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Abstract: Load-capacity has always been one of the performances that is paid much attention to in
the development of bevel gear transmission applications. Consequently, the mathematical model
of novel bevel gear with high load-capacity based on geometric elements is proposed in this paper,
which could be applied to the aviation, aerospace and other fields. In parallel, the design principle
and design method of the novel bevel gear are introduced in detail. Subsequently, the conditions
for tooth surface continuity and non-interference are derived. Furthermore, the model of novel
bevel gear is established. Finally, the load-bearing characteristics are analyzed, revealing that an
increase in the number of contact points could significantly enhance the load capacity of the bevel
gear pairs. When the load torque applied to bevel gear II is 100 Nm, the contact pressure endured by
the bevel gear pair with five-point contact is decreased by 41.37% compared to the bevel gear pair
with single-point contact. When the number of contact points is the same, increasing the distance
between the contact points could also reduce the contact stress. This provides strong theoretical
support for the application of the bevel gear based on the geometric elements.

Keywords: bevel gear; load capacity; running performance; transmission efficiency; geometric
elements

MSC: 74-10

1. Introduction

The bevel gear is an important fundamental mechanical component, which is widely
used in various engineering fields, such as automobiles, aerospace, and marine indus-
tries [1]. In response to the increased performance demands placed on bevel gear trans-
mission pairs, scholars have embarked on relevant research endeavors [2–5], especially
in terms of the load-carrying performance of bevel gear. Kong proposed a data-oriented
loaded contact pressure regulation model, in order to monitor the meshing transmission
performance and improve loaded contact fatigue life [6]. Based on multi-tooth deformation
compatibility, Li put forward a numerical approach to predict the load distribution of a
spiral bevel gear, based on multi-tooth deformation compatibility. This approach specifi-
cally addresses the contact pressure of the spiral bevel gear [7]. Mu put forth an innovative
higher-order tooth surface modification method, which could be used to reduce the vibra-
tion excitation of gear transmission [8]. Song introduced a sensitive misalignment-oriented
model for regulating contact pressure, providing crucial insights into the monitoring of
meshing transmission performance [9]. To achieve precise and numerically efficient tooth
contact analysis, Vivet developed a penetration-based gear contact model for spiral bevel
gears [10]. For both static and dynamic simulations of bevel gears, A. Pigé proposed an
innovative mesh interface model. The results demonstrated that load significantly im-
pacts the contact conditions in bevel gears [11]. Batsch presented a mathematical model
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of convex-concave helical bevel gear mesh, aiming to increase the instantaneous contact
area and consequently reduce the contact stress value [12]. Han proposed the nonlinear
dynamic model to predict the skidding behavior [13]. Chen constructed the coupling model
of mixed elastohydrodynamic transient lubrication and time-varying wear [14], and Shi
analyzed the transient time-varying load to explore the thermal-pressure coupled effects
under the actual operating conditions [15].

The most developed and extensively utilized tooth surface design method for spi-
ral bevel gears is the conjugate surface meshing theory combined with local synthesis
approach [16–19]. Conjugate surface meshing theory still plays a dominant role in the
research of gear meshing theory. However, with the advancement of technology and to
meet higher performance requirements of spiral bevel gear transmission mechanisms in
industrial fields, many scholars are also proposing new meshing theory and continuously
developing them in recent years. Chen proposed meshing theory based on geometric
elements [20–22]. Geometric elements refer to points, curves, and surfaces, which are the
three basic elements. Every combination of two of these elements forms a pair of contact
relationships. Surface conjugation is one of the contact relationships, and compared to
surface conjugation, curve conjugation is more diverse. Compared with general arc tooth
bevel gears, bevel gears based on geometric elements could yield precise tooth surface
equations and contact areas based on predetermined conjugate curves and tooth profile.
Currently, such bevel gears are not suitable for applications requiring low tooth surface
hardness. In order to enhance the load-carrying capacity of geometrically designed gears
with soft tooth surfaces, Tan put forward a design method for bevel gears with single-point
contact [23,24], and Liang developed the design method for gears based on curves elements
with double contact points and three contact points [25,26]. Research by scholars has found
that the gear based on the geometric elements can enhance tooth surface load-carrying
capacity by increasing the number of contact points. However, the current primary research
focuses on the three-point contact form, and gear designs with more than three-point con-
tact have not yet been proposed. Therefore, the general design method for the bevel gear
with multi-point contact is presented, which can be used for designing from single-point to
multi-point contact.

In this paper, the general design method for the novel bevel gear pair with high
load-capacity based on geometric elements is proposed, and the mathematical model is
established. Subsequently, the tooth surface contact characteristics are investigated. Finally,
the load-bearing characteristics of the novel bevel gear pair based on the geometric elements
are analyzed.

