation
have been made with the assistance of technology [11,12]. There are several tools and
techniques produced by technology to facilitate communication between deaf people and
their communities. Sign Language Recognition (SLR) systems are classified into two main
categories: glove-based and vision-based systems. Glove-based systems use hardware with
electromechanical devices for gathering data input from deaf people’s gestures. The glove
is connected to several sensors to obtain the gesture data from the deaf person’s hand and
transfer the data into a computer device for recognition.

On the other hand, vision-based systems apply image processing with machine learn-
ing techniques to recognize sign language. Research has reported that a vision-based
system is more convenient, flexible, and efficient than a glove-based system. Thus, most
vision-based sign language translation systems are developed with three main modules:
object detection, feature extraction, and sign recognition. Those three models are primar-
ily implemented using image processing and machine learning classifiers, where image
processing techniques are used for object detection and feature extraction.

In contrast, a machine learning algorithm identifies and recognizes signs. Some
examples of these valuable techniques are R-CNN [13], histograms of oriented gradients
(HOG) [14], and SSD techniques [15]. Some facial expression recognition models have also
been used in addition to the hand pose to translate sign language.

A study performed by Nguyen and Ranganath on American sign language used the
PCA model to extract the features of 28 facial expressions with a recursive tracker, where
HMM and SVM machine learning was used to train and recognize the tracking results
with improved recognition results for SLR [16]. Amrutha et al. [17] developed a mobile
application to translate text from Indian Sign Language using the CNN model for feature
extraction and classification from sign language images. This study proves the ability to
apply CNN techniques in translating simple sign language. Rajam et al. [18] proposed a

Mathematics 2024, 12, 1155 4 of 43

model to recognize one of the South Indian sign languages using a set of 32 signs. They
used an image-processing technique to extract the fingertip attributes and convert them
into meaningful words. Four models used here as hand pattern recognition included data
acquisition, signal detection, training, and a binary-to-text conversion. They used 320
images for training and 160 images for testing, and they reported the accuracy of their
model as 98.125. This result was obtained due to the limited number of signs and images
used, which was only 14.

Bhuyan et al. [19] adopted a vision-based method for compiling hand gestures to facil-
itate communication between ordinary and deaf people. A 12-megapixel webcam captures
the hand movements in sequence to translate the hand-sign language into appropriate
word meaning. Gandhi et al. [20] introduced a real-time Android application that converts
hand signs into text and voice expressions. Background subtraction technology is used
with the Blob detection algorithm to distinguish between pixel regions. They also used the
Gaussian algorithm to improve the feature extraction process. They reported the ability
of a proposed system to translate the sign into an equivalent text format. Lahoti et al. [21]
proposed an Android application to convert American Sign Language into text using the
YCbCr color model to break down pig skin and extract features from the input images.
They used a support vector machine (SVM) for recognition, and their results showed an
accuracy of 54%.

Recently, a deep learning technique was used in [22] using CNNs based on the Alex
Net model for hand gesture recognition to enable communication with deaf or mute
people, with high accuracy results. Aloysius and Geetha [23] tried to solve the problem of
recognizing the isolated sign language (ISLR) with a solution extended to CSLR by shifting
continuous signal sequences into text. They applied a traditional translation approach
to identify the ongoing sign language (CSLR) using HMM, CRF, and DTW methods,
improving sign recognition performance and efficiency. Imran et al. [24] proposed a
framework for recognizing sign language using three types of motion blocks: DI, RGBMI,
and MHI, excluding the required hand-splitting process. They achieved 70.7% accuracy
when SVM was applied [24].

Arabic Sign Language (ArSL) receives inadequate attention from the research com-
munity due to several issues. One of the most critical issues is that Arabic is considered
one of the most complex languages, with several grammatical rules, syntax, and linguistics
constraints. An Automatic ArSL recognition system based on the glove model has been
proposed by Assaleh et al. [25] with a polynomial networks classifier. They used real ArSL
data collected from real deaf people and reported that their system achieved an accuracy
rate of near 93%. El-Bendary et al. [26] proposed a vision-based model to translate sign
language into text. Three main features were used to implement the hand position, and
50 orientation points with specific angles were extracted features. MLP neural network
and minimum distance algorithms were used as classifiers to achieve 83.7% and 91.3%
accuracy, respectively.

Samir et al. [27] performed a study to construct an ArSL database that included videos
of many Arabic sign languages for translation purposes. They constructed a dictionary
sign with 1216 numbers and alphabets, consisting of 531 sentences, and classified the
Arabic sign into 27 words categorized and expressed using four different hand locations.
Ahmed et al., 2016 [28] developed an automatic translation system that converts the Arabic
sign language into an Arabic script (ATASAT). Their system relied on two Arabic sign
language dictionaries to facilitate communication between deaf and ordinary people. They
used three machine learning classifiers: KNN, MLP, and C4. Their system was helpful for
educational purposes [28]. In 2017, they also produced an automatic translation system
for converting Arabic sign language into written text using an annotated sign language
corpus [29]. Their proposed system was designed using Arabic grammatical rules such as
synonyms, derivatives, pluralism, masculinity, and coordination to construct a sentence
by adding an annotation index. They reported that the proposed system demonstrated
remarkable results in exploring finger dictation and solving some challenges found in

Mathematics 2024, 12, 1155 5 of 43

ArSL [29]. Recently, Luqman et al. [30] introduced a machine translation system for Arabic
sign language that allowed manual interpreters to preserve the structure and meaning of
Arabic sentences. Their system significantly reduced long sentences without losing the
essential words to convey the meaning.

Furthermore, Aly et al., 2020 [31] introduced a framework for ArSL recognition us-
ing three deep learning networks with adaptive instant scaling algorithms for real-time
processes to recognize all hand-sign gestures. Their framework suggested a combination
model of semantic segmentation networks with SOM and two-way deep networks. They
showed an increase in translation performance of 70% and an average accuracy of nearly
89.5% [31]. Furthermore, Kamruzzaman et al. [32] published a study that translated ArSL
into Arabic voice using CNN to analyse and recognize the input images. They reported
that their system achieved great accuracy of approximately 90%. Recently, research has
tried to come up with gaps and limitations of Arabic sign language such as dataset size
and availability, low efficiency, computation complexity, one-directional translation, facial
expression, and different meanings for signs in each country. Balaha et al., 2022 proposed
a vision-based deep learning approach to translate 20 words of Arabic sign language by
employing both the CNN and RNN models. They customized several existing datasets
to create their own dataset with 20 Arabic signs for model evaluation. They reported
that the proposed model achieved an accuracy rate of 93.4% [33]. Nahar et al., 2023 uti-
lized 12 models of deep learning to translate Arabic sign images into voice. They used
10 sign images containing the signs for Arabic numbers to create the dataset. Their experi-
ment showed that the best accuracy result was 93.6% obtained by the VGG16 model [34].
AbdElghfar et al., 2023 proposed a model to recognize Arabic sign language letters for
the learning purposes of the deaf and dumb. The dataset included 14 letter signs with
24,137 sign images. They reported that the proposed model achieved better performance
than existing models [35]. Amor A. et al., 2023 introduced electromyography (EMG) as
hand gesture recognition to construct the Arabic sign dataset for letters and numbers only.
They reported the promise of using such devices for real-time sign translation systems.
However, no experiment was conducted to evaluate their dataset for real-time sign lan-
guage application purposes [36]. Alsulaiman [37] et al., 2024 performed a survey using
17 Arabic sign language datasets to develop a suitable framework for building an Arabic
sign language dataset. They created a large dataset for Saudi sign language including
145,035 samples for 293 signs with 10 different domains. They proposed a CGCN model
architecture for sign language recognition for use in building their own dataset. In 2024, El
Kharoua and Jiang introduced a CNN model for the recognition of Arabic alphabet sign
language using the AASL dataset. They used several methods for data preparation, includ-
ing data cleaning, resizing, background removal, augmentation, zooming, and flipping.
They reported that their methods achieved outstanding accuracy, reaching 97.4% [38].

3. Preliminaries

This work uses deep neural networks (DNNs) and a transfer learning technique
to recognize the meaning of sign language images captured by deaf people and return
their corresponding Arabic words to ordinary people. Furthermore, we use the fuzzy
string matching score to search for Arabic words in the database and return the stored
sign language images to deaf people. DNNs are frequently used in the research field of
automatic classification tasks due to their adaptive nature and accuracy [39]. State-of-the-
art architectures and pre-trained networks can be applied to extract the essential features of
sign language images and build an effective classifier to classify them. Fuzzy text/string
matching is a technique for identifying strings that match a pattern approximately (rather
than perfectly). In other words, fuzzy string matching is a form of search that finds
matches even when users misspell or mispronounce words or enter/pronounce only partial
phrases in the search. Also, the fuzzy string matching technique is beneficial when one
wishes to obtain the degree of association of a word x with its index term word xk to
accurately return the sign language image y; that is, the degree of the meaning for the index

Mathematics 2024, 12, 1155 6 of 43

term word xk corresponds to the meaning of the provided term x. The purpose of this
connection is to address the issue of synonyms among index words. This relation facilitates
the identification of relevant terms for a particular query that would not otherwise be
identified. It occurs if a word characterized by a synonymous index term is determined by
an index term identical to an index term found in the query.

The following subsections introduce initiations and mathematical definitions of deep
neural networks, fuzzy sets, and the concept of fuzzy string matching.

3.1. Deep Neural Networks (DNNs)

McCulloch and Pitts [40] had the idea to bring artificial intelligence into the world in
1943. At that time, they aimed to create an algorithmic method of learning that mimicked
the functioning of the human brain. Because the brain consists of neurons with countless
connections, they introduced so-called artificial neurons as building blocks [41]. In its
most basic form, a neuron in the human brain is made up of dendrites that send signals to
the SOMA while being amplified/scaled by the structural features of the corresponding
dendrites. In the neuron’s SOMA, the incoming impulses are collected, and a choice is
made of whether or not to fire to other neurons and, if so, with what intensity [41].

In this section, we give a mathematical definition of an artificial neuron with its weight
and bias parameter values, which need to be trained.

Definition 1. An artificial neuron network with input x1, ..., xn, activation function ρ : R→ R ,
bias b ∈ R, and weights w1, ..., wn ∈ R, is defined as a function g : Rn → R , given by [42]:

g(x1, . . . , xn) = ρ

(
n

∑
i=1

xiwi + b

)
= ρ(⟨x, w⟩+ b) (1)

Some examples of activation functions with their mathematical equations are given
below [42]:

• Rectifiable Linear Unit (ReLU):

ρ(x) = max(x), (2)

• Step function:

ρ(x) =
{

1, x > 0,
0, x ≤ 0.

(3)

• Sigmoid function:

ρ(x) =
1

1 + e−x . (4)

The most straightforward fundamental activation function is the step function, which
results in a no/yes decision. The sigmoid function offers a smoother option. However, the
ReLU is by far the most commonly utilized activation function in almost all applications
due to its simple piecewise linear construction, which is useful in the training procedure
while still allowing for outstanding performance [42].

A feedforward artificial neural network is created by concatenating artificial neurons
with affine linear maps and activation function compositions. This yields the
following definition:

Definition 2. Suppose d ∈ N is the dimension of the input layer, L the number of layers,
N0 = d, Nl , l = 1, . . . , L is the dimensions of the hidden and last layers, and ρ : R→ R is a

Mathematics 2024, 12, 1155 7 of 43

non-linear activation function. For l = 1, . . . , L, the Tl will be the affine–linear functions, given as
follows [42]:

Tl : RNl−1 → RNl , Tl x = w(l)x + b(l), (5)

with w(l) ∈ RNl×Nl−1 being the weight matrices and b(l) ∈ RNl is the bias vector of the lth layer.
Also, Φ : Rd → RNL can be written as [42]:

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x)) . . .)), x ∈ Rd (6)

By means of Equation (6), we define what are called DNN.

A deep convolutional neural network (CNN) is one type of DNN, widely used in
various image-related tasks such as object detection, image classification, and image seg-
mentation. Let us introduce a simple and abstract description of the CNN structure for
classification, running layer by layer in a forward pass with padding p and stride s as
follows [43]:

x1
Conv→

f 1 x2
Conv→

f 2 x3 Pooling→ . . .→ xl Flatten→ xl+1
Dense→ . . .

wl+1 → xL So f tmax→ z

Suppose xl−1 denotes the input feature map (image), f is the filter (also called weight
or kernel), b is the bias, and xl denotes the output feature map. The convolution operation
is defined as [43]:

xl = ρ
(

f l ∗ xl−1 + bl
)

, (7)

where ‘∗’ denotes the convolution operation, ‘+’ denotes an element-wise addition operation
after convolution, and ρ represents an activation function. It transforms each coefficient α of
the matrix f l ∗ xl−1, and can be applied element-wise to satisfy the non-linearity of the
input. A usual choice is a rectifier such as the ReLU function given in Equation (2) to be
ρ(α) = max(α, 0) for α ∈ R, but it can also be a sigmoid or a modulus ρ(α)=|α| where α
may be complex [44].

Suppose a 3D tensor input xl−1 has height ml−1, width nl−1, and the number of
channels ncl−1. Also, a 3D tensor filter f l has height ql , width rl , and the number of filters
n f l . The dimension of the 3D tensor output xl can be given as:

xl
(ml

t ,n
l
t ,n f l)

= ρ

(
f l
(ql ,rl ,ncl)

∗ xl−1
(ml−1,nl−1,ncl−1)

+ bl
(ml

t ,n
l
t ,n f l)

)
(8)

The ml
t and nl

t are the new height and width of the 3D tensor feature map output xl ,
computed using the following equations:

ml
t =

ml + 2p− ql

s
+ 1 (9)

nl
t =

nl + 2p− rl

s
+ 1 (10)

The convolution operation term in Equation (8) can be represented as a 3D tensor
vector v in Equation (11) and can be rewritten as in Equation (12):

vl
(ml

t ,n
l
t ,n f l)

= f l
(ql ,rl ,ncl)

∗ xl−1
(ml−1,nl−1,ncl−1)

(11)

xl
(ml

t ,n
l
t ,n f l)

= ρ

(
vl
(ml

t ,n
l
t ,n f l)

+ bl
(ml

t ,n
l
t ,n f l)

)
(12)

Mathematics 2024, 12, 1155 8 of 43

Because f l is linear, vl
(ml

t ,n
l
t ,n f l)

may be written as a sum of convolutions:

vl
(i=1...ml

t ,j=1...nl
t ,d=1...n f l)

=
ml−1

∑
i=1

nl−1

∑
j=1

ncl−1

∑
d=1

f l(i, j, d)× xl−1
(

ml−1 − i, nl−1 − j, d
)

(13)

Pooling layers are often used to reduce or down-sample the feature maps’ dimensions,
decreasing the computation’s complexity and only extracting the dominant features. Two
types of pooling operators are widely used. Average pooling is one of the pooling operators
that take the average value of all features in the pooling window. Max pooling is another
commonly used pooling operator. Suppose that the height and width of the window size
for the pooling layer are pH and pW. The average and max pooling for each channel of the
input feature map xl−1 are given in Equations (14) and (15), in which the number of channels
of the output feature map xl will have the same number of channels for the input feature
map xl−1, and its height and width will be ml = ml−1 − pH + 1 and nl = nl−1 − pW + 1.

xl
(i=1...ml ,j=1...nl)

=
1

pH × pW

ml

∑
i

nl

∑
j

xl−1(i + pH, j + pW) (14)

xl
(i=1...ml ,j=1...nl)

= max
0≤i≤ml ,0≤j≤nl

xl−1(i + pH, j + pW) (15)

After several convolutional and pooling layers, the extracted features xl are flattened
into a vector with size (1, a), where a = ml

t × nl
t × n f l , and passed through one or more

fully connected layers (dense layers) with several hidden neurons h, weight wl+1, and bias
bl+1. The output vector xl+1 is computed as follows:

xl+1
(1,h) = ρ

(
xl
(1,a) × wl+1

(a,h) + bl+1
(1,h)

)
(16)

The multiplication operation xl
(1,a) × wl+1

(c,h) can be represented as a vector ul+1 with
size (1, h) in Equation (17) and computed using Equation (1) as rewritten in Equation (18):

xl+1
(1,h) = ρ

(
ul+1
(1,h) + bl+1

(1,h)

)
(17)

ul+1
(1,h) =

a

∑
j=1

xl
(1,j) × wl+1

(j,h) (18)

The last layer z is a loss layer, which has a cost or loss function used to measure the
discrepancy between the prediction of xL and the corresponding target (ground-truth)
value t for the input x1.

Suppose the classification task has c labels/classes. A frequently used approach is to
output z as a c dimensional vector that encodes the prediction (the posterior probability
of x1 derives from the ith class) [43]. To make z a probability mass function, the (L)th
processing will be as a transformation of the softmax function of xL, given as:

z(1,j) =
exL

(1,j)

∑c
j=1 exL

(1,j)
(19)

z(1,j) = argmax
0≤j≤c

xL
(1,j), (20)

where c is the number of class labels and z(1,j) is the output of the jth neuron in the
softmax layer.

