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Abstract: This paper aimed to develop a method for generating sand–dust removal and dehazed
images utilizing CycleGAN, facilitating object identification on roads under adverse weather condi-
tions such as heavy dust or haze, which severely impair visibility. Initially, the study addressed the
scarcity of paired image sets for training by employing unpaired CycleGAN training. The CycleGAN
training module incorporates hierarchical single-scale Retinex (SSR) images with varying sigma sizes,
facilitating multiple-scaled trainings. Refining the training data into detailed hierarchical layers for
virtual paired training enhances the performance of CycleGAN training. Conventional sand–dust
removal or dehazing algorithms, alongside deep learning methods, encounter challenges in simulta-
neously addressing sand–dust removal and dehazing with a singular algorithm. Such algorithms
often necessitate resetting hyperparameters to process images from both scenarios. To overcome this
limitation, we proposed a unified approach for removing sand–dust and haze phenomena using a
single model, leveraging images processed hierarchically with SSR. The image quality and image
sharpness metrics of the proposed method were BRIQUE, PIQE, CEIQ, MCMA, LPC-SI, and S3. In
sand–dust environments, the proposed method achieved the highest scores, with an average of 21.52
in BRISQUE, 0.724 in MCMA, and 0.968 in LPC-SI compared to conventional methods. For haze
images, the proposed method outperformed conventional methods with an average of 3.458 in CEIQ,
0.967 in LPC-SI, and 0.243 in S3. The images generated via this proposed method demonstrated supe-
rior performance in image quality and sharpness evaluation compared to conventional algorithms.
The outcomes of this study hold particular relevance for camera images utilized in automobiles,
especially in the context of self-driving cars or CCTV surveillance systems.

Keywords: sand–dust; dehaze; image-to-image translation; CycleGAN; Retinex; SSR; MSR
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1. Introduction

This study aimed to develop technology leveraging onboard cameras to offer drivers
an intuitive view and to detect objects through image processing, particularly in scenarios
with limited visibility due to adverse weather conditions. Numerous conventional algo-
rithms and deep learning methods have been developed to transform adverse weather
images, such as those from sandstorms or haze, into clearer versions. While previous
research primarily focused on eliminating the yellowish tint associated with sandstorm
phenomena, this method addresses haze removal, constituting the primary background
information, and enhances object details to improve visibility. This study aimed to develop
deep learning modules to restore images affected by fog or sandstorms to their original
state. These proposed modules are also designed to operate effectively in sandstorms and
foggy conditions.

The goal of both conventional and the proposed methods is to improve the quality of
images by eliminating background elements, such as water droplets, fog, or dust, which
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hinder object recognition. For instance, in one raindrop-removal image translation algo-
rithm, a U-Net-based deep learning module with a target mask was employed [1]. The
U-Net architecture forms the foundation of this algorithm, incorporating two attention
modules. The first attention module is the target mask module, while the other is the
residual convolution block module. These two attention modules were tasked with identi-
fying the positions of water droplets and restoring them to the original shapes of objects.
However, while this module effectively eliminates primary background information, such
as water droplets, it encounters difficulty in removing fine particles like haze, leading to
inadequate removal of sand in sand–dust images.

In the rank-one prior real-time scene recovery (ROP) research, an algorithmic image
restoration method was proposed to restore images to their original state under under-
water, sand, or haze environments [2,3]. The primary concept behind ROP is to specify
environmental conditions by analyzing the scattering map and considering the intensity
projection strategy. A key advantage of this research lies in its universal applicability,
diversity, and adaptability, enabling effective image restoration across various conditions,
including underwater, sand, and haze environments. ROP theory asserts the capability
of real-time recovery algorithms to facilitate real-time operation in surveillance cameras
or autonomous vehicles. To achieve this objective, ROP addresses diverse conditions of
degraded image quality. However, the internal implementation of ROP requires the appli-
cation of different hyperparameters for each environment, resulting in the inconvenience of
adjusting hyperparameters whenever the environment changes, potentially necessitating
image generation.

The contrast-limited adaptive histogram equalization (CLAHE) method based on
normalized gamma transformation [4] comprises the following two components: contrast
enhancement and image color correction. In the contrast enhancement phase, CLAHE
enhances the contrast of uneven images using the L channel of the image with proposed
gamma correction and histogram equalization. In the color correction phase, color compen-
sation is applied to the a and b color channels using the gray-world-based color correction
method. This approach enables the enhancement of object details and natural color repre-
sentation, resulting in an appearance resembling the removal of sand–dust phenomena.
While the characteristic yellowish tint of sand–dust is partially mitigated, challenges with
color constancy of objects emerge. Additionally, dehazing effectiveness is relatively limited
compared to other algorithms, leading to difficulties in effectively revealing object details.

Another study on sand–dust removal algorithms presents a chromatic variance con-
sistency and gamma correction-based dehazing (chromatic-gamma model) for sand–dust
image enhancement [5]. This algorithm proposes an effective color correction method that
preserves the consistency of chromatic variations and maintains the alignment of chromatic
means. Next, to enhance the color-corrected sand–dust images, this method estimates a
transmission map for haze removal using gamma correction. Finally, to reduce red artifacts
in the enhanced images, a cross-correlation-based chromatic histogram shift algorithm is
proposed. This method is good at removing dust and haze, but the local contrast is still
worse. Therefore, it is hard to recognize the object on the road in the resulting images.

