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Abstract: Fault dynamometer cards are the basis of the diagnosis technique for sucker rod pumping
systems. Predicting fault cards with a pumping condition model is an economical and effective
method. The usual model is described by a mixed function of the pump displacement and pump
load, and it is difficult to use in the prediction method based on the analytical solution of the sucker
rod string wave equation. In this paper, a normal pumping condition model described by a function
of polished rod velocity is proposed. For the analytical solution of the sucker rod wave equation,
an iterative prediction algorithm with pumping condition models is proposed, its convergence is
analyzed, and then it is validated by classical finite difference method simulated cards and measured
surface dynamometer cards. The results show that the proposed algorithm is accurate. The algorithm
has a maximum relative error of 0.10% for the classical method simulated card area and 1.45% for
the measured card area. The research of this paper provides an effective scheme for the design,
prediction, and fault diagnosis of a sucker rod pumping system with an analytical solution.

Keywords: surface dynamometer card; downhole card; pumping condition model; Rotaflex pumping
unit; simulation

MSC: 35L05

1. Introduction

A sucker rod pumping system is an artificial lift instrument that is commonly installed
worldwide [1]. It comprises a surface unit, a sucker rod string, and a subsurface pump [2,3].
The subsurface pump consists of a standing valve at the bottom of the well and a traveling
valve attached to a rod [4]. A sucker rod pumping system is usually set up in an open-air
environment and requires a long operation time, so monitoring its working conditions is
very important for oil production [5]. However, its working condition is difficult to monitor
directly because it operates in a small-diameter oil tube thousands of meters underground.
In production practice, the pumping condition is usually identified by analyzing the
surface dynamometer card [6], which is called the diagnosis technology. Many advanced
analytical methods have been applied in diagnosis technology based on fault dynamometer
cards [7–11]. It is impossible to have all kinds of fault dynamometer cards in a real oil well.
One of the most economical and effective methods for obtaining the card is simulation
based on the wave equation of the sucker rod string with the establishment of a pumping
condition model, which is called prediction technology [12,13].

As early as 1963, a one-dimensional wave equation of a sucker rod string under normal
and gas interference pumping conditions was built by Gibbs [14]. Then, for different
pumping conditions, a two-dimensional wave equation [15,16], a three-dimensional wave
equation [17,18] and other wave equations [19–23] were established. In 2020, Xiaoxiao
et al. [24] simulated the working process of a sucker rod pumping system under fault
conditions based on the three-dimensional wave equation of a sucker rod string by adopting
operating characteristic models of the pump valves.
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Usually, pumping condition models are described by the mix function of the pump dis-
placement (or velocity) and pump load. Due to unknown pump positions at the beginning
of pumping, the finite difference method is employed to solve the wave equation [14–20,24].
It should first be determined where the pump is in its stroke, and then the pump load
should be determined within one time step [14,25]. However, the finite difference method
should satisfy the stability conditions [26]. The analytical solution method based on the
Fourier series for the one-dimensional wave equation of a sucker rod string can overcome
this shortcoming, but it requires the pump load–time function within one pumping cycle as
the boundary condition [26,27]. It is difficult to use traditional pumping condition models.

To overcome this shortcoming, a normal pumping condition model with the polished
rod velocity as a function is established. An iterative prediction algorithm is proposed.
The novelty of this work is that the algorithm can use the analytical solution of the wave
equation to predict the behavior of pumping units and is based only on the polished
rod velocity.

The remainder of the paper is organized as follows: Section 2 describes the mathemati-
cal problem of this work. Section 3 describes the approach to the problem solution. Section 4
presents the results and discussion. Section 5 presents the conclusions of the paper.

