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Abstract: Zero-shot event detection aims to involve the automatic discovery and classification of new
events within unstructured text. Current zero-shot event detection methods have not considered
addressing the problem more effectively from the perspective of improving event representations. In
this paper, we propose dual-contrastive prompting (COPE) model for learning event representations
to address zero-shot event detection, which leverages prompts to assist in generating event embed-
dings using a pretrained language model, and employs a contrastive fusion approach to capture
complex interaction information between trigger representations and sentence embeddings to obtain
enhanced event representations. Firstly, we introduce a sample generator to create ordered contrastive
sample sequences with varying degrees of similarity for each event instance, aiding the model in
better distinguishing different types of events. Secondly, we design two distinct prompts to obtain
trigger representations and event sentence embeddings separately. Thirdly, we employ a contrastive
fusion module, where trigger representations and event sentence embeddings interactively fuse in
vector space to generate the final event representations. Experiments show that our model is more
effective than the most advanced methods.

Keywords: event detection; event representations; dual-contrastive learning; contrastive fusion

MSC: 68T30; 68T50

1. Introduction

Event detection is used to identify event triggers and classify events from natural
language texts. Conventional supervised event detection methods [1–3] rely on a large
number of labeled instances, in order to recognize an event and put it into a seen event type.
To enable the model to cope with unseen event types, there is a recent trend to investigate
event detection in zero-shot scenarios, which discovers and classifies new events from texts
without annotations. Specifically in this configuration, events are divided into seen and
unseen types [4–6], in which “seen” means that the model can see the label information of
these event types during the training process, while “unseen” implies that the model has
not seen the label information of these types during training.

Figure 1 illustrates the task of event detection in zero-shot scenarios (to be formally
defined in Section 3). For a seen event, from the sentence S1 “The Daily Planet raised
2.2 million US dollars in its initial public offering with one of the new 600 shareholders acquir-
ing 1.0 million dollars worth of shares”, which is also referred to as an event sample, it
is used to identify the event trigger word “acquiring”, and classify the event into type
Transaction.Transfer-Ownership. Further, for a new unseen type event, from the sen-
tence S2 “Cash-strapped Vivendi wants to sell Universal Studios, its Universal theme parks and
television production company”, it is also used to detect its trigger word “meeting”, but classify
it into a new event type N (when there is another event sample of the same type as S2, it
will also be put as an event of type N).
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S1：The Daily Planet raised 2.2 million US 
dollars in its initial public offering with one 
of the new 600 shareholders acquiring 1.0 
million dollars worth of shares.

S2：Cash-strapped Vivendi wants to sell 
Universal Studios, its Universal theme parks 
and television production company.

Event Type : Transaction: Transfer-Ownership Seen Types

New Type NEvent Type : New Type N 

Found a new type

Trigger

Trigger
Unseen Types

Figure 1. Illustration of zero-shot event detection task. Case for seen (resp. unseen) event types above
(resp. below) the dashed center line.

While recent years have witnessed progress in this task, conventional approaches rely
on pre-defined event types as heuristic rules [7,8] or external knowledge bases [5,9], which
may not be always available in practice, and hence limit their applications. Lately, taking
no such information for granted, methods in pursuit of better event representations have
been sought. High-quality representation is shown to be an effective means that benefits
various event-centric tasks [10–14].

In particular, Zhang et al. [15] proposed, among the first, a novel approach, =namely
ZEOP, to tackle zero-shot ED by leveraging prompt tuning and contrastive learning. In
ZEOP, prompt tuning is incorporated to generate the [MASK] token embedding for deter-
mining trigger words, and this task-specific embedding, combined with the task-agnostic
embedding (i.e., the [CLS] token embedding) from BERT, is then used for event classifi-
cation. In short, two types of event representations—one task-specific (for event trigger
recognition) and the other task-agnostic (for general event-centric tasks)—are fused together
for the prediction.

Albeit viable, ZEOP falls short in two aspects: (1) the straightforward combination of
embeddings may not well fit the task of zero-shot ED, exhibiting suboptimal performance,
since the [MASK] token embedding is rather task-specific for trigger recognition, which may
not be beneficial to zero-shot ED, while the [CLS] token embedding is too general; and (2) a
primitive sentence embedding directly from BERT is employed for feature fusion, which
can be less effective for zero-shot ED, due to the unnecessary influence from static token
embedding biases and ineffective layers [16]. This motivates us to seek a better fusion
mechanism and more effective representations for zero-shot ED.

In this research, we propose a dual-contrastive learning model, namely COPE, which
works with two levels of contrastive learning. Firstly, it adopts ordered contrastive learn-
ing [15], where augmented samples of varying similarities are exploited to produce a
sample-level contrastive loss. On top of that, it further carries out a contrastive fusion
learning, where event embeddings of varying utilities via different representation mech-
anisms are constructed to produce an instance-level contrastive loss. In our design, the
sample-level contrast enables the model to discriminate events, and the instance-level
contrast makes the model learn to strike a good balance in combining task-specific and
task-agnostic embeddings.