DehazeNet is a CNN-based deep learning algorithm method designed for dehazing as
a trainable end-to-end system, mainly focusing on medium transmission estimation [6]. The
core idea of DehazeNet revolves around estimating the medium transmission map from
haze images. To improve the accuracy of this estimation, it employs the bilateral rectified
linear unit (BReLU) as an activation function within the deep learning network, claiming
that it enhances the restoration and quality of haze-free images. While this approach
effectively removes haze from images, it encounters challenges in scenarios with dense
fog, where the dehazing effect is minimal. Additionally, the dehazed images and the
enhancement of object detail information were insufficient, leading to difficulties in object
identification.

Grid-dehazeNet is a deep learning model that designs haze removal modules through
proposed preprocessing, a backbone network, and postprocessing [7]. Specifically, the
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backbone network employs a grid network with multi-scale estimation to mitigate the
bottleneck phenomenon inherent in multiple-scale approaches. The images produced by
Grid-dehazeNet demonstrate superior fog removal capabilities compared to DehazeNet.
However, the outcomes of Grid-dehazeNet are characterized by low contrast, resulting in a
scenario where objects such as car license plates, signs, and other roadside objects are not
distinctly visible.

The multi-scale boosted dehazing network with dense feature fusion (MSBDN-DFF) is
based on the U-Net architecture and incorporates dense feature fusion [8]. MSBDN-DFF is
formulated on the strengthen-operate-subtract boosting strategy and error feedback. The
strengthen-operate-subtract boosting strategy was devised to restore haze-free images in
the decoder part effectively. A dense feature fusion module was designed using a back-
projection feed scheme to address the challenge of preserving spatial domain information
in the U-Net architecture. However, similar to previous deep learning-based dehazing
models, this method also suffers from the limitation of not substantially enhancing local
contrast, posing challenges in object identification.

The color attenuation prior is an algorithm-based dehazing method that introduces a
color attenuation prior [9]. By leveraging the depth map of the haze image, it is possible to
derive an atmospheric scattering model and restore radiance accordingly. This facilitates
effective haze removal from a single image. Although the results of color attenuation prior
demonstrate the advantage of effectively restoring object colors, it still faces challenges
related to low local contrast, as noted in previous dehazing research.

The single-image haze removal using dark channels prior proposes utilizing the dark
channel prior technique for haze removal [10]. The dark channel prior approach adopts
a statistical approach to haze-free images, identifying pixels with low intensities in at
least one color channel within local patches and leveraging these statistics in the dehazing
process. It is claimed that this model enables the measurement of haze thickness and the
restoration of haze-free images. However, drawbacks of the resulting images from the
dark channel prior algorithm include issues with objects’ color consistency, halo artifacts’
occurrence, and persistently low local contrast.

Another algorithm-based dehazing method is the feature fusion attention network
(FFA-Net) [11]. When considering the significant variance in weighting information among
different channel-wise features and the uneven distribution of haze across image pixels, a
novel feature attention (FA) module was introduced, which integrates channel attention and
pixel attention mechanisms. Additionally, it utilizes multiple local residual connections to
bypass less important information such as thin haze regions or low-frequency components.
Finally, an attention-based feature fusion (FFA) structure was proposed, wherein feature
weights are dynamically learned from the feature attention (FA) module, assigning greater
weight to crucial features. However, the resulting images have halo problems and low
local contrast.

In the proposed method, CycleGAN-based training used Retinex-based images as
training data to effectively identify objects on the road under haze or sand–dust conditions.
Conventional approaches in previous studies have predominantly focused on dehazing or
sand–dust removal, facilitating the elimination of background components. However, while
these methods effectively eliminate background elements such as haze or sand–dust, they
do not enhance object details in the image as they remain obscured by the background com-
ponents. In this study, single-scale Retinex (SSR) images processed hierarchically using the
Retinex algorithm were generated and utilized as training data. The detailed information
of Retinex images corresponding to each layer’s sigma value was appropriately extracted
and utilized to enhance local contrast and detail components. Furthermore, the Retinex
algorithm is commonly used to separate illumination and reflection components, enhancing
color constancy and correcting colors [12]. Therefore, while lighting background compo-
nents such as sand–dust and haze are removed to a certain level, object color distortion is
minimized and preserved. An image-to-image translation deep learning model is adopted
to transform sand–dust or fog images into clean images. Representative image-to-image
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translation deep learning models include generative adversarial network (GAN)-based
algorithms such as Pix2pix and CycleGAN. Pix2pix trains on paired datasets and aims to
generate images similar to the target originals by minimizing the pixel differences between
the generated and real images [13]. CycleGAN improves upon the limitations of paired
datasets required by Pix2pix by training on unpaired datasets and adding cycle consistency
loss. This addresses the mode collapse issue encountered in Pix2pix or traditional GAN
image translation modules to some extent [14]. Additionally, identity loss is employed to
encourage the generated images to mimic the colors of the real images more accurately,
ensuring that the generated images closely resemble those of the real images. The proposed
approach utilized the CycleGAN-based image-to-image translation deep learning algo-
rithm to train the transformation of sand–dust or haze images into clean images. CycleGAN
aims to generate clean images using the trained result module. By employing unpaired
CycleGAN, synthetic sand–dust images were generated. These synthetic sand–dust images,
in combination with real clean images, underwent hierarchical processing using SSR to
construct the training dataset. The constructed training dataset was organized into pairs,
and pair-mode CycleGAN training ensued. Consequently, sharper and cleaner images
were produced compared to the original unpaired CycleGAN. Thus, the proposed method
facilitates the generation of images that enable improved identification of hard-to-discern
objects such as traffic lights, signs, cars, or pedestrians in hazy or foggy conditions. In
contrast to conventional methods, this proposed research demonstrates enhancements in
object detail components while showcasing the efficacy of sand–dust and haze removal.

The summarized contributions of the proposed method are as follows:

- The proposed method addressed the inadequacy of unpaired dataset learning in
CycleGAN by training on paired datasets of sand–dust and clean images.