2. Design Principle of Bevel Gear Based on the Geometric Elements
2.1. The Principle of Conjugate Curve

The design principle of the bevel gear based on geometric elements is illustrated in
Figure 1. The principle of conjugate curve is introduced in this section. The design of tooth
profile and tooth surface construction are discussed in the third section.
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Figure 1. Schematic diagram of the novel bevel gear.
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The conjugate curve could be characterized as a pair of smooth curves, following a
prescribed motion law, which maintain continuous tangential contact along the specified
direction throughout their motion, as shown in Figure 2. At each moment, curves ΓI and ΓII
are in point contact, meaning they are tangentially touching at the contact point H. When
the relative motion is specified, not only is curve ΓII the conjugate curve of curve ΓI but
curve ΓI is also the conjugate curve of curve ΓII within a certain range.
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2.2. Applied Coordinate System

According to the actual situation of the bevel gear drive and for the convenience
of subsequent derivations, the coordinate system is established as shown in Figure 3.
Coordinate systems S0(O0-x0,y0,z0) and Sp(Op-xp,yp,zp) are two orthogonal right-handed
coordinate systems fixed in space, where the z0-axis coincides with the rotation axis of
bevel gear I and the zp-axis coincides with the rotation axis of bevel gear II. The shaft angle
between the two revolving axles of these two bevel gears is ψ.
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Additionally, coordinate systems SI(OI-xI,yI,zI) and SII(OII-xII,yII,zII) are respectively
fixed to be right-handed orthogonal coordinate systems on bevel gear I and bevel gear II.
At the initial position, they coincide respectively with coordinate systems S0(O0-x0,y0,z0)
and Sp(Op-xp,yp,zp). Bevel gear I rotates around the z0-axis with a constant angular velocity
ωI, while bevel gear II rotates around the zp-axis with a constant angular velocity ωII. After
a certain period of time from the initial position, coordinate systems SI(OI-xI,yI,zI) and
SII(OII-xII,yII,zII) move to the illustrated positions, ϕI and ϕII represent the angles that bevel
gear I and bevel gear II have rotated through, respectively.

The transformation relationship between coordinate systems S0(O0-x0,y0,z0) and
SI(OI-xI,yI,zI) is described as:

R0I =


cos ϕI − sin ϕI 0 0
sin ϕI cos ϕI 0 0

0 0 1 0
0 0 0 1

 (1)

The transformation relationship between coordinate systems Sp(Op-xp,yp,zp) and
S0(O0-x0,y0,z0) is described as:

Rp0 =


1 0 0 0
0 cos ψ − sin ψ 0
0 sin ψ cos ψ 0
0 0 0 1

 (2)

The transformation relationship between coordinate systems SII(OII-xII,yII,zII) and
Sp(Op-xp,yp,zp) is described as:

RIIp =


cos ϕII − sin ϕII 0 0
sin ϕII cos ϕII 0 0

0 0 1 0
0 0 0 1

 (3)

According to the principle of coordinate transformation, the transformation relation-
ship between coordinate systems SII(OII-xII,yII,zII) and SI(OI-xI,yI,zI) is obtained:

RII-I = RIIp · Rp0 · R0I (4)

Substituting Equations (1)–(3) into (4), RII-I is expressed as:

RII-I =


cos ϕI cos ϕII − cos ψ sin ϕI sin ϕII − sin ϕI cos ϕII − cos ψ cos ϕI sin ϕII sin ψ sin ϕII 0
cos ϕI sin ϕII + cos ψ sin ϕI cos ϕII − sin ϕI sin ϕII + cos ψ cos ϕI cos ϕII − sin ψ cos ϕII 0

sin ψ sin ϕI sin ψ cos ϕI cos ψ 0
0 0 0 1

 (5)

2.3. Meshing Equation
2.3.1. Relative Velocity

In the light of the kinematics principles, the relative velocity vI-II of the meshing tooth
surface points in the bevel gear pair is given by:

vI-II = ωI × rI − ωII × rII (6)

where, ωI and ωII represent the angular velocity of bevel gear I and bevel gear II, respec-
tively; rI and rII represent the radius vector of bevel gear I and bevel gear II, respectively.
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The point H in the coordinate system SI(OI-xI,yI,zI) is H(xI,yI,zI), and then the ra-
dius vector of bevel gear I and bevel gear II in the coordinate system SI(OI-xI,yI,zI) are
described respectively: {

rI = xIiI + yIjI + zIkI
rII = xIiI + yIjI + zIkI

(7)

where, iI, jI and kI represent the unit vectors of the xI-axes, yI-axes and zI-axes, respectively.
The angular velocity ωI of bevel gear I is obtained:

ωI = ωIkI (8)

where, ωI is the module of the angular velocity ωI.
The angular velocity ωII of bevel gear II is obtained:

ωII = −ωII sin ψ sin ϕIiI −ωII sin ψ cos ϕIjI −ωII cos ψkI (9)

where, ωII is the module of the angular velocity ωII, and ωII = iII-IωI.
Substituting Equations (6)–(8) into (5), the relative velocity vI-II is expressed as:

vI-II = vx-I-IIiI + vy-I-IIjI + vz-I-IIkI (10)

where, 
vx-I-II = −ωI(yI + iII-IyI cos ψ − iII-IzI cos ϕI sin ψ)
vy-I-II = ωI(xI + iII-IxI cos ψ − iII-IzI sin ϕI sin ψ)
vz-I-II = iII-IωI sin ψ(−xI cos ϕI + yI sin ϕI)

(11)

2.3.2. Meshing Equation

For the spatial curve ΓI, an arbitrary normal vector nI at any point on the curve can be
represented (see Figure 4):

nI = cos αIbI + sin αImI (12)

where, mI and bI respectively represent the principal normal vector and the binormal vector
of the spatial curve ΓI, αI is the angle between normal vector nI and principal normal
vector mI.
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In order to ensure that the given curve ΓI and its conjugate curve ΓII could always
remain in contact throughout the motion, it is required that the projection of the relative
velocity at the contact point in the normal vector direction is zero, that is, the given normal
vector at the point of contact should be perpendicular to the direction of the relative velocity,
which is expressed by the equation:

vI-II · nI = 0 (13)