Specifically in the instance-level contrastive learning, we put forward two new prompts
(i.e., TR-prompt and ER-prompt) to obtain two kinds of representations, respectively, from
the perspectives of event triggers and background sentences. To combine them into the final
event representation for zero-shot ED, we devise a contrastive fusion strategy, which forces
the representation concerning event trigger (by TR-prompt) close to the representation of
background sentence concerning event type (by ER-prompt) while far away from that of
the sentence (from direct BERT encoding). In this way, the complex interaction between
trigger information and the overall event is to be captured in the high-dimensional vector
space. Afterwards, we adopts a prototype network for event type classification.

In summary, the main contribution of this article is at least three-fold:

• We propose a new method for zero-shot ED, namely COPE, which leverages a dual-
contrastive learning framework, i.e., sample-level and instance-level, for learning
better event representations pertinent to the task;
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• We conceive a contrastive fusion strategy to capture the complex interaction informa-
tion within events from two perspectives—event triggers and background sentences—
such that a balance between task-specific and task-agnostic features is achieved in
embedding fusion;

• We validate the performance of our model on two benchmark datasets, and the
experiment results indicate that COPE offers superior performance in both seen and
unseen event detection, in comparison with state-of-the-art models.

2. Related Work

In this section, we first introduce the related work on zero-shot ED. Then, based on the
methods employed, we provide an overview of the related work on event representation
learning and contrastive learning.

2.1. Zero-Shot Event Detection

The core challenge of zero-shot learning is the significant difference in representations
between seen and unseen types in the feature space. The feature partitions learned by
traditional deep learning models on seen types are difficult to directly apply to unseen types.
In recent years, various zero-shot event detection algorithms have been proposed, and
based on their core design principles, they can be classified into two categories: methods
based on transfer learning and semi-supervised methods.

Huang et al. [7] and Zhang et al. [8] used transfer learning for zero-shot event detection,
but it relies on artificially defined event structures as heuristic rules. Similarly, Lyu et al. [9]
proposed a method needs to manually define TE or QA for unseen event types to ac-
complish knowledge transfer between different event types. Huang and Ji [5] proposed
SS-VQ-VAE to discover new event types without human assistance. On the basis of SS-
VQ-VAE, Zhang et al. [15] added ordered contrast learning and trigger prediction prompt,
which can complete event detection tasks without relying on external resources. These
methods encode events using the original pretrained language model during the acquisi-
tion of event representations, striving to differentiate between seen and unseen types to the
best of their ability.

2.2. Event Representation Learning

Event representation learning aims to automatically learn semantic feature representa-
tions of events from large-scale data and supports the model’s further use in data training
and prediction. Early event representation learning primarily employed a neural tensor
network [17] to acquire event representations by learning the semantic composition of
events [18,19]. However, these methods introduce component induction bias and cannot
be extended to new events [20].

Many studies achieved strong performance in representation learning [21,22] with
pretrained language models in both supervised and unsupervised settings. Recent studies
have replaced static word vector compositions with pretrained language models [23,24],
like BERT, to obtain flexible event representations, resulting in improved performance in
downstream tasks. Although BERT achieved success in representation learning, original
BERT shows unsatisfactory performance [25,26], primarily due to the occurrence of the
“cone effect” in sentence embeddings, which is influenced by token frequency. The latest
research uses the PromptBERT method [16], and the output of sentence embedding is not
the label predicted by the MLM classification head, but the vector representing the sentence.
This method effectively uses the original BERT layer by using large-scale knowledge and
avoid embedding bias.

2.3. Contrastive Learning

Contrastive learning is a self-supervised learning method. The core idea is to help the
model learn high-quality feature representations by constructing contrastive samples. For
event detection tasks, we aim to aggregate events of the same type together and separate
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events of different types as much as possible through contrastive learning. Logeswaran and
Lee [27] regard the context of the target sentence as a positive sample. The dropout mask is
proposed by Gao et al. [21], which uses the characteristics of the dropout layer to obtain
the most similar contrast sample to the original sample. These methods only divide the
samples into positive samples and negative samples. Zhang et al. [15] introduced homoge-
neous sample and heterogeneous sample, constructed ordered contrastive samples, and
better distinguished different types by learning the partial order relationship of different
contrastive samples.

The above-mentioned methods have achieved success in instance-level contrastive
sample construction. However, for zero-shot event detection, instance-level contrastive
learning is insufficient to assist the model in better distinguishing features of different events
due to the lack of supervised signals for corresponding event types [20]. Additionally,
contrastive samples may introduce some noise. Therefore, this paper not only considers
instance-level contrastive learning but also incorporates representation-level contrastive
learning specifically for event representations. This involves utilizing the features of event
representations to differentiate between different types of events.

3. Problem Definition

Let εs = {e1, e2, . . . , ek} denote a set of seen event types and εu = {e1, e2, . . . , el} de-
note a set of unseen event types; the set of all event types is ε = εs + εu. We define the
seen event set Ds = {(xi, yi), yi ∈ εs} and the unseen event set Du = {(xi)}. The goal
of the zero-shot event detection task is, given an input event x, to predict its probability
distribution pi = p(y = ei, ei ∈ ε|x) on the event type. If the input is a seen event, then
pi = p(y = ei, ei ∈ εs|x); this is a conventional supervised event detection setting. If the input is
an unseen event, then pi = p(y = ei, ei ∈ εu|x). Particularly, for unseen events, as the εu is not
visible to the model, the prediction of event types does not have a one-to-one correspondence
with their true types. At this point, event detection resembles more of a clustering task.