- To enhance the representation of object details during image transformation, the
SSR algorithm was adopted. Four-scale hierarchical SSR processing was applied to
construct each pair dataset.

- The results from each module were separated into base and detail components. The
smaller sigma-scale module captured overall image information, while the remaining
three modules with larger sigma scales acquired image detail information. The base
and detail components were then combined. Color information from the sigma 1 scale
was utilized to generate the final clean image transformation.

2. Materials and Methods
2.1. Single-Scale Retinex Processing for Preparing Train Dataset

During the sand–dust and dehaze removal training process, preprocessing the training
data was a necessary initial step. The Retinex algorithm operates on the fundamental
principle that light brightness results from multiplying the illumination and reflection
components. Its primary objective was to separate these components to mitigate the impact
of ambient illumination on image brightness while retaining the original color information.
The illumination component signifies the portion of an image influenced by ambient or
primary light sources, while the reflection component embodies overall brightness and
contrast influenced by external illumination. Estimating the illumination component, also
termed the background component, is accomplished through filters of varying sizes within
the Retinex algorithm. Meanwhile, the reflection component, derived from the image’s color
information and contrast, holds critical significance in portraying object characteristics. The
principal aim was to diminish the influence of the illumination component while enhancing
the reflection component to compress the image’s dynamic range and bolster contrast. The
equation representing the Retinex algorithm typically takes the form shown in Equation (1).

R(x, y) = log(I(x, y))− log(F(x, y)× I(x, y)), (1)

where R(x, y) represents the SSR output image denoting the reflection component, I(x, y)
represents the input image, and F(x, y) signifies a Gaussian filter utilized for estimating



Mathematics 2024, 12, 1313 5 of 29

the illumination component. Hence, F(x, y) × I(x, y) denotes the blurred illumination
component image processed through a Gaussian low-pass filter. Drawing from Weber’s
law, which asserts a logarithmic relationship between perceived brightness and image
intensity, the image undergoes a logarithmic scale transformation before separating the
reflection and illumination components.

In this investigation, SSR underwent processing within the frequency domain, employ-
ing Gaussian filters with sigma sizes of 0.1, 1, 10, and 40. Unlike the impact of sigma values
in the spatial domain, smaller sigma values in the frequency domain led to increased blur-
ring. The SSR processing algorithm is depicted in Figure 1. Within Figure 1, the SSR images,
depicted as reflection components, showcase the elimination of the orange component
attributable to sand–dust, resembling images where sand–dust has been removed.
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Figure 1. Single-scale Retinex processing in the frequency domain.

This study employed SSR preprocessing on the training data images to eliminate sand–
dust and haze. The rationale behind creating training data for each sigma size lay in the
variation of characteristics among sigma images depending on the sigma value. Each sigma
image was utilized to retain its specific characteristics during training, aiming to enhance
the quality of the resultant images. Figure 2 compares the original image, and the SSR
multi-layer processed images, revealing that larger sigma values led to an augmentation
in detail components. Conversely, larger sigma values tended to desaturate the image’s
overall color, imparting a more grayscale appearance. Hence, the proposed method utilized
SSR layered training data to leverage these image characteristics dictated by sigma values.
This approach maximized the effects of dehazing and color restoration while enhancing
the details of objects in sand–dust and haze images.
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2.2. Paired Dataset Training Using CycleGAN

The CycleGAN for the purpose of image enhancement can be broadly categorized
into three main points. First, CycleGAN excels in robustness to domain shifts, making
it suitable for image transformations where significant variations in style or luminance
may occur. Therefore, any sand–dust or haze images can be translated to clean images.
Second, CycleGAN tends to preserve the content style during image transformations,
which is useful for tasks where meaningful content needs to be retained while altering
the appearance. In this study, maintaining the situation on the road while removing sand–
dust or haze required preserving the meaningful content of objects, making CycleGAN
advantageous. Last, CycleGAN provides flexibility and adaptability for various image
transformation tasks. Therefore, the sand–dust removal method was developed using
the SSR processing method within the CycleGAN framework. And it was observed that
sand–dust and haze removal can be simultaneously achieved within the same module.
Thus, CycleGAN, a notable image-to-image translation method, was employed to convert
sand–dust or dehaze images into clean images in this study. This CycleGAN network
architecture is shown in Figure 3. It comprises two generators and two discriminators,
forming a network that trains while transitioning between two domains. The generator
produces transformed images (synthetic images), while the discriminator distinguishes
between generated and real images.

The generator of CycleGAN consists of the following three components: encoder,
transformer (comprising residual blocks), and decoder. The generator employed in Cy-
cleGAN utilizes a ResNet architecture, characterized by its deep network depth and the
incorporation of skip connections. This design enables the generator to better preserve
detailed features in data images. The encoder compresses the input image into a low-
dimensional feature space, extracting features using convolution, instance normalization,
and ReLU activation function. The transformer component integrates nine residual blocks
inspired by ResNet architecture, contributing to the model’s ability to effectively learn and
transform image representations. The transformer is a crucial structure that helps preserve
the features of the input image while performing transformations. To address the difficulty
of optimization with deep learning, it employs a residual block structure, resolving the
gradient vanishing problem and aiding in learning. The residual block consists of convolu-
tion, batch normalization, ReLU activation function, convolution, and batch normalization,
adding the initial features to the final structure that passes through. The decoder takes the
features from the transformer and generates the transformed image. Its structure includes
transposed convolution, instance normalization, and ReLU activation function, producing
the final output. The detailed structure is illustrated in Figure 3.