2.4. Conjugate Curve

In accordance with the definition of the conjugate curves [20], the spatial curve ΓI
and its conjugate curve ΓII maintain point contact at every moment, and combined with
Equation (13), it can be deduced that when the equation of spatial curve ΓI is known, the
conjugate curve ΓII is obtained [22]:{

LII(tII) = MII-I · LI(tI)
vI-II · nI = 0

(14)

where, LI(tI) is the equation for the spatial curve ΓI in coordinate system SI(OI-xI,yI,zI) and
LII(tII) is the equation for the spatial curve ΓII in coordinate system SII(OII-xII,yII,zII).

3. Design Method of Tooth Surfaces with High Load-Capacity
3.1. Principles of Design and Construction

From the second section, the spatial curve ΓI and its conjugate curve ΓII are obtained.
Based on this, a pair of spatial conjugate curves could be expanded into a pair of meshing
surfaces which can maintain the conjugate curve meshing characteristics while achieving
the transmission of motion and power, and then the model of bevel gear is established.
Furthermore, it could be applied to bevel gear transmission systems.

Taking the tooth surface construction process of one of the bevel gear I as an exam-
ple, the specific description is as follows: the curve ΓsI, called the tooth profile curve, is
constructed in the normal plane of any point on the spatial curve ΓI. When the tooth
profile curve ΓsI continuously varies along the spatial curve ΓI, the continuous surface ΣI is
constructed, as shown in Figure 5.
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Depend on the design requirement, it is possible to achieve multi-point contact be-
tween the tooth surfaces of bevel gear based on geometric elements by designing the tooth
profile, which refers to the section curve. The general design method for the tooth profile
of bevel gears with multi-point contact is proposed in this paper. The tooth profile of bevel
gear I is first designed as an arc curve, and then N points are selected on the arc curve as the
contact points for the bevel gear pair. On the basic of these known contact points, the tooth
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profile curve of bevel gear II is designed using the method of curve fitting. Subsequently,
the corresponding tooth surfaces are respectively constructed according to the tooth surface
construction principles.

3.2. Design of Tooth Profile with Multi-Point Contact
3.2.1. Tooth Profile Curve of Bevel Gear I

In accordance with the principles of tooth surface construction, the coordinate system
SfI is established at an arbitrary point H on spatial curve ΓI by its tangent vector tsI,
principal normal vector msI, and binormal vector bsI. Subsequently, within the normal
plane formed by the principal normal vector msI and the binormal vector bsI, an arc curve
ΓsI is constructed in the normal plane as the tooth profile curve of the bevel gear I, as shown
in Figure 6. It should be noted that the principal normal vector msI should be consistent
with nI at the point H. The tooth profile curve of the bevel gear I in the normal plane is
expressed [21]:

ΓsI :
{

xsI = ρsI cos φ
ysI = ρsI sin φ

(15)

where, ρsI is the radius of arc curve ΓsI at any point, φ is the angle between ρsI and msI, and
the range of φ is: φa ≤ φ ≤ φb.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 24 
 

 

In accordance with the principles of tooth surface construction, the coordinate system 

SfI is established at an arbitrary point H on spatial curve ГI by its tangent vector tsI, princi-

pal normal vector msI, and binormal vector bsI. Subsequently, within the normal plane 

formed by the principal normal vector msI and the binormal vector bsI, an arc curve ГsI is 

constructed in the normal plane as the tooth profile curve of the bevel gear I, as shown in 

Figure 6. It should be noted that the principal normal vector msI should be consistent with 

nI at the point H. The tooth profile curve of the bevel gear I in the normal plane is expressed 

[21]: 

I I

I

I I

cos
:

sin

s s

s

s s

x

y

 

 

=
 

=
 (15) 

where, ρsI is the radius of arc curve ГsI at any point, φ is the angle between ρsI and msI, and 

the range of φ is: a bφ φ φ  . 

aθ

bθ

H

θ

Is

Is

I

Is

Normal 

plane

Is

Is

Isx

Isy

 

Figure 6. Tooth profile diagram of bevel gear I. 

3.2.2. Selection of contact points 

N contact points are selected on the bevel gear I arc curve, as shown in Figure 7, and 

then the coordinates of the nth contact point An are: 

I

I

cos
: ( 0,1,2, )

sin

n s n

n

n s n

x ρ φ
A n n

y ρ φ

=
=

=
…,  (16) 

Figure 6. Tooth profile diagram of bevel gear I.

3.2.2. Selection of Contact Points

N contact points are selected on the bevel gear I arc curve, as shown in Figure 7, and
then the coordinates of the nth contact point An are:

An :
{

xn = ρsI cos φn
yn = ρsI sin φn

(n = 0, 1, 2, · · · , n) (16)



Mathematics 2024, 12, 1373 8 of 21Mathematics 2024, 12, x FOR PEER REVIEW 9 of 24 
 

 

H

I

Is

0A
1A

2A

nA

1nA −

Isb

Ist

a
b

n
1n −

2 1 0

Ism

 

Figure 7. Selection of contact points. 