4. Methodology

We propose a prompt-based dual-contrastive representation learning method for
zero-shot event detection, as illustrated in Figure 2. The method is mainly divided into
three modules: contrastive sample generation, event representation learning, and event
type prediction. In event representation learning, we utilize a contrastive fusion approach
to achieve better event representations. We will detail the working mechanisms of each
module in the following sections.

for each event instance

BERT Encoder

Distance
Function 

δ

TR-PromptER-Prompt

hp ho hn

δ(ho,hp) δ(ho,hn)

fusion event representation

Max Min

Event Type Prediction

Event Representation Learning

Contrastive Sample Generate

sample-level order contrastive

instance-level contrastive fusion

xi xi1 xi2 xi3 xi4

ei ei1 ei2 ei3 ei4

Input Event

Figure 2. Overview of COPE. The left part represents the overall flow of the model. The direction of the
dashed line indicates the actual process of samples passing through representation learning to obtain
event representations. The gray-marked section represents the original event input and the encoded
results of the original events. The prompts here are simplified and shortened due to the space limit.
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4.1. Contrastive Sample Generator

Following the previous work [15], we use the same method to construct multiple
contrastive samples for the original samples. For each input sample xi, the sample generator
generates four different samples.

Dropout sample. This is obtained by the dropout layer in the encoder network [21].
Since the encoder will randomly drop out the network nodes during training, the same
event will obtain different embeddings in the second entry into the encoder.

Rewrite sample. Considering that the event contains multiple feature information
such as trigger words and arguments, when editing the original text, it is necessary to
ensure that the semantics of the original event are not changed, so the sample is obtained
by back translation.

Homogeneous sample. It aims to obtain samples of the same type as the original
samples. For xi ∈ Ds, contrastive sample x′i can be randomly sampled from Ds, where
y′i = yi. For xi ∈ Du, contrastive sample x′i can be randomly sampled from Du, since for
all unseen types, the labels of the original events are invisible to the model, so all unseen
events can be considered as “the same type”.

Heterogeneous sample. Contrary to the homogeneous sample, the objective is to
obtain samples with the lowest similarity to the original samples. For xi ∈ Ds, contrastive
sample x′i can be randomly sampled from Ds, where y′i ̸= yi. For xi ∈ Du, contrastive
sample x′i can be randomly sampled from Ds.

So far we can get the contrastive sample sequence Xi = {xi1, . . . , xi4}. The similarities
between these contrastive and original samples differ from strong to weak.

4.2. Trigger Recognition

The trigger is specific information that leads to the occurrence of the event in event
mention. Capturing trigger information helps the model better discern event types, making
its learning and reasoning processes more accurate and meaningful. The existing zero-shot
event detection method shows that the best representation of the event should contain the
trigger information [5,8]. Inspired by ZEOP [15], we design a trigger recognition TR-prompt,
which can obtain trigger representation.

TR-Prompt

As shown in Figure 3, TR-prompt is designed as “This is an event about [MASK].<event
mention>.”, where <event mention> is the event text, and [MASK] is the trigger representa-
tion that BERT needs to predict. Now for each event instance, the input sequence of BERT
is w = {wcls, w1, w2, . . . , wM, wi+1, . . . , wk, . . . , wn}, where wi is the ith token of the template
sentence, wM is the [MASK] token and {wi+1, . . . , wk, . . . , wn} is event text token sequence.
The eigenvector corresponding to [MASK] is hM:

H = [hCLS, . . . , hM, . . . , hn] = BERT(w). (1)

Then, the feature vector hM passes through the prediction layer and activation function
based on the feedforward neural network to obtain the context representation of the
trigger word:

hM = σ(WphM + bp), (2)

where Wp and bp are the parameters of the prediction layer, and they are also part of the
pretrained language model BERT. It should be noted that the triggers must be included in
the event description text, and the BERT vocabulary as a solution space is far beyond this
category, so we also need to define a conversion function. Specifically, this transformation
function needs to adjust the predicted value of words that are not included in the event
description text to 0:

ho = σ(M · WphM + bp), (3)
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where M is a mask that adjusts the predicted value of the word not included in the event
description text to 0, and ho is the final predicted trigger representation vector.

BERT Encoder

This is event about [MASK].<event mention>.

wcls w1 wM wi+1 wk wn

hcls h1 hM hi+1 hk hn

ho

... ...

... ...

BERT Prediction Header

Figure 3. Trigger representations are obtained based on the TR-prompt. The trigger representation is
ultimately obtained from the trigger probability distribution predicted by the BERT prediction header
for the [MASK].