On the other hand, the discriminator of CycleGAN employs PatchGAN, with the
final output being the averaging of all values of the final feature map passed through the
network. Typically, the patch size in CycleGAN is approximately 70 × 70 to enable the
application of the path-level discriminator structure to produce images of various sizes with
fewer parameters. The discriminator is designed to discern each patch of the input image.
Instead of classifying the entire image at once, it independently classifies small portions
of the image for more accurate discrimination. The discriminator consists of convolution,
instance normalization, and leaky ReLU. It is designed to perform binary classification
(real or fake) for each patch of the image. This discriminator distinguishes between real
and synthetic images based on the values of this feature map. The detailed structure of the
discriminator is shown in Figure 3.

Finally, the least squares generative adversarial networks (LSGAN) loss utilizes the
least squares loss for both the generator and discriminator, encouraging the generator to
produce more accurate and realistic outputs [15]. In conventional GANs, the generator
minimizes a binary cross-entropy loss, which can result in problems such as mode collapse
during training. Therefore, in CycleGAN, it adopts the LSGAN loss to mitigate these issues
by defining the loss to minimize the discrepancy between real and fake images, rather than
evaluating the distance between the generator and discriminator. This approach aims to
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minimize the difference between the generated outputs and real data, thereby enhancing
the quality of generated images and improving stability.
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A distinctive feature of CycleGAN compared to other GANs is incorporating cycle
consistency loss. Cycle consistency loss is a difference between the real image and the recon-
structed image. Cycle consistency loss aims to minimize the disparity between the original
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image and the image obtained after conducting forward and backward transformations
between two domains, as depicted in Equation (2).

Lcycle = Ex∼Pdata(x)
[∥F(G(x))− x∥1] +Ey∼Pdata(y)

[∥G(F(y))− y∥1], (2)

where Lcycle represents the cycle consistency loss, and Ex∼Pdata(x)
denotes the expectation

over the samples x drawn from the data distribution Pdata(x), i.e., the expectation over the
original images in domain x. ∥F(G(x))− x∥1 represents the L1 norm between the image x
and the image obtained by transforming x into domain y using generator G, a, then back to
domain x using generator F. Ey∼Pdata(y)

signifies the expected value of the original image
in domain y from the data distribution Pdata(y). ∥G(F(y))− y∥1 represents the L1 norm
between the inverse transformation in domain y and the actual y image, unlike in domain
x. In this manner, minimizing the difference between the transformed images and the
original images ensured consistent results. One of the features of CycleGAN is that some
parts of the original image should be preserved even after transformation. Therefore, to
maintain certain portions of the input image in the generated synthetic image, an identity
loss function was defined for the generator. This loss function is represented as Equation (3).

Lidentity = Ey∼Pdata(y)
[∥G(y)− y∥1] +Ex∼Pdata(x)

[∥F(x)− x∥1], (3)

where Lidentity represents the identity loss, Ex∼Pdata(x)
denotes the expected value of the

original image in domain x, and Ey∼Pdata(y)
is the expected value of the original image in

domain y. Here, G signifies the generator, responsible for transforming from domain x to
domain y, as explained earlier, and F is the generator for transforming from domain y to
domain x. Therefore, ∥G(y)− y∥1 represents how much the generated image in domain y
differs from the original y image when fed into the generator responsible for generating in
domain y, and ∥F(x)− x∥1 denotes how much the generated image in domain x differs
from the original x image when fed into the generator responsible for generating in domain
x. For example, if there is a generator G responsible for transforming the sand–dust image
into the clean image, G(y) represents the transformed clean synthetic image when a clean
image y is inputted, and it calculates how much this transformed clean synthetic image
differs from the actual clean image y. Due to this characteristic of identity loss, images
generated by CycleGAN can produce outputs with colors more similar to real images.

However, a limitation of CycleGAN is its susceptibility to improperly generate images
if the distribution of the training dataset is unstable. For instance, during image translation
training with CycleGAN to convert horses into zebras, if an input image depicts a person
riding on a horse, the training module may generate a zebra and spot the person exhibiting
undesired behavior. The occurrence of image translation in unintended areas, such as
generating spots on the person riding the horse, stems from insufficient training data on
people riding on horses. Consequently, utilizing unpaired CycleGAN in its conventional
form may lead to unintended transformations. Hence, this study employed the virtual
paired training method using CycleGAN. The proposed method employed unpaired Cycle-
GAN to construct paired training datasets to generate synthetic sand–dust images, which
were then paired with clean real images to form the dataset. Training paired CycleGAN
was anticipated to yield a more stable training data distribution than unpaired CycleGAN.
Figure 4 compares the results of transforming dust storm images into clean images us-
ing the conventional unpaired CycleGAN approach and the proposed method of paired
CycleGAN. This comparison highlights the advantages of the proposed approach.
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In Figure 4, the outcome of the unpaired CycleGAN in (b) failed to adequately restore
the shape of buildings from the original image (a). Conversely, the outcome in (c) from the
paired CycleGAN nearly restored the shapes of objects from the original image, albeit with
a remaining phenomenon where the haze was not entirely removed. Consequently, the
proposed method employed SSR hierarchical learning to enhance the details of objects and
improve local contrast while removing dust and haze from the images.

2.3. Proposed Method

The proposed method uses CycleGAN and the Retinex algorithm to convert sand–dust
and haze images into clean ones. Figure 5 illustrates the proposed training method block
diagram for sand–dust-to-clean image translation.

First, unpaired training was conducted using 2000 clean images and 250 sand–dust
images to create the pair dataset. This process involved generating 2000 synthetic sand–dust
images and constructing a paired dataset with 2000 clean images. The SSR algorithm was
employed to improve the generation of clean images, and a pair dataset training module
was established by applying the SSR algorithm with four different sigma scale values.
The rationale for employing four different sigma scales in the training direction was that
each module had a different training objective based on the sigma value of the image. As
the sigma value increased in the frequency domain, the emphasis on detail components
of the image became more pronounced, while decreasing sigma values provided more
information about the base components of the image. Consequently, a layered SSR training
module was developed for each module according to the sigma value, facilitating focused
training of base and detailed information for each module.

