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Abstract: Piezoelectric vibration sensors (PVSs) are widely used in high-temperature environments,
such as vibration measurements in aero-engines, because of their high accuracy, small size, and
high temperature resistance. Accurate prediction of its RUL (Remaining Useful Life) is essential for
applying and maintaining PVSs. Based on PVSs’ characteristics and main failure modes, this work
combines the Digital-Twin (DT) and Long Short-Term Memory (LSTM) networks to predict the RUL
of PVSs. In this framework, DT can provide rich data collection, analysis, and simulation capabilities,
which have advantages in RUL prediction, and LSTM network has good results in predicting time
sequence data. The proposed method exploits the advantages of those techniques in feature data
collection, sample optimization, and RUL multiclassification. To verify the prediction of this method,
a DT platform is established to conduct PVS degradation tests, which generates sample datasets, then
the LSTM network is trained and validated. It has been proved that prediction accuracy is more
than 99.7%, and training time is within 94 s. Based on this network, the RUL of PVSs is predicted
using different test samples. The results show that the method performed well in prediction accuracy,
sample data utilization, and compatibility.

Keywords: digital-twin; long short-term memory network; remaining useful life prediction; piezo-
electric vibration sensor; sample optimization

MSC: 68T20

1. Introduction

With the development of aviation technology, intelligent propulsion system design and
operation rely on the accuracy measurement of data from various sensors [1,2]. Vibration
sensors can help monitor the vibration state of aero-engines and detect signs of malfunctions
at an early stage [3]. For reliable monitoring, the sensors must be highly sensitive, low-
quality, have a high signal-to-noise ratio, and be located as close to the high temperature
and vibration source as possible [4]. Under these requirements, a piezoelectric vibration
sensor (PVS) is exciting because of its high sensitivity, no need for an external power supply,
and high temperature resistance [4–6]. For example, the CFM56 turbofan engine in the
Boeing 737 uses PVSs to identify working states in every rotational cycle [7].

Since PVSs are widely used in aero-engine condition monitoring, it is significant to
improve their reliability [8,9]. Despite advances in optimizing their materials and struc-
ture, the risk of PVS failure due to the effect of thermo-mechanical coupling, restricted
to aero-engine working conditions, still exists [5,10]. As a result, remaining useful life
(RUL) prediction is proposed to identify the state of PVS [11]. RUL prediction methods are
generally divided into failure mechanism analysis, data-driven, and fusion [12–14]. The
failure mechanism analysis method is established individually according to specific equip-
ment. With the increasing complexity of equipment, the failure mechanism is generally too
complex to obtain, or the cost is too high. The degradation of PVS under high temperatures
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involves a variety of mechanisms, which is still a limited topic [15]. Data-driven methods
do not require the product specific knowledge such as material properties, constructions,
and failure mechanisms. It can capture the complex relationships and learn trends available
in the data without particular failure modes [16]. The fusion method refers to the combina-
tion of failure mechanism analysis and a data-driven model. Although it can fully use the
advantages of the two methods, the process is relatively complex [16]. Therefore, research
focuses on the data-driven RUL prediction method, which can be divided into statistical
model-based and Machine Learning (ML)- based methods.

Our previous study used a statistical model-based data-driven approach and Digital-
Twin (DT) to predict the RUL of PVS [17]. But there are still some problems. Firstly, a
statistics-based data-driven approach must target well-defined degradation processes and
ignore other failure modes. PVSs have failure modes like bias, gain, drifting, complete fail-
ure, noise, and constant with noise [18]. Secondly, the study is based on some assumptions:
the degradation process of sensitivity conforms to the Wiener process, and the acceleration
effect of temperature on the degradation process conforms to the Arrhenius formula. At the
same time, the sensitivity of PVS needs to be measured indirectly using a calibration-like
method. The sensitivity value of a VPS can only be obtained by analyzing its output and a
standard vibration sensor under the same standard vibration condition. There will be errors
in the filtering algorithm and signal synchronization. In addition, this measurement process
limits the online measurement of PVS, which must be calibrated in isolation from actual
conditions. Table 1 shows the different characteristics of different RUL prediction methods.

Table 1. Comparison of RUL prediction methods.

RUL Prediction Method Failure Mechanism
Data-Driven

Fusion Method
Statistical Model-Based ML-Based

Characteristic insight clear distribution range massive calculation complex
Failure mode specific specific most undetermined

Sample quantity few few more undetermined

For PVS failure mechanism not
clear

only for sensitivity
degradation

insufficient training
data set undetermined

Conclusion difficult operable operable more difficult

The data-driven approach based on ML can avoid the above problems. It establishes
ML models by learning from past experimental data and existing knowledge for predic-
tion [19]. ML-based methods achieved satisfactory results in RUL prediction, including
support vector regression model (SVR) [20], multi-layer perceptron (MLP) [21], convolu-
tional neural network (CNN) [22,23], recurrent neural network (RNN) [24,25], etc. In terms
of input, the ML-based method can take the original output data and state information of
PVS as input, preventing the error from the sensitivity calculation process and ignoring
the assumptions in the statistical data-driven method. In terms of output, it not only skips
the prediction of sensitivity degradation and predicts the RUL directly, but it also skips
the selection of different failure modes. At the same time, the method can contain the
data collected under various working conditions. Long Short-Term Memory (LSTM) is
a network structure developed from Recurrent Neural Networks (RNN) to process time
series data. As RNN have gradient vanishing/explosion problems when dealing with long-
time dependence problems, LSTM’s memory cells and gating mechanisms are designed to
solve this problem. In recent years, due to its adaptive classification of historical data to
distinguish long-term memory data from short-term memory data, the LSTM network has
been well applied in RUL prediction [26].

To capture the degradation data of PVS conveniently, DT provides a powerful tool
for developing RUL prediction methods. Based on real-time interactions of DT between
virtual models and physical structures, the degradation of a target system can be derived
and evaluated effectively. DT is a way to organize and conduct RUL prediction bridges,
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and many studies show the efforts of DT frameworks applied in RUL prediction [27,28].
DT has favorable applications in RUL prediction involving vibration signals, such as
rolling bearings [29,30] and other rotating machinery [31]. There are studies combining the
advantages of DT and LSTM in RUL prediction [32–35].

