
Citation: Liao, X.; Liu, X. Hidden

Variable Discovery Based on

Regression and Entropy. Mathematics

2024, 12, 1375. https://doi.org/

10.3390/math12091375

Academic Editor: Chin-Shang Li

Received: 25 March 2024

Revised: 22 April 2024

Accepted: 29 April 2024

Published: 30 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Hidden Variable Discovery Based on Regression and Entropy
Xingyu Liao and Xiaoping Liu *

Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for
Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
liaoxingyu22@mails.ucas.ac.cn
* Correspondence: xpliu@ucas.ac.cn

Abstract: Inferring causality from observed data is crucial in many scientific fields, but this process is
often hindered by incomplete data. The incomplete data can lead to mistakes in understanding how
variables affect each other, especially when some influencing factors are not directly observed. To
tackle this problem, we’ve developed a new algorithm called Regression Loss-increased with Causal
Intensity (RLCI). This approach uses regression and entropy analysis to uncover hidden variables.
Through tests on various real-world datasets, RLCI has been proven to be effective. It can help spot
hidden factors that may affect the relationship between variables and determine the direction of
causal relationships.
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1. Introduction

The abundance of data in the natural sciences provides vast opportunities for scientific
discovery. Understanding and extracting the underlying mechanisms from these data is a
crucial task across many disciplines. While identifying correlations can show how variables
move together, understanding cause-and-effect relationships can reveal how a change in
one variable can directly influence another. In biology, for instance, discovering how genes
interact and influence each other is key to understanding biological processes and can lead
to breakthroughs in how we view different biological states or conditions. By mapping out
these causal relationships among genes, we can create gene regulatory networks, shedding
light on the basic regulatory principles of life. Causal discovery is equally vital in the social
sciences, where it helps us understand the complex dynamics of human behavior, social
interactions, and social phenomena.

Many works have been developed to uncover causal relationships between variables
rather than mere correlations. While randomized controlled experiments are considered
the most reliable method for determining causality, they come with significant challenges.
These challenges include high costs, technical limitations, and ethical considerations. Be-
yond experimental approaches, there are several established algorithms for causal discovery.
These methods fall into two main categories: analyzing time-series observed data and
focusing on non-time-series observed data. Causal discovery methods based on time-series
observed data, such as Granger causality [1], utilize time-lagged or time-series data to
infer causality, making them suitable for datasets where the order of events is crucial. For
non-time-series data, where the order of events is either unknown or irrelevant, causal
discovery methods do not account for the timing of data. These methods are further di-
vided into three main types: constraint-based algorithms, score-search-based algorithms,
and functional-causal-model-based algorithms. The basic algorithms based on constraint
methods are the Inductive Causation (IC) algorithm [2], SGS algorithm [3], and Peter–Clark
(PC) algorithm [4]. These algorithms comprise two main steps: In the first step, edge
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removal is performed on the fully connected network based on statistical methods such
as independence hypothesis testing, and an undirected network is obtained. The second
step involves identifying unique V-structures and applying directional rules to certain
edges. Algorithms based on a scoring search include a DAG space approximation search
represented by K2 algorithm [5] and a greedy search such as the hill climbing method [6],
and an equivalence class space approximation search represented by Greedy Equivalence
Search (GES) [7]. The core of the scoring search class of algorithms consists of two parts,
search strategy and scoring function: the search strategy is used to decide how to choose
the search path in the search space of the graph structure, and the scoring function is used
to evaluate whether to keep the edge or delete the edge. The methods based on functional
causal modeling are based on the Structural Equation Model (SEM) [8]. Representative
algorithms based on functional causal modeling include the Linear Non-Gaussian Acyclic
Model (LiNGAM) [9], Post-NonLinear (PNL) method [10,11] and Additive Noise Model
(ANM) [12,13].