These equations define the core functions of a deep CNN model. The parameters
(weights, filters, and biases) are trained using a back-propagation method, which may be

Mathematics 2024, 12, 1155 9 of 43

generated using stochastic gradient descent and regularization techniques like dropout
throughout the training phase. The training method minimizes a predetermined loss
function (such as cross-entropy loss) between expected outputs and ground truth labels.
As in several other learning methods, the CNN’s parameters are optimized to minimize the
loss z, i.e., the CNN model’s prediction aims to match the ground-truth labels. Assume
one training instance x1 is provided for training such parameters. The CNN network will
be run in both directions during the training process. In the forward pass, the network
runs to achieve a prediction and obtain xL using the current CNN parameters [43]. Then,
instead of outputting the predicted class, it compares the predicted class with the target
class t corresponding to x1. This means continuing the forward pass until the last loss layer.
Finally, a loss of z will be achieved. The loss z is a supervision indicator to guide the model’s
parameters to be updated [43]. The SGD method used for modifying the parameters is
defined as [43]:

wi ← wiη
∂z

∂wi (21)

The learning procedure of CNN can depend on the vector calculus and chain rule.
Suppose z is a scalar (i.e., z ∈ R) and y ∈ RH is a vector. So, if z is a function of y, then the
partial derivative of z concerning y is a vector, defined as [45]:(

∂z
∂y

)
i
=

∂z
∂yi

(22)

Explicitly, (∂z
∂y) is a vector with the same size as y, and its ith element is (∂z

∂y)i
. Also, note

that (∂z
∂yT) = (∂z

∂y)
T

. Furthermore, presume x ∈ RW is another vector, and y is a function of x.
Then, the partial derivative of y concerning x is defined as [45]:(

∂z
∂xT

)
=

(
∂z

∂yT

)(
∂y

∂xT

)
(23)

Some network topologies have shown instabilities [46], where the addition of tiny
perturbations on x can result in huge fluctuations of xi. This occurs when the norms of the
matrices wi are greater than one and hence magnified when cascaded. However, transfer
learning [47] demonstrates that deep networks have a high level of stability. If the final
classification layers are trained on a new (domain-specific) dataset, a deep network layer xi
that has been tuned on specific training datasets might approximate distinct classification
functions. This suggests that it has acquired stable structures that can be applied to
comparable learning tasks.

3.2. Fuzzy Set and Fuzzy String Matching Score

In fuzzy set theory, a set can be defined by its ambiguous boundaries, which means
that uncertainty exists about the location of these boundaries. A classical set theory allows
the membership of the elements in a set of binary terms {0, 1}. A fuzzy set theory is an
extension of the classical set theory, in which the membership of an element is a function
valued in the interval [0, 1] [48].

Suppose we use the crisp and fuzzy sets’ membership function (discrimination func-
tion or characteristic function). In this case, we can characterize whether an element x is in
a set A or not using the following definitions:

Definition 3 (Membership function of crisp set). For a set A, we define a membership func-
tionMA such as [48]:

MA =

{
1 if and only if x ∈ A
0 if and only if x /∈ A

(24)

Mathematics 2024, 12, 1155 10 of 43

We can say that the functionMA in the crisp set maps the elements in the universal set X to
the set {0, 1}.

MA : X → {0, 1} (25)

Definition 4 (Membership function of fuzzy set). In fuzzy crisp sets, each element is mapped to
[0, 1] by a membership function, represented as [48]:

MA : X → [0, 1], (26)

where [0, 1] is the interval of real numbers between 0 and 1 (including 0, 1).

Consequently, the fuzzy set is a ‘vague boundary set’ compared with a crisp set. Fuzzy
string/text matching is a method used to find strings that match a pattern approximately
(rather than exactly) [49]. In other words, fuzzy string matching is a search that tries to
find matches even when users misspell/mispronounce words or enter/pronounce only
partial words for the search. Several fuzzy string matching algorithms include Levenshtein
distance, Jaccard similarity, Jaro–Winkler, and Longest Common Subsequence (LCS) [49].
This work selects a Levenshtein distance algorithm due to its versatility and simplicity,
allowing for seamless integration into several applications and programming languages.

Moreover, it is robust for comparing textual data, making it valuable for various
data analytics and artificial intelligence (AI) tasks. The Levenshtein distance [50] is a
string measure for obtaining the difference between two words. One of the most effective
fuzzy string-matching metrics is the Levenshtein distance. The Levenshtein distance
between two words is the minimum number of single-character edits (deletions, insertions,
or substitutions) for changing one word into another [51]. This subsection presents a
mathematical description of the Levenshtein distance algorithm.

Definition 5 (Levenshtein Distance). The Levenshtein distance measure between two words S1 and S2
of length |S1| and|S2|, correspondingly, is given by [51]:

lev(S1, S2) =

|S1|, i f |S2| = 0,
|S2|, i f |S1| = 0,

lev(tail(S1), tail(S2)) i f head(S1) = head(S2),

1 + min

lev(tail(S1), S2)
lev(S1, tail(S2))

lev(tail(S1), tail(S2))
otherwise

, (27)

where the tail of a string word S is a string of all but the first character of word S, and head(S) is
the first character of word S. Either the notation S[n] or Sn is used to refer to the nth character of
the string word S, counting from 0; thus, head(S) = S = S[0].

The first element in the minimum matches the deletion (from S1 to S2), followed by
insertion and replacement. This definition is the same as the naïve recursive implemen-
tation. The process computes the Levenshtein distance in a matrix row-by-row, in which
each cell represents the edit distance between a prefix of S1 and a prefix of S2. Precisely, the
function lev(i, j) takes the value of one if the ith word of S1 is different from the jth word
of S2, and zero otherwise. The final edit distance between S1 and S2 is given by the value
in the bottom-right corner lev(S1, S2) of the Levenshtein distance matrix [51].

4. Proposed Framework

In this study, an Arabic sign language translation framework is mainly designed using
image processing, deep learning, and fuzzy logic methods. The main aim of this study is to
propose a bidirectional framework for developing an automatic translation prototype of
Arabic sign language into corresponding meaningful words and vice versa. The proposed

Mathematics 2024, 12, 1155 11 of 43

framework is designed to include two main modules for automatic bidirectional translation,
as shown in Figure 1 below.

Mathematics 2024, 12, 1155 11 of 46

Figure 1. Proposed framework for bidirectional Arabic sign language.

The framework for translating the sign language bi-directionally is proposed. The
first module of the framework is developed to translate the sign image of deaf people into
text understood by ordinary people. The second module of the framework is built to
translate the input Arabic text for ordinary people into sign images to be understood by
deaf people. The two main modules will be briefly discussed in the following sections.

4.1. Sign-to-Word Module
This module is developed to support the translation process between deaf and

ordinary people. It consists of dataset collection and an image processing step, CNN
implementations and a feature extraction model, a training and testing model, and system
developments, as shown in Figure 2 below.

Figure 2. The sign-to-word translation module.

Figure 1. Proposed framework for bidirectional Arabic sign language.

The framework for translating the sign language bi-directionally is proposed. The first
module of the framework is developed to translate the sign image of deaf people into text
understood by ordinary people. The second module of the framework is built to translate
the input Arabic text for ordinary people into sign images to be understood by deaf people.
The two main modules will be briefly discussed in the following sections.

4.1. Sign-to-Word Module

This module is developed to support the translation process between deaf and ordinary
people. It consists of dataset collection and an image processing step, CNN implementations
and a feature extraction model, a training and testing model, and system developments, as
shown in Figure 2 below.

Mathematics 2024, 12, 1155 11 of 46

Figure 1. Proposed framework for bidirectional Arabic sign language.

The framework for translating the sign language bi-directionally is proposed. The
first module of the framework is developed to translate the sign image of deaf people into
text understood by ordinary people. The second module of the framework is built to
translate the input Arabic text for ordinary people into sign images to be understood by
deaf people. The two main modules will be briefly discussed in the following sections.

4.1. Sign-to-Word Module
This module is developed to support the translation process between deaf and

ordinary people. It consists of dataset collection and an image processing step, CNN
implementations and a feature extraction model, a training and testing model, and system
developments, as shown in Figure 2 below.

Figure 2. The sign-to-word translation module. Figure 2. The sign-to-word translation module.

4.1.1. Dataset Collection and Image Processing

One of the objectives of this study is to create a new dataset for Arabic sign language
(ArSL) that can be used as a base for future state-of-the-art studies. The criteria used to
develop the ArSL dataset was performed using the hand gestures from “The Unified Arabic

Mathematics 2024, 12, 1155 12 of 43

Dictionary”. The hand-sign images are captured in unconstrained environments to create
the dataset with the following criteria:

• Hand signs taken represented different words only without any facial expression.
• Deaf and ordinary people captured the dataset’s hand-sign images to represent bidi-

rectional ArSL translation.
• The dataset images included different hand gestures, moves, and positions.
• The dataset images were captured by using the front camera of a Samsung Android

system to represent real-time translation between deaf and ordinary people.
• The dataset hand images were captured from different distances, angles, backgrounds,

and light sources.
• The dataset’s hand images were taken with good image quality and hand-sign focus.

Image acquisition was performed using the front camera of a Samsung Note 9, where
the captured image resolution is 2640 × 1980 pixels. Two image processing methods
were applied mainly to fix the dataset criteria issues, including image enhancement and
segmentation. The image enhancement method improves the intensity and quality of
captured images. These images are acquired with different brightness and contrast values
due to the conditions of indoor and outdoor environments, such as changes in lights,
shadows, and background. It uses an adaptive histogram equalization (AHE) algorithm to
enhance the dataset images by automatically computing images’ histograms and correcting
their contrast and brightness. Because of camera shake and resolution changes, some
images might be noisy and blurry; hence, the AHE effectively deals with these issues. An
image segmentation model also extracts hand gestures from different backgrounds. A slope
difference distribution (SDD) method has been implemented in this study and has recently
been considered the most accurate segmentation technique for hand gestures [52].

Then, the extracted hand-sign images were rotated automatically using the angle
of inclination with the object auto alignment function into the appropriate hand gesture
position [53]. The final hand-sign images were resized into 128 × 128 resolution to increase
the performance of subsequent feature extraction and classification steps. The processed
sign images were organized and labeled to create a preliminary Arabic sign language
(ArSL) dataset for training and testing purposes. The dataset contained 7030 sign images
with 14 labels, which are Arabic words, as shown in Table 1. The dataset creation process
was tedious and time-consuming due to the study criteria constraints, such as removing
duplicate images, corrupted images, and images with unwanted shadows, where many
images were excluded during the selection process. Figure 3 shows examples of dataset
sign image results from the previous steps.

Table 1. Final dataset of selected sign images.

Class Name Class Label Number of Instances

builder 0 341
excellent 1 442

good 2 419
how 3 427

mechanic 4 337
president 5 640

satisfaction 6 444
teacher 7 662

translator 8 469
very good 9 594

watch maker 10 634
what 11 509
when 12 534
who 13 578

Total 7030

Mathematics 2024, 12, 1155 13 of 43

Mathematics 2024, 12, 1155 12 of 46

4.1.1. Dataset Collection and Image Processing
One of the objectives of this study is to create a new dataset for Arabic sign language

(ArSL) that can be used as a base for future state-of-the-art studies. The criteria used to
develop the ArSL dataset was performed using the hand gestures from “The Unified
Arabic Dictionary”. The hand-sign images are captured in unconstrained environments
to create the dataset with the following criteria:
• Hand signs taken represented different words only without any facial expression.
• Deaf and ordinary people captured the dataset’s hand-sign images to represent

bidirectional ArSL translation.
• The dataset images included different hand gestures, moves, and positions.
• The dataset images were captured by using the front camera of a Samsung Android

system to represent real-time translation between deaf and ordinary people.
• The dataset hand images were captured from different distances, angles,

backgrounds, and light sources.
• The dataset’s hand images were taken with good image quality and hand-sign focus.

Image acquisition was performed using the front camera of a Samsung Note 9, where
the captured image resolution is 2640 × 1980 pixels. Two image processing methods were
applied mainly to fix the dataset criteria issues, including image enhancement and
segmentation. The image enhancement method improves the intensity and quality of
captured images. These images are acquired with different brightness and contrast values
due to the conditions of indoor and outdoor environments, such as changes in lights,
shadows, and background. It uses an adaptive histogram equalization (AHE) algorithm
to enhance the dataset images by automatically computing images’ histograms and
correcting their contrast and brightness. Because of camera shake and resolution changes,
some images might be noisy and blurry; hence, the AHE effectively deals with these
issues. An image segmentation model also extracts hand gestures from different
backgrounds. A slope difference distribution (SDD) method has been implemented in this
study and has recently been considered the most accurate segmentation technique for
hand gestures [52].

Then, the extracted hand-sign images were rotated automatically using the angle of
inclination with the object auto alignment function into the appropriate hand gesture
position [53]. The final hand-sign images were resized into 128 × 128 resolution to increase
the performance of subsequent feature extraction and classification steps. The processed
sign images were organized and labeled to create a preliminary Arabic sign language
(ArSL) dataset for training and testing purposes. The dataset contained 7030 sign images
with 14 labels, which are Arabic words, as shown in Table 1. The dataset creation process
was tedious and time-consuming due to the study criteria constraints, such as removing
duplicate images, corrupted images, and images with unwanted shadows, where many
images were excluded during the selection process. Figure 3 shows examples of dataset
sign image results from the previous steps.

Excellent (مُمتاز) Very Good (ًجيد جدا) Good (جَيد)

Mathematics 2024, 12, 1155 13 of 46

Builder (بنَاء) How (كَيف) Mechanic (ميكانيكي)

President (رئيس) Satisfaction (رضى) Teacher (مُدرس)

Translator (مُترجِم) When (مَتى) Watchmaker (ساعاني)

Who (مَن) What (ما/ماذا)

Figure 3. Examples of hand-sign images used in this study.

Table 1. Final dataset of selected sign images.

Class Name Class Label Number of Instances
builder 0 341

excellent 1 442
good 2 419
how 3 427

mechanic 4 337
president 5 640

satisfaction 6 444
teacher 7 662

translator 8 469
very good 9 594

watch maker 10 634
what 11 509
when 12 534
who 13 578
Total 7030

Figure 3. Examples of hand-sign images used in this study.

4.1.2. Data Splitting

This step used two splitting procedures to build and evaluate the developed models.
In each procedure, the dataset was divided randomly into three sets using a holdout
technique. The first splitting procedure divided the dataset into 80% for training and 20%
for testing. Then, from the 80% of the training set, 20% was taken randomly as a validation
set, as illustrated in Table 2. The dataset-splitting process of this procedure was performed
for models’ training and evaluation of the proposed sign-to-word module.

Mathematics 2024, 12, 1155 14 of 43

Table 2. The distribution of classes in the training, validation, and test sets using the first splitting
procedure (80:20).

Arabic Class
Name

English
Class Name Class Label Training Set Validation Set Test Set

ZA
	
J
�
K. builder 0 224 54 63

	PA
�
JÜ
�
Ø excellent 1 269 76 97

YJ
k. good 2 264 68 87
	

J

�
» how 3 278 72 77

ú

¾J

	
KA¾J
Ó mechanic 4 209 55 73

��

KP president 5 401 100 139

úæ
	
�P satisfaction 6 280 66 98

�PY
�
Ó teacher 7 420 117 125

Ñk.�
Q��
�
Ó translator 8 315 59 95

�
@Yg. YJ
k.

very good 9 392 92 110

ú

�
GA«A� watchmaker 10 404 109 121

AÓ/ @
	
XAÓ what 11 338 68 103

ú
�
æ
�
Ó when 12 349 92 93

	á
�
Ó who 13 356 97 125

Total 4499 1125 1406

For generalizing the capabilities of the developed models and confirming the perfor-
mance results of the first splitting procedure, a second splitting procedure was applied to
divide the dataset into 70% for training and 30% for testing. From the 70% training set, 10%
was taken randomly as a validation set, as illustrated in Table 3.

Table 3. The distribution of classes in the training, validation, and test sets using the second splitting
procedure (70:30).

Arabic Class
Name

English
Class Name Class Label Training Set Validation Set Test Set

ZA
	
J
�
K. builder 0 214 22 105

	PA
�
JÜ
�
Ø excellent 1 284 26 132

YJ
k. good 2 252 41 126
	

J

�
» how 3 278 33 116

ú

¾J

	
KA¾J
Ó mechanic 4 214 19 104

��

KP president 5 394 49 197

úæ
	
�P satisfaction 6 275 28 141

�PY
�
Ó teacher 7 422 44 196

Ñk.�
Q��
�
Ó translator 8 299 27 143

�
@Yg. YJ
k.

very good 9 383 45 166

ú

�
GA«A� watchmaker 10 397 38 199

AÓ/ @
	
XAÓ what 11 319 39 151

ú
�
æ
�
Ó when 12 338 46 150

	á
�
Ó who 13 359 36 183

Total 4428 493 2109

Mathematics 2024, 12, 1155 15 of 43

4.1.3. Feature Extraction Using Pre-Trained Models

In this subsection, we extracted the crucial features from sign images using transfer
learning-based pre-trained CNN models. Feature extraction is an important step, especially
for small datasets, which is considered a challenging task. Hence, the transfer learning
techniques made it easier than training the CNN model from scratch.