3.2.3. Construction of Bevel Gear II Tooth Profile Curve 

Considering that the tooth profile of bevel gear I is a segment of a circular curve and 

the selected contact point is on a circular curve, the tooth profile of bevel gear II is designed 

using the fitting method of the segmented quadratic trigonometric polynomial Bézier in-

terpolation curves. 

After determining the contact points, the adjacent contact points is connected with 

straight line in sequence and then edge vector au is obtained: 

1( 1,2, )u u ua A A u n−= − = …,  (17) 

Then, the tangent vector Tu of the interpolation curve to be constructed at point Hu is 

defined: 

1

0 1 0 2

1

(1 ) ( 1,2, 1)

(1 ) ( 0)

(1 ) ( )

u u u u

u

n n n n

τ a τ a u n

T τ a τ a u

τ a τ a u n

+

−

+ − = −


= − − =
 − − =

…,

 (18) 

where, τu is the adjustment parameter of tangent vector, and the value range of τu is: 0 < 

τu < 1. 

According to the definition of tangent vector Tu, by adjusting the tangent vector pa-

rameter tu to make Tu and Tu+1 not parallel, so that the tangent line passing through point 

Au with Tu as the tangent vector intersects with the tangent line passing through point Au+1 

with Tu+1 as the tangent vector, as shown in Figure 8. The intersection point Vu is denoted: 

1 1

1

( 0,1,
u u

u u u

u u

a T
V A T u n

T T

+ +

+


= + =


…, -1) (19) 

Figure 7. Selection of contact points.

3.2.3. Construction of Bevel Gear II Tooth Profile Curve

Considering that the tooth profile of bevel gear I is a segment of a circular curve
and the selected contact point is on a circular curve, the tooth profile of bevel gear II is
designed using the fitting method of the segmented quadratic trigonometric polynomial
Bézier interpolation curves.

After determining the contact points, the adjacent contact points is connected with
straight line in sequence and then edge vector au is obtained:

au = Au − Au−1(u = 1, 2, · · · , n) (17)

Then, the tangent vector Tu of the interpolation curve to be constructed at point Hu
is defined:

Tu =


τuau + (1 − τu)au+1(u = 1, 2, · · · , n − 1)
τ0a1 − (1 − τ0)a2(u = 0)
τnan − (1 − τn)an−1(u = n)

(18)

where, τu is the adjustment parameter of tangent vector, and the value range of τu is:
0 < τu < 1.

According to the definition of tangent vector Tu, by adjusting the tangent vector
parameter tu to make Tu and Tu+1 not parallel, so that the tangent line passing through
point Au with Tu as the tangent vector intersects with the tangent line passing through
point Au+1 with Tu+1 as the tangent vector, as shown in Figure 8. The intersection point Vu
is denoted:

Vu = Au +
|au+1 × Tu+1|
|Tu × Tu+1|

Tu(u = 0, 1, · · · , n − 1) (19)

In the light of the contact point Au and the intersection Vu of the tangent vectors, the
four control points of the quadratic triangular Bézier curve lu-II(ξ) passing through the
point Au-1 and the point Au as follows:

pu0 = Au−1
pu1 = ηu Au−1 + (1 − ηu)Vu−1
pu2 = χu Au + (1 − χu)Vu−1
pu3 = Au

(u = 1, 2, · · · , n) (20)
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where, ηu and χu are both adjustable parameters, the value range of them are respectively:{
0 < ηu < 1
0 < χu < 1

(21)
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In accordance with the definition of quadratic triangular Bézier curve, lu-II(ξ)
is obtained:

lu-II(ξ) = X0(ξ)pu0 + X1(ξ)pu1 + X2(ξ)pu2 + X3(ξ)pu3 (22)

where, X0(ξ), X1(ξ), X2(ξ), and X3(ξ) are the primary function, they are defined:
X0(ξ) = (1 − sin ξ)(1 − λ sin ξ)
X1(ξ) = (1 − sin ξ)(sin ξ + λ sin ξ)
X2(ξ) = (1 − cos ξ)(cos ξ + λ cos ξ)
X3(ξ) = (1 − cos ξ)(1 − λ cos ξ)

(23)

where, ξ is the variable, the range of ξ is: 0 ≤ ξ ≤ π/2, and λ is the parameter, the value
range of λ is: −1 ≤ λ ≤ 1.

3.3. Construction of Tooth Surface
3.3.1. Construction of Tooth Surface for Bevel Gear I

The section curve ΓsI of bevel gear I in coordinate system SfI is expressed:

rs f I =
(
xsI ysI 0 1

)T (24)

Based on the principle of construction mentioned earlier, the constructed tooth surface
ΣI is obtained, and the ΣI in coordinate system SI is represented:

rΣI(φ, tI) = Mp f Irs f I (25)
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where,

Mp f I =


isI · βsI isI · γsI isI · αsI
jsI · βsI jsI · γsI jsI · αsI
ksI · βsI ksI · γsI ksI · αsI

0 0 0

LI(tI)

 (26)

3.3.2. Construction of Tooth Surface for Bevel Gear II

According to the conjugate curve principle in the second section, the conjugate curve
ΓII of spatial curve ΓI was obtained. Then, the coordinate system SfII is established at an
arbitrary point on conjugate curve ΓII by its tangent vector αII, principal normal vector βII,
and binormal vector γII. Unlike the section curve Γs1 of bevel gear I, the section curve Γs2 of
bevel gear II is composed of a segment of interpolation curve lu-II(ξ), and the interpolation
curve lu-II(ξ) in coordinate system SfII is expressed:

rg
s f u =

(
xg

u yg
u 0 1

)T (27)