4.3. Event Sentence Embedding

The event sentences not only contain trigger information but also include event argu-
ments and prepositions that reflect the relationship between events and arguments. Fully
mining information from event instances to generate better sentence embeddings can better
assist models in identifying different types of events in zero-shot scenarios. Due to the
embedding bias and ineffective layers when the native BERT encodes unseen types, we also
design a sentence embedding template ER-prompt following PromptBERT [16], which effec-
tively uses the knowledge in each layer of BERT to directly predict the sentence embeddings.

ER-Prompt

Different from the traditional classification and QA tasks, the purpose of the ER-
prompt is to directly obtain sentence embeddings of events by leveraging the predictive
capability of the PLM. To assist the model in fully understanding event texts, we have de-
signed an event-specific prompt template “This event: ‘<event mention>’ means [MASK].”,
as shown in Figure 4. Here, <event mention> represents the event text, and [MASK] is
the sentence embedding that BERT needs to predict. ER-prompt generates two sentence
embeddings after input into BERT. The sentence embedding hp generated from the [MASK]
part is predicted by BERT, capturing the overall event information. Like the TR-prompt,
we can use Equation (2) to obtain hp. The <event mention> part generates the sentence
embedding hn directly encoded by BERT, which does not contain any information about
the event. To eliminate the influence of the template itself as much as possible, we use the
mean pooling of the word vectors of the <event mention> part but not [CLS] marker to
obtain hn:

hn = mean pooling([hi+1, . . . , hn]). (4)
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BERT Encoder

This event : “<event mention>” means [MASK]

wcls w1 wMwi+1 wk wn

hcls h1

... ...

... ...

...

hi+1 ... hk hn hM

hn hp

BERT PredictorMean Pooling

Figure 4. Event sentence embeddings are obtained based on the ER-prompt. In this method, the
sentence embeddings result for the [MASK] part is directly obtained from the predicted event, while
the sentence embeddings result for the <event mention> part, which represents the event text, is
obtained through direct encoding by BERT.

4.4. Contrastive Fusion

At this point, we obtain vectors from three different perspectives of information. ho
is trigger representation, which are task-specific vectors, capturing information about
the trigger in the events. hp denotes event sentence embeddings, which are event-specific
vectors, representing the overall information of the events. hn refers to sentence embeddings
directly encoded by BERT for the events, which are non-specific vectors and do not contain
any specific information about the events.

Shallow concatenation fusion fails to capture the complex interaction between trigger
representations and sentence embeddings. Therefore, we seek a method to capture the intri-
cate interaction of merging these two types of information in the vector space. Contrastive
fusion provides us with a promising approach, as illustrated in Figure 5.

trigger representations
sentence embeddings

negative samples

positive samples

anchors

event representations

Figure 5. Contrastive fusion for trigger representations and sentence embeddings. Both interact and
fuse in the vector space to obtain the final event representations.

In contrastive fusion, using ho as the anchor, hp is set as the positive example, and hn
as the negative example. Our goal is to minimize the distance between the anchor and the
positive example while maximizing the distance from the negative example, facilitating
a comprehensive interaction between trigger representations and sentence embeddings,
while simultaneously reducing the influence of irrelevant event information. Considering
that the feature vector encoded by the BERT pretrained language model is a dense vector
with 768 dimensions, this paper chooses the Euclidean distance as the distance function.
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Since only using target to define the loss will make the whole network difficult to converge,
this paper uses the margin loss function to define the contrastive fusion loss:

Lm = max(0, margin − (dp − dn)), (5)

where dp represents the Euclidean distance between ho and hp, and dn represents the
Euclidean distance between ho and hn. Only when the difference between the two distances
dp and dn is greater than the preset threshold, the value of the loss function is 0; otherwise,
the smaller the difference between the two, the greater the value of the loss function.

So far, we have the final event representation e = {ei, ei1, . . . , ei4} of the original event
mention and the comparison sample sequence obtained in Section 4.1.

4.5. Event Type Prediction

Considering that zero-shot event detection contains seen and unseen events, for seen
events, this type prediction directly corresponds to its real type, and the model can be
directly used in traditional event detection tasks.

For unseen events, this type of prediction has no one-to-one correspondence with its
true type, and can only be used as a clustering result. Based on this, we introduce the
prototype network [28] to complete the event type prediction. It defines a prototype matrix
C ∈ Rn×h, where each row represents the prototype of one embedded event type ci, h is
the dimension of event representation vector encoded by BERT. n = s + u is the number
of event types, where s is the number of seen types and u is the number of unseen types.
After the prototype definition is completed, given the feature vector of event representation
e, its probability of belonging to the ith types is

p(y = i|e) = exp(−d(e, ci))

∑i′ exp(−d(e, ci′ ))
, (6)

where d(e, ci) is the Euclidean distance between event representation e and event prototype
ci. As shown in Figure 6, the semi-supervised algorithm based on prototype networks
is explained from the perspective of the feature space regarding its role in enhancing
model accuracy.

Seen Type A

Seen Type B

Unseen Type N

Contrastive 

Margin

Figure 6. The prototypes defined by the prototype network, serving as type centers, can provide a
reference standard for both the supervised loss function and the ordered pairwise loss function. This,
in turn, assists the model in mapping samples to positions in the feature space that are closer together.