Transfer learning employs previously learned knowledge from the source domains to
obtain high performance in diverse but related target domains [54,55]. In transfer learning,
a domain is formally described as D = {F, P(F)}, where F is a feature space and P (F)
is a marginal distribution for F = [f1, f2, · · · , fn] ∈ Rm× n. A task in a domain D can
be written formally as T = {y, g(·)}, where y is a label space and g(·) denotes a decision
boundary function [54]. Transfer learning attempts to enhance the learning of the decision
boundary function f (·) in a target domain (TD) and a target learning task (TLT), utilizing
information from a source domain (SD) and a source learning task (SLT), where SD ̸= TD or
SLT ̸= TLT. As illustrated in Figure 4, we assume that ImageNet and Arabic Sign Language
are the source and target domain datasets, respectively.

Mathematics 2024, 12, 1155 15 of 46

4.1.3. Feature Extraction Using Pre-Trained Models
In this subsection, we extracted the crucial features from sign images using transfer

learning-based pre-trained CNN models. Feature extraction is an important step,
especially for small datasets, which is considered a challenging task. Hence, the transfer
learning techniques made it easier than training the CNN model from scratch.

Transfer learning employs previously learned knowledge from the source domains
to obtain high performance in diverse but related target domains [54,55]. In transfer
learning, a domain is formally described as 𝐷 = {𝐹, 𝑃(𝐹)}, where F is a feature space and
P (F) is a marginal distribution for 𝐹 = [𝑓ଵ, 𝑓ଶ, ⋯ , 𝑓] ∈ ℝ𝑚 × 𝑛. A task in a domain 𝐷 can
be written formally as Τ = {𝑦, 𝑔()}, where 𝑦 is a label space and 𝑔() denotes a decision
boundary function [54]. Transfer learning attempts to enhance the learning of the decision
boundary function 𝑓(·) in a target domain (TD) and a target learning task (TLT), utilizing
information from a source domain (SD) and a source learning task (SLT), where SD ≠ TD
or SLT≠ TLT. As illustrated in Figure 4, we assume that ImageNet and Arabic Sign
Language are the source and target domain datasets, respectively.

Figure 4. The context of our feature extraction method using the transfer learning concept.

Based on the concept of transfer learning and the mathematical fundamentals of deep
neural networks given in Section 3, the pre-trained CNN transfer learning models have
already been trained and tested on the source domain dataset through a source learning
task. Transferring the learned parameters of pre-trained CNN models as feature extractors
to extract the essential features of our target domain dataset reduces the training costs. It
improves TLT in the Arabic Sign Language dataset. The final extracted bottleneck feature
matrix size from pre-trained CNN feature extractors depends on the filter size. It is given
by multiplying the filter height, width, and the number of channels. The turn filter size is
based on the size of the input image and the number of channels subjected to pre-trained
CNN feature extractors used. For example, if the image size is 128 × 128, as in our case,
and the VGG16 is used for feature extraction, the dimension of the extracted bottleneck
feature matrix is 4 × 4 × 512.

In state-of-the-art transfer learning, there are several pre-trained CNN models in
which the kernels are defined by different sizes for object classification from the images.
Such pre-trained CNN models can extract imperative features from images for various
applications. They can extract domain-specific features for task transfer learning, as Pan
and Yang proposed [54].

Figure 4. The context of our feature extraction method using the transfer learning concept.

Based on the concept of transfer learning and the mathematical fundamentals of deep
neural networks given in Section 3, the pre-trained CNN transfer learning models have
already been trained and tested on the source domain dataset through a source learning
task. Transferring the learned parameters of pre-trained CNN models as feature extractors
to extract the essential features of our target domain dataset reduces the training costs. It
improves TLT in the Arabic Sign Language dataset. The final extracted bottleneck feature
matrix size from pre-trained CNN feature extractors depends on the filter size. It is given
by multiplying the filter height, width, and the number of channels. The turn filter size is
based on the size of the input image and the number of channels subjected to pre-trained
CNN feature extractors used. For example, if the image size is 128× 128, as in our case,
and the VGG16 is used for feature extraction, the dimension of the extracted bottleneck
feature matrix is 4 × 4 × 512.

In state-of-the-art transfer learning, there are several pre-trained CNN models in
which the kernels are defined by different sizes for object classification from the images.
Such pre-trained CNN models can extract imperative features from images for various
applications. They can extract domain-specific features for task transfer learning, as Pan
and Yang proposed [54].

In our study, pre-trained CNN models were adopted to extract the image features
of hand Arabic signs to translate the input hand-sign images into text words based on
hand-sign attributes. The pre-trained CNN models extracted the significant features from

Mathematics 2024, 12, 1155 16 of 43

the Arabic sign images, capturing their properties and characteristics. There are three
main types of features: low-level features, which are the essential elements of hand-
sign images, such as edges, pixels, contours, or corners extracted by the lower layers
of pre-trained CNN models; intermediate features, such as textures and patterns of hand-
sign images extracted by intermediate layers of pre-trained CNN models; and high-level
features like more complex and abstract features extracted by higher layers of pre-trained
CNN models, allowing the proposed Custom DNN model to recognize hands shape and
fingers at different levels of abstraction. The utility of those features could improve the
accuracy of the proposed model. Among the existing pre-trained CNN models, five famous
architectures were selected for their efficiency in performing model training from scratch.
These pre-trained models are described as follows:

1. DenseNet121 Model
DenseNet121 is a CNN-based model architecture introduced in 2016 by Huang
et al. [56] to achieve high performance in image classification tasks. It provides
accessible communication between layers within the condensed block, facilitating ex-
tensive reusing between layers by allowing each layer to access feature maps with the
previous layer. Research has reported that the DenseNet121 model is suitable because
it is less prone to over-fitting and adaptability for a broad type of domain [57]. It has
recently been used widely in many transfer learning-based applications. DenseNets
models are developed with bottleneck blocks to include fewer parameters than the
other traditional models without the need to learn redundant feature maps. The dense
block of DenseNets solves some training issues by allowing each layer to access the
gradients directly from the loss function, and the input image. It introduces dense
connections between layers, where each layer receives the feature maps from all
preceding layers. The feature maps are concatenated along the channel dimension.
The mathematical expression for the dense block in DenseNet is given as:

H[l] = Concatenate (H [0], H [1], . . . , H [l − 1]), (28)

where H[l] denotes the output feature maps of the lth layer.
2. ResNet152 Model

ResNet152 is a CNN-based model introduced in 2015 and designed with 152 hidden
layers. This model is efficient for image feature extraction with more robotic accuracy
results. The main issue with this model is its size and time limitations; however, it
is considered adequate for training deep networks with less complex computation.
We trained this model using a set of layers: Sequential, Conv2d, BatchNorm2d, Max-
pool2d, and Bottleneck, with Adam optimizer and softmax activation function [58].
ResNet introduces residual connections that allow the model to learn residual map-
pings, making it easier to optimize deep networks. The residual block in ResNet can
be expressed mathematically as:

H[l + 1] = H[l] + F(H[l]), (29)

where H[l] represents the input to the lth layer, H[l + 1] is the output of the lth layer,
and F(H[l]) denotes the residual mapping.

3. MobileNetV2 Model
MobileNetV2 is a computationally efficient CNN, a more robust and efficient convolu-
tion neural network, designed to work on mobile devices. MobileNetV2 is upgraded
from the MobileNetV1 model with a slight difference in structure, which contributes
to its effectiveness by reducing complexity cost and network model size. The structure
layer of this model consists of 32 filter layers followed by 19 residual bottleneck layers.
The first layer is called the expansion layer, which has a 1 × 1 convolution layer
that widens the channels; the second layer is a deep convolution layer and input
filtering; and the third layer, called the drop layer, is a 1 × 1 raster convolution [59].
MobileNet is designed for efficiency and low computational cost by employing depth-

Mathematics 2024, 12, 1155 17 of 43

wise separable convolutions. The mathematical expression for a depth-wise separable
convolution in MobileNet is given as:

DWConv = DepthwiseConv(Conv(x)) , (30)

where Conv(x) represents a standard convolution operation on input x, and
DepthwiseConv represents depth-wise convolution.

4. Xception Model
It is a deep convolutional neural network developed by Google with a depth-wise
separable convolution model and shortcuts between convolution blocks. It’s an
interpretation of Inception modules to be used as an intermediate step in regular
convolution and the depth-wise separable convolution operation. The depth-wise
separable convolution is considered an Inception module with many towers. This
algorithm uses depth-wise separable convolutions to replace the Inception model
and develop a novel deep convolutional neural network. It is perceived to be much
more efficient in computation time [60]. XceptionNet is an extension of the Inception
module that replaces the standard convolutional layers with depth-wise separable
convolutions. The mathematical expression for a depth-wise separable convolution
operation in XceptionNet is given as:

DWConv = DepthwiseConv(Conv(x)) , (31)

where Conv(x) represents a standard convolution operation on input x and
DepthwiseConv represents depth-wise convolution.

5. Inception-v3 Model
It is a convolutional neural network architecture in the Inception family built with
several improvements on existing Inception CNN models. The improvement of the
model concerns label smoothing, factorized 7 × 7 convolutions, and an auxiliary
classifier to propagate label information. Inception-v3 is a CNN model built for im-
age recognition that achieves greater than 78.1% accuracy on the ImageNet dataset.
Multiple researchers have developed it over the last few years. It includes symmetric
and asymmetric building blocks with convolutions, max pooling, average pooling,
concatenations, dropouts, and fully connected layers. It uses batch normalization for
activation inputs, where softmax is used to compute loss [61]. It combines the Incep-
tion module with residual connections, leveraging the benefits of both architectures.
The mathematical expression for an Inception-residual block is written as:

H[l + 1] = H[l] + F(Inception(H[l])) , (32)

where H[l] represents the input to the lth layer, Inception(H[l]) denotes the output of
the Inception module, and F denotes the residual mapping.

6. NASNetLarge Model
NASNetLarge is a convolutional neural network design that uses the concept of neu-
ral architecture search and includes standard and reduction convolution cell blocks.
The neural architecture search (NAS) is built to find the optimal CNN architecture
automatically using Reinforcement Learning. It is built with the concepts of search-
ing for the best parameter combination for the given search space, output channels,
number of layers, and strides. Reinforcement learning is used to find the accuracy of
the searched architecture on the given dataset. NASNet emphasizes the automated
feature learning process, architecture search, and hyper-parameter optimization. Re-
search has shown that NASNet achieved excellent results on the ImageNet dataset.
However, it required high computation power. It is used mainly to search for the best
algorithm to achieve the best performance on a specific task [62]. NASNet typically
consists of repeated blocks containing convolutional, pooling, batch normalization
(BatchNorm), concatenation, and fully connected layers. These blocks are stacked on

Mathematics 2024, 12, 1155 18 of 43

top of each other to form the overall architecture. The mathematical expression of
batch normalization and concatenation layers is given below:
Given an input tensor x, the output of a batch normalization layer y is given by:

y = BatchNorm(x) , (33)

where BatchNorm(x) is computed by normalizing the activations across each mini-
batch. Given y1, y2, . . . , yn are the inputs to be concatenated, the output of a concatena-
tion layer z is obtained by concatenating the tensors along the channel
dimension as:

z = Concat(y1, y2, . . . , yn) , (34)

where Concat(y1, y2, . . . , yn) is computed by combining the outputs of multiple pre-
ceding layers along the channel dimension.

7. VGG16 Model The Visual Geometry Group (VGG) is known for its simplicity and
effectiveness, with a stack of convolutional layers followed by fully connected layers.
Mathematical expression for the VGG block can be viewed as:

Conv3− 64→ Conv3− 64→ MaxPool2→ Conv3− 128→ Conv3− 128→ MaxPool2→ ...→ FC, (35)

where Conv3− 64 denotes a convolutional layer with a 3× 3 kernel and 64 output
channels, MaxPool2 represents max pooling, and FC represents fully connected layers.
Several versions of VGG Nets have been released, such as VGG16 and VGG19. They
mostly have differences, with only the total number of layers included in the network
architecture. The VGG16 model is one of the CNN-based models reported as the most
successful top image recognition technique with optimized performance due to its
acceleration architectural design. It is designed mainly to reduce the parameters used
in the CONV layers to improve training time. It contains 16 layers, including 3 × 3
filter layers with a stride 1 and the same padding and max pool layers of a 2 × 2 filter
with a stride 2 [58].

8. VGG19 model
VGG19 is another version of VGG Nets, considered an extension of VGG16. It is built
with 19 layers instead of 16 layers used in VGG16. It contains the same architecture
as VGG16, with three additional convolutional and max-pooling layers. Research
reported that VGG19 had achieved slightly better performance than VGG16 on various
image recognition applications; however, it is more computationally expensive due to
the more significant number of involved parameters [61].

Consequently, based on the size of processed sign images, which is 128 × 128, the
dimensions of extracted features are given in Table 4 for each CNN transfer learning model
utilized as a feature extractor in this study.

Table 4. Dimensions of the extracted features from sign images using pre-trained CNN models.

Model

Dimension of Bottleneck Features

(Filter Size of Height, Filter Size of Width,
Number of Channels)

DenseNet121-based Feature Extractor (4, 4, 1024)
ResNet152-based Feature Extractor (4, 4, 2048)

MobileNetV2-based Feature Extractor (4, 4, 1280)
Xception-based Feature Extractor (4, 4, 2048)

InceptionV3-based Feature Extractor (4, 4, 2048)
NASNetLarge-based Feature Extractor (4, 4, 4032)

VGG19-based Feature Extractor (4, 4, 512)
VGG16-based Feature Extractor (4, 4, 512)

Mathematics 2024, 12, 1155 19 of 43

4.1.4. Classification Model Building

The classification model of the proposed framework is a custom deep neural network
(DNN). The DNN is a type of neural network with numerous densely linked layers. It
comprises an input layer, several hidden dense layers, and an output layer. A dropout
technique can process each hidden layer to avoid the issue of over-fitting. Depending on
the nature of the input data, the DNN as a classifier employs a wide range of activation
functions. The activation function utilized in the hidden layers of our custom DNN is the
rectified linear unit (ReLU). The ReLU is a linear function that, if positive, can directly
output the same value of the input; otherwise, it can output zero value. It can train the
model quickly and effectively. The input layer of the custom-built DNN model is a 2D
global average pooling that takes the extracted features from pre-trained CNN feature
extractors. The output layer of the custom DNN model is a fully connected dense layer with
a softmax activation function containing several neurons equal to the number of classes
in the dataset. The softmax activation function of the output layer gives the probability
distribution of each output class value. It can convert the model’s outputs into a vector
of probabilities over the input classes and produce the class with the highest probability
value. The output class of our custom DNN model is a multiclass label of the sign word.
Algorithm 1 describes the steps for building the custom DNN model of the proposed
framework. In the implementation and experimentation of the algorithm, the number
of hidden layers will be set to a small number to achieve efficiency and meet real-time
requirements without affecting the model’s accuracy.

Algorithm 1 Custom DNN Architecture Building Algorithm

Input: input shape; # the number of neurons in the input layer
is the shape of extracted bottleneck features from
pre-trained CNN feature extractors.
It will be like (filter size of height,
filter size of width, number of channels).
H; # the number of hidden layers.
L; # the number of neurons in the output layer.
Output: M; # it is the built custom DNN model.
1. Begin
2. Set model M as sequential
3. M ← add(GlobalAveragePooling2D(input_shape)
4. for i = 1 to H
5. Set N as a suitable number of neurons
6. M ← add(Dense(N, activation = ‘relu’)
7. end for
8. M ← add(Dropout(0.5))
9. M ← add(Dense(L, activation = ‘softmax’)
10. return M;
11. End

4.1.5. Classification Model Training and Hyper-Parameter Tuning

In this step, the custom DNN model was trained on the training set and validated on
the validation set. It tuned the hyper-parameters of the custom DNN model as needed to
achieve a high-performance result in accuracy and efficiency. We adjusted the batch size,
the number of hidden layers, and the number of neurons based on DNN results for the
accuracy of the validation set.

Suppose F− tri is the extracted bottleneck features of the training set and F− val is the
extracted bottleneck features of the validation set, which are extracted from dataset D of the
sign images using each pre-trained CNN feature extractor. The class labels of training and
validation sets are denoted by L− tri and L− val, respectively. Consider the built DNN
model is M, the loss function is categorical cross-entropy, the optimizer is Adam, and the
only metrics are the accuracy of training and validation progress. The goal is training M on

Mathematics 2024, 12, 1155 20 of 43

F− tri and validating on F− val; as well as monitoring the accuracy metric for tuning the
hyper-parameters of M. Algorithm 2 gives the pseudo-code for training and validating the
Custom DNN model M.