Therefore, the constructed tooth surface Σg
u is obtained, and the Σg

u in coordinate
system SII is represented:

rg
Σu = Mp f IIr

g
s f u (28)

where,

Mp f II =


isII · βsII isII · γsII isII · αsII
jsII · βsII jsII · γsII jsII · αsII
ksII · βsII ksII · γsII ksII · αsII

0 0 0

LII(tII)

 (29)

4. Gear Tooth Characteristics Analysis
4.1. Continuity Conditions of Tooth Surface

When constructing tooth surfaces, it is essential to ensure the continuity of the tooth
surface. According to the principles of tooth surface construction, it is known that when the
tooth profile curve is continuous, the generated tooth surface is also continuous. Therefore,
it is necessary to derive the continuity conditions of the tooth profile curve for bevel gear
II. For interpolation curves, C2 continuity is generally required, meaning that the second
derivative of the curve is continuous [27–29]. In order to achieve smoother interpolation
curves and a smoother surface formed by these curves, this paper derives the conditions
for C3 continuity of the interpolation curves, ensuring that the third derivative of the
interpolation curves is continuous [30].

The values of the interpolation curve lu-II(ξ) at the starting point and endpoint of the
u-th segment respectively are:

lu-II(0) = pu0 (30)

lu-II(
π

2
) = pu3 (31)

The values of the interpolation curve lu-II(ξ) at the starting point and endpoint of the
(u + 1)-th segment respectively are:

lu+1-II(0) = p(u+1)0 (32)

lu+1-II(
π

2
) = p(u+1)3 (33)

It can be concluded from Equation (26) that:

pu3 = p(u+1)0 = Au (34)

The first derivative of the interpolation curve lu-II(ξ) is obtained:
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lu-II
′(ξ) = (1 + λ)(pu1 − pu0) cos ξ + ((pu3 − pu2)(1 + λ) + 2(pu0λ + (−pu1 + pu2)(1 + λ)− pu3λ) cos ξ) sin ξ (35)

The second derivative of the interpolation curve lu-II(ξ) is obtained:

lu-II
′′ (ξ) = (pu3 − pu2)(1 + λ) cos ξ + 2((pu0 − pu3)λ + (pu2 − pu1)(1 + λ)) cos 2ξ + (pu0 − pu1)(1 + λ) sin ξ (36)

The third derivative of the interpolation curve lu-II(ξ) is obtained:

lu-II
′′′ (ξ) = (pu2 − pu3)(1 + λ) sin ξ + ((pu0 − pu1)(1 + λ) + 8((pu3 − pu0)λ + (pu1 − pu2)(1 + λ)) sin ξ) cos ξ (37)

To ensure the C1 continuity of the interpolation curve lu-II(ξ), the first derivative of the
interpolation curve lu-II(ξ) needs to be continuous, that is:

lu+1-II
′(0) = lu-II

′(
π

2
) (38)

According to Equation (20), the first derivatives of the interpolation curve at the
starting-point and endpoint values can be obtained as follows:

lu+1-II
′(0) = (1 + λu)(p(u+1)1 − p(u+1)0) (39)

lu-II
′(

π

2
) = (1 + λu+1)(pu3 − pu2) (40)

Substituting Equations (34), (39) and (40) into (38), it could be obtained by:

ηu+1= 1 − (1 − χu)
|AuVu−1|
|AuVu|

(41)

To ensure the C2 continuity of the interpolation curve lu-II(ξ), the second derivative of
the interpolation curve lu-II(ξ) needs to be continuous, that is:

lu+1-II
′′ (0) = lu-II

′′ (
π

2
) (42)

lu+1-II
′′ (0) = 2λu+1 p(u+1)0 − 2(1 + λu+1)p(u+1)1 + (1 + λu+1)p(u+1)2 + (1 − λu+1)p(u+1)3 (43)

lu-II
′′ (

π

2
) = (1 − λu)pu0 + (1 + λu)pu1 − 2(1 + λu)pu2 + 2λu pu3 (44)

Substituting Equation (34) into (42):

λu = λu+1 (45)

The range of values for λu is 0 ≤ λu ≤ 1, and in order to achieve the continuity of the
interpolation curve lu-II(ξ),

λu = λu+1 = 1 (46)

Substituting Equations (20), (43) and (44) into (42):

Xu+1 =
(3 − 4Xu)|Vu−1 Au| − ηu|Au−1Vu−1| − |AuVu|

|Vu Au+1|
(47)

Because the range of Xu is 0 < Xu+1 < 1, it is deduced:

(3 − 4Xu)|Vu−1 Au| − |AuVu| − |Vu Au+1|
|Vu−1 Au−1|

< ηu <
(3 − 4Xu)− |AuVu|

|Vu−1 Au−1|
(48)
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The third derivative of the interpolation curve lu-II(ξ) needs to be continuous, that is:

lu+1-II
′′′ (0) =

(
p(u+1)0 − p(u+1)1

)
(1 + λu+1) (49)

lu-II
′′′ (

π

2
) = (pu2 − pu3)(1 + λu) (50)

According to Equation (42), it could be concluded that:

p(u+1)1 = 2pu3 − pu2 (51)

Substituting Equations (34) and (51) into (49):

lu+1-II
′′′ (0) = (pu2 − pu3)(1 + λu) (52)

Therefore, it could be deduced by:

lu+1-II
′′′ (0) = lu-II

′′′ (
π

2
) (53)

This implies that the interpolation curve satisfies C3 continuity, and when the in-
terpolated curve satisfies C2 continuity, the interpolated curve automatically satisfies C3

continuity. Consequently, when the interpolated curve satisfies Equations (34), (41), (47)
and (48) then the interpolated curve lu-II(ξ) can achieve C3 continuity.