In the sigma 0.1 module, pair datasets were created using real clean images and
sand–dust images processed with SSR sigma 0.1 as the training dataset. At the smallest
sigma scale, real clean images and SSR 0.1 sand–dust images were utilized to construct
the training dataset, aiming to enhance the training of color and base information of the
real clean images without SSR processing. Subsequently, in the sigma 1 module, clean
images processed with SSR sigma 1 and sand–dust images processed with SSR sigma 1
were paired to form the training dataset and used for training. The small-scale sigma 0.1
and 1 training direction prioritized learning the base information while preserving the
original color information of clean images as much as possible.



Mathematics 2024, 12, 1313 11 of 29Mathematics 2024, 12, x FOR PEER REVIEW 11 of 30 
 

 

 
Figure 5. The proposed method for the training part. 

In the proposed training method, SSR sigma 0.1 and SSR sigma 1 resulted in images 
that remove haze while substantially preserving object and color information, allowing 
for retention of the original color information of the images. However, for SSR sigma 10 
and SSR sigma 40, there was a tendency for the images to appear desaturated, markedly 
degrading the original color information. To prevent loss of color information in images 
with large sigma scales during training, the proposed method constructed the training 
dataset by replacing the color information of the SSR images processed at sigma 1 with 
the color information of SSR sigma 10 and SSR sigma 40 images. The choice of obtaining 
the color information from SSR sigma 1 was due to the enhancement of local contrast in 
resulting images, improving overall enhancement without distorting the original color in-
formation. Consequently, in the proposed method, the training direction for SSR sigma 10 
and SSR sigma 40 involved transferring the color information from the SSR sigma 1 image, 
ensuring the preservation of color information, and maximizing the training of object de-
tail information. This proposed training approach generated four paired CycleGAN mod-
ules, which were then used to produce the final clean images. 

Subsequently, the testing process for generating clean images followed the procedure 
outlined in Figure 6, and the test results were generated accordingly. 

Figure 5. The proposed method for the training part.

In the proposed training method, SSR sigma 0.1 and SSR sigma 1 resulted in images
that remove haze while substantially preserving object and color information, allowing
for retention of the original color information of the images. However, for SSR sigma 10
and SSR sigma 40, there was a tendency for the images to appear desaturated, markedly
degrading the original color information. To prevent loss of color information in images
with large sigma scales during training, the proposed method constructed the training
dataset by replacing the color information of the SSR images processed at sigma 1 with
the color information of SSR sigma 10 and SSR sigma 40 images. The choice of obtaining
the color information from SSR sigma 1 was due to the enhancement of local contrast in
resulting images, improving overall enhancement without distorting the original color
information. Consequently, in the proposed method, the training direction for SSR sigma 10
and SSR sigma 40 involved transferring the color information from the SSR sigma 1 image,
ensuring the preservation of color information, and maximizing the training of object detail
information. This proposed training approach generated four paired CycleGAN modules,
which were then used to produce the final clean images.

Subsequently, the testing process for generating clean images followed the procedure
outlined in Figure 6, and the test results were generated accordingly.
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First, testing used the same approach as in the training phase. The input test sand–
dust images underwent processing using the proposed SSR processing method to generate
SSR-layered images. Subsequently, the SSR-processed images were inputted into the four
trained paired CycleGAN modules. Images with smaller sigma scales preserved the base
information of the images while enhancing local contrast, whereas as the scale increased,
the detail information in the images improved. To capture the characteristics of the resulting
images from the four modules, bilateral filtering was applied to separate the base and detail
components of each module’s output image, as depicted in Equation (4).

basei(x, y) = Fbil(x, y) ∗ SSRi(x, y), (4)

where i represents each sigma scale, including 0.1, 1, 10, and 40. basei(x, y) denotes the base
image processed by bilateral filtering. Fbil(x, y) represents the bilateral filter, and SSRi(x, y)
denotes the image processed by the proposed SSR algorithm.

When separating the base and detail images, the proposed method conducted the
separation from the luminance channel images of the result images from each module, as
depicted in Equation (5).

detaili(x, y) = SSRi(x, y)− basei(x, y), (5)

where i represents each sigma scale, namely 0.1, 1, 10, and 40. detaili(x, y) represents the
detail images separated by the bilateral filter, SSRi(x, y) represents the images processed
by the proposed SSR algorithm, and basei(x, y) represents the base images processed by
the bilateral filter.
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Equation (6) represents the formula for the final result image, as depicted below.

Iclean(x, y) = base0.1(x, y) + ∑ detaili(x, y) (6)

where Iclean(x, y) represents the final clean result image, base0.1(x, y) is the base image
from the sigma 0.1 module, and detaili(x, y) denotes the detail image separated by the
bilateral filter.

The base image of the final result consisted of the base image from the sigma 0.1
module. In the case of high sigma scale modules, noise and halo effects became more
prominent, while low sigma scale modules like sigma 0.1 exhibited minimal to no such
effects. Therefore, a higher proportion of low-level modules was used to construct the base
image to mitigate these issues. Consequently, the base image from sigma 0.1 contained
overall base information preserved from the test sand–dust images, making it suitable as the
base information for the final result image. The detailed information from each sigma scale
was added to generate the final image of the result. Then, the final image was produced by
performing normalization to map the values between 0 and 255. Each module’s detailed
information contributed equally to the final result through this normalization process.