2. Mathematical Problem
2.1. One-Dimensional Sucker Rod String Wave Equation

In the actual production of oilfields, multi-tapered rod string is the majority used.
The wave equation of the i-th stage rod string, along with its boundary and continuity
conditions, is provided below [26]:

∂2ui
∂t2 − c2

i
∂2ui
∂x2 + vi

∂ui
∂t = 0 l − Li < x < l

u(0, t) = −ua(t)

ErK ArK
∂u(x,t)

∂x

∣∣∣
x=L

= Pp(t)

ui(l, t) = ui+1(l, t)

Eri Ari
∂ui(x,t)

∂x

∣∣∣
x=l

= Eri+1 Ari+1
∂ui+1(x,t)

∂x

∣∣∣
x=l

(1)

where ci =
√

Erig/ρi, l =
i

∑
k=1

Lk, Er represents Young’s modulus of the rod, g represents

the gravitational constant, ρ represents the density of the rod material, and L represents the
length of the rod string.

When the weight of the sucker rod in the fluid is considered separately, the pump load
is described as follows [21,23]:

Pp(t) = Ap[pd − p(t)]− Are pd (2)

where Ap is the plunger area, pd is the pump discharge pressure, p is the pump pressure,
and Are is the cross area of the last section of the rod string.

2.2. Traditional Normal Pumping Conditions

Under normal pumping conditions with the tubing string anchored, only the sucker
rod string undergoes elastic changes during the plunger movement caused by polished rod
movement. Based on the assumption of the normal pumping condition and its movement
rule [28], the relation between the pump displacement and load can be expressed as follows:

up(t) = 0, Pp(t) < W0, 0 ≤ t ≤ tm

Pp(t) = W0, Pp(t) ≥ W0, 0 ≤ t ≤ tm

up(t) = um, Pp(t) > 0, tm < t ≤ T

Pp(t) = 0, Pp(t) ≤ 0, tm < t ≤ T

(3)
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where W0 = Ap(pd − ps), tm is the downstroke start time, um is the plunger position at the
downstroke start time, and T is the pumping period. Equation (3) can be described as the
famous Robin boundary condition [14,29]. Obviously, the time-varying mixed boundary
of displacement and load is a complex, which switches automatically according to the
pump load.

2.3. Analytical Solution of the One-Dimensional Sucker Rod String Wave Equation

After, the polished rod displacement and the pump load are approximated by the
truncated Fourier series as follows [26]:

ua(t) = ν0
2 +

N
∑

n=1
(νn cos nωt + δn sin nωt)

Pp(t) = σ0
2 +

N
∑

n=1
(σn cos nωt + τn sin nωt)

(4)

where N is the number of Fourier series; ν0, νn, δn, σ0, σn, and τn are the Fourier coefficients;
and ω = 2πn/T, n = 1, 2, 3, . . .

Equation (1) is solved by a matrix expression of analytical solutions in predictive
analysis by our team. Further details are given in Reference [26]. The main results are
as follows:

ui(x, t) = ξi + ηix +
N
∑

n=1
[Qin(x) cos nωt + Pin(x) sin nωt]

Di(x, t) = Eri Ariηi + Eri Ari
N
∑

n=1

[
Qin

′(x) cos nωt + Pin
′(x) sin nωt

] (5)

where 

[
Qin(x) Pin(x) Qin

′(x) Pin
′(x)

]T
=

[
MF4×4

inx

][
C4×1

in

]
[

MF4×4
inx

]
=

[
M1inx M2inx
F1inx F2inx

]
[
C4×1

in

]
=

[
εin πin κin µin

]T

(6)



M1inx =

[
cosh βinx cos αinx sinhβinx sin αinx

−sinhβinx sin αinx cosh βinx cos αinx

]x

in

M2inx =

[
cosh βinx sin αinx sinhβinx cos αinx

sinhβinx cos αinx − cosh βinx sin αinx

]x

in

F1inx = ∂M1inx
∂x , F2inx = ∂M2inx

∂x

βin = nω
ci
√

2

√
−1 +

√
1 +

( vi
nω

)2, αin = nω
ci
√

2

√
1 +

√
1 +

( vi
nω

)2

(7)

Considering the boundary conditions, the coefficients of
[
C4K×1

n
]

can be obtained
as follows: 