4.2. Non-Interference Condition of Tooth Surface

The interpolation curve is constructed after satisfying the condition of C3 continuity,
and then the tooth surface is constructed according to the construction principle. It is
necessary to conduct interference analysis on the tooth surfaces of bevel gear I with multi-
point contact and bevel gear II with multi-point contact and derive the condition that these
two tooth surfaces do not interfere. According to the meshing theory of tooth surfaces, it
could be determined whether there is curvature interference between two tooth surfaces
based on the sign of the induced principal curvature.

If there is no curvature interference between these two tooth surfaces ΣI and ΣII, the
induced normal curvature KI-II

1 of tooth surfaces ΣI and the induced normal curvature KI-II
2

of tooth surfaces ΣI are positive values. This is the condition where there is no interference
between the contact points of the bevel gear teeth, expressed as:{

KI-II
1 > 0

KI-II
2 > 0

(54)

According to the principles of differential geometry and tooth profile construction, the
principal curvatures KI-II

1 and KI-II
2 could be determined:

KI-II
1 = KI

1 − KII
1 (55)

KI-II
2 = KI

2 − KII
2 (56)

where, KI
1 and KII

1 are the two principal curvatures of tooth profile ΣI; KI
2 and KII

2 are the
two principal curvatures of tooth profile ΣII.

According to differential geometry, KI
1 and KI

2 satisfy the equation:(
EIGI −

(
FI
)2

)(
KI

κ

)2
−

(
LIGI − 2MIFI + NIEI

)
KI

κ +

(
LINI −

(
MI

)2
)
= 0 (57)
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where, κ represents I or II, the first and second fundamental form coefficients EI, FI, GI, LI,
MI, NI for tooth surface ΣI can be separately derived [31]:

EI = D(rΣI(φ, tI), φ)D(rΣI(φ, tI), φ)

FI = D(rΣI(φ, tI), φ)D(rΣI(φ, tI), tI)

GI = D(rΣI(φ, tI), tI)D(rΣI(φ, tI), tI)

LI = −D(rΣI(φ, tI), φ)D(nΣI(φ, tI), φ)

MI = −D(rΣI(φ, tI), φ)D(nΣI(φ, tI), tI)

NI = −D(rΣI(φ, tI), tI)D(nΣI(φ, tI), tI)

(58)

where, D(rΣI(φ,tI),φ) is the first derivative of rΣI(φ,tI) with respect to the parameter φ, and
D(rΣI(φ,tI),tI) is the first derivative of rΣI(φ,tI) with respect to the parameter tI, D(nΣI(φ,tI),φ)
is the first derivative of unit normal vector nΣI(φ,tI) of tooth surface rΣI with respect to
the parameter φ, and D(nΣI(φ,tI),tI) is the first derivative of nΣI(φ,tI) with respect to the
parameter tI.

The unit normal vector nΣI(φ,tI) of tooth surface rΣI is obtained:

nΣI(φ, tI) =
D(rΣI(φ, tI), φ)× D(rΣI(φ, tI), tI)

|D(rΣI(φ, tI), φ)× D(rΣI(φ, tI), tI)|
(59)

For bevel gear II, it is necessary to determine the corresponding principal curva-
tures KI-II

1 and KI-II
2 of the tooth surface rg

Σu formed by the interpolation curves lu-II(ξ) in
different segments.

According to differential geometry, KII
1 and KII

2 satisfy the equation:(
EIIGII −

(
FII

)2
)(

KII
κ

)2
−

(
LIIGII − 2MIIFII + NIIEII

)
KII

κ +

(
LIINII −

(
MII

)2
)
= 0 (60)

where, the first and second fundamental form coefficients EII, FII, GII, LII, MII, NII for tooth
surface ΣII can be separately derived [31]:

EII = D(rg
Σu(ξ, tII), ξ)D(rg

Σu(ξ, tII), ξ)

FII = D(rg
Σu(ξ, tII), ξ)D(rg

Σu(ξ, tII), tII)

GII = D(rg
Σu(ξ, tII), tII)D(rg

Σu(ξ, tII), tII)

LII = −D(rg
Σu(ξ, tII), ξ)D(ng

Σu(ξ, tII), ξ)

MII = −D(rg
Σu(ξ, tII), ξ)D(ng

Σu(ξ, tII), tII)

NII = −D(rg
Σu(ξ, tII), tII)D(ng

Σu(ξ, tII), tII)

(61)

where, D(rg
Σu(ξ, tII), ξ) is the first derivative of rg

Σu(ξ, tII) with respect to the parameter ξ,
and D(rg

Σu(ξ, tII), tII) is the first derivative of rg
Σu(ξ, tII) with respect to the parameter tII,

D(ng
Σu(ξ, tII), ξ) is the first derivative of unit normal vector ng

Σu(ξ, tII) of tooth surface rg
Σu

with respect to the parameter ξ, and D(ng
Σu(ξ, tII), tII) is the first derivative of ng

Σu(ξ, tII)
with respect to the parameter tII.