Algorithm 2 Custom DNN Training Algorithm

Input: F− tri; # the extracted bottleneck features of the training set.
L− tri; # the class labels of the training set.
F− val; # the extracted bottleneck features of the validation set.
L− val; # the class labels of the validation set.
M; # the custom-built DNN model.
P; # the file path that stores the weights of the best-trained model.
E; # the number of epochs.
B; # the batch of size of training progress.
Output: M; # the trained custom DNN model.
TA, VA; # the training accuracy and validation accuracy.
TL, VL; # the training loss and validation loss.
1. Begin
2. loss ← ‘categorical_crossentropy’
3. optimizer ← ‘Adam’
4. metrics ← [‘accuracy’]
5. M ← compile(loss, optimizer, metrics)
6. Check-Pointer = ModelCheckpoint(filepath = P, monitor = ‘val_accuracy’, save_best_only =
True, mode = ‘max’)
7. M ← fit(F− tri, L− tri, validation_data = (F− val, L− val), epochs = E,
batch_size = B, callbacks = [Check-Pointer], verbose = 1)
8. TA, VA ← get-accuracy(M)
9. TL, VL ← get-loss(M)
10. plot(TA, VA)
11. plot(TL, VL)
12. return M, TA, VA, TL, VL;
13. End

For model tuning, Algorithm 2 was executed several times using one hidden layer
of 250 neurons and different values of batch size B, such as 16, 32, 64, and 128, on the
features extracted by each pre-trained CNN feature extractor, individually. Based on the
highest validation accuracy, the best batch size was selected. After that, using this batch
size, Algorithm 2 was used to train the DNN model with a different number of hidden
layers H in Algorithm 1. The trained model M with the best batch size was evaluated on
the extracted features of the test set using all adopted pre-trained CNN feature extractors.

4.1.6. Classification Model Evaluation

Several evaluation metrics are widely used to evaluate the quality of classification
models. Evaluation metrics are utilized to assess the performance of built models and
monitor their output in the production stage. In this study, the evaluation metrics utilized
to assess the trained models were classification accuracy, confusion matrix, precision, recall,
and F1-score. These metrics are commonly used for measuring the performance of machine
learning classifiers and are described as follows:

• Classification Accuracy: It is used to measure the instances of correctly classified
predictions. It is the ratio of the number of correctly classified predictions to the total
number of predictions. It is calculated by using the equation below:

Accuracy =
TP + TN

TP + TN + FP + FN
(36)

Mathematics 2024, 12, 1155 21 of 43

where FP, FN, TP, and TN are the false positive, false negative, true positive, and true
negative of instances. It is utilized here because the target classes of the dataset are
well-balanced.

• Confusion matrix: Its performance measurement for the machine learning classifiers
is used when the output is more than two classes. It is an N × N matrix where N
represents the number of classes in the dataset. It is applied to measure the classifier
model’s performance on the testing dataset. It can compute the number of correct and
incorrect predictions made by the model compared with the actual classifications in
the test dataset. It is used for measuring precision, recall, and F1-score metrics.

• Precision: The ratio of true positives to all the positives predicted by the model. The
following equation is used to calculate the precision metric:

Precision =
TP

TP + FP
(37)

• Recall: It is the ratio of true positives to all the positives in the dataset. The following
equation is used to calculate the recall metrics:

Recall =
TP

TP + FN
(38)

• F1-score: It is a harmonic mean of precision and recall metrics, where it is considered
the weighted average of precision and recall with a range of [0, 1]. The following
equation is used to calculate the F1-score metric.

F1− score = 2× (Recall × Precision)
(Recall + Precision)

(39)

In addition to the above evaluation metrics, a receiver operating characteristic (ROC)
curve is plotted to show the trade-off between recall and precision metrics. It can evaluate
how the models work in areas with high recall and precision. The ROC curve is usually
used in binary classification to compare the performance of trained models; however, it can
also be applied to multiclass classification by taking one class as a positive type and the
others as a negative type.

4.2. Word-to-Sign Module

The second module in the proposed framework was developed to translate the Arabic
input texts from ordinary people into sign images. A fuzzy matching score method was
used with a supporting database dictionary of Arabic words for the hand-sign images, as
shown in Figure 5 below. This module is designed to solve some existing sign language
issues described in the review above. It simplifies the translation process between input
text and hand-sign images by connecting the hand-sign images and corresponding word
meanings. It resolves issues caused by mistyping, spelling errors, multiple synonyms, and
the modified Arabic sign language.

4.2.1. Arabic Words Database Dictionary Building

Ordinary people type text in their local language by using various words compared
with standard language words; for example, in Arabic language, words between brackets
separated by a comma (Qå 	�Ag ,

�
�
	
¯@ñÓ , ÐAÖ

�
ß , èñK
@ , Ñª

	
K) have the same meaning, and the same

hand-sign image. In addition, users sometimes misspell words when typing, which cannot
be translated directly without correcting these words. For these issues, we developed a
support tool using the fuzzy matching score concepts to solve such problems. Thus, the
Arabic words database was constructed to support the fuzzy matching score model with
the necessary data to solve these issues. The database dictionary uses hand-sign image
labels with the associated meaning of the words.

Mathematics 2024, 12, 1155 22 of 43

Mathematics 2024, 12, 1155 22 of 46

was used with a supporting database dictionary of Arabic words for the hand-sign
images, as shown in Figure 5 below. This module is designed to solve some existing sign
language issues described in the review above. It simplifies the translation process
between input text and hand-sign images by connecting the hand-sign images and
corresponding word meanings. It resolves issues caused by mistyping, spelling errors,
multiple synonyms, and the modified Arabic sign language.

Figure 5. Word-to-Sign translation module.

4.2.1. Arabic Words Database Dictionary Building
Ordinary people type text in their local language by using various words compared

with standard language words; for example, in Arabic language, words between brackets
separated by a comma (have the same meaning, and the same نعم، ايوه، نمان، موافق، حاضر(
hand-sign image. In addition, users sometimes misspell words when typing, which
cannot be translated directly without correcting these words. For these issues, we
developed a support tool using the fuzzy matching score concepts to solve such problems.
Thus, the Arabic words database was constructed to support the fuzzy matching score
model with the necessary data to solve these issues. The database dictionary uses hand-
sign image labels with the associated meaning of the words.

The data dictionary table was designed with three columns to include the word,
synonym, and sign image labels. The synonym words column is created with the
meanings of similar words and the possible mistyping and spelling errors that could occur
during inputs.

4.2.2. Fuzzy String Matching Score Implementation
As mentioned in the review, sign language is considered nonlinear; fuzzy logic is

adopted to solve several nonlinear issues, such as sign language. The sign translation
system proposed in this study is meant to translate between both deaf and ordinary
people. Thus, we implemented a novel model to obtain text from ordinal users and
convert it into appropriate sign language images. A fuzzy matching model was used in
the prototype to determine appropriate signs for the text or phonetics that have different
words with the same meaning, such as “Yes”, “Ok”, and “Alright”. As discussed
previously, different words can be used due to the diverse regions with the same meaning.
Thus, a fuzzy matching score was implemented by using the FuzzyWuzzy library. The
Arabic database dictionary includes different words used for the same word meaning,

Figure 5. Word-to-Sign translation module.

The data dictionary table was designed with three columns to include the word,
synonym, and sign image labels. The synonym words column is created with the mean-
ings of similar words and the possible mistyping and spelling errors that could occur
during inputs.

4.2.2. Fuzzy String Matching Score Implementation

As mentioned in the review, sign language is considered nonlinear; fuzzy logic is
adopted to solve several nonlinear issues, such as sign language. The sign translation
system proposed in this study is meant to translate between both deaf and ordinary people.
Thus, we implemented a novel model to obtain text from ordinal users and convert it into
appropriate sign language images. A fuzzy matching model was used in the prototype
to determine appropriate signs for the text or phonetics that have different words with
the same meaning, such as “Yes”, “Ok”, and “Alright”. As discussed previously, different
words can be used due to the diverse regions with the same meaning. Thus, a fuzzy
matching score was implemented by using the FuzzyWuzzy library. The Arabic database
dictionary includes different words used for the same word meaning, which can minimize
the dataset domain, improve the system performance, and simplify the translation process.
The fuzzy matching model used the database Arabic dictionary to translate the input word
from ordinary people into corresponding sign images.

The fuzzy matching score is a technique that is used to identify items in a dataset
based on their similarities. It compares strings and assigns a score value to each string
based on their similarity. The fuzzy matching operator calculates the Levenshtein distance
between strings and assigns a score between 0 and 1. Fuzzy matching is considered an
efficient search technique that uses a set of fuzzy rules with some similarity for string
comparison. We use the formula of the Levenshtein distance between two strings a and b,
which is given in Equation (27), to obtain the semantics and synonyms of the same Arabic
words for retrieving the corresponding Arabic sign language images. Fuzzy matching is an
essential component of semantic search since it aids in locating the closest match to a text
inside a context. It serves as the foundation for semantic analysis. Semantic search comes
in various styles, all of which are based on term contextualization and the intent behind
it. It works better than simple text matching and depends on more than a deterministic,
binary-based information retrieval mechanism. Algorithm 3 represents the Levenshtein
distance method using a recurrence relation. Where ai is a word/character in the string a,

Mathematics 2024, 12, 1155 23 of 43

and bj is a word/character in string b, the equl
(
ai, bj

)
is a function that returns zero if the

two words/characters are equal and one otherwise.

Algorithm 3 Levenshtein Distance Represented by the Recurrence Relation

1. Begin
2. for each i from 0 to |a|
3. for each j from 0 to |b|
4. lev (0, 0) = 0;
5. lev (i, 0) = i;
6. lev (0, j) = j;
7. lev (i, j) = min [lev (i− 1; j) + 1;
8. lev (i, j− 1) + 1;

9. lev (i–1, j− 1) + equal
(

ai, bj

)
]

10. End

The fuzzy score matching model does not require any evaluation because it depends
mainly on the distance between the words and the dictionary. Thus, the model retrieves
the label from a list of similar input words based on the nearest matching of the string.

5. Experimental Results and Discussion

The prototype of the proposed framework was implemented using Python program-
ming language on the Google Compute Engine backend with a T4 GPU for the hardware
accelerator, 12.7 GB of system RAM, and 78.2 GB of disk RAM. We evaluated each module
of the developed framework separately. The fuzzy string matching score in the word-to-
sign module was mathematically validated by computing the distance between the input
and associative dictionary words. On the other hand, the sign-to-word module was vali-
dated using several experiments conducted on the dataset images using the eight adopted
pre-trained CNN models of feature extraction. The custom DNN model was trained on the
extracted features at 200 epochs during the experiments. The DNN model was initially built
with a 2D global average pooling, a hidden layer of 250 units with the rectified linear unit
(ReLU), a dropout ratio of 0.5, and a learning rate of 0.001. The experiment was conducted
with a different number of batch sizes, as mentioned in Section 4.1.5. The model’s weights
in the training process were updated using Adam’s optimizer. In addition, two individual
experiments were conducted to select the suitable batch size and several hidden layer
parameters. The first experiment was performed to find the batch size ideal for the given
dataset. Table 5 shows the validation accuracy of the custom DNN model trained on the
extracted features using different parameters of batch size values.

Table 5. Validation accuracy of the pre-trained CNN feature extractor-based Custom DNN model
based on a splitting procedure (80:20) using different batch sizes.

Model
Batch Size

16 32 64 128

DenseNet121-based Custom DNN 99.022% 99.022% 99.200% 99.111%
ResNet152-based Custom DNN 63.733% 65.867% 65.244% 62.489%

MobileNetV2-based Custom DNN 98.222% 98.133% 98.489% 98.311%
Xception-based Custom DNN 97.511% 97.422% 97.244% 97.511%

InceptionV3-based Custom DNN 95.378% 95.733% 95.644% 96.000%
NASNetLarge-based Custom DNN 95.733% 95.822% 95.911% 95.822%

VGG19-based Custom DNN 98.311% 98.489% 98.489% 98.222%
VGG16-based Custom DNN 99.022% 98.844% 98.933% 98.844%

As shown in Table 5, the DenseNet121-based Custom DNN model achieved the highest
validation accuracy, 99.2%, highlighted with a batch size of 64. Moreover, it shows that
most of the models attained high accuracy results, as highlighted in bold font, at batch

Mathematics 2024, 12, 1155 24 of 43

size 64 compared with the other batch size values. In addition, the second-best model, the
VGG16-based Custom DNN, also reached 99.022% validation accuracy at a batch size of 16.
In contrast to the ResNet152-based Custom DNN model, it obtained the lowest validation
accuracy results at all batch sizes. Based on the validation accuracy results shown in
Table 5, batch size 64 was selected for the proposed framework’s classification model. The
second experiment determined the suitable number of DNN’s hidden layer parameters.
In this experiment, the model was trained using the selected batch size and evaluated on
the extracted features of the test set. Table 6 presents the testing accuracy results of the
pre-trained CNN feature extractor-based Custom DNN model using a different number of
hidden layers and neurons.

Table 6. Testing accuracy of pre-trained CNN feature extractor-based Custom DNN model based on
a splitting procedure (80:20) using different numbers of hidden layers and neurons.

Model
Number of Hidden Layers and Neurons

(256) (256, 128) (256, 128, 64)

DenseNet121-based Custom DNN 98.15% 98.36% 98.15%
ResNet152-based Custom DNN 47.23% 63.44% 66.50%

MobileNetV2-based Custom DNN 98.51% 98.08% 97.58%
Xception-based Custom DNN 96.44% 97.16% 97.16%

InceptionV3-based Custom DNN 94.31% 94.24% 93.46%
NASNetLarge-based Custom DNN 96.23% 95.66% 96.09%

VGG19-based Custom DNN 98.22% 97.80% 98.01%
VGG16-based Custom DNN 98.65% 98.65% 98.44%

As shown in Table 6, the VGG16-based Custom DNN model attained the highest
testing accuracy, 98.65%, using one hidden layer of 256 neurons and two hidden layers
of 256 and 128, respectively. Furthermore, most models achieved high accuracy, as high-
lighted in bold font, when applied to the hidden layer of 256 neurons. Therefore, we have
experimentally found these are the most appropriate values of hyperparameters for our
sign-to-word module. According to the accuracy results in Tables 5 and 6, the Custom
DNN architecture with a batch size of 64 and a hidden layer of 256 neurons was selected
to build the Arabic word sign language classifier. The amount of loss and accuracy for
each pre-trained CNN feature extractor-based model on training and validation sets of first
splitting procedure is shown in Figures 6 and 7.

As shown in Figures 6 and 7, they can help reveal more details about the training
progress of the proposed DNN model in terms of over-fitting and under-fitting issues. We
can see that the gaps between the training and validation curves of the Custom DNN model
using the DenseNet121, VGG16, and VGG19 feature extractors are very small. However,
as shown in Figures 6h and 7h, the gap of training and validation loss and accuracy for
the VGG16-based model is as small as possible, which indicates its performance quality in
the training phase and means that it achieved the best performance result in the testing
phase. In contrast, the poor performance of the ResNet152-based model in Figures 6b and
7b, which reveals its training weakness due to the complexity of ResNet152, generating a
set of features which makes the partial derivative values of the loss function to the models’
weights minimal. Additionally, we see that the gaps in training and validation loss and
accuracy for the other models in Figures 6c–f and 7c–f are high, meaning they suffer from
an over-fitting problem.

The confusion matrix was also used to measure the performance of the pre-trained
CNN feature extractor-based Custom DNN model to evaluate the confidence level. Fig-
ures 8–15 show the confusion matrices of the pre-trained feature extractor-based Custom
DNN model on the test set of this study. The confusion matrix of the VGG16 feature
extractor in Figure 15 shows that the model accuracy is nearly identical in the diagonal
elements, which indicates a higher classification accuracy rate. From the confusion matri-
ces in Figures 8–15, the other evaluation metrics, such as precision, recall, and F1-score,

Mathematics 2024, 12, 1155 25 of 43

were computed for more clarification. Tables 7–14 below illustrate the results of these
measurements for the model using adopted pre-trained CNN feature extractors. Moreover,
in Figures 16 and 17, we visualize and compare the accuracy, precision, recall, and F1-score
results for the utilized models by using all pre-trained CNN feature extractors, the results
of which are summarized in Tables 7–14. The results are interpreted in more detail below.

Mathematics 2024, 12, 1155 25 of 46

each pre-trained CNN feature extractor-based model on training and validation sets of
first splitting procedure is shown in Figures 6 and 7.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. The amount of training and validation loss for the Custom DNN model based on a splitting
procedure (80:20): (a) using the DenseNet121 feature extractor, (b) using the ResNet152 feature
extractor, (c) using the MobileNetV2 feature extractor, (d) using the Xception feature extractor, (e)
using the InceptionV3 feature extractor, (f) using the NASNetLarge feature extractor, (g) using the
VGG19 feature extractor, and (h) using the VGG16 feature extractor.

Figure 6. The amount of training and validation loss for the Custom DNN model based on a
splitting procedure (80:20): (a) using the DenseNet121 feature extractor, (b) using the ResNet152
feature extractor, (c) using the MobileNetV2 feature extractor, (d) using the Xception feature extractor,
(e) using the InceptionV3 feature extractor, (f) using the NASNetLarge feature extractor, (g) using the
VGG19 feature extractor, and (h) using the VGG16 feature extractor.

Mathematics 2024, 12, 1155 26 of 43
Mathematics 2024, 12, 1155 26 of 46

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. The amount of training and validation accuracy for the Custom DNN model based on a
splitting procedure (80:20): (a) using the DenseNet121 feature extractor, (b) using the ResNet152
feature extractor, (c) using the MobileNetV2 feature extractor, (d) using the Xception feature
extractor, (e) using the InceptionV3 feature extractor, (f) using the NASNetLarge feature extractor,
(g) using the VGG19 feature extractor, and (h) using the VGG16 feature extractor.