[
C4K×1

n
]
=

[
TM4K×4K

n
]−1[UD4K×1

n
]

[
C4K×1

n
]
=

[
C4×1

1n · C4×1
in · C4×1

Kn

]T

[
UD4K×1

n
]
=

[
U2×1

n 02×1 · 04×1 · 02×1 D2×1
n

]T

[
U2×1

n
]
= −

[
vn δn

]T
,
[
D2×1

n
]
=

[
σn τn

]T
/ErK ArK

(8)
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Thus, the pump displacement and the polished rod load can be given as follows:
up(t) = ν0

2 − σ0
2

K
∑

k=1

Lrk
Erk Ark

−
N
∑

n=1
[QKn(L) cos nωt + PKn(L) sin nωt]

PRL(t) = σ0
2 + Er1 Ar1

N
∑

n=1
[Q′

1n(0) cos nωt + P′
1n(0) sin nωt]

(9)

where [
QKn(L) PKn(L)

]T
=

[
M1KnL M2KnL

][
C4×1

Kn

]
[

Q1n
′(0) P1n

′(0)
]T

=
[

F11n0 F21n0
][

C4×1
1n

] (10)

The analytical solution is mainly based on the complex theory and separation of
variables to solve the wave equation proposed by Gibbs in 1967 [30]. Obviously, this
analytical solution is a frequency domain method that requires a periodic pump load-time
function and cannot be used to solve the definite solution problem of Equations (1) and (3).

3. Approach to the Problem Solution

To solve the definite solution problem using the analytic method, an iterative algorithm,
which ranges from static to dynamic, can be employed. In the algorithm, the sucker rod
string is equivalent to a spring, and a periodic pump load-time function of polished rod
velocity is obtained. Taking the polished rod displacement and pump load as the initial
values, the pump displacement can be calculated according to the analytical solution.
According to the calculated pump displacement, the new polished rod velocity can be
obtained according to the modified method. Thus, the new periodic pump load-time
function of polished rod velocity is obtained. After several iterations, the pump load will
become a dynamic load to meet the requirements.

3.1. Model of Normal Pumping Conditions

There are four stages in a pumping cycle: the first stage is the loading portion of the
upstroke, the second is the fully loaded portion of the upstroke, the third is the unloading
portion of the downstroke, and the last is the unloaded portion of the downstroke [25].

The normal pumping condition model should consider the anchored state of the
tubing string. With the tubing string anchored, only the sucker rod string undergoes
elastic changes during the plunger movement; meanwhile, in the anchored state, the
sucker rod string and the tubing string also exhibit elastic changes caused by polished rod
movement [28]. Considering the elastic movement, the sucker rod string and the tubing
string can be equivalent to springs. A schematic diagram during the loading portion of the
upstroke is shown in Figure 1.
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(a) Tubing anchored (b) Tubing unanchored

Figure 1. Schematic diagram of the normal pumping condition model.
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As shown in Figure 1a, when the pumping speed is low enough, it has a pump load
(i.e., pump plunger load) as follows:

Pp(t) = ua(t)/kr (11)

where ua(t) is the polished rod displacement, kr is the flexibility of the equivalent spring of
the sucker rod string (i.e., the derivative of stiffness), and kr = Lr/(ErAr). The pump load in
the unloading portion of the downstroke differs only by a constant from Equation (11).

According to Figure 1b, when the pump displacement (i.e., the position of the pump
plunger) derived from the elastic movement of the tubing string is up(t),

Pp(t) = ua(t)/ke (12)

ua(t) = up(t)ke/kt (13)

where ke = δtkt + kr, kt is the flexibility of the tubing string, kt = Lt/(EtAt), and Lt, Et, and
At are the length, Young’s modulus, and cross area of the tubing string, respectively. The
δt = 0 represents the state of tubing anchored while δt = 0 represents the state of tubing
unanchored. Obviously, the equivalent springs of the sucker rod string and the tubing
string are in series. It is a static model of the sucker rod string system. When considering
the dynamic characteristics, the spring-mass-damper system [22] can be considered as an
alternative, which is under study.