5. Analysis of Load-Bearing Characteristics
5.1. Bevel Gear Pair Parameters

According to the principles outlined in Sections 2 and 3, tooth surfaces with single-
point, two-point, three-point, and five-point contact based on the fundamental parameters
in Table 1 are constructed. Subsequently, the complete gear pairs were assembled. Figure 9
shows the model of a bevel gear pair with five-point contact.
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Table 1. Basic parameters of bevel gear pairs.

Parameter Bevel Gear I Bevel Gear II

Number of teeth 8 24
Module 6.75 mm

Pitch cone angle 18.435 deg. 71.565 deg.
Spiral angle 35 deg.

Hand of spiral Left hand Right hand
Shaft angle 90 deg.
Face width 30 mm

Outer cone distance 83.48 mm 250.45 mm

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 24 
 

 

Outer cone distance 83.48 mm 250.45 mm 

 

 
(a) Schematic diagram of tooth surface with five-point contact 

 
(b) Bevel gear model with five-point contact 

Figure 9. Bevel gear pairs with five-point contact. 

5.2. Influence of Meshing Points on Contact Stress 

According to the established models of bevel gear pairs with single-point, two-point, 

three-point, and five-point contact, contact simulations were conducted using the Abaqus 

software. When partitioning the mesh, C3D8I elements were employed, yielding a mesh 

size of approximately 0.35. The total number of mesh elements amounted to 422,400 [24]. 

When selecting materials, structural steel was chosen with an elastic modulus set to 210 

GPa, the Poisson's ratio is set to 0.3 and the yield strength is 850 MPa, the fracture strength 

is 1200 MPa [22], and the boundary conditions are set as shown in Figure 10. In Figure 10, 

bevel gear I and bevel gear II each have only one degree of freedom for rotation around 

their respective axes. An angular velocity of 3.5 rad/s around the zI axis is applied to bevel 

gear I, the torque of 100 Nm and 540 Nm are applied to the bevel gear II to resist the 

rotation of bevel gear I, respectively. 

  

Contact point H

Tooth surface     of bevel gear I
I

Tooth surface      of bevel gear II
II

Spatial curve
I

Conjugate curve
II
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5.2. Influence of Meshing Points on Contact Stress

According to the established models of bevel gear pairs with single-point, two-point,
three-point, and five-point contact, contact simulations were conducted using the Abaqus
software. When partitioning the mesh, C3D8I elements were employed, yielding a mesh
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size of approximately 0.35. The total number of mesh elements amounted to 422,400 [24].
When selecting materials, structural steel was chosen with an elastic modulus set to 210 GPa,
the Poisson’s ratio is set to 0.3 and the yield strength is 850 MPa, the fracture strength is
1200 MPa [22], and the boundary conditions are set as shown in Figure 10. In Figure 10,
bevel gear I and bevel gear II each have only one degree of freedom for rotation around
their respective axes. An angular velocity of 3.5 rad/s around the zI axis is applied to
bevel gear I, the torque of 100 Nm and 540 Nm are applied to the bevel gear II to resist the
rotation of bevel gear I, respectively.
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The established models of bevel gears with single-point, double-point, triple-point,
and five-point contacts obtained contact pattern through simulation experiments, as shown
in Figure 11. It is evident in Figure 11 that the distribution of contact points varies along the
tooth height direction. The contact pattern for a single-point contact bevel gear is an ellipse
close to the middle position of the tooth. For the bevel gear with double-point contact, the
contact pattern consists of two ellipses. Similarly, the bevel gear with three-point contact
has three ellipses, and the bevel gear with five-point contact has five ellipses. The ellipses
are distributed along the tooth height direction, with the long axis in the tooth width
direction. This is consistent with the contact trajectory of the literature [25,26], where there
is full-width contact along the tooth width direction, and there are multiple contact points
in the tooth height direction. As the bevel gear pair moves, the contact ellipses move along
the tooth width direction, achieving full-width contact, as shown in Figure 12.

When the load torque of 100 Nm and 540 Nm are applied in the bevel gear II, the range
from 0 degree to 22 degrees is the single tooth meshing area, the range from 22 degrees to
36 degrees is the double tooth meshing area. Subsequently, when the bevel gear I rotates
from 36 degrees to 68 degrees, it corresponds to the first complete single-tooth engagement
region. By repeating this process, the contact stress variation law of the bevel gear pair
with multi-point contact based on the geometric elements could be obtained, as shown in
Figures 13 and 14. When the number of meshing teeth is the same, the contact stress on the
small gear decreases gradually from the small end to the large end. The maximum contact
stress occurs on the bevel gear with single-point contact, followed by the bevel gear with
double-point contact. Then the contact stress on the bevel gear with three-point contact
is smaller than that on the bevel gear with double-point contact, and the lowest contact
stress is observed on the bevel gear with five-point contact. Multi-point contact for bevel
gear based on the geometric elements can effectively decrease the contact stress, this is
consistent with the results in the literature [26].
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When the load applied in the bevel gear II is 100 Nm, the maximum contact stress on
the bevel gear with single point contact in the first complete single-tooth engagement region
is 742 MPa, it is 682 MPa for the bevel gear with double-point contact, it is 546 MPa for the
bevel gear with three-point contact, and it is 435 MPa for the bevel gear with five-point
contact. The maximum contact stress for the bevel gear with five-point contact is reduced by
41.37% compared to the maximum contact stress of the bevel gear with single-point contact,
by 36.22% compared to the maximum contact stress of the bevel gear with double-point
contact, and by 20.33% compared to the maximum contact stress of the bevel gear with
three-point contact.