As shown in Figures 6 and 7, they can help reveal more details about the training
progress of the proposed DNN model in terms of over-fitting and under-fitting issues. We
can see that the gaps between the training and validation curves of the Custom DNN
model using the DenseNet121, VGG16, and VGG19 feature extractors are very small.
However, as shown in Figures 6h and 7h, the gap of training and validation loss and
accuracy for the VGG16-based model is as small as possible, which indicates its
performance quality in the training phase and means that it achieved the best performance
result in the testing phase. In contrast, the poor performance of the ResNet152-based model

Figure 7. The amount of training and validation accuracy for the Custom DNN model based on a
splitting procedure (80:20): (a) using the DenseNet121 feature extractor, (b) using the ResNet152
feature extractor, (c) using the MobileNetV2 feature extractor, (d) using the Xception feature extractor,
(e) using the InceptionV3 feature extractor, (f) using the NASNetLarge feature extractor, (g) using the
VGG19 feature extractor, and (h) using the VGG16 feature extractor.

The confusion matrix results illustrated in Figure 8 for the DenseNet121 model rep-
resent an identical prediction value for most classes with false classification for some
instances, as clearly shown by comparing the diagonal values of a matrix with the total
number of instances for each class in the test set. For example, class 8 has 93 instances

Mathematics 2024, 12, 1155 27 of 43

classified correctly from 95 instances in the test set, with only two misclassified instances.
The higher misclassification rate among all classes is four instances only, as shown in class
numbers 0, 4, and 7. Additionally, the class-wise accuracy, precision, recall, and F1-score
were computed for each class, as shown in Table 7. The results in Table 7 show that the
precision value of classes for the model is between 0.9588, the lowest in class 8, and 1.0, the
highest in classes 2, 3, and 6.

Mathematics 2024, 12, 1155 27 of 46

in Figures 6b and 7b, which reveals its training weakness due to the complexity of
ResNet152, generating a set of features which makes the partial derivative values of the
loss function to the models’ weights minimal. Additionally, we see that the gaps in
training and validation loss and accuracy for the other models in Figures 6c–f and 7c–f are
high, meaning they suffer from an over-fitting problem.

The confusion matrix was also used to measure the performance of the pre-trained
CNN feature extractor-based Custom DNN model to evaluate the confidence level.
Figures 8–15 show the confusion matrices of the pre-trained feature extractor-based
Custom DNN model on the test set of this study. The confusion matrix of the VGG16
feature extractor in Figure 15 shows that the model accuracy is nearly identical in the
diagonal elements, which indicates a higher classification accuracy rate. From the
confusion matrices in Figures 8–15, the other evaluation metrics, such as precision, recall,
and F1-score, were computed for more clarification. Tables 7–14 below illustrate the
results of these measurements for the model using adopted pre-trained CNN feature
extractors. Moreover, in Figures 16 and 17, we visualize and compare the accuracy,
precision, recall, and F1-score results for the utilized models by using all pre-trained CNN
feature extractors, the results of which are summarized in Tables 7–14. The results are
interpreted in more detail below.

Figure 8. Confusion matrix of the DenseNet121-based Custom DNN model on the test set using an
80:20 splitting procedure.

Table 7. Precision, recall, and F1-score results of the DenseNet121-based Custom DNN model on
the test set using an 80:20 splitting procedure.

Class No. Precision Recall F1-Score
0 1.0000 0.9365 0.9672
1 0.9794 0.9794 0.9794
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 0.9857 0.9452 0.9650
5 0.9858 1.0000 0.9929
6 1.0000 0.9796 0.9897
7 0.9837 0.9680 0.9758
8 0.9588 0.9789 0.9688
9 0.9646 0.9909 0.9776

10 0.9597 0.9835 0.9714
11 0.9712 0.9806 0.9758
12 0.9787 0.9892 0.9840
13 0.9919 0.9840 0.9880

Figure 8. Confusion matrix of the DenseNet121-based Custom DNN model on the test set using an
80:20 splitting procedure.

Table 7. Precision, recall, and F1-score results of the DenseNet121-based Custom DNN model on the
test set using an 80:20 splitting procedure.

Class No. Precision Recall F1-Score

0 1.0000 0.9365 0.9672
1 0.9794 0.9794 0.9794
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 0.9857 0.9452 0.9650
5 0.9858 1.0000 0.9929
6 1.0000 0.9796 0.9897
7 0.9837 0.9680 0.9758
8 0.9588 0.9789 0.9688
9 0.9646 0.9909 0.9776
10 0.9597 0.9835 0.9714
11 0.9712 0.9806 0.9758
12 0.9787 0.9892 0.9840
13 0.9919 0.9840 0.9880

Accuracy 98.15%
Macro avg. 0.9828 0.9797 0.9811

Weighted avg. 0.9817 0.9815 0.9815

Similarly, the recall value of classes varies between [0.9365 and 1.0], and the F1-score
varies between [0.9650 and 1.0]. In addition, the macro-average and weighted average as
global metrics were computed to evaluate the overall model’s performance over the entire
dataset. As shown in Table 7, the overall performance for DenseNet121 was 98.28% in
macro precision, 97.97% in macro recall, 98.11% in macro F1-score, and the overall model
accuracy was 98.15%. Furthermore, the weighted average gives broadly similar results to
the macro-average.

The confusion matrix results illustrated in Figure 9 for the ResNet152 model show a
higher misclassification for most classes, as shown by the F1-score in the last column of Ta-
ble 8. The ResNet152 model had a 47.23% accuracy rate, as given in Table 8, where the other
metrics were precision = 0.75, recall = 0.48, and F1-score = 0.52. These results are unsuitable
for application to such a problem domain. They may have occurred due to the complexity
of ResNet152, which generates a set of features that minimize the partial derivative values

Mathematics 2024, 12, 1155 28 of 43

of the loss function to the models’ weights. Extra evaluation with reconfiguration of its
structure is suggested for improving the performance of the ResNet152. However, the other
models achieved excellent evaluation results for our proposed framework.

Mathematics 2024, 12, 1155 28 of 46

Accuracy 98.15%
Macro avg. 0.9828 0.9797 0.9811

Weighted avg. 0.9817 0.9815 0.9815

The confusion matrix results illustrated in Figure 8 for the DenseNet121 model
represent an identical prediction value for most classes with false classification for some
instances, as clearly shown by comparing the diagonal values of a matrix with the total
number of instances for each class in the test set. For example, class 8 has 93 instances
classified correctly from 95 instances in the test set, with only two misclassified instances.
The higher misclassification rate among all classes is four instances only, as shown in class
numbers 0, 4, and 7. Additionally, the class-wise accuracy, precision, recall, and F1-score
were computed for each class, as shown in Table 7. The results in Table 7 show that the
precision value of classes for the model is between 0.9588, the lowest in class 8, and 1.0,
the highest in classes 2, 3, and 6.

Similarly, the recall value of classes varies between [0.9365 and 1.0], and the F1-score
varies between [0.9650 and 1.0]. In addition, the macro-average and weighted average as
global metrics were computed to evaluate the overall model’s performance over the entire
dataset. As shown in Table 7, the overall performance for DenseNet121 was 98.28% in
macro precision, 97.97% in macro recall, 98.11% in macro F1-score, and the overall model
accuracy was 98.15%. Furthermore, the weighted average gives broadly similar results to
the macro-average.

Figure 9. Confusion matrix of the ResNet152-based Custom DNN model on the test set using an
80:20 splitting procedure.

Table 8. Precision, recall, and F1-score results of the ResNet152-based Custom DNN model on the
test set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score
0 0.0894 0.9206 0.1629
1 0.8529 0.2990 0.4427
2 0.9123 0.5977 0.7222
3 0.8644 0.6623 0.7500
4 0.9250 0.5068 0.6549
5 0.8306 0.7410 0.7833
6 0.9062 0.5918 0.7160
7 0.7206 0.3920 0.5078
8 0.6667 0.1053 0.1818
9 0.7907 0.3091 0.4444

10 0.7857 0.5455 0.6439

Figure 9. Confusion matrix of the ResNet152-based Custom DNN model on the test set using an
80:20 splitting procedure.

Table 8. Precision, recall, and F1-score results of the ResNet152-based Custom DNN model on the
test set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score

0 0.0894 0.9206 0.1629
1 0.8529 0.2990 0.4427
2 0.9123 0.5977 0.7222
3 0.8644 0.6623 0.7500
4 0.9250 0.5068 0.6549
5 0.8306 0.7410 0.7833
6 0.9062 0.5918 0.7160
7 0.7206 0.3920 0.5078
8 0.6667 0.1053 0.1818
9 0.7907 0.3091 0.4444
10 0.7857 0.5455 0.6439
11 0.8710 0.2621 0.4030
12 0.5763 0.3656 0.4474
13 0.7089 0.4480 0.5490

Accuracy 47.23%
Macro avg. 0.7500 0.4819 0.5292

Weighted avg. 0.7635 0.4723 0.5405

Mathematics 2024, 12, 1155 29 of 46

11 0.8710 0.2621 0.4030
12 0.5763 0.3656 0.4474
13 0.7089 0.4480 0.5490

Accuracy 47.23%
Macro avg. 0.7500 0.4819 0.5292

Weighted avg. 0.7635 0.4723 0.5405

The confusion matrix results illustrated in Figure 9 for the ResNet152 model show a
higher misclassification for most classes, as shown by the F1-score in the last column of
Table 8. The ResNet152 model had a 47.23% accuracy rate, as given in Table 8, where the
other metrics were precision = 0.75, recall = 0.48, and F1-score = 0.52. These results are
unsuitable for application to such a problem domain. They may have occurred due to the
complexity of ResNet152, which generates a set of features that minimize the partial
derivative values of the loss function to the models’ weights. Extra evaluation with
reconfiguration of its structure is suggested for improving the performance of the
ResNet152. However, the other models achieved excellent evaluation results for our
proposed framework.

Figure 10. Confusion matrix of the MobileNetV2-based Custom DNN model on the test set using
an 80:20 splitting procedure.

Table 9. Precision, recall, and F1-score results of the MobileNetV2-based Custom DNN model on
the test set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score
0 0.9839 0.9683 0.9760
1 0.9898 1.0000 0.9949
2 1.0000 0.9885 0.9942
3 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000
5 0.9858 1.0000 0.9929
6 1.0000 0.9796 0.9897
7 0.9839 0.9760 0.9799
8 0.9896 1.0000 0.9948
9 0.9732 0.9909 0.9820

10 0.9837 1.0000 0.9918
11 0.9619 0.9806 0.9712
12 0.9670 0.9462 0.9565
13 0.9836 0.9600 0.9717

Figure 10. Confusion matrix of the MobileNetV2-based Custom DNN model on the test set using an
80:20 splitting procedure.

Mathematics 2024, 12, 1155 29 of 43

Table 9. Precision, recall, and F1-score results of the MobileNetV2-based Custom DNN model on the
test set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score

0 0.9839 0.9683 0.9760
1 0.9898 1.0000 0.9949
2 1.0000 0.9885 0.9942
3 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000
5 0.9858 1.0000 0.9929
6 1.0000 0.9796 0.9897
7 0.9839 0.9760 0.9799
8 0.9896 1.0000 0.9948
9 0.9732 0.9909 0.9820
10 0.9837 1.0000 0.9918
11 0.9619 0.9806 0.9712
12 0.9670 0.9462 0.9565
13 0.9836 0.9600 0.9717

Accuracy 98.51%
Macro avg. 0.9859 0.9850 0.9854

Weighted avg. 0.9851 0.9851 0.9850

The confusion matrix results illustrated in Figure 10 for the MobileNetV2 model show
excellent performance with false misclassifications, as appears in the diagonal value of the
matrix. Furthermore, Table 9 shows that the MobileNetV2 model had competitive performance
results for accuracy of 98.51%, precision 98.5%, recall 98.5%, and F1-score 98.5%.

Mathematics 2024, 12, 1155 30 of 46

Accuracy 98.51%
Macro avg. 0.9859 0.9850 0.9854

Weighted avg. 0.9851 0.9851 0.9850

The confusion matrix results illustrated in Figure 10 for the MobileNetV2 model show
excellent performance with false misclassifications, as appears in the diagonal value of the
matrix. Furthermore, Table 9 shows that the MobileNetV2 model had competitive
performance results for accuracy of 98.51%, precision 98.5%, recall 98.5%, and F1-score 98.5%.

Figure 11. Confusion matrix of the Xception-based Custom DNN model on the test set using an
80:20 splitting procedure.

Table 10. Precision, recall, and F1-score results of the Xception-based Custom DNN model on the
test set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score
0 0.9265 1.0000 0.9618
1 1.0000 0.9485 0.9735
2 0.9767 0.9655 0.9711
3 0.9625 1.0000 0.9809
4 0.9577 0.9315 0.9444
5 0.9718 0.9928 0.9822
6 1.0000 0.9796 0.9897
7 0.9609 0.9840 0.9723
8 0.9583 0.9684 0.9634
9 0.9820 0.9909 0.9864

10 0.9915 0.9669 0.9791
11 0.9346 0.9709 0.9524
12 0.9032 0.9032 0.9032
13 0.9576 0.9040 0.9300

Accuracy 96.44%
Macro avg. 0.9631 0.9647 0.9636

Weighted avg. 0.9648 0.9644 0.9644

By comparing the confusion matrix results shown in Figure 11 for the Xception model
with the total instance for each class, a remarkable performance is obtained with a low
misclassification rate, as given in the diagonal value of the matrix. Furthermore, Table 10

Figure 11. Confusion matrix of the Xception-based Custom DNN model on the test set using an 80:20
splitting procedure.

Mathematics 2024, 12, 1155 31 of 46

shows that the MobileNetV2 model attained 96.44%, 96.3%, 96.5%, and 96.4% for accuracy,
precision, recall, and F1-score, respectively.

Figure 12. Confusion matrix of the InceptionV3-based Custom DNN model on the test set using an
80:20 splitting procedure.

Table 11. Precision, recall, and F1-score results of the InceptionV3-based Custom DNN model on
the test set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score
0 0.9492 0.8889 0.9180
1 0.9388 0.9485 0.9436
2 0.9524 0.9195 0.9357
3 0.9620 0.9870 0.9744
4 0.9583 0.9452 0.9517
5 0.9315 0.9784 0.9544
6 0.9789 0.9490 0.9637
7 0.9528 0.9680 0.9603
8 0.9375 0.9474 0.9424
9 0.8974 0.9545 0.9251

10 0.9914 0.9504 0.9705
11 0.9286 0.8835 0.9055
12 0.8925 0.8925 0.8925
13 0.9444 0.9520 0.9482

Accuracy 94.31%
Macro avg. 0.9440 0.9403 0.9419

Weighted avg. 0.9436 0.9431 0.9430

The confusion matrix results shown in Figure 12 for the InceptionV3 model showed
an excellent performance in terms of false misclassifications, as shown in the diagonal
values of the confusion matrix. Furthermore, Table 11 shows that the InceptionV3 model
had an accuracy rate of 94.3%, precision = 94.4%, recall = 94%, and F1-score = 94.2%.

Figure 12. Confusion matrix of the InceptionV3-based Custom DNN model on the test set using an
80:20 splitting procedure.

Mathematics 2024, 12, 1155 30 of 43

Table 10. Precision, recall, and F1-score results of the Xception-based Custom DNN model on the test
set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score

0 0.9265 1.0000 0.9618
1 1.0000 0.9485 0.9735
2 0.9767 0.9655 0.9711
3 0.9625 1.0000 0.9809
4 0.9577 0.9315 0.9444
5 0.9718 0.9928 0.9822
6 1.0000 0.9796 0.9897
7 0.9609 0.9840 0.9723
8 0.9583 0.9684 0.9634
9 0.9820 0.9909 0.9864
10 0.9915 0.9669 0.9791
11 0.9346 0.9709 0.9524
12 0.9032 0.9032 0.9032
13 0.9576 0.9040 0.9300

Accuracy 96.44%
Macro avg. 0.9631 0.9647 0.9636

Weighted avg. 0.9648 0.9644 0.9644

Table 11. Precision, recall, and F1-score results of the InceptionV3-based Custom DNN model on the
test set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score

0 0.9492 0.8889 0.9180
1 0.9388 0.9485 0.9436
2 0.9524 0.9195 0.9357
3 0.9620 0.9870 0.9744
4 0.9583 0.9452 0.9517
5 0.9315 0.9784 0.9544
6 0.9789 0.9490 0.9637
7 0.9528 0.9680 0.9603
8 0.9375 0.9474 0.9424
9 0.8974 0.9545 0.9251
10 0.9914 0.9504 0.9705
11 0.9286 0.8835 0.9055
12 0.8925 0.8925 0.8925
13 0.9444 0.9520 0.9482

Accuracy 94.31%
Macro avg. 0.9440 0.9403 0.9419

Weighted avg. 0.9436 0.9431 0.9430

By comparing the confusion matrix results shown in Figure 11 for the Xception model
with the total instance for each class, a remarkable performance is obtained with a low
misclassification rate, as given in the diagonal value of the matrix. Furthermore, Table 10
shows that the MobileNetV2 model attained 96.44%, 96.3%, 96.5%, and 96.4% for accuracy,
precision, recall, and F1-score, respectively.

The confusion matrix results shown in Figure 12 for the InceptionV3 model showed an
excellent performance in terms of false misclassifications, as shown in the diagonal values
of the confusion matrix. Furthermore, Table 11 shows that the InceptionV3 model had an
accuracy rate of 94.3%, precision = 94.4%, recall = 94%, and F1-score = 94.2%.