In this paper, we use DT for data acquisition, processing, and simulation to obtain
feature data and utilize the advantages of the LSTM network in RUL prediction for PVS.
Table 2 shows the necessity of choosing DT and LSTM.

Table 2. Comparison of DT and LSTM network in RUL prediction.

RUL Prediction Based on LSTM DT and Degradation Modeling
(Previous Paper)

DT and LSTM
(This Paper)

Failure mode no need single no need
other need sequence data degradation data characteristics Sensitivity distribution acquisition

Computation amount large small large

Sample size large small sensitivity distribution
sampling to increase

Suitable object
Li battery, ball bearing,

complex equipment,
but no studies for PVS

PVS, depends on the degradation
data distribution characteristics

PVS, devices with complex
feature distribution

This work proposes a PVS-specific DT method and LSTM network for the task of
RUL prediction. Our process seeks to predict the RUL in a novel way by using data from
both working and testing conditions. The contributions of this work are threefold and
summarized as follows:

1. The PVS DT framework for RUL prediction based on the LSTM network is optimized
and validated by building a DT platform for RUL prediction that fully utilizes the
features of PVSs and sample datasets for the multiple failure modes. The scheme
paves the way for DT and LSTM-based modeling of similar devices.

2. A novel method to predict the RUL of PVS based on DT data and the LSTM network
is proposed and provides accurate RUL prediction results for the PVS. It can help
deal with degradation sequences with complex feature distribution and utilize the
historical degradation data from different failure modes and non-failed samples.

3. The influence of sample set parameters on the prediction effect is discussed through
the training and validation of different training sets, verifying the method’s advan-
tages in utilizing degraded data and prediction effect.

The general structure of this paper is organized as shown in Figure 1: In Section 2,
previous studies on PVSs and their failure modes are reviewed as the basis of feather
sections. In Section 3, we explain the DT architecture and relative factors of PVS RUL,
which complete the DT platform and LSTM network needs. In Section 4, we explain the
proposed method. In Section 5, we evaluate the proposed method and discuss the results,
and finally, in Section 6, we conclude and suggest future work.
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acteristics. For both types, a PVS comprises a housing, a base, a connector, two mass 
blocks, a preload screw-pair, two piezoelectric elements, two conducting strips, and an 
insulating strip. The preload screw compacts the mass block, the piezoelectric elements, 
and the conducting strips together to form the preload structure. Notably, the preload 
direction of the compression-type PVS is consistent with the sensitive direction, while that 
of the shear type is vertical to the sensitive direction. 
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2. Structure and Failure Modes of PVS
2.1. Structure and Signal Characters of PVS

Generally, the PVS can be categorized into a shear type and a compression type, re-
spectively, subjected to shear and compressive stress [36]. Figure 2 shows the structure
of both types, which consist of similar components but have distinguishing mechanical
characteristics. For both types, a PVS comprises a housing, a base, a connector, two mass
blocks, a preload screw-pair, two piezoelectric elements, two conducting strips, and an in-
sulating strip. The preload screw compacts the mass block, the piezoelectric elements, and
the conducting strips together to form the preload structure. Notably, the preload direction
of the compression-type PVS is consistent with the sensitive direction, while that of the
shear type is vertical to the sensitive direction.

The preload structure converts the vibration of the base into a change in pressure on
the piezoelectric element. Then, the piezoelectric effect converts the change of pressure
into a change of charge. After that, a charge amplifier is needed to convert the charge
signal output from the PVS into a voltage signal. In the high-temperature environment of
aero-engines, the different materials of the preload structure have different temperature
change characteristics, leading to changes in the preload force. The forces on the piezo-
electric elements also vary under vibration of various frequencies and accelerations. These
force variations affect the creep degradation of the material in the preloaded structure.
At the same time, phenomena such as phase transition degradation and cracking of the
piezoelectric elements under pressure and temperature stress lead to degradation of the
piezoelectric coefficients. The rate of degradation is affected by temperature [15]. These
conditions combine to cause the performance degradation of PVSs. This also leads to the
sensitivity of PVS being inconsistent under the vibration conditions of different accelera-
tions and frequencies. Figure 3 shows the distribution of sensitivity s with acceleration a
and vibration frequency f for a particular model of PVS when calibrated at the factory.
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2.1. Structure and Signal Characters of PVS 

Generally, the PVS can be categorized into a shear type and a compression type, re-
spectively, subjected to shear and compressive stress [36]. Figure 2 shows the structure of 
both types, which consist of similar components but have distinguishing mechanical char-
acteristics. For both types, a PVS comprises a housing, a base, a connector, two mass 
blocks, a preload screw-pair, two piezoelectric elements, two conducting strips, and an 
insulating strip. The preload screw compacts the mass block, the piezoelectric elements, 
and the conducting strips together to form the preload structure. Notably, the preload 
direction of the compression-type PVS is consistent with the sensitive direction, while that 
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Figure 2. The main structure types of PVSs: (a) shear-type PVS; (b) compression-type PVS.
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As can be seen from the figure, there is an error in the sensitivity obtained if the
sensitivity measurements are used directly without considering the vibration conditions.
In the calibration of PVSs, a specific vibration condition (such as 160 Hz 10 g) is generally
selected. However, under actual operating conditions, the vibration is not fixed, affecting
the accuracy of sensitivity measurement. At the same time, the charge signal output from
the PVS has to be filtered and converted to a voltage signal by a charge amplifier, which
is then captured by the data acquisition (DAQ) card. These links also bring errors in the
accurate measurement of PVSs.

2.2. Failure Analysis of PVS

PVSs are non-tightly connected electronic components with complex structures. This
paper presents three typical shear PVS Failure Analysis (FA) cases: output short circuit,
output open circuit, and sensitivity out-of-tolerance. The basic failure mechanisms are of
those modes discussed in the following.

2.2.1. Output Short Circuit Caused by Coating Metal Whiskers Growth

Failure background: A PVS has no output after 240 h at 250 ◦C.
FA process: The appearance of the failed PVS is normal. The electrical parameters test

finds that the output resistance is 120 Ω. The failure mode is output short-circuit. After the
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housing was disassembled, it was found that there were flocs between the piezoelectric
element and the mass block through microscope observation. After further disassembling,
it is observed that the flocs between the piezoelectric element and the mass block have the
possibility of bonding the positive and negative poles, as shown in Figure 4.