4.6. Loss Analysis

Ordered contrastive loss. The design goal of the ordered contrastive loss function
is to maintain the order of the similarity between the four comparison samples and the
original samples proposed in Section 4.1 After applying the prototype network, both the
original samples and the contrastive samples in the ordered contrastive learning model
can be represented by the probability distribution on n = s + u event types, instead of the
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high-dimensional dense vector output by the event encoder. Therefore, we use Wasserstein
distance [29] rather than Euclidean distance as the distance metric function in the ordered
contrastive loss:

dw(µ, υ) =

(
inf

γ∈Γ(µ,υ)

∫
X×Y

dp(x, y)dγ(x, y)
) 1

p
, (7)

where µ and υ represent two probability distributions to be compared, respectively; p is
the order, and 1 is taken in this paper. The distance from the four contrastive samples
to the original sample d1, d2, d3, d4 is obtained. In order to maintain the partial order
relationship of the similarity of ordered comparison samples, that is, for the seen type
d1 < d2 < d3 < d4, for the unseen type d1 < d2 < d3 ̸= d4, the final ordered contrastive
loss function is defined as

Lc = d1 + Lm(d2, d1) + Lm(d3, d2) +

{
Lm(d3, d4) x ∈ S,
Lm(d4, d2) x ∈ U.

(8)

Contrastive fusion loss. In Section 4.4 an implementation method for the contrastive
fusion module is presented, where the distances between positive and negative samples
and the anchor are denoted as dp and dn using the Euclidean distance. Therefore, the loss
function for event contrast representation is defined as

L f = max(0, margin − (dp − dn)). (9)

Event type prediction loss. The core idea of the semi-supervised zero-shot event
detection algorithm is to apply different loss functions to seen event type samples and
unseen event type samples. The semi-supervised loss function used in the SS-VQ-VAE
model proposed by Huang and Ji [5] is

loss = ∑
x∈S

−ŷ · log(y) + ∑
x∈U

max(y1:k)− max(yk+1:n), (10)

where ŷ represents the true event type label, while y represents the predicted event type
given by the model. The design of this loss function can separate unseen event samples
from known event types, it is still challenging to differentiate between different unseen
event types. Additionally, the assumption that the model can guarantee all unlabeled
samples belong to unseen event types, which is implied by this contrastive loss function,
is difficult to satisfy in practice. To address these issues, we have improved the previous
work. For unseen event types, the loss for event type is directly defined as 0. Therefore, the
event type loss function defined for sample x in this paper is as

Le =

{
−ŷlog(yx), x ∈ S,
0, x ∈ U,

(11)

Trigger prediction loss. The event classification algorithm based on prototype net-
works leverages annotated information of known events to provide supervisory signals
for labeled samples. By calculating the negative logarithm loss function, the algorithm
aids in the learning of type-specific features of known events by the model. The utilization
of trigger word predictions provided by TR-prompt in the previous context enables the
usage of supervised signals based on trigger words, thereby assisting the model in better
accomplishing the task of trigger word recognition. Therefore, this paper proposes a newly
defined negative logarithm loss function based on trigger word supervisory signals:

Lt =

{
−t̂log(tx), x ∈ S,
0, x ∈ U,

(12)
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Equations (8), (9), (11), and (12) are combined to form the final loss function of
the model:

Loss = Lc + L f + Le + Lt. (13)

5. Experiments
5.1. Implementation Details

We implement all the algorithms in the experiment using Python packages PyTorch
and the Transformer Library. For all algorithms that require the use of the BERT pre-
trained language model, the article consistently employs the bert-base-uncased-model. This
model is equipped with 12 layers of multi-head self-attention encoders and features
768-dimensional vectors. The total parameter scale is approximately 109 million. To
implement the back-translation method for generating rephrased samples in Section 4.1,
we utilize the machine translation model provided by the Argos Translate library (https:
//www.argosopentech.com, accessed on 1 August 2023), setting Chinese as the intermedi-
ate language for translation. For training deep neural network models, AdamW is used as
the optimizer to iterate through model parameters. The learning rate for the BERT model
parameters undergoes a grid search within the range of [1 × 10−7, 1 × 10−4], while for non-
BERT models, the learning rate is searched within [1 × 10−4, 1 × 10−2]. All experiments in
this article were conducted on a Linux server equipped with two RTX 3090 GPUs.

5.2. Datasets

We select two publicly available event detection datasets both contain English event
description texts from the general domain. ACE-2005 (https://catalog.ldc.upenn.edu/
LDC2006T06, accessed on 1 August 2023) is a classic event detection dataset widely used
in event detection research. FewShotED [30] is a relatively new dataset that introduces the
concept of seen and unseen event types to simulate imbalances in the number of samples
for different event types.

To balance the number of samples between seen and unseen event types, we adopted
the same data partitioning strategy as in the previous work [15]. Sort all types of events by
their quantity, where event types at odd positions are labeled as seen types, while event
types at even positions are labeled as unseen types.