Considering Equation (12) and differentiating Equation (2) yields

va(t) = −Apke
dp(t)

dt
(14)

where va(t) is the velocity of the polished rod. Equation (14) is suitable for both the loading
portion and the unloading portion.

When the pump pressure is less than the intake pressure, which is ps, the standing
valve will open. When the pump pressure is greater than the discharge pressure, the
traveling valve will open. Considering these valve opening conditions and Equation (14),
the pump pressure can be given by the recurrent equation as follows:

p f d(ti) = p(ti−1)− ∆t
Apke

va(ti−1)

p(ti) =


p f d(ti) , p f d(ti) > ps, 0 ≤ ti < tm

ps , p f d(ti) ≤ ps, 0 ≤ ti < tm
p f d(ti) , p f d(ti) < pd, tm ≤ ti ≤ T

pd , p f d(ti) ≥ pd, tm ≤ ti ≤ T

(15)

where △t is the time increment.

up(ti) = ua(ti)− kr Ap[pd − p(ti)] (16)

The initial value is {
p(t0) = pd
vp(t0) = 0

(17)

The advantage of the recurrent Equation (15) is that it does not consider the constant
um in the downstroke of Equation (3), and it is easy to include other fault conditions. For
example, considering the leakage state of the pump valve, Equation (15) can be modified
as follows:

p f d(ti) = p(ti−1)−
∆t

Apke

[
va(ti−1)− vpl(ti−1)

]
(18)
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where vpl is the plunger velocity due to leakage of the pump valve. For the standing valve
and traveling valve, the plunger velocity is given as follows [24]:

vpls =
ζsζp
Ap

[p(ti−1)− ps]
es

vplt =
ζtζp
Ap

[pd − p(ti−1)]
et

ζp =
πDpδ3

12µlp

(19)

where Dp represents the diameter of the plunger, lp represents the length of the plunger, δ
represents the clearance between the plunger and pump barrel, ζs and ζt are the leakage
coefficients of the standing valve and traveling valve, respectively, and es and et are the
leakage exponents of the standing valve and traveling valve, respectively.

3.2. Iterative Algorithm

The pumping condition model proposed in the paper is a static model. If it is used in
the pump displacement and the polished rod load resolution of Equation (9), an error will
be introduced. The higher the pumping speed is, the greater the error.

To solve the definite solution problem by the analytic method, the iterative algorithm
should consist of the following steps:

Step 1: Calculate the pump pressure and pump load according to the pumping model
based on the polished rod velocity.{

p0(t) = f
[
vp(t)

]
P0

p(t) = Ap
[
pd − p0(t)

]
− Are pd

Step 2: Approximate the polished rod displacement and the pump load by the trun-
cated Fourier series according to Equation (4).

Step 3: Calculate the pump displacement up
0(t) and the polished rod load according

to Equation (9).
Step 4: Modify the polished rod displacement as follows:

u0
a(t) = u0

p(t) + kr Ap

[
pd − p0(t)

]
Step 5: Calculate the tolerance error as follows:

∆ua = max
∣∣∣ua(t)− u0

a(t)
∣∣∣

Step 6: Evaluate the tolerance error.
If △ua > ε, update the polished rod displacement as follows, and return to step 1.

ua(t) =
ua(t) + u0

a(t)
2

Otherwise, if △ua ≤ ε, stop the program, and obtain the results of the surface dy-
namometer card, i.e., [ua

0(t), PRL(t)], and the downhole card, i.e., [up
0(t), Pp

0(t)].
The flowchart of the algorithm is shown in Figure 2.
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The computer program used in this paper is MATLAB R2021a, and the pseudocode of
the algorithm is shown in Algorithm 1.
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Algorithm 1: Prediction algorithm with iteration

Input: np, K, and a series system parameter
Calculate: ci, pd, ps, W0, ks, kt, T (i.e., 60/np), ω, and vi
Set: J = 400, t = linspace(0, T, J + 1), N = J/2
Calculate: ua(t) according to kinematic equation of pumping unit’s movement
Approximated by Fourier series with trpaz function: ua(t)→ν0, νn, and δn refer to Equation (4)
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u t u t l

P t k P t l

ω

ω

∞

=

∞

=


 = + Δ − − Δ

Δ =
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where 

Output: ua
0(t), PRL(t), up

0(t), Pp
0(t)

Note: The equation for vi is given in Reference [26].