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 28 
 

 

housing was disassembled, it was found that there were flocs between the piezoelectric 
element and the mass block through microscope observation. After further disassembling, 
it is observed that the flocs between the piezoelectric element and the mass block have the 
possibility of bonding the positive and negative poles, as shown in Figure 4. 

 
Figure 4. Flocs between the piezoelectric plate and mass block. 

After sampling and analysis by EDS (Energy Dispersive Spectrometer), it was deter-
mined that the flocs on the surface of the piezoelectric element are mainly silver and tung-
sten whiskers. By comparing the materials in each part of PVSs, it was confirmed that the 
silver element comes from the silver coating on the surface of the piezoelectric element, 
and tungsten came from the mass block. No other problems were found in inspecting the 
failed PVS, and parameter testing and disassembling analysis of the contrast parts did not 
find similar flocculent lapping. 

FA conclusion: The failure is caused by the growth of metal whiskers in the silver 
coating from the piezoelectric element and tungsten from the mass block, which leads to 
the lap of the positive and negative poles and the short circuit of the sensor output. 

2.2.2. Output Open Circuit Caused by Solder Joint Fracture 
Failure background: A PVS has no output after 1400 h at 220 °C. 
FA process: No abnormality was found during the appearance check of the failure 

sensor. An output open was found in the electrical parameter test. And the X-ray exami-
nation showed no exception. After unsealing, it was found that the solder joint of the lead 
and the conducting strip was abnormal. The connection was broken, and the solder had 
an obvious melting trace, as shown in Figure 5. Direct measurement of both ends of the 
solder joint found that it was a break. Both ends of the solder joint and the sensor’s output 
leads were measured, and no break was seen. The output impedance was standard after 
lapping the lead and the conducting strip. No other anomalies were found after further 
disassembly. 

 
Figure 5. Solder joints of lead and the conductive plates of the failed PVS. 

Figure 4. Flocs between the piezoelectric plate and mass block.

After sampling and analysis by EDS (Energy Dispersive Spectrometer), it was de-
termined that the flocs on the surface of the piezoelectric element are mainly silver and
tungsten whiskers. By comparing the materials in each part of PVSs, it was confirmed that
the silver element comes from the silver coating on the surface of the piezoelectric element,
and tungsten came from the mass block. No other problems were found in inspecting the
failed PVS, and parameter testing and disassembling analysis of the contrast parts did not
find similar flocculent lapping.

FA conclusion: The failure is caused by the growth of metal whiskers in the silver
coating from the piezoelectric element and tungsten from the mass block, which leads to
the lap of the positive and negative poles and the short circuit of the sensor output.

2.2.2. Output Open Circuit Caused by Solder Joint Fracture

Failure background: A PVS has no output after 1400 h at 220 ◦C.
FA process: No abnormality was found during the appearance check of the failure sen-

sor. An output open was found in the electrical parameter test. And the X-ray examination
showed no exception. After unsealing, it was found that the solder joint of the lead and the
conducting strip was abnormal. The connection was broken, and the solder had an obvious
melting trace, as shown in Figure 5. Direct measurement of both ends of the solder joint
found that it was a break. Both ends of the solder joint and the sensor’s output leads were
measured, and no break was seen. The output impedance was standard after lapping the
lead and the conducting strip. No other anomalies were found after further disassembly.
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FA conclusion: The reason for PVS failure is that the solder joints of the wire and
conducting strip soften and break under high temperature and vibration, leading to an
output open circuit.

2.2.3. Sensitivity Out-of-Tolerance

Failure background: After working in a high-temperature environment for hundreds
of hours, the sensitivity of several PVS is out of tolerance and drops beyond the qualified
threshold.

FA process: The appearance inspection was regular, the sensitivity test was below
the threshold, the output resistance was expected, and the X-ray examination was regular.
No abnormality was found after the shell was disassembled; no exception was seen by
the microscope examination of the internal structure after the disassembly, and the local
resistance test was standard. After disassembling the internal parts, it was found that there
were piezoelectric cracks in some sensors, as shown in Figure 6.
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FA conclusion: After excluding other possible reasons, it is judged that the piezoelectric
coefficient is reduced after the piezoelectric element’s failure or the preloaded structure’s
change, which leads to a decrease in sensitivity and out-of-tolerance.

Based on the FA cases and daily use experience, the main failure modes of PVSs include
output short-circuit, output open circuit, and sensitivity out-of-tolerance. Considering
the applied stresses that meet the PVS design criteria, the most common failure mode
is sensitivity degradation, leading to sensitivity out-of-tolerance. This occurs through
degradation of the piezoelectric coefficient of the piezoelectric element itself, damage to the
piezoelectric element, and failure of the preloaded structure until the sensitivity exceeds
the failure threshold and the PVS fails.

3. DT-Based PVS RUL Analysis
3.1. DT Architecture for PVS RUL Prediction Based on LSTM Network

Typically, a five-dimensional DT model of PVS covers the physical entities, virtual
entities, and connections between them, as well as the data and services, as shown in
Figure 7, where PE represents the physical entity, VE is the virtual equipment, Ss indicates
the services for PE and VE, DD refers to DT data, and CN is the connection, among
other parts.

Aiming to predict the RUL of PVS by the LSTM network, an RUL prediction DT
framework based on DT data and LSTM is established based on previous research [17]. As
shown in Figure 8, the main improvement is in the content of the virtual model management
and application module, which adjusts the content of each module from data acquisition
to processing and application according to the needs of LSTM. On the one hand, this
framework involves all five dimensions in the proposed PVS-specific DT model. On the
other hand, the RUL prediction method has six basic modules that present the real-time
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PVS status, deal with both physical and virtual working conditions, and provide users with
prediction results. Each module of the framework is described in detail below.
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Application and test module: This module belongs to PE, and contain the PE setup
for PVS working and testing and the VE application for calculating, simulation, and
organization of data, and training, validation, and prediction of the LSTM network.