3. Simulation Results
3.1. Dataset and Computer Specification

A CycleGAN-based method was employed to translate sand–dust and haze to clean
images on a personal computer (PC) equipped with the following specifications: an Intel
(USA) i9-10980XE 3.00 GHz processor, 256 GB RAM, and an NVIDIA (USA) Geforce RTX
4090 graphics card. Python 3.8 and Pytorch 1.13.1 were utilized for implementing the
Pytorch version of CycleGAN. The parameters of CycleGAN included a batch size of one,
Adam optimizer with β parameters ranging from 0.5 to 0.999, a learning rate of 0.0002
linearly decreased every 100 epochs, 256 × 256 crop images without flipping augmentation,
and a total of 300 epochs for training. The average training time was 17 h per module.

The sand–dust dataset was acquired from images by Yazhong Si et al. [16] and obtained
via a Google image search. Haze images were obtained from O-haze [17] and GridDe-
hazeNet. The unpaired clean-to-sand–dust CycleGAN dataset comprised 2000 clean images
and 250 sand–dust images. Conversely, the paired sand–dust-to-clean four SSR modules
comprised 2000 clean images and 2000 virtual (synthetic) sand–dust images. The unpaired
clean-to-sand–dust CycleGAN module generated the 2000 fake sand–dust images. All
clean images were sourced from the realist single image dehaze (RESIDE) dataset [18].
Additionally, 25 test sand–dust images and 15 test haze images were used for evaluation.

3.2. Simulation Results Comparison

The proposed method aimed to train models for both sand–dust removal and dehazing.
Image quality metric (IQM) and image sharpness metric (ISM) were employed to evaluate
the results and compare them with conventional methods. These metrics facilitated the
comparison of outcome images from the proposed method with those from conventional
sand–dust removal or dehazing models. IQM assessed image quality quantitatively without
distortion, while ISM evaluated the sharpness of the image. BRISQUE, PIQE, CEIQ, and
MCMA were utilized as IQM indicators to compare the resultant images, while LPC-SI and
S3 were selected as ISM indicators to assess image sharpness.

A blind/referenceless image spatial quality evaluator (BRISQUE) utilizes statistical
features of images such as brightness, contrast, and edges to measure image quality [19]. A
perception-based image quality evaluator (PIQE) evaluates image quality based on human
visual perception, considering local and global features such as brightness, contrast, color,
edges, and white noise [20]. The contrast-enhancement-based contrast change image quality
(CEIQ) measure evaluates image quality based on contrast distortion, considering global
and local changes in contrast in the image [21]. Maximizing contrast with minimum artifact
(MCMA) measures contrast enhancement methods considering visual quality improvement
and information preservation [22].
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For measuring image sharpness, the local phase coherence-sharpness index (LPC-SI)
quantifies sharpness by identifying strong local phase coherence (LPC) near distinctive
image features measured in the complex wavelet transform domain [23,24]. Spectrum
and spatial sharpness (S3) is a block-based algorithm that measures the spectrum slope of
frequencies and total spatial variations to generate perceptually adjusted values consid-
ering visual perception [25]. These adjusted values produce a perceptual sharpness map,
indicating perceptually sharper regions in the image. By quantifying image quality and
sharpness, these methods objectively evaluate the enhancement in image quality achieved
by the proposed approach.

Eight methods for converting sand–dust images to clean images were compared. The
TargetMask and DehazeNet are deep learning methods that remove the most dominant
background component, such as raindrops or haze, from the image. They are used to
compare how well they remove the dominant sand–dust component from sand–dust
images. Rank-one prior (ROP), contrast-limited adaptive histogram equalization (CLAHE),
and chromatic variance consistency and gamma correction-based dehazing (chromatic-
gamma model) methods are specialized algorithms for sand–dust removal, allowing for
direct comparison with the results of the proposed method. The multi-scale Retinex (MSR)
algorithm and CycleGAN serve as intermediate steps in the proposed method, enabling
comparison with the results of the proposed method to assess how much improvement has
been achieved compared to the existing two algorithms.

In Figure 7, DehazeNet failed to properly remove the dominant sand–dust component,
while the TargetMask result exhibited numerous blotches, substantially distorting the image
information. In the MSR image, the sigma scale of the proposed method was retained, but
the resulting image was severely desaturated, notably distorting the image information. In
the CycleGAN results, the colors of traffic lights were altered, distorting the most critical
information on the road. When comparing the results of ROP, CLAHE, and chromatic-
gamma with the proposed method, it can be observed that it improved the sharpness of
store signs, pedestrian crossings, and object recognition and also enhanced contrast.
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In Figure 8, DehazeNet failed to effectively remove the sand–dust component, while
TargetMask produced an output heavily affected by spots. The MSR outcome also exhibited
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substantial grayness, indicating considerable information loss. CycleGAN yielded blurry
and blotchy results. Compared to ROP, CLAHE, and chromatic-gamma, the proposed
method demonstrated a sharper representation of signage and human figures, establishing
it as the most identifiable option.
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In Figure 9, the sand–dust in the input image was not as dense, so TargetMask elim-
inated the blotchy artifacts observed in the results of other figures. However, there was
a general decrease in contrast throughout the image. Although CycleGAN, CLAHE, and
chromatic-gamma successfully transformed the overall color to that of the clean image,
they did not improve sharpness. On the other hand, ROP enhanced sharpness, which was
especially noticeable in distant buildings, compared to the results of the proposed method.
However, the proposed method exhibited sharper details of nearby objects and road shapes
compared to the other methods, indicating a slight advantage in line with the direction of
this study.
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Figure 9. Comparison of the sand–dust to clean results image: (a) sand–dust, (b) TargetMask,
(c) DehazeNet, (d) ROP, (e) CLAHE, (f) chromatic-gamma, (g) MSR, (h) CycleGAN, and (i) pro-
posed method.