3.3. Theoretical Analysis of the Prediction Algorithm

To prove the algorithm, the normal pumping condition with the tubing anchored
and a single rod is considered as an example. During the loading portion, the pump is
stationary [14], that is, up(t) = 0. Next, it needs be proven that the pump displacement
approaches 0 during the loading portion after iteration.

3.3.1. Theoretical Basis

There is another analytical solution of the single rod wave equation, which is based
on separating variables without using the complex method and has a clearer physical
significance [27]. It is used to illustrate the mechanism of iteration. The pump displacement
based on the single rod wave equation can be given as follows:

upr(t) = ua(t) + ∆1ua(t)− krPp(t)− kr∆2Pp(t)

∆1ua(t) =
∞
∑

m=0
uam(t) sin ωml

∆2Pp(t) = kr
∞
∑

m=0
Ppm(t) sin ωml

(20)

where 
uam(t) =

∝
∑

n=1
Psmn cos ηnt + Qsmn sin ηnt

Ppm(t) =
∝
∑

n=1
Ppmn cos ηnt + Qpmn sin ηnt

(21)
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[

Asmn
Bsmn

]
= 2

lωm

[
η2

n −νηn
νηn η2
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][
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]
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]
=

[
(ωmc)2 − η2

n vηn

−vηn (ωmc)2 − η2
n

]−1[
Asmn
Bsmn

] (22)


[

Apmn
Bpmn

]
= 2(−1)m

lωm2

[
η2

n −νηn
νηn η2

n

][
σn
τn

]
[

(ωmc)2 − η2
n vηn

−vηn (ωmc)2 − η2
n]

][
Ppmn
Qpmn

]
=

[
Apmn
Bpmn

] (23)

where l is the length of the rod string; ωm is the eigenfrequency; and ωm = (2m + 1)π/(2l),
m = 0, 1, 2, . . .

Obviously, in the static state, △1ua(t) = △2Pp(t) = 0, and Equation (20) is reduced to
Equation (16).

3.3.2. Results of the Iterative Process

In step 1 of the iterative process,

P0
p(t) =

ua(t)
kr

Thus, the pump displacement can be calculated according to step 3, i.e., Equation (20),
as follows:

u0
p(t) = ∆1ua(t)− ∆2ua(t)

The pump displacement is not zero when it is not in the static state. The aim of
the iteration is to ensure that the pump displacement is 0 during the loading portion,
i.e., up(t) = 0.

According to step 4, the modified polished rod displacement is as follows:

u0
a(t) = ua(t) + ∆1ua(t)− ∆2ua(t)

Then, the new pump load according to step 1 is as follows:

P1
p(t) =

u0
a(t)
kr

The new pump displacement is calculated according to step 3, i.e., Equation (20),
as follows:

u1
p(t) = −∆2u0

p(t)

According to step 4, the modified polished rod displacement is as follows:

u1
a(t) = ua(t) + ∆1ua(t)− ∆2u0

p(t)− ∆2ua(t)

Then, the new pump load is obtained according to step 1.

P2
p(t) =

u1
a(t)
kr

It has the new calculated pump displacement according to step 3, i.e., Equation (20),
as follows:

u2
p(t) = ∆2

2u0
p(t)

where △2 is an operator. The △2
2 = △2△2, i.e., △2

2up
0(t) = △2[△2up

0(t)].
Therefore, by generalizing this derivation, the following expression can be obtained

after the i-th iteration.
ui

p(t) = (−1)i∆i
2u0

p(t) (24)
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If the operator △2 can reduce the value of up
0(t), the value of up

i(t) will approach
zero after the i-th iteration, i.e., the iteration is convergence. Next, is the discussion of the
convergence of iterations.