Virtual model management module: This module belongs to VE and refers to all
models in VE. For LSTM-based prediction, features preprocessing methods, sample data
organization methods, and LSTM network are added for sample generation and network
training and prediction.

Virtual model application module: This module belongs to Ss and CN and is the
bridge between VE and DD. For LSTM, the module adds data preprocessing, sample data
organization, training, and validation functions for RUL prediction.
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Data management module: This module belongs to DD and Ss and supports interac-
tions among different modules. Considering the application of LSTM, it adds feature data,
training dataset, validation dataset, and network training data.

Expandable module: This module belongs to Ss and is responsible for the expansion
of PE devices, VE models, Ss protocols, and DD datasets. The method upgrade is also
performed in this module.

Visualization module: This module belongs to Ss. The main additions are the train-
ing monitoring of LSTM network and the comparison of training data, including the
convergence process of the network and the confusion matrix of validation results.

3.2. Relative Factors Analysis of RUL for PVS

RUL refers to the remaining useful life of a product after a period of use. RUL at time
t is generally defined as follows:

RUL(t) = t f ailure − t (1)

where t f ailure is the failure time. Predicting the RUL of a product requires a quantitative
characterization of the degradation process. The degradation process of PVSs mainly mani-
fests in the degradation of sensitivity [17], so sensitivity is a necessary feature. According
to the analysis in Section 2.1, the sensitivity varies according to the vibration frequency and
acceleration, which should be considered. At the same time, the degradation rate is also
affected by the temperature, the time under temperature, and the pressure of piezoelectric
elements. The selected features include sensitivity s, frequency f, acceleration a, temperature
T, time t, and pressure P, as shown in Table 3.

Table 3. Feature of PVS RUL prediction.

Feature Variable Unit

Time t h
Temperature T K

Pressure P N
Frequency of vibration f Hz

Acceleration of vibration a m·s−2

Sensitivity s pC m−1·s2

Among them, time and temperature can be obtained directly. The sensitivity, vibration
frequency, and acceleration need to be acquired from the output of PVS and analyzed using
the signal processing model in DT. The pressure of the piezoelectric element needs to be
obtained by the finite element simulation module in DT. Figure 9 shows how feature data
are obtained from the DT.
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3.2.1. Calculation of Features in DT

Figure 10 shows the calculation method for sensitivity s. The vibration signal is applied
to both the PVS to be tested and the standard one to ensure that both PVSs are under the
same vibration conditions. Then, the sensor output charge signal was converted to a voltage
signal after charge amplifier and band-pass filtering and then acquired by the DAQ card.
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The test PVS and standard PVS measure the same vibration signal, so their output
of the vibration acceleration peak and frequency is the same. According to this, it can be
obtained as follows

f (t) =
v1(t)
k1·S1

=
v2(t)
k2·S2

(2)

which can be transformed to the following:

S2 = S1·
k1

k2
·v2(t)
v1(t)

(3)

where S1 is known sensitivity of standard PVS, k1 and k2 are known parameters of charge
amplifiers, while v1(t) and v2(t) can be measured during testing. The sensitivity of the
test PVS S2 is thus determined. Accordingly, by analyzing the output of the standard
PVS, the frequency f and peak acceleration a under the current vibration condition can
be obtained. The data set {( f , a, s)} measured under different vibration conditions can
achieve an accurate description of the sensitivity.

3.2.2. Simulation of Features in DT

The pressure of the piezoelectric elements mainly depends on the pretension of the
preload structure. Still, it also varies with temperature due to the different coefficients of
thermal expansion of the materials in each part. The pressure of the piezoelectric elements
under various conditions can be obtained by a finite element simulation model in DT,
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which depends on the design data and material parameters. Figure 11 shows the pressure
distribution of piezoelectric elements in a PVS with a typical parallel structure.
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After steps of direct measurement, data analysis, and finite element simulation in DT,
the degradation feature data of PVS with different samples, time, and vibration states can
be obtained, which are merged to form the degradation feature dataset {(t, T, P, s′)} and
the corresponding RUL dataset {RUL}, in which s′ denotes the sensitivity distribution
dataset {( f , a, s)} for different vibration conditions.

4. RUL Prediction Algorithm Based on DT Data and LSTM Network

Modeling using historical degradation data and then model correction using real-
time degradation data is a popular strategy in RUL prediction. In a previous study [17],
sensitivity degradation is modeled, and the time at which the degradation first reached the
failure threshold was predicted as a method of RUL prediction. This approach assumes
that the time at which sensitivity degradation reaches a threshold is the time to failure.
Failure modes other than sensitivity degradation tolerance are ignored. This is subject to
some error. Also, this assumption ignores samples with different failure modes, resulting
in the lack of utilization for historical degradation data. In addition, due to the sensitivity
distribution originating from vibration frequency and acceleration, it is necessary to unify
the measurement conditions when modeling the sensitivity degradation. This requires
that the historical degradation data and the real-time degradation data of the test PVS are
measured under the same vibration conditions, which is not conducive to applying the
RUL prediction method. This paper proposes a method for PVS RUL prediction using DT
data and the LSTM network to solve the above problems. The details of the algorithm are
described next.

4.1. LSTM Structure Details

The LSTM network is a special kind of RNN, mainly used to solve the gradient
vanishing and gradient explosion problems while training long sequences; thus, LSTM can
work better in long sequences. LSTM has been widely used for RUL prediction because it is
suitable for time series prediction [37–39]. The primary cell structure of the LSTM network
is shown in Figure 12, which effectively controls the consequences caused by accumulation
by introducing cell states, forgetting gates, input gates, and output gates.
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Based on the currently given input x and the hidden layer output h from the previous
moment, the LSTM network update process is shown as follows [38,40]:

ft = σ
(

W f · [ht−1, xt] + b f

)
it = σ

(
W f · [ht−1, xt] + bi

)
at = tanh(Wc · [ht−1, xt] + bc)
Ct = f · Ct−1 + it · at

Ot = σ
(

W f · [ht−1, xt] + bo

)
ht = Ot · tanh(Ct)

(4)

By constantly repeating the choice of forgetting or remembering, the LSTM network
realizes the selection of sequence data and avoids the gradient explosion problem of RNN.