The confusion matrix results shown in Figure 13 for the NASNet model show compet-
itive performance with a few false misclassifications, as shown in the diagonal values of
the confusion matrix. Furthermore, Table 12 indicates that NASNetLarge model had an
accuracy rate of 96.2%, precision = 96.3%, recall = 96.4%, and F1-score = 96.3%.

Mathematics 2024, 12, 1155 31 of 43Mathematics 2024, 12, 1155 32 of 46

Figure 13. Confusion matrix of the NASNetLarge-based Custom DNN model on the test set using
an 80:20 splitting procedure.

Table 12. Precision, recall, and F1-score results of the NASNetLarge-based Custom DNN model on
the test set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score
0 0.9118 0.9841 0.9466
1 0.9320 0.9897 0.9600
2 0.9885 0.9885 0.9885
3 0.9868 0.9740 0.9804
4 1.0000 0.9726 0.9861
5 0.9583 0.9928 0.9753
6 0.9897 0.9796 0.9846
7 0.9603 0.9680 0.9641
8 0.9785 0.9579 0.9681
9 0.9533 0.9273 0.9401

10 0.9831 0.9587 0.9707
11 0.9412 0.9320 0.9366
12 0.9082 0.9570 0.9319
13 0.9828 0.9120 0.9461

Accuracy 96.23%
Macro avg. 0.9625 0.9639 0.9628

Weighted avg. 0.9631 0.9623 0.9623

The confusion matrix results shown in Figure 13 for the NASNet model show
competitive performance with a few false misclassifications, as shown in the diagonal
values of the confusion matrix. Furthermore, Table 12 indicates that NASNetLarge model
had an accuracy rate of 96.2%, precision = 96.3%, recall = 96.4%, and F1-score = 96.3%.

Figure 13. Confusion matrix of the NASNetLarge-based Custom DNN model on the test set using an
80:20 splitting procedure.

Table 12. Precision, recall, and F1-score results of the NASNetLarge-based Custom DNN model on
the test set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score

0 0.9118 0.9841 0.9466
1 0.9320 0.9897 0.9600
2 0.9885 0.9885 0.9885
3 0.9868 0.9740 0.9804
4 1.0000 0.9726 0.9861
5 0.9583 0.9928 0.9753
6 0.9897 0.9796 0.9846
7 0.9603 0.9680 0.9641
8 0.9785 0.9579 0.9681
9 0.9533 0.9273 0.9401
10 0.9831 0.9587 0.9707
11 0.9412 0.9320 0.9366
12 0.9082 0.9570 0.9319
13 0.9828 0.9120 0.9461

Accuracy 96.23%
Macro avg. 0.9625 0.9639 0.9628

Weighted avg. 0.9631 0.9623 0.9623
Mathematics 2024, 12, 1155 33 of 46

Figure 14. Confusion matrix of the VGG19-based Custom DNN model on the test set using an 80:20
splitting procedure.

Table 13. Precision, recall, and F1-score results of the VGG19-based Custom DNN model on the test
set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score
0 0.9683 0.9683 0.9683
1 0.9796 0.9897 0.9846
2 1.0000 0.9885 0.9942
3 1.0000 1.0000 1.0000
4 0.9605 1.0000 0.9799
5 0.9787 0.9928 0.9857
6 0.9897 0.9796 0.9846
7 0.9919 0.9840 0.9880
8 0.9785 0.9579 0.9681
9 0.9908 0.9818 0.9863

10 0.9917 0.9835 0.9876
11 0.9619 0.9806 0.9712
12 0.9490 1.0000 0.9738
13 1.0000 0.9520 0.9754

Accuracy 98.22%
Macro avg. 0.9815 0.9828 0.9820

Weighted avg. 0.9825 0.9822 0.9822

The confusion matrix results shown in Figure 14 for the VGG19 model showed an
excellent performance with false misclassifications, as shown in the diagonal values of the
confusion matrix. Furthermore, Table 13 indicates that the VGG19 model had performance
results of 98.22%, 98.2%, 98.3%, and 98.2% in terms of accuracy, precision, recall, and F1-
score, respectively.

Figure 14. Confusion matrix of the VGG19-based Custom DNN model on the test set using an 80:20
splitting procedure.

Mathematics 2024, 12, 1155 32 of 43

The confusion matrix results shown in Figure 14 for the VGG19 model showed an
excellent performance with false misclassifications, as shown in the diagonal values of the
confusion matrix. Furthermore, Table 13 indicates that the VGG19 model had performance
results of 98.22%, 98.2%, 98.3%, and 98.2% in terms of accuracy, precision, recall, and
F1-score, respectively.

Mathematics 2024, 12, 1155 34 of 46

Figure 15. Confusion matrix of the VGG16-based Custom DNN model on the test set using an 80:20
splitting procedure.

Table 14. Precision, recall, and F1-score results of the VGG16-based Custom DNN model on the test
set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score
0 0.9403 1.0000 0.9692
1 0.9700 1.0000 0.9848
2 1.0000 0.9885 0.9942
3 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000
5 0.9787 0.9928 0.9857
6 1.0000 0.9796 0.9897
7 0.9918 0.9680 0.9798
8 1.0000 0.9579 0.9785
9 0.9909 0.9909 0.9909

10 0.9756 0.9917 0.9836
11 0.9904 1.0000 0.9952
12 0.9787 0.9892 0.9840
13 0.9918 0.9680 0.9798

Accuracy 98.65%
Macro avg. 0.9863 0.9876 0.9868

Weighted avg. 0.9868 0.9865 0.9865

The confusion matrix results shown in Figure 15 for the VGG16 model showed an
excellent performance in terms of false misclassifications, as shown in the confusion
matrix’s diagonal values. Furthermore, Table 14 showed that the VGG16 model had an
accuracy rate of 98.65%, precision = 98.63%, recall = 98.76%, and F1-score = 98.68%.

For analyzing and comparing the performance of the adopted feature extraction-
based methods, Table 15 compares evaluation metrics using an 80:20 splitting procedure
for utilized pre-trained CNN feature extractors combined with the DNN classification
model.

Table 15. Comparison of performance results for utilized pre-trained CNN feature extractors
combined with the DNN classification model on the test set using an 80:20 splitting procedure.

Model Accuracy Precision Recall F1-Score
DenseNet121 98.15% 0.9828 0.9797 0.9811

ResNet152 47.23% 0.7500 0.4819 0.5292

Figure 15. Confusion matrix of the VGG16-based Custom DNN model on the test set using an 80:20
splitting procedure.

Table 13. Precision, recall, and F1-score results of the VGG19-based Custom DNN model on the test
set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score

0 0.9683 0.9683 0.9683
1 0.9796 0.9897 0.9846
2 1.0000 0.9885 0.9942
3 1.0000 1.0000 1.0000
4 0.9605 1.0000 0.9799
5 0.9787 0.9928 0.9857
6 0.9897 0.9796 0.9846
7 0.9919 0.9840 0.9880
8 0.9785 0.9579 0.9681
9 0.9908 0.9818 0.9863
10 0.9917 0.9835 0.9876
11 0.9619 0.9806 0.9712
12 0.9490 1.0000 0.9738
13 1.0000 0.9520 0.9754

Accuracy 98.22%
Macro avg. 0.9815 0.9828 0.9820

Weighted avg. 0.9825 0.9822 0.9822

The confusion matrix results shown in Figure 15 for the VGG16 model showed an
excellent performance in terms of false misclassifications, as shown in the confusion matrix’s
diagonal values. Furthermore, Table 14 showed that the VGG16 model had an accuracy
rate of 98.65%, precision = 98.63%, recall = 98.76%, and F1-score = 98.68%.

For analyzing and comparing the performance of the adopted feature extraction-based
methods, Table 15 compares evaluation metrics using an 80:20 splitting procedure for
utilized pre-trained CNN feature extractors combined with the DNN classification model.

Mathematics 2024, 12, 1155 33 of 43

Table 14. Precision, recall, and F1-score results of the VGG16-based Custom DNN model on the test
set using an 80:20 splitting procedure.

Class Number Precision Recall F1-Score

0 0.9403 1.0000 0.9692
1 0.9700 1.0000 0.9848
2 1.0000 0.9885 0.9942
3 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000
5 0.9787 0.9928 0.9857
6 1.0000 0.9796 0.9897
7 0.9918 0.9680 0.9798
8 1.0000 0.9579 0.9785
9 0.9909 0.9909 0.9909
10 0.9756 0.9917 0.9836
11 0.9904 1.0000 0.9952
12 0.9787 0.9892 0.9840
13 0.9918 0.9680 0.9798

Accuracy 98.65%
Macro avg. 0.9863 0.9876 0.9868

Weighted avg. 0.9868 0.9865 0.9865

Mathematics 2024, 12, 1155 35 of 46

MobileNetV2 98.51% 0.9859 0.9850 0.9854
Xception 96.44% 0.9631 0.9647 0.9636

InceptionV3 94.31% 0.9440 0.9403 0.9419
NASNetLarge 96.23% 0.9625 0.9639 0.9628

VGG19 98.22% 0.9815 0.9828 0.9820
VGG16 98.65% 0.9863 0.9876 0.9868

As shown in Table 15, the VGG16, MobileNetV2, VGG19, and DenseNet121 models
obtained the highest performance results. They achieved an accuracy rate of 98.65%,
98.51%, 98.22%, and 98.15%, respectively. Furthermore, the Xception model,
NASNetLarge model, and InceptionV3 model attained competitive performance results
with accuracy rates of 96.44%, 96.23%, and 94.31%, respectively. However, the ResNet152
model failed to classify the test set well, whereby it obtained the lowest accuracy rate of
47.23%. The performance results of other metrics, such as precision, recall, and F1-score,
are also illustrated in Table 15, confirming the consistency of achieved performance for
each CNN model. The accuracy rate, precision, recall, and F1-score results are visualized
in graph charts in Figures 16 and 17 for easy comparison between the CNN models.

Figure 16. Accuracy results of pre-trained feature extractor-based Custom DNN models on the test
set using an 80:20 splitting procedure.

Figure 17. Precision, recall, and F1-score results of pre-trained feature extractor-based Custom DNN
model on the test set using an 80:20 splitting procedure.

Figure 16. Accuracy results of pre-trained feature extractor-based Custom DNN models on the test
set using an 80:20 splitting procedure.

Mathematics 2024, 12, 1155 35 of 46

MobileNetV2 98.51% 0.9859 0.9850 0.9854
Xception 96.44% 0.9631 0.9647 0.9636

InceptionV3 94.31% 0.9440 0.9403 0.9419
NASNetLarge 96.23% 0.9625 0.9639 0.9628

VGG19 98.22% 0.9815 0.9828 0.9820
VGG16 98.65% 0.9863 0.9876 0.9868

As shown in Table 15, the VGG16, MobileNetV2, VGG19, and DenseNet121 models
obtained the highest performance results. They achieved an accuracy rate of 98.65%,
98.51%, 98.22%, and 98.15%, respectively. Furthermore, the Xception model,
NASNetLarge model, and InceptionV3 model attained competitive performance results
with accuracy rates of 96.44%, 96.23%, and 94.31%, respectively. However, the ResNet152
model failed to classify the test set well, whereby it obtained the lowest accuracy rate of
47.23%. The performance results of other metrics, such as precision, recall, and F1-score,
are also illustrated in Table 15, confirming the consistency of achieved performance for
each CNN model. The accuracy rate, precision, recall, and F1-score results are visualized
in graph charts in Figures 16 and 17 for easy comparison between the CNN models.

Figure 16. Accuracy results of pre-trained feature extractor-based Custom DNN models on the test
set using an 80:20 splitting procedure.

Figure 17. Precision, recall, and F1-score results of pre-trained feature extractor-based Custom DNN
model on the test set using an 80:20 splitting procedure.
Figure 17. Precision, recall, and F1-score results of pre-trained feature extractor-based Custom DNN
model on the test set using an 80:20 splitting procedure.

Mathematics 2024, 12, 1155 34 of 43

Table 15. Comparison of performance results for utilized pre-trained CNN feature extractors com-
bined with the DNN classification model on the test set using an 80:20 splitting procedure.

Model Accuracy Precision Recall F1-Score

DenseNet121 98.15% 0.9828 0.9797 0.9811
ResNet152 47.23% 0.7500 0.4819 0.5292

MobileNetV2 98.51% 0.9859 0.9850 0.9854
Xception 96.44% 0.9631 0.9647 0.9636

InceptionV3 94.31% 0.9440 0.9403 0.9419
NASNetLarge 96.23% 0.9625 0.9639 0.9628

VGG19 98.22% 0.9815 0.9828 0.9820
VGG16 98.65% 0.9863 0.9876 0.9868

As shown in Table 15, the VGG16, MobileNetV2, VGG19, and DenseNet121 models
obtained the highest performance results. They achieved an accuracy rate of 98.65%, 98.51%,
98.22%, and 98.15%, respectively. Furthermore, the Xception model, NASNetLarge model,
and InceptionV3 model attained competitive performance results with accuracy rates of
96.44%, 96.23%, and 94.31%, respectively. However, the ResNet152 model failed to classify
the test set well, whereby it obtained the lowest accuracy rate of 47.23%. The performance
results of other metrics, such as precision, recall, and F1-score, are also illustrated in
Table 15, confirming the consistency of achieved performance for each CNN model. The
accuracy rate, precision, recall, and F1-score results are visualized in graph charts in
Figures 16 and 17 for easy comparison between the CNN models.

Finally, to measure the efficiency of the proposed DNN models, the average compu-
tation time in seconds for classifying all test set instances was calculated as illustrated
in Figure 18. It shows that the VGG16-based Custom DNN model and Xception-Based
Custom DNN achieved the lowest computation time, confirming their efficiency for the
real-time translation framework of Arabic word sign language into appropriate Arabic text
words. Also, Figure 18 shows that the InceptionV3 model, VGG19 model, and DenseNet121
model achieved good efficiency in terms of computation time, while the NASNetLarge
model, ResNet152 model, and MobileNetV2 model achieved the lowest efficiency of
computation times.

Mathematics 2024, 12, 1155 36 of 46

Finally, to measure the efficiency of the proposed DNN models, the average
computation time in seconds for classifying all test set instances was calculated as
illustrated in Figure 18. It shows that the VGG16-based Custom DNN model and
Xception-Based Custom DNN achieved the lowest computation time, confirming their
efficiency for the real-time translation framework of Arabic word sign language into
appropriate Arabic text words. Also, Figure 18 shows that the InceptionV3 model, VGG19
model, and DenseNet121 model achieved good efficiency in terms of computation time,
while the NASNetLarge model, ResNet152 model, and MobileNetV2 model achieved the
lowest efficiency of computation times.

Figure 18. Average classification time of pre-trained feature extractor-based Custom DNN model
on the test set using an 80:20 splitting procedure.

To generalize and confirm the performance of developed models using the first
splitting procedure (80:20), we conducted another experiment using the second splitting
procedure (70:30). Table 16 gives a comparison of performance results on the test set using
an 70:30 splitting procedure for pre-trained CNN feature extractors combined with the
DNN classification model. Figure 19 illustrates the ROC curves for each class label of every
built model.

(a) (b)

Figure 18. Average classification time of pre-trained feature extractor-based Custom DNN model on
the test set using an 80:20 splitting procedure.

To generalize and confirm the performance of developed models using the first split-
ting procedure (80:20), we conducted another experiment using the second splitting pro-
cedure (70:30). Table 16 gives a comparison of performance results on the test set using
an 70:30 splitting procedure for pre-trained CNN feature extractors combined with the
DNN classification model. Figure 19 illustrates the ROC curves for each class label of every
built model.

Mathematics 2024, 12, 1155 35 of 43

Mathematics 2024, 12, 1155 36 of 46

Finally, to measure the efficiency of the proposed DNN models, the average
computation time in seconds for classifying all test set instances was calculated as
illustrated in Figure 18. It shows that the VGG16-based Custom DNN model and
Xception-Based Custom DNN achieved the lowest computation time, confirming their
efficiency for the real-time translation framework of Arabic word sign language into
appropriate Arabic text words. Also, Figure 18 shows that the InceptionV3 model, VGG19
model, and DenseNet121 model achieved good efficiency in terms of computation time,
while the NASNetLarge model, ResNet152 model, and MobileNetV2 model achieved the
lowest efficiency of computation times.

Figure 18. Average classification time of pre-trained feature extractor-based Custom DNN model
on the test set using an 80:20 splitting procedure.

To generalize and confirm the performance of developed models using the first
splitting procedure (80:20), we conducted another experiment using the second splitting
procedure (70:30). Table 16 gives a comparison of performance results on the test set using
an 70:30 splitting procedure for pre-trained CNN feature extractors combined with the
DNN classification model. Figure 19 illustrates the ROC curves for each class label of every
built model.

(a) (b)

Mathematics 2024, 12, 1155 37 of 46

(c) (d)

(e) (f)

(g) (h)

Figure 19. ROC curves of pre-trained feature extractor-based Custom DNN model on the test set
using an 70:30 splitting procedure: (a) ROC curve of the DenseNet121-based Custom DNN model,
(b) ROC curve of the ResNet152-based Custom DNN model, (c) ROC curve of the MobileNetV-
based Custom DNN model, (d) ROC curve of the Xception-based Custom DNN model, (e) ROC
curve of the InceptionV3-based Custom DNN model, (f) ROC curve of the NASNetLarge-based
Custom DNN model, (g) ROC curve of the VGG19-based Custom DNN model, and (h) ROC curve
of the VGG16-based Custom DNN model.