We randomly divide the dataset into training, validation, and test sets in an 8:1:1 ratio.
These detail steps and strategies for dataset configuration ensured the reproducibility of the
experiments and provided a benchmark for evaluating model performance. Additionally,
the introduction of the FewShotED dataset allows us to conduct zero-shot event detection
experiments, enabling a more comprehensive assessment of the model’s generalization
capabilities. The statistics of the processed dataset are shown in Table 1.

Table 1. The statistical information of the ACE-2005 and FewShotED datasets, where E represents
the number of event types, N represents the number of samples, and T represents the number of
trigger words.

Dataset ACE-2005 FewShotED
|E| |N| |T| |E| |N| |T|

Seen 17 2316 565 50 40,893 1565
Unseen 16 1489 463 50 33,439 1907
Total 33 3805 1028 100 74,332 3472

Mean 115.30 743.32
Stdev 206.32 2828.47

5.3. Evaluation

Our experiments are designed around two tasks: firstly, a conventional event detection
task, which is essentially a classification task when considering the seen event samples in

https://www.argosopentech.com
https://www.argosopentech.com
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
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the datasets. Secondly, a zero-shot event detection task for unseen event samples in the
datasets, which formally resembles a clustering task. The classic classification metric, F1
score, will serve as the common evaluation metric for both tasks:

F1 = 2 × p × r
p + r

, (14)

where p represents Precision, and r represents Recall:

p =
TP

TP + FP
, (15)

r =
TP

TP + FN
, (16)

where TP represents the number of true positives, FP represents the number of false
positives, and FN represents the number of false negatives. For seen events, the predicted
labels used in F1 score computation are directly provided by the model. For unseen event
types, a mapping is established first using the Hungarian algorithm before calculating the
F1 score. Additionally, taking inspiration from the works of SS-VQ-VAE and SCCL [5,31],
we also employ normalized mutual information (NMI) and Fowlkes–Mallows score (FM)
to assess clustering performance for unknown event types. NMI score is the normalized
result of mutual information score, used to measure the degree of containment of one set
within another set:

NMI(X, Y) =
2 × I(X; Y)

[H(X) + H(Y)]
, (17)

where X represents the true labels of the samples, Y represents the predicted labels; H(X) is
the entropy function, and I(X; Y) is the mutual information function. FM score is a metric
used to evaluate the similarity between two clusters:

FM(X, Y) =
TP√

(TP + FP)× (TP + FN)
. (18)

5.4. Baseline

In order to compare our proposed model with existing methods in the field of zero-shot
event detection, we chose the following models as baseline models:

• Supporting Clustering with Contrastive Learning (SCCL) is one of the best-performing
models in unsupervised text clustering tasks, achieving text clustering by optimiz-
ing a top-down clustering loss. SCCL is used to detect new event types based on
unseen event mentions. The contextual feature of trigger tokens are used in our
experiments [31].

• The Semi-supervised Vector Quantized Variational Autoeocoder (SS-VQ-VAE) is
a semi-supervised zero-shot event detection model that also utilizes BERT as the
encoder for event text. It employs a variational autoencoder to learn discrete event
features. SS-VQ-VAE is trained based on visible event types and annotations, and it
can be applied to zero-shot event detection [5].

• BERT Ordered Contrastive Learning (BERT-OCL) designs an ordered contrastive
learning method for clustering unseen event types. The Euclidean distance is used to
compute pairwise distance between examples for reducing intra-class distances and
increasing inter-class distances [15,32].

• Zero-Shot Event Detection with Ordered Contrastive Learning (ZEOP) leverages
prompt learning and ordered contrastive loss based on both instance-level and class-
level distance for zero-shot event detection. ZEOP identifies trigger tokens then
predicts event types by clustering [15].
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• APEX Prompt is based on prompt engineering. APEX Prompt utilizes a more com-
prehensive event type description as a template. Compared to other prompt-based
methods, this method can significantly enhance the performance of event detection,
especially in zero-shot event detection [33].

For the performance of the above baseline models, the APEX Prompt results on the
ACE-2005 dataset are taken from Wang et al. [33], the results on FewShotED are provided by
our experiments, and other results are directly taken from Zhang et al. [15].

6. Results and Analysis
6.1. Main Result

The main result of our model and all baseline approaches are shown in Table 2, which
is divided into two parts by the used datasets. From the results in the table, the following
observations can be made: (1) Our proposed model achieved the best overall performance
on both datasets, whether it is seen or unseen event detection tasks. (2) For both baseline
models and our model, the performance on FewShotED is relatively higher than on ACE-2005
(the F1 scores for the seen and unseen are higher by 15.62% and 9.68% respectively). This
may be attributed to the larger number of samples included in FewShotEvent, which helps
the model learn better event representations. (3) The performance improvement of our
model on unseen event detection tasks is significantly higher than on seen event detection
tasks (the improvement on the unseen in ACE-2005 is 10.79% higher than the improvement
on the seen, and it is 7.97% higher in FewShotED). This indicates the effectiveness of our
model in detecting unseen events.

Table 2. The overall results. The data marked in bold are the results by our model COPE, and the
data marked with an underline are the best results of the competing baselines.