4.2. Data Organization

PVS is costly and not used often, so the stock of historical degradation data is limited.
To generate sufficient neural network training samples with fewer PVSs, the amount of
data at an individual time needs to be increased, and the degradation sequences need to
be expanded. To improve the training of the LSTM network, it is necessary to convert the
numerical prediction of RUL into a classification prediction of RUL intervals and to balance
the number of samples for each classification.

The flow of data organization is shown in Figure 13. The basic requirements for the dis-
tribution of s′ in the feature dataset {(t, T, P, s′)} provided by DT are first determined. We
use x to represent the basic data in single node. Then, a long sequence of degradation feature
data {x1, x2, . . . , xL} from a single PVS is sampled by a sliding window with fixed size M to
obtain short sequences {x1, x2, . . . , xM}, {x2, x3, . . . , xM+1},. . ., {xL−M+1, xL−M+2, . . . , xL}.
The distribution of sensitivity with vibration conditions is sampled multiple times to obtain
{M ∗ (t, T, P, f , a, s)}, which realizes sample amplification. After that, the RUL of the last
time of each short sequence is classified to obtain the classification dataset

{
RUL′}. This

converts the regression problem of RUL prediction into a classification problem to provide
utilization of historical data and prediction accuracy. In this way, the samples required for
the training and validation of the LSTM network are obtained.
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These data organization efforts are in the process of degradation features data collec-
tion, individual sample generation, and training sample set generation, respectively.

4.2.1. Degradation Features Data Collection

During the degradation data acquisition process of the PVSs, DT records the outputs
and related background information and obtains the degradation data set {(t, T, P, s′)}
and RUL data set {RUL}. From the analysis in Section 2.1, it is known that s′ is data set
{( f , a, s)} that describes the distribution of sensitivity under different vibration conditions.
For samples used for neural network training, the coverage of the distribution by the
sample data needs to be considered. Taking the research object of this paper, a shear PVS,
as an example, referring to its typical working conditions, the vibration conditions are
selected as shown in Table 4, which cover low frequency, high frequency, and different
acceleration values. Let the number of condition groups be N. The {( f , a, s)} acquired
under these vibrational conditions allows for a better characterization of the sensitivity
distribution. In this way, the specific measurement conditions and ensemble size of s′ in
the degradation dataset are clarified.

Table 4. Vibration conditions of degradation data acquisition.

NO. f /Hz a/g NO. f /Hz a/g NO. f /Hz a/g

1 100 2 11 2000 2 21 20 10
2 100 4 12 2000 4 22 40 10
3 100 6 13 2000 6 23 80 10
4 100 8 14 2000 8 24 160 10
5 100 10 15 2000 10 25 315 10
6 100 12 16 2000 12 26 630 10
7 100 14 17 2000 14 27 1250 10
8 100 16 18 2000 16 28 2000 10
9 100 18 19 2000 18

10 100 20 20 2000 20
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4.2.2. Sample Optimization Based on Sliding Window and Sensitivity Distribution
Data Sampling

The degradation data for each PVS have different sequence sizes due to different
failure times and measurement times, while the training samples have data size consistency
requirements. The sliding window method is often used in LSTM network to sample long
sequences into a series of short sequences of fixed size, increasing the number of training
samples and unifying the sample size. The sliding window process is shown in Figure 14.
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For long degradation data sequence of a single PVS with a size of L:

{x1, x2, . . . , xL} (5)

where x = (t, T, P, s′) is a single element in the degradation data set. The long sequence can
be sampled with a sliding window of size M to obtain L − M + 1 short sequences, which
are as follows:

{x1, x2, . . . , xM}
{x2, x3, . . . , xM+1}

. . .
{xL−M+1, xL−M+2, . . . , xL}

(6)

A complex sample structure will cause a decrease in network learning speed and
prediction accuracy. At the same time, since the input data of neural network prediction
should be consistent with the form of training samples, the complexity of the sample
structure can also make it challenging to obtain input data for prediction. Specifically, for a
short sequence of the form {x1, x2, . . . , xM}, the inputs need to include sensitivity distri-
butions at M points, each consisting of N sets of ( f , a, s). The size of a single sample data
exceeds 3MN. The method in this paper samples the data sets of sensitivity distributions
at each time in the short sequence to generate simpler sample sequences. This ensures the
sample set carries information about the sensitivity distributions by sampling multiple
times. The method procedure is shown in Figure 15. For every node x in the short sequence
{x1, x2, . . . , xM}, a set of ( f , a, s) is randomly sampled from the sensitivity distribution
dataset {( f , a, s)}. These ( f , a, s) are merged with other data (t, T, P) in the same nodes to
form a simplified short sequence sample X′ =

{
x′1, x′2, . . . , x′M

}
, where x′ = (t, T, P, f , a, s).

Such sampling is repeated n times to amplify the original short sequence with a complex
form M ∗ (t, T, P, {( f , a, s)}) into n samples of simplified structure M ∗ (t, T, P, f , a, s). The
network trained with such samples has better compatibility in prediction by requiring only
sensitivity values for a single vibration condition.
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Eventually, for each PVS degradation sample, the number of samples generated from
the long sequence through sliding window sampling and sensitivity distribution data
sampling can be up to (L − M + 1)NM. Generally, the longer the short sequence, the more
information there is in a single sample, and the total number of samples decreases, but it
also results in a more significant amount of data needed for the initial prediction. The more
sampling times there are, the more complete the sample information coverage is and the
better the prediction effect is. However, too many samples will also bring about an increase
in training time.

4.2.3. Classification of RUL

For each short sequence sample
{

x′1, x′2, . . . , x′M
}

, the RUL value of the last node
x′M is used as the corresponding sample output. RUL prediction for PVS is performed
to replace them before failure and prevent losses caused by failure. The work to be
performed is the same for PVSs with RULs that are less than the replacement threshold.
The accuracy of regression prediction for RUL brings limited significance. Meanwhile,
regression prediction has requirements on the coverage effect of the training samples. On
the other hand, acquiring RUL values relies on the regular testing of PVS in the degradation
test. Failure time is often detected later than the actual time of failure. These result in
systematic errors in the measured RUL, centrally distributed over regular monitoring
intervals. In summary, it is more appropriate to use classification prediction in training
sample set generation. The interval with the largest RUL value in the classification is often
in the form of (t′,+∞), which can also realize the full utilization of partially degradation
data of unfailed PVS. As long as the PVS has not failed t′ time after a specific time, the RUL
at that time can be classified as the maximum interval. When setting the RUL classification
intervals, it is necessary to consider the actual demand of RUL prediction and balance the
number of samples for each classification. Finally, the sample classification dataset

{
RUL′}

is obtained.