3.3.3. Convergence of Iterations

Considering the tubing anchored state, i.e., Equations (12) and (16), and accord-
ing to Equations (21)–(23), the iterative matrix of the operator △2 can be written as the
following expression:

[Mn] =
kr

ke

σ0

2ErK ArK

∞

∑
m=0

2(−1)m

lωm2 sin ωml
[

Amn −Bmn
Bmn Amn

]
(25)

where 
Amn =

[(ωmc)2−η2
n]η2

n−(vηn)
2

[(ωmc)2−η2
n]

2
+(vηn)

2

Bmn =
[(ωmc)2−η2

n]vηn+vηnη2
n

[(ωmc)2−η2
n]

2
+(vηn)

2

(26)

The role of σ0/(2ErKArK) is to adjust the order of magnitude.
Obviously, when the maximum value of Mn is less than 1, the iteration converges.

When only m = 0, the value of ωm
−2 is the largest. Equations (25) and (26) show the con-

vergence mechanism, which is that the maximum value of Mn occurs when m = 0 and

ηn =
√
(ω0c)2 − v2

2 , i.e., harmonic resonance. The disadvantage is that Equations (25) and (26)
are only applicable to the case of a single rod. Further study of the case of multi-tapered
rods is ongoing.

To visualize the relation between the iterative matrix elements Mn and the Fourier
series number n, especially for multi-tapered rods, the iterative matrix in the matrix expres-
sion of the analytical solution [26] is given as follows:

[Mn] =
kr

ke

σ0

2ErK ArK

[
M2×4

nL

][ M2×4
n0

F2×4
nL

]−1

for single rod; (27)

[Mn] =
kr

ke

σ0

2ErK ArK

[
M2×4

nL

][
TM4×4

inv1

]
for multi-tapered rod (28)

where
[

TM4×4
inv1

]
= [TMinv(4K − 3 : 4K, 4K − 3 : 4K)], [TMinv] =

[
TM4K×4K

n
]−1.

Thus, the convergence curve between the iterative matrix elements Mn and Fourier
series number n can be drawn when solving the wave equation with Equations (4)–(10).

4. Results and Discussion
4.1. Validation Study

Two methods are used to validate the prediction algorithm. One is to validate the pre-
diction algorithm by comparison with the simulated results of the classical finite differential
solution [14,25,26], and the other is based on the measured surface dynamometer card. The
reason for the comparison with the finite difference method is that it is a well-known and
proven solution for the predictive analysis of sucker rod pumping systems. The further
details of the finite differential solution are given in reference [26] and are not repeated here.

The measured data are from two different kinds of wells belonging to an oilfield of the
Sinopec Oilfield Company of China. The basic parameters of the wells are listed in Table 1.

In the analytical solution, the time increment is T/400, the Fourier series number is
200, and the tolerance error is 0.1%. In the finite differential solution, the time increment is
0.95Lmin/c, which can satisfy the stability conditions, and the tolerance error is 0.1%.
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Table 1. Basic parameters of oil well.

Items Values Values

Pumping unit Long-stroke pumping unit
(Rotaflex)

Beam pumping unit
(CYJ14-4.8-73HB)

Pump stroke, m 6.0 4.2
Pumping speed, min−1 1.4 4.1

Sucker rod string, mm×m 25 × 372.5 + 22 × 518.2 22 × 986.2
Tubing string, mm×m 76 × 856.7, unanchored 62 × 980.6, unanchored
Pump diameter, mm 63 57

Pump depth, m 900.6 997.3
Fluid density, kg/m3 998.46 990.30

Dynamic liquid level, m 629 579
Oil pressure, MPa 0.9 0.1

Casing pressure, MPa 0 0
Fluid viscosity, mPa.s 800 747.5
Gas/oil ratio, m3/m3 0 0