Table 16. Comparison of performance results for utilized pre-trained CNN feature extractors
combined with the DNN classification model on the test set using an 70:30 splitting procedure.

Model Accuracy Precision Recall F1-Score
DenseNet121 97.68% 0.9771 0.9768 0.9768

ResNet152 48.36% 0.7612 0.4836 0.5486
MobileNetV2 97.63% 0.9773 0.9763 0.9763

Xception 96.44% 0.9650 0.9644 0.9645
InceptionV3 94.12% 0.9417 0.9412 0.9411

NASNetLarge 95.78% 0.9586 0.9578 0.9578
VGG19 97.53% 0.9756 0.9753 0.9754

Figure 19. ROC curves of pre-trained feature extractor-based Custom DNN model on the test set
using an 70:30 splitting procedure: (a) ROC curve of the DenseNet121-based Custom DNN model,
(b) ROC curve of the ResNet152-based Custom DNN model, (c) ROC curve of the MobileNetV-based
Custom DNN model, (d) ROC curve of the Xception-based Custom DNN model, (e) ROC curve
of the InceptionV3-based Custom DNN model, (f) ROC curve of the NASNetLarge-based Custom
DNN model, (g) ROC curve of the VGG19-based Custom DNN model, and (h) ROC curve of the
VGG16-based Custom DNN model.

Table 16 shows that the VGG16, VGG19, MobileNetV2, and DenseNet121 models
achieved the highest performance results. They attained 98.44%, 97.53%, 97.63%, and 97.68%
in terms of classification accuracy, respectively. Moreover, the Xception, NASNetLarge, and
InceptionV3 models performed well with accuracy rates of 96.44%, 95.78%, and 94.12%,
respectively. However, the performance result of the ResNet152 model was the lowest,

Mathematics 2024, 12, 1155 36 of 43

achieving an accuracy rate of 48.36%. The performance results of other metrics, such as
precision, recall, and F1-score for each model, are also given in Table 16. For more analysis
of classification results, ROC curves in Figure 19 were used as an essential measure to assess
the overall quality of the models and determine which one performed best. They calculate
the FPR and TPR for each model at different thresholds, in which the FPR values are given
on the x-axis and the values of TPR are set on the y-axis. Each point on the ROC curve
corresponds to a pair of FPR and TPR values for each particular threshold value. From the
ROC curves in Figure 19g,h, we notice that VGG19 and VGG16 feature extractors combined
with our Custom DNN model achieved outstanding classification results concerning FPR
and TPR values for each class label. This confirms the quality and effectiveness of the
sign-to-word translation module in recognizing the Arabic sign images of the test set.

Table 16. Comparison of performance results for utilized pre-trained CNN feature extractors com-
bined with the DNN classification model on the test set using an 70:30 splitting procedure.

Model Accuracy Precision Recall F1-Score

DenseNet121 97.68% 0.9771 0.9768 0.9768
ResNet152 48.36% 0.7612 0.4836 0.5486

MobileNetV2 97.63% 0.9773 0.9763 0.9763
Xception 96.44% 0.9650 0.9644 0.9645

InceptionV3 94.12% 0.9417 0.9412 0.9411
NASNetLarge 95.78% 0.9586 0.9578 0.9578

VGG19 97.53% 0.9756 0.9753 0.9754
VGG16 98.44% 0.9848 0.9844 0.9844

In general, the proposed framework of our study has a number of advantages and
shows an outstanding accuracy result compared with the previous studies described in the
literature and listed in Table 17. The one-directional translation of Arabic sign language is
the central research gap of the existing models and methods. They focused on translating
the Arabic sign images into their corresponding words or letters. In addition, current state-
of-the-art studies have several limitations, such as low accuracy rates, high computational
resources, and limited evaluation metrics. Hence, this study was conducted to fill in the
gaps and limitations of the previous work.

Table 17. A comparative analysis of proposed work compared to the state-of-the-art studies.

[Ref.] (Year) Model Advantages and Disadvantages Sign Letters
or Words Accuracy Is Efficiency

Measured?
Is it Bidirec-

tional?

[32] (2020)

Pros:

- Proposed a simple vision-based system using a CNN
with two convolution layers and two maximum
pooling layers for recognizing the Arabic
hand-sign letters.

- Generated Arabic speech for each recognized Arabic
hand-sign letter.

- Applied data preprocessing to enhance the
representation of sign images.

Cons:

- Training the CNN model from scratch typically
requires large numbers of images to be more effective
in extracting the important features of new and
unseen Arabic sign images.

- Recognition accuracy was unsatisfactory and needs to
be improved.

- Limited evaluation criteria. Only accuracy and
confusion matrices were used.

- Insufficient discussion and analysis of the results.

Letters 90% Not
Measured No

Mathematics 2024, 12, 1155 37 of 43

Table 17. Cont.

[Ref.] (Year) Model Advantages and Disadvantages Sign Letters
or Words Accuracy Is Efficiency

Measured?
Is it Bidirec-

tional?

[63] (2021)

Pros:

- Proposed a deep learning model based on a CNN for
interpreting Arabic sign letters.

- Optimized the model training by using a
cross-entropy function with Adam version to
minimize the training loss.

- Max pooling layers were used in the built model to
decrease the number of parameters to minimize
over-fitting.

Cons:

- Complex and computationally expensive.
- The use of SMOTE on the whole dataset before

splitting it into training and test sets does not reflect a
real evaluation of the model.

- Applying the SMOTE may create overlap and more
noisy instances than the original one, which leads to
poor performance on unseen test images.

- Limited evaluation criteria.
- No image enhancement model was used.

Letters

96.59%
(without

SMOTE), and
97.29% (with

SMOTE)

Not
Measured No

[64] (2022)

Pros:

- Proposed an approach for Arabic sign alphabet
recognition using a pre-trained EfficientNetB4 model.

- Developed data augmentation with a preprocessing
technique on the training set to improve performance.

- Introduced a comparative analysis of performance for
different pre-trained models.

Cons:

- EfficientNets works poorly on hardware accelerators.
- The performance of the model still needs to be

improved.
- The model needs an optimization method to select the

best parameter values.

Letters 95% Not
Measured No

[65] (2022)

Pros:

- Generated video-based Arabic Sign
Language datasets.

- Proposed transfer learning models to extract
video features.

- Eliminated useless frames.

Cons:

- Augmenting the whole dataset before splitting it into
training and test sets does not reflect a real evaluation
of the model.

- Combining transfer learning models with RNNs
increases the complexity of the model, making it more
challenging to train and optimize.

- The model is computationally expensive. It requires
significant resources for training and recognition.

Words 93.4% Not
Measured No

[66] (2022)

Pros:

- Extracted sign image features based on transfer
learning models.

- Use of data preprocessing and segmentation.
- Achieved a competitive recognition result.

Cons:

- No image enhancement model was used.
- Limited evaluation criteria. Only an accuracy metric

was used.
- Insufficient discussion and analysis of the results.

Letters 97% Not
Measured No

Mathematics 2024, 12, 1155 38 of 43

Table 17. Cont.

[Ref.] (Year) Model Advantages and Disadvantages Sign Letters
or Words Accuracy Is Efficiency

Measured?
Is it Bidirec-

tional?

[33] (2022)

Pros:

- Customized several Arabic sign language datasets.
- Created a dataset with natural circumstances

and environments.
- Use of data preprocessing to reduce the cost time.
- Use of two CNN models with an RNN model to

improve video feature extraction.
- Interpretation not translation.

Cons:

- Using video frames as input led to increase in overall
processing time.

- Using two CNN models and one RNN model with
five layers led to overfitting and low efficiency.

- Confusion matrix used only for
evaluation measurement.

Letters and
Words 98% Not

measured No

[67] (2023)

Pros:

- Extracted image features of sign letters using a
transfer learning-based EfficientNetB1 model.

- Performed data preprocessing (Normalization,
Scaling. . .etc.).

Cons:

- Evaluation of the model was based only on validation
accuracy, not testing accuracy.

- Limited evaluation criteria. Only an accuracy metric
was used.

- Insufficient discussion and analysis of the results.

Letters
97.9%

validation
accuracy

Not
Measured No

[68] (2023)

Pros:

- Created a new database of 5000 RGB sign
letter images.

- Combined the created dataset with the existing
Arabic sign letters dataset.

- Applied a preprocessing stage to enhance the
representation of gesture images.

- Extracted points’ marks from the depth data of
hand images.

- A deep CNN model was proposed for recognizing the
sign letters.

Cons:

- Training the CNN model from scratch requires large
amounts of images to be more effective when
recognizing new and unseen sign images.

- Extracting points’ marks and training the CNN model
requires significant resources for processing and
recognition.

- Noisy images and orientation changes may affect the
performance of the model.

Letters 97.07% Not
Measured No

[34] (2023)

Pros:

- Used different datasets with huge sample sizes.
- Used hand edge detection to improve the accuracy.
- Used 12 CNN deep learning models for classifications

with predication vote.

Cons:

- No image enhancement model was used.
- Constrained environment.
- Low efficiency due to video frame usage with 14

images and complex model architecture.
- Large depth causes over-fitting.

Letters 93.7% Not
measured No

Mathematics 2024, 12, 1155 39 of 43

Table 17. Cont.

[Ref.] (Year) Model Advantages and Disadvantages Sign Letters
or Words Accuracy Is Efficiency

Measured?
Is it Bidirec-

tional?

[35] (2023)

Pros:

- Used segmentation methods to improve detection.
- Simple CNN model architecture was used.
- Preprocessing data was used to improve efficiency.

Cons:

- Used a limited dataset with only 14 letters.
- Slow training time due to the number of epochs used.
- Low efficiency due to imbalanced data.
- Poor precision, recall, and F1-score evaluation.

Letters 97% measured No

[36] (2023)

Pros:

- Used real-time EMG signals for data capturing and
processing

- Efficient performance.
- Used a simple model.

Cons:

- Limited dataset with environment constraints.
- Experimental evaluation was not performed.
- Prone to numerous interferences, such as movement,

temperature, electromagnetic radiation, and noise.

Letters and
Numbers Not measured Not

measured No

[37] (2024)

Pros:

- Built the largest Arabic Saudi Sign Language (SSL)
database.

- Established a dataset framework.
- Introduced a convolutional graph neural network

(CGCN) architecture made up of a small number of
3DGCN layers.

- Static and dynamic signs were used.

Cons:

- No data preprocessing was used.
- Limited consideration of the environment.
- Experimental evaluation was not performed.
- Focused more on dataset creation.

Words 97% Not
measured No

[38] (2024)

Pros:

- A data preparation and preprocessing model was used.
- A simple CNN model was utilized.
- A dropout strategy was applied to reduce

processing time.

Cons:

- The dataset was small.
- Prone to under-fitting issues.
- Consumed a large amount of resources due to model

implementation steps.
- Limited evaluation metrics were used.

Letters 97% Not
measured No

[This Work]
(2024)

Pros:

- Created a sufficient dataset of Arabic sign words.
- Built a lightweight DNN model for classification.
- Optimized the hyper-parameters of a proposed

classification model for improving performance.
- Use of image enhancement and preprocessing methods.
- Compared eight pre-trained CNN models for feature

extraction.
- Achieved a high performance result compared with

the current state-of-the-art models.
- It is a bidirectional Arabic sign translation framework.
- It is efficient when used for real-time applications.

Cons:

- Facial expression can be used for supporting sign
translation process.

- Extra examples with new labels can be added to the
dataset to cover more words from the Arabic dictionary.

Words 98.65% Measured Yes

Mathematics 2024, 12, 1155 40 of 43

Table 17 shows that the advantages and performance of our proposed work are
considered highly suitable for recognizing and translating Arabic sign language images
into meaningful text words and vice versa. The novelty of adapting the fuzzy matching
score method proves its ability to translate the input text into the appropriate sign image. It
can improve its ability to catch and rectify mistakes in the pronunciation of Arabic words,
spelling errors, and typos, converting them to the appropriate Arabic sign language images
and producing more accurate results.

6. Conclusions and Future Work

The study aimed to develop a bidirectional Arabic sign language translator framework.
A prototype was implemented based on the proposed framework modules and components
using image processing methods with deep learning and fuzzy logic techniques. The
automatic bidirectional prototype translator for Arabic sign language was developed to
classify 14 classes of hand signs into Arabic text meanings and vice versa. The ArSL dataset
was collected carefully based on the specific criteria and consisted of 7030 images for 14
sign classes. The dataset was prepared well, which can be considered a promising Arabic
sign language dataset for future research. This study found that preparing an appropriate
dataset is essential to solving the domain problem, specifically when used with deep
learning and transfer learning applications.

This research can be used as a preliminary study to develop a bidirectional translation
system for Arabic Sign language, since there is limited existing research on bidirectional
Arabic sign translation. Experimental results showed that the best pre-trained CNN-based
Custom DNN model can effectively classify the Arabic sign images with an approximate
accuracy of 99%. The performance and efficiency for the ArSL prototype classification task
were assessed using a test set and an 80:20 splitting procedure, obtaining accuracy results
from the highest to the lowest rates with average classification time in seconds for each
utilized model, including (VGG16, 98.65%, 72.5), (MobileNetV2, 98.51%, 100.19), (VGG19,
98.22%, 77.16), (DenseNet121, 98.15%, 80.44), (Xception, 96.44%, 72.54), (NASNetLarge,
96.23%, 84.96), (InceptionV3, 94.31%, 76.98), and (ResNet152, 47.23%, 98.51). Unfortunately,
the ResNet152 model failed to classify the test set, with an accuracy rate of 47%. Thus, we
suggest excluding it from application in such a problem domain or re-evaluating it using
different hyper-parameters.

The overall prototype performance results showed that the study method effectively
reduced the processing time of feature extraction and extracted the significant features
of signs and images. The proposed prototype proves the ability of selected CNN models
to successfully translate the 14 hand-sign labels with the proposed methods with excellent
performance. The experimental results showed that the CNN model achieved outstanding
efficiency in computation time during the training and testing process. Additionally, the
proposed prototype’s efficiency results show the ability to develop such a system in mobile de-
vices, specifically with VGG16 or Xception models, because they had the lowest computation
time. The fuzzy string matching score’s evaluation is mathematically validated by computing
the distance between the input word and associative dictionary words.

Furthermore, this study is distinguished from previous studies in supporting bidi-
rectional communication between deaf and ordinary people and improving the accuracy
of Arabic word sign classification, where there are limited studies in this area. The study
proves the suitability of the new concepts applied here to translate the input text into Arabic
sign language using the fuzzy matching score module. The fuzzy matching score approach
also reduces the translation time by ignoring spelling errors. It can also be applied to solve
the problem of various accents, dialects, synonyms, or words with similar meanings with
the same sign image. The new contribution here of applying fuzzy matching scores is
not limited to only the Arabic language, but can be customized to work in any other lan-
guage. The study showed the feasibility of developing a real-time bidirectional automated
translation system between deaf and ordinary people.

Mathematics 2024, 12, 1155 41 of 43

This study addresses the main tasks of designing a bidirectional translation system
between Arabic sign language and text. It provides insight into the ability to develop a fully
automatic system for all Arabic signs if the dataset is constructed well. We are working
to extend the dataset by including more words and applying different transfer learning
strategies, such as fine-tuning and freezing different layers of pre-trained models rather
than just using them as feature extractors.

This study has limitations, including the limited size of dataset classes and only
14 signs, while extra common Arabic signs can be selected from the Arabic sign dictionary,
where the accuracy and performance of the proposed framework may be affected by
extra dataset classes. Furthermore, the performance of transfer learning models can be
considered a limitation for real-time application development. Finally, misclassification
could occur for some sign images in different environments of dataset criteria or in terms
of recognizing some signs that included facial expressions.

Author Contributions: Conceptualization, M.A.A.M., A.A., A.H.G., B.F.A. and M.A.-Q.; methodology,
M.A.A.M., A.A., A.H.G., B.F.A. and M.A.-Q.; software, M.A.A.M., A.A., A.H.G., B.F.A. and M.A.-Q.;
validation, M.A.A.M., A.A., A.H.G., B.F.A. and M.A.-Q.; formal analysis, M.A.A.M., A.A., A.H.G.,
B.F.A. and M.A.-Q.; investigation, M.A.A.M., A.A., A.H.G. and B.F.A.; resources, M.A.A.M., A.A.,
A.H.G. and B.F.A.; data curation, M.A.A.M., A.A., A.H.G., B.F.A. and M.A.-Q.; writing—original draft
preparation, M.A.A.M., A.A., A.H.G., B.F.A. and M.A.-Q.; writing—review and editing, M.A.A.M.,
A.A., A.H.G., B.F.A. and M.A.-Q.; visualization, M.A.A.M., A.A., A.H.G., B.F.A. and M.A.-Q.; super-
vision, M.A.A.M., A.A., A.H.G. and B.F.A.; project administration, A.H.G., A.A. and B.F.A.; funding
acquisition, A.H.G., A.A. and B.F.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available on request
from the first author.