4.3. Network Training and Performance Evaluation

Before training the LSTM network, the dataset must be divided into a training and a
validation set. Specifically, 70% of the dataset is used for training and 30% for testing. The
output of the LSTM network is passed through a Softmax function to get the probability



Mathematics 2024, 12, 1229 16 of 27

distribution of the output classification. Then, the results are compared with the data labels
to get the cross entropy, thus obtaining the Cross-Entropy Loss (CEL). Equations (7) and (8)
show the Softmax and cross-entropy functions [41,42]:

So f tmax(pi) =
epi

∑n
j=1 eyi

(7)

where n is the number of RUL types and pi is the output (predicted value) of the ith
network unit.

Loss = − 1
N

n

∑
j=1

yilog(pi) + (1 − yi)log(1 − pi) (8)

where N is the number of training samples, yi is the tactual classification of sample i, and
pi is the network’s predicted value for sample i.

To evaluate the model’s performance, the classification accuracy, the ratio of correctly
classified validation samples to the total number of validation samples, was used as the
evaluation metric, and the model’s accuracy on the test set was recorded as the final
performance metric.

5. Results and Discussion
5.1. Degradation Data Acquisition

A verification platform was established to validate the RUL prediction algorithm
based on DT data and the LSTM network. Figure 16 shows a photograph of the test rig.
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During this experiment, both a test PVS and a standard PVS were installed in a
vibration exciter to observe degradation. Vibration signals undergo transformation via
a charge amplifier and are detected utilizing a data acquisition (DAQ) card and a host
computer. A power supply serves as the electrical source for the system, while a waveform
generator provides a standard signal in the system. Moreover, a high-temperature test
chamber is employed to replicate thermal stress conditions. Detailed specifications for each
piece of equipment are provided in Table 5.
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Table 5. Test equipment specifications.

Device Parameters

High-temperature test chamber LIGAO HF-100FN, 300 K~600 K
Vibration exciter SINOCERA JZK-20, 200 N, 30 g

Power supply SINOCERA YE5874, 810 W
Waveform generator KEYSIGHT 33500B, 30 MHz, 5 V

Standard VPS Endevco 6222S-20A, 200 mV/g
Charge amplifier Endevco 2777A-10-10, 10 Hz~10 kHz
Host computer ThinkStation P350, Intel i7 11700

DAQ card NI Compact DAQ 9232, 3 channel, 102.4 kS/s/ch

Ten PVSs are randomly selected from the same batch and named as (A1, A2), (B1, B2),
(C1, C2), (D1, D2), and (E1, E2), respectively. To ascertain the efficacy of our approach,
the individual variability between the two samples within the same group is considered
negligible. The test procedures for all groups are outlined as follows:

1. All samples are placed in the high-temperature test chamber and subjected to heating
at a constant rate;

2. After the determined heating time, the samples are removed from the test chamber
with a fixed cooling rate and installed on the vibration exciter;

3. The vibration condition is set at 28 typical conditions as listed in Table 2, and the
function and sensitivity of the PVSs are recorded;

4. The test is terminated once a PVS sample fails.

The temperature settings vary for each PVS group, as detailed in Table 6.

Table 6. Test temperature.

PVS Number Temperature/K

A1 and A2 523.15
B1 and B2 493.15
C1 and C2 473.15
D1 and D2 448.15
E1 and E2 423.15

The experimental results of different PVSs are shown in Table 7. Failure modes include
output short circuit, open circuit, and sensitivity out-of-tolerance. Some PVSs recorded up
to 3000 h without failure. It can be seen that the lifetime of the PVSs increases as the test
temperature decreases. However, there are still more unusual individuals among them,
which illustrates the complexity of the sample distribution.

Table 7. Experimental results.

PVS Number Failure Time/h Failure Modes

A1 240 output short circuit
A2 600 sensitivity out-of-tolerance
B1 1400 output open circuit
B2 880 sensitivity out-of-tolerance
C1 >3000 -
C2 1400 sensitivity out-of-tolerance
D1 >3000 -
D2 200 output open circuit
E1 >3000 -
E2 >3000 -
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5.2. LSTM Network Training and Validation
5.2.1. DT Data Pre-Processing and Organization

Each feature value is extracted and analyzed for the degradation test data collected
in the DT platform. Time t and temperature T can be obtained directly from the test
conditions and state data. The piezoelectric element pressure P can be obtained through the
thermal simulation function of the virtual model application module in DT. Through the
sensor output processing function of the virtual model application module in DT, the actual
vibration condition frequency f, acceleration a, and sensitivity s can be obtained through
the workflow in Figures 9 and 10. On this basis, the degradation data set {(t, T, P, s′)} of
PVSs is obtained.

A sliding window is applied to the long-time sequence of each PVS sample to obtain
short sequences of fixed size. The sequence sizes M were taken from 5 to 20 to generate
different sample sets to compare the prediction effect of the network. Considering that
the demand of sample size can be satisfied when arranging combinations of vibration
conditions at various times in the short sequences, 1000 combinations can be randomly
selected to improve the training speed. The final sample sets are obtained, as shown in
Table 8. It can be seen that the number of samples obtained by the sliding window decreases
as the size of the sequence increases.

Table 8. Number of samples with different sequence sizes.