Model
ACE-2005

F1-Seen F1-Unseen NMI FM

SCCL 0.5999 0.3190 0.3259 0.2403
SS-VQ-VAE 0.6988 0.3509 0.2515 0.4269
BERT-OCL 0.6040 0.3751 0.4532 0.2551
ZEOP 0.7771 0.4591 0.3797 0.4913
APEX Prompt 0.7490 0.5530 - -

COPE 0.7904 0.5803 0.4952 0.5097

Model
FewShotED

F1-Seen F1-Unseen NMI FM

SCCL 0.8717 0.3640 0.2647 0.3462
SS-VQ-VAE 0.9208 0.4364 0.1722 0.5762
BERT-OCL 0.9017 0.2160 0.4157 0.1894
ZEOP 0.9306 0.5814 0.4831 0.7139
APEX Prompt 0.9327 0.6371 - -

COPE 0.9466 0.6771 0.5392 0.7298

Overall, the prompt for representation contrastive learning model we proposed is
particularly effective in learning distinct representations for different types of events,
thereby enhancing the performance of zero-shot event detection.

6.2. Ablation Analysis

To investigate the impact of different modules on the model’s performance, we conduct
ablation experiments by removing ordered contrastive learning, retaining only trigger
recognition, retaining only sentence embedding, and removing contrastive fusion from
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the model. In the experiment where only trigger recognition is retained, we use trigger
representation as the final event representations. In the experiment where only sentence
embedding is retained, we use sentence embeddings generated by the [MASK] part of
the ER-prompt as the final event representation. When contrastive fusion is removed,
concatenation of trigger representation and sentence embedding is used as the final event
representation. The performance comparison of these ablations is shown in Table 3.

Table 3. The results of ablation experiments. “w/o” indicates that the referred part of the model was
removed in experiments. The data marked in bold are the best experiment results among the models.

Model
ACE-2005

F1-Seen F1-Unseen NMI FM

COPE 0.7904 0.5803 0.4952 0.5097

w/o OCL 0.8166 0.5537 0.3494 0.4316
only trigger recognition 0.7587 0.4305 0.4592 0.5138
only sentence embedding 0.7362 0.5544 0.3129 0.3351
w/o contrastive fusion 0.7803 0.5695 0.3797 0.4913

Model
FewShotED

F1-Seen F1-Unseen NMI FM

COPE 0.9466 0.6771 0.5392 0.7298

w/o OCL 0.9581 0.6351 0.4783 0.5493
only trigger recognition 0.9207 0.5668 0.5147 0.6816
only sentence embedding 0.9019 0.6122 0.4659 0.7246
w/o contrastive fusion 0.9389 0.6503 0.4831 0.7139

From the results in the table, we observe that removing different modules from the
model has an impact on its performance. When the ordered contrastive learning is removed,
we see a decrease in the F1 scores for unseen types by 2.66% and 4.2% on ACE-2005 and
FewShotED, respectively. This suggests that ordered contrastive learning indeed helps the
model learn better feature representations for unseen types. However, we also find that
in this case, the F1 scores for seen types on both datasets improve by 2.62% and 1.15%,
respectively. This indicates that ordered contrastive learning does contribute to the model’s
ability to learn better feature representations for unseen types, but this benefit comes at
a cost. The introduction of ordered contrastive sample sequences inevitably introduces
interference to the model, affecting the model’s recognition of labels for seen types as its
supervisory signals, leading to conflicts with the training objectives of supervised learning,
and thereby impairing some performance.

The impact of retaining only trigger word recognition is significantly greater for
unseen types than for seen types. The F1 scores for unseen types on both datasets decrease
by 14.98% and 11.03%, while the F1 scores for seen types decrease by 3.17% and 2.59%,
respectively. This indicates that the introduction of background sentence embeddings
enhances the model’s ability to handle unseen types more effectively, emphasizing the
importance of task-agnostic information in event instances for zero-shot ED. Additionally,
introducing prompts in sentence encoding effectively addresses the issues present in the
original PLM.

The impact of retaining only sentence embeddings is more significant for seen types
than for unseen types, with a 2.83% larger decrease in F1 scores for seen types than for
unseen types in ACE-2005 and a 2.02% larger decrease in FewShotED. For event detection
tasks, trigger word recognition is crucial in distinguishing them from text classification
tasks. When key words triggering events cannot be identified, the model loses specific
information about the event types. In such a situation, the model may be more inclined
to use other features or contextual information in the text to accomplish tasks, such as
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utilizing semantic and structural information in the text. This makes the model more likely
to perform text classification and clustering tasks. For seen types, the supervision signal is
weakened, and the model is likely to capture features unrelated to event types, making it
more challenging to identify event types.

Removing the contrastive fusion also resulted in a decline in the overall performance
of the model. Compared to ZEOP, although the model’s performance improved with
enhanced sentence embeddings, the model’s performance is not ideal due to the shallow
fusion strategy of only using concatenation fusion, which lead to the omission of complex
interaction information between trigger representation and sentence embedding. After ap-
plying contrastive fusion, the final event representation integrated trigger information and
overall event information, capturing the interaction information between them adequately,
thus enhancing the model’s performance.