Rod and tube’s density, kg/m3 7850 (Steel) 7850 (Steel)
Rod and tube’s Young’s modulus, GPa 210 (Steel) 210 (Steel)

4.1.1. Comparison with the Finite Differential Solution

Well 1 is used here as an example for comparative study. After two iterations, the finite
difference solution satisfies the accuracy requirement, and the simulation results are shown
in Figure 3. After the first iteration, the results simulated by the analytical solution are also
shown in Figure 3. The first iteration of the analytical solution means that the pumping
condition model is a static model. Figure 3 shows that the surface dynamometer cards
and downhole cards simulated by both solutions are consistent. The relative area error
of the surface card and downhole card is 0.02%. This demonstrates the feasibility of the
proposed prediction algorithm using only the static pumping condition model at a speed
of 1.4 min−1. In this paper, the relative area error is defined as (Af − Aa)/Af × 100%, where
Af is the card area of the finite difference solution, and Aa is that of the analytical solution.
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To further demonstrate the applicability of the algorithm proposed in this paper, the
cards at a pumping speed of 5.0 min−1 are simulated by both solutions. The simulation
results of the analytical solution after the first iteration are shown in Figure 4. As illustrated
in Figure 4, for the downhole cards, the loading and unloading portions of the analytical
solution are significantly smaller than those of the finite difference solution. In the surface
dynamometer card, the amplitude of the fluctuation in the upper stroke and downstroke
of the analytical solution is slightly smaller than that of the finite difference solution.
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Hence, the use of the static pump simulation model at this pumping speed will result in a
larger error.
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Figure 4. Simulated cards with a pumping speed of 5.0 min−1 and the first iteration of the analytic solution.

After eight iterations, the accuracy requirement of the analytical solution is met, and
the results are shown in Figure 5. As shown in Figure 5, the surface dynamometer cards
and downhole cards simulated by both solutions are consistent, and the area relative
errors of the surface card and downhole card are −0.10% and 0.01%, respectively, which
demonstrates that the iterative algorithm proposed in this paper can eliminate the error of
the static model and achieve the same accuracy as the finite difference solution.
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4.1.2. Comparison with the Measured Card

The surfaces and downhole cards simulated by the analytical solution and the mea-
sured surface dynamometer cards of well 1 and well 2 are shown in Figures 6 and 7,
respectively. Table 2 compares the data taken from the simulated surface dynamometer
card and the measured data, which are recorded by the dynamometer.
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Table 2. Comparison of the data predicted from the algorithm with the dynamometer recorded data.

Well Number Min Load (kN) Max Load (kN) Area (kNm)

Well 1
simulated 20.90 51.90 140.35
measured 23.77 50.81 142.19

Well 2
simulated 17.46 48.28 92.11
measured 18.38 47.25 90.80

As illustrated in Figure 6, the simulated surface dynamometer card has good consis-
tency with the measured card. As shown in Table 2, the loads and area predicted by the
analytical solution closely matched the actual loads, especially for the card area, and the
relative area error to the measured card area is 1.30%. The difference may come from errors
due to dynamometer resolution.

According to the simulated surface dynamometer card by the analytical solution of well
2, the buoyant rod weight was adjusted by −0.91 kN. This error may be due to calculation
method of the rod buoyancy weight different from the actual. As illustrated in Figure 7,
there is little difference between the two surface dynamometer cards. Table 2 shows that
the loads and area predicted by the analytical solution also closely match the actual loads,
and the relative area error to the measured card area is 1.45%. These results indicate that the
prediction algorithm is feasible. These differences may be due to dynamometer resolution
or the neglect of hydrodynamic effects. Further research is ongoing.
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4.2. Convergence Study

The convergence characteristics of the algorithm are studied for wells 1 and 2 at
different pumping speeds. For well 1 at pumping speeds of 1.4 min−1 and 5.0 min−1,
iterative matrix elements Mn with the increasing Fourier series are calculated according to
Equation (28) and are shown in Figures 8 and 9. The relative characteristic data are given
in Table 3. The resonant frequency is calculated according to 2nπ/T.
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Table 3. Comparison of the data convergence results.