Sequence Size Samples Training Samples Testing Samples

5 289,000 202,300 86,700
6 279,000 195,300 83,700
7 269,000 188,300 80,700
8 260,000 182,000 78,000
9 251,000 175,700 75,300
10 242,000 169,400 72,600
11 233,000 163,100 69,900
12 224,000 156,800 67,200
13 215,000 150,500 64,500
14 206,000 144,200 61,800
15 197,000 137,900 59,100
16 188,000 131,600 56,400
17 179,000 125,300 53,700
18 170,000 119,000 51,000
19 162,000 113,400 48,600
20 154,000 107,800 46,200

The RUL corresponding to each short sequence is calculated from the time of the last
node in the sequence by Equation (1). Based on the actual demand for RUL prediction and
the distribution of test data, the classification of the RUL prediction task for this model PVS
was finally set to the range shown in Table 9. With this classification range, the classification
of each RUL value can be determined, obtaining the dataset

{
RUL′}. The data set of

those samples that experienced 3000 h without failure can be utilized for their 0–1800 h
degradation data and the RUL categorized in the last class.

Table 9. RUL classification range.

Classification 1 2 3 4 5 6 7 8

RUL Range/h (0, 100] (100, 200] (200, 400] (400, 600] (600, 800] (800, 1000] (1000, 1200] (1200, +∞)

The computer used for the experiments is equipped with an AMD EPYC 7642 CPU,
4 NVIDIA GeForce RTX4090 GPUs, and 256 G RAM. Model training was carried out using
the Adam optimizer in PyTorch, based on the Tsai framework from GitHub repositories [43].
Specifically, 20 epochs were trained with a batch size 1024 and a learning rate 0.001.
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5.2.2. Comparison of Different Sequence Sizes

Figure 17 shows the changes in CEL and accuracy for training sets with different
sequence sizes. Under each sequence size, the CEL of the training and validation sets
decreases, the training accuracy improves, and the network training effect improves.
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Figure 17. CEL and accuracy changes during training.

The variation in the number of samples and training time for different sequence sizes
is shown in Figure 18. It can be seen that when the sequence size is increased from 5 to 20,
the size of samples is almost halved, and the training time is reduced from 94.0 to 48.4 s.
This shows that for a fixed original long sequence, an increase in the size of the sample
sequence leads to a decrease in the size of training samples and network training time. The
specific data are shown in Tables 8 and 10.

The CEL and validation accuracy of the last epoch at different sequence sizes are
shown in Figure 19. It can be seen that as the sequence size increases from 5 to 20, the
CEL in the training and validation sets decreases by several times, and the validation
accuracy keeps improving from 99.79% to 99.99%. It can be seen that for a fixed original
long sequence, an increase in the size of the sample sequence brings about an improvement
in the prediction. The specific data are shown in Tables 8 and 10.

Analyzing the network prediction details, the confusion matrix for the worst predicted
sequence size 5, for example, is shown in Figure 20. We can see that the distribution of test
samples is good, and the vast majority of test samples can be classified correctly, proving
the model’s training effect and the method’s prediction effect.
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Table 10. Prediction accuracy and training time for different sequence sizes.

Sequence Size Training Time/s Train CEL Valid CEL Accuracy/%

5 93.95805931 0.004598 0.006693 99.786
6 87.52612972 0.003087 0.004678 99.857
7 85.31973052 0.002984 0.004185 99.887
8 84.82289147 0.002089 0.003432 99.905
9 78.97516322 0.00206 0.002597 99.938
10 73.74387383 0.002939 0.002127 99.964
11 73.66227794 0.00157 0.001924 99.961
12 70.45144176 0.00189 0.001249 99.978
13 67.65879798 0.001438 0.001075 99.980
14 66.34648776 0.001964 0.000739 99.985
15 58.13756585 0.000953 0.000787 99.983
16 60.89499235 0.001465 0.00081 99.991
17 59.87257957 0.001182 0.000621 99.989
18 57.55060816 0.001325 0.000511 99.996
19 55.03493381 0.001172 0.000498 99.996
20 48.43837452 0.00144 0.000709 99.994
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11 73.66227794 0.00157 0.001924 99.961 
12 70.45144176 0.00189 0.001249 99.978 
13 67.65879798 0.001438 0.001075 99.980 
14 66.34648776 0.001964 0.000739 99.985 
15 58.13756585 0.000953 0.000787 99.983 
16 60.89499235 0.001465 0.00081 99.991 
17 59.87257957 0.001182 0.000621 99.989 
18 57.55060816 0.001325 0.000511 99.996 
19 55.03493381 0.001172 0.000498 99.996 
20 48.43837452 0.00144 0.000709 99.994 

The CEL and validation accuracy of the last epoch at different sequence sizes are 
shown in Figure 19. It can be seen that as the sequence size increases from 5 to 20, the CEL 
in the training and validation sets decreases by several times, and the validation accuracy 
keeps improving from 99.79% to 99.99%. It can be seen that for a fixed original long se-
quence, an increase in the size of the sample sequence brings about an improvement in 
the prediction. The specific data are shown in Tables 8 and 10. 

 
Figure 19. CEL and accuracy for different sequence sizes. 

Analyzing the network prediction details, the confusion matrix for the worst pre-
dicted sequence size 5, for example, is shown in Figure 20. We can see that the distribution 
of test samples is good, and the vast majority of test samples can be classified correctly, 
proving the model’s training effect and the method’s prediction effect. 

5 10 15 20
Sequence Size

0

0.005

0.01

99.6

99.8

100

Train CEL
Valid CEL
Accuracy

Figure 19. CEL and accuracy for different sequence sizes.
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5.2.3. Comparison of Different Sensitivity Sampling Sizes

To compare the effect of sensitivity data sampling size on the network, the datasets are
generated by sampling from 50 to 5000 times at the two extremes of sequence size 5 and 20,
respectively. The networks are trained with these datasets separately, provided that the
rest of the parameters are kept consistent. The number of samples and training time for
different sensitivity sampling numbers are shown in Figure 21. As can be seen from it,
sample size and training times continue to increase with increasing sensitivity sampling
size, both for sequence sizes 5 and 20.
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Figure 21. Sample size and training time for different sensitivity sampling sizes: (a) sequence size 5;
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The final epoch’s CEL and accuracy of different sensitivity sampling sizes are shown
in Figure 22. Whether the sequence size is 5 or 20, as the sensitivity sampling size increases,
the CEL of the final epoch decreases significantly, and the accuracy keeps improving. This
demonstrates that the increase in the sensitivity sampling size helps the samples better
characterize the sensitivity distribution and improves the accuracy of LSTM prediction.
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size 20.