When the load applied in the bevel gear II is 540 Nm, the maximum contact stress
on the bevel gear with single point contact in the first complete single-tooth engagement
region is 1348 MPa. This value is close to the maximum contact pressure value reported
in the literature [32]. In the literature [32], when the torque of 600 Nm is applied to bevel
gear II, the maximum contact pressure for single-point contact on the mating bevel gear is
1400 MPa. The maximum contact stress is 1169 MPa for the bevel gear with double-point
contact, the maximum contact stress is 1112 MPa for the bevel gear with three-point contact,
and the maximum contact stress is 981 MPa for the bevel gear with five-point contact. The
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maximum contact stress for the bevel gear with five-point contact is reduced by 27.23%
compared to the maximum contact stress of the bevel gear with single-point contact, by
16.08% compared to the maximum contact stress of the bevel gear with double-point
contact, and by 11.78% compared to the maximum contact stress of the bevel gear with
three-point contact.
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5.3. Influence of Distance between Contact Points on Contact Stress

Taking the example of double-point contact bevel gear pair, the influence of the
distance between contact points on the contact stress of bevel gear pairs when the number
of contact points is the same is analyzed. Models of bevel gear pairs with distances of
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0.005 mm, 0.007 mm, and 0.01 mm between the double contact points are respectively is
established for contact analysis. The resulting contact patterns are shown in Figure 15,
double contact ellipses are depicted on the tooth surface, with these two contact ellipses
distributed along the tooth height direction. The difference lies in that in diagram (c),
the distance between the two contact ellipses is the greatest; in diagram (b), the distance
between the two contact ellipses is next; and in diagram (a), the distance between the two
contact ellipses is the smallest. As the distance between the contact points decreases, the
distance between the two ellipses also decreases.
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Figure 15. Contact patterns for bevel gears with different distances between contact points.

Figures 16 and 17 depict the variation trend of contact stress for bevel gears based
on geometric elements with double-point contact from engagement to disengagement
under the load of 100 Nm and 540 Nm, respectively. From Figures 16 and 17, it could be
observed that the smaller the maximum non-contact distance between contact points, the
lower the contact stress for the bevel gear based on geometric elements with the same
number of contact points. A smaller maximum non-contact distance between contact
points corresponds to lower contact stress and tends to approach contact along the tooth
height line.
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Figure 16. Contact stress of bevel gear pairs with double-point contact when loaded with 100 Nm load.

When the load applied in the bevel gear II is 100 Nm, the maximum contact stress on
the bevel gear with the distance of 0.01 mm between the double contact points in the first
complete single-tooth engagement region is 705 MPa, it is 682 MPa for the bevel gear with
the distance of 0.007 mm between the double contact points, it is 542 MPa for the bevel
gear with the distance of 0.005 mm between the double contact points. The maximum
contact stress for the bevel gear with the distance of 0.005 mm between the double contact
points is reduced by 23.21% compared to the maximum contact stress of the bevel gear
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with the distance of 0.007 mm between the double contact points, by 20.52% compared to
the maximum contact stress of the bevel gear with the distance of 0.01 mm between the
double contact points.
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Figure 17. Contact stress of bevel gear pairs with double-point contact when loaded with 540 Nm load.

When the load applied in the bevel gear II is 540 Nm, the maximum contact stress on
the bevel gear with the distance of 0.01 mm between the double contact points in the first
complete single-tooth engagement region is 1328 MPa, it is 1169 MPa for the bevel gear
with the distance of 0.007 mm between the double contact points, it is 1096 MPa for the
bevel gear with the distance of 0.005 mm between the double contact points. The maximum
contact stress for the bevel gear with the distance of 0.005 mm between the double contact
points is reduced by 17.47% compared to the maximum contact stress of the bevel gear
with the distance of 0.007 mm between the double contact points, by 6.24% compared to
the maximum contact stress of the bevel gear with the distance of 0.01 mm between the
double contact points.

6. Conclusions

In this paper, the design method of novel bevel gear with high load-capacity based on
geometric elements have been proposed, and then the correlation analysis and experimental
verification of the novel bevel gear were carried out. Throughout the research, there are
several conclusions as follows:

(1) The design method of bevel gear with high load-capacity is put forward, the proposed
novel gear enables multi-point contact in the tooth height direction, and full-tooth-
width contact along the tooth width direction.

(2) The mathematical model of novel bevel gear is established, and then the analysis of
gear tooth characteristics is conducted, conditions for tooth surface continuity and
non-interference are also deduced.

(3) The load-bearing characteristics are analyzed, revealing that increasing the number
of contact points can reduce the contact stress. For the bevel gear pair with five-
point contact, the contact stress is 41.37% lower than that of a bevel gear pair with
single-point contact under the torque of 100 Nm.

(4) When the number of contact points is the same, increasing the distance between the
contact points can also reduce the contact stress.
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(5) For the bevel gear pairs with multi-point contact based on the geometric elements,
it requires higher tooth surface accuracy and still face challenges in manufacturing,
which need to be further addressed.
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