Well
Number

Pumping
Speed (min−1)

Iteration
Number

Resonance
Position

Resonance
Frequency (Hz)

Max |MnA|
(m)

Max |MnB|
(m)

Well 1
1.4 3 67 9.8227 0.3064 0.5386
5.0 8 19 9.9484 0.2933 0.5159

Well 2
4.1 3 19 8.1577 0.1228 0.2009
6.0 3 13 8.1681 0.1174 0.2010

Figures 8 and 9 show that the values of the iterative matrix elements are less than
one; so, the iterations converge. A comparison of Figures 8 and 9 also shows that the
number of harmonics increases, and the resonance position decreases, as the pumping
speed increases. Table 3 shows that despite the different pumping speeds, the frequency of
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the resonance and the maximum value of the iterative matrix element are almost constant.
The mechanism is shown in Equations (25) and (26), i.e., the convergence of the algorithm
depends on the material of the rod, its length, the fluid viscosity, and the tube anchoring
state. Table 3 also shows that the number of iterations at a pumping speed of 5.0 min−1

is greater than that at a pumping speed of 1.4 min−1. The number of iterations of the
algorithm depends on the initial value and the structure of the algorithm. A comparison of
Figures 4 and 5 shows that the initial value at a pumping speed of 5.0 min−1 is far from
the true solution. This may be the reason for the greater number of iterations at a speed of
5.0 min−1.

Figures 10 and 11 show the convergence curves of well 2 at pumping speeds of
4.1 min−1 and 6.0 min−1, which are calculated according to Equation (27). The relative
characteristic data are also shown in Table 3. The results show that there is the same
convergence law between well 1 and well 2. The difference is that the algorithm of well 2
is more likely to converge because the maximum value of the iterative matrix elements is
smaller. The resonance frequency calculated from ηn is 8.1267, which is very close to the
resonance frequency in Table 3. The error is due to too few Fourier series.
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5. Conclusions

This paper establishes a normal pump condition model based on the polished rod
velocity. The iterative prediction algorithm proposed in this paper predicts the behavior
of a sucker rod pumping unit based on an analytical solution. The algorithm is validated
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by classical finite difference method simulated cards and measured surface dynamometer
cards. The convergence of the algorithm is analyzed theoretically and numerically. The
following conclusions can be drawn:

(1) In the normal pump condition model, the recursive equation for pump pressure is
based on the polished rod velocity, which can easily provide the pump load–time
function within one pumping cycle, naturally consider the anchoring state of the
tubing, and include other fault conditions.

(2) The algorithm can use the analytical solution of the wave equation to predict the
behavior of the pumping unit only based on the polished rod velocity. Comparison
with the simulated cards of the classical finite difference method shows that the
maximum area relative error is 0.10%, and the proposed algorithm can achieve the
same level of accuracy as the classical finite difference method. When compared
with the measured surface cards, the area relative error is 1.45%, indicating that the
algorithm is feasible.

(3) The convergence of the algorithm is analyzed theoretically. An expression for the
iteration matrix is given, which can be applied to both single rod and multi-tapered
rods. The expression shows that the convergence of the algorithm depends on the
material of the rod, its length, the fluid viscosity, and the tube anchoring state. Nu-
merical results show that the algorithm converges in the two wells given in this paper.
The smaller the maximum value of the iterative matrix elements, the easier it is for the
algorithm to converge. The convergence analysis provides assurance of the accuracy
and reliability of the algorithm.

Based on the limitations of this study, the authors would like to propose the following
directions for future research: (a) a more widely applicable iterative algorithm; (b) a
theoretical study of the convergence of multi-tapered sucker rod pumping systems; and
(c) an iterative algorithm study of multi-fault pumping conditions.
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