6.3. Prompt Effect

For the prompt-based component of the model, similar to traditional generative
tasks, template selection is crucial for the results. We categorize templates into two types:
relationship tokens mainly represent the relationship between <event mention> and
[MASK], while prefix tokens enclose <event mention> and incorporate some semantic
information. We manually design several templates based on the work of Jiang et al. [16]
and compare their performance, as shown in Table 4.

Table 4. The impact of different templates on model performance. “This event: ‘<event mention>’
means [MASK]” is the template used in our model. The bold indicates the best model performance
under this template.

Template
ACE-2005 FewShotED

F1-Seen F1-Unseen F1-Seen F1-Unseen

Searching for relationship tokens

<event mention>[MASK]. 0.5641 0.2402 0.7741 0.3508
<event mention> is [MASK]. 0.6013 0.3194 0.7831 0.4296
<event mention> mean [MASK]. 0.6223 0.3862 0.7826 0.4996
<event mention> means [MASK]. 0.6959 0.4824 0.7988 0.5368

Searching for prefix tokens

This <event mention> means [MASK]. 0.7670 0.4887 0.9235 0.6138
This event of <event mention> means [MASK]. 0.7766 0.5365 0.9291 0.6355
This event of “<event mention>” means [MASK]. 0.7791 0.5487 0.9324 0.6426
This event: “<event mention>” means [MASK]. 0.7953 0.5812 0.9418 0.6828

Overall, it can be observed that complex prefix templates containing partial semantic
information outperform simple concatenation with [MASK] and event mentions in terms of
relationship templates. These complex prefix templates lead to improved model perfor-
mance on both datasets.

Furthermore, the improvements brought about by modifying templates on both
datasets are primarily focused on the performance enhancement of unseen types. This is
mainly because prompt-based methods typically do not rely on domain-specific knowledge
or annotated data, thus exhibiting a degree of generality across different domains and tasks.
This flexibility allows these methods to adapt easily to various application areas without
the need for retraining or fine-tuning the model. Prompt-based approaches can leverage
unsupervised data, effectively harnessing knowledge from various layers of pretrained
language models, thereby enhancing model performance and generalization capability.

6.4. Qualitative Analysis

We additionally present qualitative analysis of our zero-shot results by comparing the
feature visualization of event representation [20].
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On two different datasets, we compare the event representations obtained by directly
encoding them with BERT and the event representations obtained using our encoding
method. The results in Figure 7 show that encoding events directly with the original
BERT leads to overlapping event representations, making it difficult to separate events of
different categories in the vector space. Additionally, we observe that events with fewer
samples tend to mix with events with more samples after being encoded by BERT, which
is consistent with the embedding bias issue introduced by BERT.

(a) BERT for ACE-2005 (b) COPE for ACE-2005 (c) BERT for FewShotED (d) COPE for FewShotED

Figure 7. Feature visualization of event representation on ACE-2005 and FewShotED. The four images
respectively represent the results obtained by directly encoding two datasets with BERT and the
representations obtained by encoding events using the method proposed in this paper.

After using our model’s encoding method, we can clearly observe that event represen-
tations with fewer samples are effectively separated from those with more samples, with
the most notable separation occurring in the unseen type of events. Taking ACE-2005 as an
example, the three most numerous event types in the unseen types are Movement:Transport;
Contact:Meet and Transaction:Transfer-Money (represented in cyan, pink, and yellow, respec-
tively). After applying our method, these types are well separated, and event types with
fewer instances, such as Personnel:Nominate and Justice:Pardon, are no longer mixed with
the representations of events with more instances. Instead, they are relatively scattered in
other areas of the vector space, which is advantageous for the model to better distinguish
between event types.

7. Limitations

While COPE has shown promising results in zero-shot ED, experiments indicate that
there is still room for improvement in the algorithm, with potential for further exploration
in the future. The introduction of ordered contrastive learning has indeed enhanced the
detection of unseen events, but it has also introduced certain conflicts with the supervised
learning task of detecting seen events. In the prototype network, prototypes play the role of
type centers. While random initialization is convenient operationally, it inevitably reduces
the model fitting speed, and the selection of hyperparameters for the number of unseen
types also has an impact. Additionally, in our dataset partitioning, seen and unseen types
are evenly distributed, whereas in real-world scenarios, the distribution of these two types
of data may not be equal. Improving the model to make it more adaptable to a wider range
of scenarios is a challenge to be addressed in the future.

8. Conclusions

This paper introduces COPE, a dual-contrastive learning model designed to effec-
tively tackle the zero-shot event detection challenge. It presents innovative perspectives
and strategies for event representation learning through the utilization of two levels of
contrastive learning: ordered contrastive learning and contrastive fusion learning. At the
sample level, our approach enables precise differentiation between diverse events, while at
the instance level, we achieve a harmonious integration of task-specific and task-agnostic
embeddings. In our experiments, we comprehensively evaluate COPE using two widely-
used event detection datasets. The results highlight the outstanding performance of our
method in zero-shot ED, significantly enhancing both accuracy and semantic information
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capture. By intricately modeling the interplay between event triggers and background
sentences, our approach adeptly captures nuanced event features within high-dimensional
vector space, thereby elevating zero-shot ED capabilities.
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