In Figure 10, dense sand–dust notably introduced blotchy artifacts in the Target-
Mask results. Conversely, CycleGAN, ROP, CLAHE, chromatic-gamma, and the proposed
method effectively mitigated the effects of sand–dust, resulting in cleaner images. Notably,
ROP exhibited the most substantial improvement in sharpness, particularly in distant
objects. However, a slight yellowish tint persisted in its overall image, indicating incom-
plete color information transformation of the sand–dust. In contrast, the proposed method
successfully eliminated the yellowish tint and the haze itself, enhancing the sharpness of
road features, cyclists, and the red car without distorting color information. Consequently,
the transformation results from sand–dust-to-clean images underscored the superiority
of the proposed method in delineating road features, signal light colors, signboards, and
other critical information amidst a sand–dust environment.

In Table 1, the metrics for the images transformed from sand–dust to clean were
averaged and are presented. The proposed method yielded superior numerical results
compared to conventional methods. However, the PIQE metric evaluated image quality
considering the noise level, which might lead to sensitivity to noise in specific situations.
Therefore, considering the excellent sharpness indicated by metrics such as LPC-SI and S3
in the results of the proposed method, it was speculated that areas of sharpness might be
interpreted as noise by PIQE, potentially lowering the score of the proposed method.
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(c) DehazeNet, (d) ROP, (e) CLAHE, (f) chromatic-gamma, (g) MSR, (h) CycleGAN, and (i) pro-
posed method.
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Table 1. Comparison IQM and ISM scores for sand–dust-to-clean image. The “up arrow” indicates
higher scores are preferable, while the “down arrow” signifies lower scores are preferable.

BRISQUE ↓ PIQE ↓ CEIQ ↑ MCMA ↑ LPC-SI ↑ S3 ↑
TargetMask 22.283 28.708 3.245 0.628 0.948 0.172
DehazeNet 31.109 39.040 3.208 0.577 0.935 0.107

ROP 26.911 41.271 3.436 0.672 0.959 0.237
CLIE 22.268 43.481 3.221 0.601 0.942 0.184

Chromatic-gamma 29.266 40.831 3.575 0.647 0.959 0.154
MSR 35.102 36.523 2.06 0.319 0.897 0.056

CycleGAN 22.195 28.205 3.427 0.65 0.948 0.162
Proposed method 21.52 31.783 3.468 0.724 0.968 0.217

Subsequently, Figures 11–14 compare conventional dehazing methods using only
haze images as input. The proposed method compared six existing modules, including
Grid-dehazeNet, MSBDN-DFF, DehazeNet, and FFA-Net consisting of deep learning-based
dehazing modules and algorithm-based dehazing modules such as color attenuation prior
and dark channel prior. The resulting images were evaluated using the same metrics as
those used for the clean sand–dust result images, providing an objective comparison of
numerical values.

When scrutinizing the proposed method alongside conventional methods, the most
notable discrepancy emerged in the sharpness of the vehicle license plates. Conventional
methods encountered challenges in accurately identifying vehicle license plates and exhib-
ited diminished contrast compared to the input images. Conversely, the proposed method
enhanced contrast, refining the sharpness of vehicle license plates and objects, rendering it
the most suitable approach for the study’s objectives. Nevertheless, compared to specific
conventional methods like DehazeNet and FFA-Net, the proposed method still retained
faint traces of haze in the central regions of the images, slightly falling short of achieving
an utterly pristine image.
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When the input image was heavily obscured by haze, the resulting images from each
module, except for the proposed method, struggled to remove the haze effectively. Thus, in
Figure 12, the proposed method demonstrated superior sharpness in the building. However,
it is noteworthy that even in the proposed method, a slight halo effect was noticeable, which
appeared to be a limitation of images processed with the Retinex algorithm. As the Retinex
algorithm was utilized as part of the training data in the proposed modules, such halo
effects may arise.
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In Figure 13, the efficacy of dehaze modules was evaluated using foggy road driving
scenes as input images. DehazeNet output failed to eliminate the haze adequately. At the
same time, the dark channel prior and the FFA-Net method diminished contrast, resulting
in a darker overall image that compromised the visibility of road signs and conditions.
Conversely, the other modules effectively removed the haze and adeptly enhanced the
image to facilitate the identification of road signs and vehicles. Notably, the proposed
method demonstrated superior sharpness in road signs and substantially improved the
clarity of road conditions and vehicle shapes.
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In Figure 14, the outcomes of each module for foggy road scenes are juxtaposed. The
outcomes from the algorithm-based dehaze modules typically reduced overall contrast,
rendering object identification challenging. Conversely, the results from the deep learning
modules effectively eliminated haze and enhanced clarity, enabling easy identification of
objects on the road. However, the output from the proposed method notably improved the
overall sharpness of the road, allowing for the identification of cracks and lane markings,
thereby providing clearer information about the road situation to the driver.

In Table 2, the image quality metrics for the transformed images from haze to clean
scenes were averaged and are presented. Regarding the proposed method, as illustrated
in Figure 11, specific result images revealed inadequate removal of haze in the central
part, resulting in lower scores in BRISQUE, which evaluated image quality-related metrics.
Similarly, akin to the sand–dust-to-clean transformation metrics, the proposed method’s
result images exhibited a notable enhancement in sharpness compared to other modules.
Consequently, the scores of image sharpness measurement metrics such as LPC-SI and
S3 were the highest. However, the scores were notably lower for noise-sensitive IQM
metrics like PIQE. Conversely, for metrics like CEIQ and MCMA, which pertain to contrast
enhancement, the proposed method attained higher scores compared to other metrics.