Acknowledgments: The authors extend their appreciation to the King Salman Center For Disability
Research for funding this work through Research Group no KSRG-2023-105.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hsu, P.-H. Readability of hearing related internet information in traditional Chinese. Speech Lang. Hear. 2017, 23, 158–166.

[CrossRef]
2. Al-Khalifa, H.S. Introducing Arabic sign language for mobile phones. In Proceedings of the International Conference on

Computers for Handicapped Persons, Milan, Italy, 11–15 July 2020; pp. 213–220.
3. Zahra, A.; Hassan, S.-U.-N.; Hassan, M.S.; Parveen, N.; Park, J.-H.; Iqbal, N.; Khatoon, F.; Atteya, M.R. Effect of physical activity

and sedentary sitting time on psychological quality of life of people with and without disabilities: A survey from Saudi Arabia.
Front. Public Health 2022, 10, 998890. [CrossRef] [PubMed]

4. El-Sadany, T.A.; Hashish, M.A. An Arabic morphological system. IBM Syst. J. 1989, 28, 600–612. [CrossRef]
5. El-Gayyar, M.; Ibrahim, A.; Sallam, A. The ArSL keyboard for android. In Proceedings of the 2015 IEEE Seventh International

Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 12–14 December 2015; pp. 481–486.
6. Abdel-Fattah, M.A. Arabic sign language: A perspective. J. Deaf Stud. Deaf Educ. 2005, 10, 212–221. [CrossRef] [PubMed]
7. Khan, R.U.; Khattak, H.; Wong, W.S.; AlSalman, H.; Mosleh, M.A.; Rahman, M.; Md, S. Intelligent Malaysian Sign Language

Translation System Using Convolutional-Based Attention Module with Residual Network. Comput. Intell. Neurosci. 2021,
2021, 9023010. [CrossRef] [PubMed]

8. Mohameed, R.A.; Naji, R.M.; Ahmeed, A.M.; Saeed, D.A.; Mosleh, M.A. Automated translation for Yemeni’s Sign Language to
Text UsingTransfer Learning-based Convolutional Neural Networks. In Proceedings of the 2021 1st International Conference on
Emerging Smart Technologies and Applications (eSmarTA), Sana’a, Yemen, 10–12 August 2021; pp. 1–5.

9. Damian, S. Spoken vs. Sign Languages—What’s the Difference? Cogn. Brain Behav. 2011, 15, 251.
10. Aronoff, M.; Meir, I.; Sandler, W. The paradox of sign language morphology. Language 2005, 81, 301. [CrossRef] [PubMed]
11. Arivazhagan, N.; Bapna, A.; Firat, O.; Lepikhin, D.; Johnson, M.; Krikun, M.; Chen, M.X.; Cao, Y.; Foster, G.; Cherry, C. Massively

multilingual neural machine translation in the wild: Findings and challenges. arXiv 2019, arXiv:1907.05019.
12. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K. Google’s neural

machine translation system: Bridging the gap between human and machine translation. arXiv 2016, arXiv:1609.08144.

https://doi.org/10.1080/2050571X.2019.1702240
https://doi.org/10.3389/fpubh.2022.998890
https://www.ncbi.nlm.nih.gov/pubmed/36225781
https://doi.org/10.1147/sj.284.0600
https://doi.org/10.1093/deafed/eni007
https://www.ncbi.nlm.nih.gov/pubmed/15778217
https://doi.org/10.1155/2021/9023010
https://www.ncbi.nlm.nih.gov/pubmed/34925497
https://doi.org/10.1353/lan.2005.0043
https://www.ncbi.nlm.nih.gov/pubmed/22223926

Mathematics 2024, 12, 1155 42 of 43

13. Bao, C.; Ji, H.; Quan, Y.; Shen, Z. Dictionary learning for sparse coding: Algorithms and convergence analysis. IEEE Trans. Pattern
Anal. Mach. Intell. 2015, 38, 1356–1369. [CrossRef]

14. Tomasi, C. Histograms of oriented gradients. Comput. Vis. Sampl. 2012, 1–6. Available online: https://courses.cs.duke.edu/
/compsci527/spring19/notes/hog.pdf (accessed on 15 January 2024).

15. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

16. Nguyen, T.D.; Ranganath, S. Facial expressions in American sign language: Tracking and recognition. Pattern Recognit. 2012, 45,
1877–1891. [CrossRef]

17. Amrutha, C.; Davis, N.; Samrutha, K.; Shilpa, N.; Chunkath, J. Improving language acquisition in sensory deficit individuals with
mobile application. Procedia Technol. 2016, 24, 1068–1073. [CrossRef]

18. Rajam, P.S.; Balakrishnan, G. Real time Indian sign language recognition system to aid deaf-dumb people. In Proceedings of the 2011
IEEE 13th International Conference on Communication Technology (ICCT), Jinan, China, 25–28 September 2011; pp. 737–742.

19. Bhuyan, M.K.; Ramaraju, V.V.; Iwahori, Y. Hand gesture recognition and animation for local hand motions. Int. J. Mach. Learn.
Cybern. 2014, 5, 607–623. [CrossRef]

20. Gandhi, P.; Dalvi, D.; Gaikwad, P.; Khode, S. Image based sign language recognition on android. Int. J. Eng. Tech. 2015, 1, 55–60.
21. Lahoti, S.; Kayal, S.; Kumbhare, S.; Suradkar, I.; Pawar, V. Android based american sign language recognition system with skin

segmentation and SVM. In Proceedings of the 2018 9th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), Bengaluru, India, 10–12 July 2018; pp. 1–6.

22. Ozcan, T.; Basturk, A. Transfer learning-based convolutional neural networks with heuristic optimization for hand gesture
recognition. Neural Comput. Appl. 2019, 31, 8955–8970. [CrossRef]

23. Aloysius, N.; Geetha, M. Understanding vision-based continuous sign language recognition. Multimed. Tools Appl. 2020, 79,
22177–22209. [CrossRef]

24. Imran, J.; Raman, B. Deep motion templates and extreme learning machine for sign language recognition. Vis. Comput. 2020, 36,
1233–1246. [CrossRef]

25. Assaleh, K.; Al-Rousan, M. Recognition of Arabic sign language alphabet using polynomial classifiers. EURASIP J. Adv. Signal
Process. 2005, 2005, 507614. [CrossRef]

26. El-Bendary, N.; Zawbaa, H.M.; Daoud, M.S.; Hassanien, A.E.; Nakamatsu, K. Arslat: Arabic sign language alphabets translator.
In Proceedings of the 2010 International Conference on Computer Information Systems and Industrial Management Applications
(CISIM), Krakow, Poland, 8–10 October 2010; pp. 590–595.

27. Samir, A.; Tolba, M.F. A Proposed Standardization for Arabic Sign Language Benchmark Database. Egypt. J. Lang. Eng. 2015, 2, 1–9.
[CrossRef]

28. Ahmed, A.M.; Alez, R.A.; Taha, M.; Tharwat, G. Automatic translation of Arabic sign to Arabic text (ATASAT) system. J. Comput.
Sci. Inf. Technol. 2016, 6, 109–122.

29. Ahmed, A.M.; Alez, R.A.; Tharwat, G.; Taha, M.; Ghribi, W.; Badawy, A.S.; Changalasetty, S.B.; Bose, J.S.C. Towards the design of
automatic translation system from Arabic Sign Language to Arabic text. In Proceedings of the 2017 International Conference on
Inventive Computing and Informatics (ICICI), Coimbatore, India, 23–24 November 2017; pp. 325–330.

30. Luqman, H.; Mahmoud, S.A. Automatic translation of Arabic text-to-Arabic sign language. Univers. Access Inf. Soc. 2019, 18,
939–951. [CrossRef]

31. Aly, S.; Aly, W. DeepArSLR: A novel signer-independent deep learning framework for isolated arabic sign language gestures
recognition. IEEE Access 2020, 8, 83199–83212. [CrossRef]

32. Kamruzzaman, M. Arabic sign language recognition and generating Arabic speech using convolutional neural network. Wirel.
Commun. Mob. Comput. 2020, 2020, 3685614. [CrossRef]

33. Balaha, M.M.; El-Kady, S.; Balaha, H.M.; Salama, M.; Emad, E.; Hassan, M.; Saafan, M.M. A vision-based deep learning approach
for independent-users Arabic sign language interpretation. Multimed. Tools Appl. 2023, 82, 6807–6826. [CrossRef]

34. Nahar, K.M.; Almomani, A.; Shatnawi, N.; Alauthman, M. A robust model for translating arabic sign language into spoken arabic
using deep learning. Intell Autom Soft Comput 2023, 37, 2037–2057. [CrossRef]

35. AbdElghfar, H.A.; Ahmed, A.M.; Alani, A.A.; AbdElaal, H.M.; Bouallegue, B.; Khattab, M.M.; Tharwat, G.; Youness, H.A. A
model for qur’anic sign language recognition based on deep learning algorithms. J. Sens. 2023, 2023, 9926245. [CrossRef]

36. Amor, A.B.H.; El Ghoul, O.; Jemni, M. An EMG dataset for Arabic sign language alphabet letters and numbers. Data Brief 2023,
51, 109770. [CrossRef]

37. Alsulaiman, M.; Faisal, M.; Mekhtiche, M.; Bencherif, M.; Alrayes, T.; Muhammad, G.; Mathkour, H.; Abdul, W.; Alohali, Y.;
Alqahtani, M. Facilitating the communication with deaf people: Building a largest Saudi sign language dataset. J. King Saud Univ.
Comput. Inf. Sci. 2023, 35, 101642. [CrossRef]

38. El Kharoua, R.; Jiang, X. Deep Learning Recognition for Arabic Alphabet Sign Language RGB Dataset. J. Comput. Commun. 2024,
12, 32–51. [CrossRef]

39. Lozano-Diez, A.; Zazo, R.; Toledano, D.T.; Gonzalez-Rodriguez, J. An analysis of the influence of deep neural network (DNN)
topology in bottleneck feature based language recognition. PLoS ONE 2017, 12, e0182580. [CrossRef] [PubMed]

40. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.
[CrossRef]

https://doi.org/10.1109/TPAMI.2015.2487966
https://courses.cs.duke.edu//compsci527/spring19/notes/hog.pdf
https://courses.cs.duke.edu//compsci527/spring19/notes/hog.pdf
https://doi.org/10.1016/j.patcog.2011.10.026
https://doi.org/10.1016/j.protcy.2016.05.237
https://doi.org/10.1007/s13042-013-0158-4
https://doi.org/10.1007/s00521-019-04427-y
https://doi.org/10.1007/s11042-020-08961-z
https://doi.org/10.1007/s00371-019-01725-3
https://doi.org/10.1155/ASP.2005.2136
https://doi.org/10.21608/ejle.2015.60253
https://doi.org/10.1007/s10209-018-0622-8
https://doi.org/10.1109/ACCESS.2020.2990699
https://doi.org/10.1155/2020/3685614
https://doi.org/10.1007/s11042-022-13423-9
https://doi.org/10.32604/iasc.2023.038235
https://doi.org/10.1155/2023/9926245
https://doi.org/10.1016/j.dib.2023.109770
https://doi.org/10.1016/j.jksuci.2023.101642
https://doi.org/10.4236/jcc.2024.123003
https://doi.org/10.1371/journal.pone.0182580
https://www.ncbi.nlm.nih.gov/pubmed/28796806
https://doi.org/10.1007/BF02478259

Mathematics 2024, 12, 1155 43 of 43

41. Goel, A.; Goel, A.K.; Kumar, A. The role of artificial neural network and machine learning in utilizing spatial information. Spat.
Inf. Res. 2023, 31, 275–285. [CrossRef]

42. Kutyniok, G. An Introduction to the Mathematics of Deep Learning; EMS Press: Helsinki, Finland, 2023.
43. Wu, J. Introduction to Convolutional Neural Networks; National Key Lab for Novel Software Technology, Nanjing University:

Nanjing, China, 2017; Volume 5, p. 495.
44. Mallat, S.; Sciences, E. Understanding deep convolutional networks. Philos. Trans. R. Soc. A Math. Phys. 2016, 374, 20150203.

[CrossRef]
45. Hussain, M.; Bird, J.J.; Faria, D.R. A study on cnn transfer learning for image classification. In Proceedings of the UK Workshop

on Computational Intelligence, Nottingham, UK, 5–7 September 2018; pp. 191–202.
46. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.

arXiv 2013, arXiv:arXiv:13330.
47. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
48. Zadeh, L.A. Fuzzy Logic, Granular, Fuzzy, and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2023; pp. 19–49.
49. Rudwan, M.S.M.; Fonou-Dombeu, J.V. Hybridizing Fuzzy String Matching and Machine Learning for Improved Ontology

Alignment. Future Internet 2023, 15, 229. [CrossRef]
50. Zhang, S.; Hu, Y.; Bian, G. Research on string similarity algorithm based on Levenshtein Distance. In Proceedings of the 2017

IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing China, 25–26
March 2017; pp. 2247–2251.

51. Navarro, G. A guided tour to approximate string matching. ACM Comput. Surv. 2001, 33, 31–88. [CrossRef]
52. Wang, Z. Automatic and robust hand gesture recognition by SDD features based model matching. Appl. Intell. 2022, 52,

11288–11299. [CrossRef]
53. Mosleh, M.A.; Manssor, H.; Malek, S.; Milow, P.; Salleh, A. A preliminary study on automated freshwater algae recognition and

classification system. BMC Bioinform. 2012, 13, S25. [CrossRef]
54. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
55. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE

2020, 109, 43–76. [CrossRef]
56. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 26 July 2017; pp. 4700–4708.
57. Arslan, B.; Memis, S.; Battinisonmez, E.; Batur, O.Z. Fine-Grained Food Classification Methods on the UEC Food-100 Database.

IEEE Trans. Artif. Intell. 2021, 3, 238–243. [CrossRef]
58. Serte, S.; Serener, A.; Al-Turjman, F. Deep learning in medical imaging: A brief review. Trans. Emerg. Telecommun. Technol. 2020,

10, e4080. [CrossRef]
59. Alsharif, M.; Alsharif, Y.; Yahya, K.; Alomari, O.; Albreem, M.; Jahid, A. Deep learning applications to combat the dissemination

of COVID-19 disease: A review. Eur. Rev. Med. Pharmacol. Sci 2020, 24, 11455–11460. [PubMed]
60. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
61. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
62. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings

of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 23 June 2018;
pp. 8697–8710.

63. Alani, A.A.; Cosma, G. ArSL-CNN: A convolutional neural network for Arabic sign language gesture recognition. Indones. J.
Electr. Eng. Comput. Sci. 2021, 22, 1096–1107. [CrossRef]

64. Zakariah, M.; Alotaibi, Y.A.; Koundal, D.; Guo, Y.; Elahi, M.M. Sign language recognition for Arabic alphabets using transfer
learning technique. Comput. Intell. Neurosci. 2022, 2022, 4567989. [CrossRef] [PubMed]

65. Mahmoud, E.; Wassif, K.; Bayomi, H. Transfer learning and recurrent neural networks for automatic arabic sign language
recognition. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications,
Cairo, Egypt, 5–7 May 2022; pp. 47–59.

66. Duwairi, R.M.; Halloush, Z.A. Automatic recognition of Arabic alphabets sign language using deep learning. Int. J. Electr. Comput.
Eng. 2022, 12, 2996–3004. [CrossRef]

67. Dabwan, B.A.; Jadhav, M.E.; Ali, Y.A.; Olayah, F.A. Arabic Sign Language Recognition Using EfficientnetB1 and Transfer Learning
Technique. In Proceedings of the 2023 International Conference on IT Innovation and Knowledge Discovery (ITIKD), Manama,
Bahrain, 8–9 March 2023; pp. 1–5.

68. Hdioud, B.; Tirari, M.E.H. A Deep Learning based Approach for Recognition of Arabic Sign Language Letters. Int. J. Adv. Comput.
Sci. Appl. 2023, 14. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s41324-022-00494-x
https://doi.org/10.1098/rsta.2015.0203
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.3390/fi15070229
https://doi.org/10.1145/375360.375365
https://doi.org/10.1007/s10489-021-02933-y
https://doi.org/10.1186/1471-2105-13-S17-S25
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/TAI.2021.3108126
https://doi.org/10.1002/ett.4080
https://www.ncbi.nlm.nih.gov/pubmed/33215473
https://doi.org/10.11591/ijeecs.v22.i2.pp1096-1107
https://doi.org/10.1155/2022/4567989
https://www.ncbi.nlm.nih.gov/pubmed/35498192
https://doi.org/10.11591/ijece.v12i3.pp2996-3004
https://doi.org/10.14569/IJACSA.2023.0140447

	Introduction
	Literature Review
	Preliminaries
	Deep Neural Networks (DNNs)
	Fuzzy Set and Fuzzy String Matching Score

	Proposed Framework
	Sign-to-Word Module
	Dataset Collection and Image Processing
	Data Splitting
	Feature Extraction Using Pre-Trained Models
	Classification Model Building
	Classification Model Training and Hyper-Parameter Tuning
	Classification Model Evaluation

	Word-to-Sign Module
	Arabic Words Database Dictionary Building
	Fuzzy String Matching Score Implementation

	Experimental Results and Discussion
	Conclusions and Future Work
	References