In particular, a sensitivity sampling size of 1000 is big enough for a good prediction.
Suppose we increase the sensitivity sampling size further. In that case, the prediction
accuracy will be of limited benefit, and the training complexity and time will continue to
grow, so the current parameter setting of 1000 sensitivity sampling is reasonable enough.

5.3. RUL Prediction Case Based on DT and LSTM

Based on the above methodology, RUL prediction for PVS was carried out using DT. A
new PVS sample F of the same model was selected to operate at a temperature of 473.15 K.
After collecting and preprocessing its output and other features using the DT platform, the
LSTM network trained with the historical data was used to predict the RUL of sample F
until it failed to confirm the true RUL.

5.3.1. RUL Prediction Based on Single Sample

According to the discussion in Section 4.2, the present LSTM network can predict
simple degenerate sequence samples with single-point vibration conditions. To verify the
network’s prediction ability for a single sample, the data processing of sample F starts with
one sensitivity degradation sampling for each time node to obtain a long sequence with
only one set of data (t, T, P, f , a, s). Two sets of samples are obtained using sliding window
sampling with sequence sizes of 5 and 20, respectively. The trained LSTM network predicts
these samples; the results are shown in Figure 23. It can be seen that the actual RUL is
within the prediction range since the prediction starts, and the method is validated for its
ability to predict single samples. Meanwhile, by comparing the difference between the
prediction starting points in the two results, the initial prediction can be realized earlier
using the LSTM network with short sequence sizes.

Combined with the analysis in Section 4.3, the choice of the feature sequence size
affects not only the network training time and prediction accuracy but also the time to
obtain the RUL prediction value for the first time. Hence, it needs to be chosen according
to the actual needs.
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Figure 23. PVS RUL classification prediction results: (a) sequence size 5; (b) sequence size 20.

5.3.2. RUL Prediction Based on Multi-Samples from Sensitivity Sampling

To fully utilize the degradation data of sample F, more prediction samples are gener-
ated for prediction through sensitivity data sampling. In the degradation data preprocess-
ing, the sensitivity distribution is sampled 1000 times to create the prediction sample set of
sequence size 5. The dataset is imported into the trained LSTM network for prediction. The
prediction range for each time node and its prediction probability are shown in Figure 24.
As can be seen in the figure, the prediction probability gradually increases as time gets
closer to failure, indicating that the network is becoming more and more confident.
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5.3.3. RUL Prediction Based on Samples from Single Failure Mode

As analyzed in Section 4, the LSTM method can fully use the historical degradation
data from whose failure modes are not only sensitivity degradation out of tolerance. This
gives a more comprehensive dataset and trains a better network. To compare the effect of
data from different failure mode sources on network training, only data from samples A2,
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B2, and C2, whose failure modes are sensitivity degradation out-of-tolerance, were used to
generate the training set and train the LSTM network. The RUL of sample F is predicted
using the trained network, and the prediction results are shown in Figure 25.
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As can be seen from the results, there is a clear difference between the results predicted
by the full dataset (from multiple failure modes) and the subset (from a single failure mode).
Analyzing the reason for this, it can be seen from Table 7 that the PVS samples whose failure
mode is sensitivity degradation out-of-tolerance have an earlier failure time than the other
samples. After the LSTM network has fully learned the characteristics of this sub-training
set, it gives RUL predictions that tend to be more conservative. In the practical use of the
algorithm, such a prediction tendency will lead to an earlier replacement of PVS, resulting
in waste. Meanwhile, by comparing the prediction effect of the subset, the advantage of
this method on the compatibility of historical degradation data with different failure modes
is also verified.

6. Conclusions

This paper proposes a method for RUL prediction of PVS based on DT and LSTM
networks. First, the structure and signal characteristics of the PVS were analyzed, and
the main failure modes of the PVS were identified through FA. Then, the DT framework
of PVS for RUL prediction was improved, and the factors related to RUL prediction
were summarized. After that, an algorithm for RUL prediction based on DT data and
the LSTM network was proposed. It includes feature value collection method, sample
optimization method based on sliding window and sensitivity distribution sampling, and
RUL classification method. The network training evaluation method was also analyzed.
Finally, a DT platform was constructed to conduct degradation tests on PVS samples, and
the degradation data were collected and analyzed by DT and trained by the LSTM network.
The trained network is used to predict the RUL of the degraded cases. The following
conclusions can be drawn.

1. The DT framework for PVS is optimized to meet the needs of LSTM-based prediction
of RUL, which fully uses PVS features and sample datasets for multiple failure modes.
It is verified by PVS degradation tests and training, validation, and prediction of
the LSTM network. A method for the RUL prediction of PVS based on DT data and
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the LSTM network is proposed. It includes the degradation feature data collection
method, a sample optimization method based on sliding window and sensitivity
distribution data sampling, and a RUL classification and prediction approach. The
effectiveness of the method is verified by the degradation test of PVS. Under the
experimental real sample set and hardware conditions, the validation set prediction
accuracy is above 99.7%, and the total training time is within 94 s.

2. The influence of sample set parameters on the prediction effect is discussed through
the training and validation of different training sets, including the sequence size,
sensitivity sampling size, and failure mode coverage. When the sequence size is
increased from 5 to 20, the size of samples is almost halved, the training time is reduced
from 94.0 to 48.4 s, the CEL in the training and validation sets decreases by several
times, and the validation accuracy keeps improving from 99.79% to 99.99%. As the
sensitivity sampling size increases, the CEL of the final epoch decreases significantly,
and the accuracy keeps improving. In particular, a sensitivity sampling size of 1000 is
big enough for a good prediction.

3. The compatibility of the method with different forms of sample and prediction de-
mands is verified by comparing the prediction process for single and multiple samples.
The effect of the data source on the prediction effect of the LSTM model was ana-
lyzed by comparing the prediction effect of the training set from different failure
mode samples. This also validates the compatibility of the present method with
different failure modes and partially unfailed degradation data. The proposed RUL
prediction method can help deal with degradation sequences with complex feature
distribution and utilize the historical degradation data from different failure modes
and non-failed samples.
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