Table 2. Comparison of IQM and ISM scores for haze-to-clean (dehaze) images. An “up arrow”
indicates higher scores are preferable, while a “down arrow” suggests lower scores are preferable.

BRISQUE ↓ PIQE ↓ CEIQ ↑ MCMA ↑ LPC-SI ↑ S3 ↑
Grid-dehazeNet 19.109 26.959 3.3801 0.728 0.949 0.187

MSBDN-DFF 19.248 30.845 3.3804 0.696 0.942 0.147
DehazeNet 21.11 34.477 3.3732 0.663 0.939 0.141

Color Attenuation Prior 19.73 35.582 3.3056 0.654 0.944 0.138
Dark channel prior 16.654 31.774 3.2168 0.653 0.942 0.163

FFA-Net 19.73 35.582 3.306 0.654 0.944 0.138
Proposed method 22.77 33.081 3.4587 0.717 0.967 0.243
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Finally, the processing time was calculated for the transformation into clean images
based on the 1280 × 720 (HD) criterion. The generation time for SSR-processed test images
was 5.88 s per image, totaling 23.52 s for hierarchical SSR processing across four scales. The
image translation using CycleGAN took approximately 1.77 s per image, totaling 7.09 s
for four CycleGAN modules. Lastly, the final postprocessing for generating the final result
took 1.673 s per image. The total processing time was 32.283 s per image.

The primary objective of the proposed method was to enhance the contrast of images
and improve their quality under sand–dust and haze conditions. Furthermore, it enhanced
the sharpness of objects within the images, which is particularly advantageous for object
identification, especially in road scenarios. These outcomes were evident through both
visual inspection of the images and objective image evaluation metrics.

4. Discussion

The primary focus of this study was to enhance image quality in sand–dust and haze
conditions, with a particular emphasis on improving the perception of the road environment
for car driving situations in adverse weather road conditions. Initially, the proposed method
utilized CycleGAN, an image-to-image translation method, to convert sand–dust and haze
images into clean images. During the unpaired training with CycleGAN, a phenomenon
occurred where information in the images is lost, and unwanted areas were transformed,
leading to a loss of image information. To address this issue, paired training was employed
to prevent such losses.

Subsequently, the proposed method compared the outcomes of conventional methods
and the proposed approach for converting sand–dust and haze images into clean images.
Upon intuitive comparison based solely on the results, a substantial enhancement in
the clarity and image quality of road conditions, critical for drivers’ focus, was evident.
However, in Figures 8–10, the results from the ROP method appeared to enhance the clarity
of distant objects more than the proposed approach. Additionally, in Figures 9 and 10, the
CycleGAN results portrayed a more natural representation of the sky area. Despite these
aspects appearing superior to the proposed method, they were not directly relevant to
the driver’s perspective during driving, as the typical field of view does not extend to
distant objects or the sky area. Therefore, the results aligned with the proposed direction.
Furthermore, in the hazy scenes depicted in Figures 11 and 13, the sharpness of signs
and vehicles in the proposed method’s results stood out as superior, providing more
information about the road conditions during driving than existing methods. However,
the overall color representation in the results of Grid-dehazeNet and MSBDN-DFF may
appear more natural compared to the proposed method. This could be attributed to
using the SSR image dataset in this study, resulting in a slight overall graying effect in
the output images. Nevertheless, as demonstrated in Figure 12, when handling dense
foggy scenes, the proposed method effectively removed haze while enhancing sharpness.
Additionally, Figures 11–14 illustrated that the overall contrast of the proposed method’s
result images was improved compared to other studies, and the sharpness of objects was
substantially enhanced.

The upcoming study will investigate various deep-learning methods for image-to-
image translation to address sand–dust, dehaze functionalities, and other adverse weather
conditions. Our goal was also to create a model capable of converting night scenes into
daytime scenes, enhancing drivers’ visibility in all weather conditions. Furthermore,
future research will concentrate on enhancing the overall color preservation of input
images, mitigating halo artifacts, and improving contrast to enhance object sharpness.
Also, additional consideration should be given to low-light sand–dust videos and real-time
scenarios. Research on tone-up methods to enhance low-light conditions is necessary to
train low-light images. The employment of onboard systems to reduce the inference time
for image transformation is essential. Therefore, embedding the proposed algorithm into
boards such as ASIC boards is necessary for application in surveillance systems or vehicle
camera systems, enabling the processing of real-time scenes.
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5. Conclusions

This study employed CycleGAN, an image-to-image translation technique, to convert
sand–dust and haze images into clean images. To address insufficient data, synthetic sand–
dust images were generated using unpaired CycleGAN. Subsequently Retinex, the SSR
algorithm was utilized to generate SSR-processed images to construct the paired dataset.
During SSR processing, the color information of the large-scale sigma value in the training
data was retained by incorporating the color information from the SSR-processed images
of the smaller scale, thus preserving color information. Ultimately, four sets of paired
SSR-processed datasets were established. The constructed paired dataset was used to train
the paired CycleGAN. Each module’s training results exhibited different characteristics.
Experimentally, it was observed that the detail was enhanced as the sigma value increased
in the frequency domain. Therefore, the characteristics of the four modules were separated
into base and detail images using a bilateral filter. The resulting images from the module
with the smallest sigma value did not degrade the base information. Additionally, to
enhance the image’s overall sharpness, the detail components from the four modules were
synthesized using an average weighting. Finally, the base image from the module with the
smallest scale sigma and the detail components from all modules were combined using
average weighting to generate the final result image. Compared to other conventional
methods, the resulting images from the proposed method exhibited improved overall
sharpness, thereby enriching the visual information for the focused driver.
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