However, most of the existing algorithms only consider the causality between observed
variables and do not consider the presence of non-observed or hidden variables. The
hidden variable is defined as a variable that is not directly detected in the current dataset.
By identifying the hidden variables and corresponding causality from the observed dataset,
we can obtain deeper insights into the understanding of causal relationships between
observed variables. In biology, identifying the potential hidden variables can help to
eliminate unobserved genetic influences that may confound observed gene expression data.
Accurately identifying and modeling the hidden variables enables researchers to determine
the correct regulatory relationships between observed genes, shedding light on the intricate
mechanisms driving gene expression and biological processes. In healthcare, hidden
variables include unmeasured patient characteristics, genetic factors, or environmental
exposures that influence disease progression or treatment response. Identifying these
hidden variables can enhance personalized medicine approaches, optimize treatment
strategies, and improve patient outcomes. Therefore, hidden variable discovery algorithms
can make invaluable contributions in biology and other areas.

In this paper, we proposed a novel method called Regression Loss-increased with
Causal Intensity (RLCI), which combines the constraint-based method with the functional-
causal-model-based approach to detect potential hidden variables from the observed data.
RLCI establishes the basic framework of the network through independence tests and
linear regression, determines the presence of hidden variables through causal intensity,
and, ultimately, reconstructs the causal structure of observed variables affected by po-
tential confounders. The efficacy of RLCI has been validated through numerous causal
simulation experiments and comprehensive comparisons with a wide range of existing
classical methods, demonstrating significant improvements in a variety of real systems.
For instance, within the BEELINE dataset [14], RLCI successfully identified the concealed
gene Nkx22. Similarly, in examining the food chain data [15], RLCI revealed that the
populations of rotifers, calanoids, and picophytoplankton are influenced by an undisclosed
variable, and a further literature review confirmed the cyclopoids’ predation on these three
organisms. RLCI stands out as a common method for discovering hidden variables within
any observational dataset, capable of elucidating causal relationships between variables
and accurately reconstructing the true causal network structure.

2. Methods

The algorithm process of RLCI is depicted in Figure 1 and consists of four stages. It
begins with a fully connected network. The initial stage employs independence testing
to filter this network into a correlation network, dropping the uncorrelated edges. In the
next stage, we refine this correlation network into a pseudo-causal network by eliminating
edges that represent indirect causality (e.g., edge ‘a’ in Figure 1) based on changes in
regression loss. This refined network preserves the direct relationships between nodes
without considering the effects of hidden variables, but does not explicitly state the direction
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of these causal relationships, henceforth termed “pseudo-causal network”. The third stage
introduces a measure of causal intensity to detect spurious edges generated by the influence
of hidden variables (e.g., edge ‘b’ in Figure 1), resulting in a mixed network. In this network,
hidden variables are assigned directional edges towards the observed variables, but the
observed variables themselves remain directionless among each other. The final stage aims
to pinpoint the direction of causality between each pair of directly connected observed
variables. This stage completes the process, allowing us to accurately reconstruct the
entire causal network. Overall, the RLCI algorithm employs a step-by-step approach to
differentiate the types of edges and uncover hidden variables within the causal net-work.
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Figure 1. Algorithm procedure. Input: Starting from a fully connected network, each node represents
each observed variable (Table 1). Stage 1: The independence test removes edges between independent
or weakly correlated nodes to obtain the correlation network. Stage 2: By removing the edges
of indirect causal relationships (such as edge ‘a’: X and Y are indirect causality) through the loss
difference of regression fitting, a pseudo-causal network is obtained. Stage 3: Defines the causal
intensity indicator to discover the edges of spurious causal relationships caused by hidden variables
(such as edge ‘b’: X is not causally related to Y but X and Y are affected by the hidden variable H
(Table 1)), forming a mixed network. Stage 4: Determine the causal direction between two connected
variables and reconstruct the final causal network (such as edge ‘c’: X is directly causal to Y).

Table 1. Main notations used in this article.

Notation Description

X Observed variable
H Hidden variable or reconstructed variable
µ̂ Sample mean
S Sample standard deviation
ê Mean squared error
A_M1, A_M2 Adjacency matrix
Adj(Xi) Variables adjacent to Xi
Adj(Xi)\{Xj} Variables adjacent to Xi except for Xj
H(Xi) Entropy of Xi
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Table 1. Cont.

Notation Description

H(Xi, Xj) Joint entropy of Xi and Xj
I(Xi, Xj) Mutual information of Xi and Xj
P(X) Observed distribution of X
VX Reference distribution of X

D(P(X)∥VX) KL divergence between the observed and reference
distributions of X

X → Y X is a cause of Y

2.1. Stage 1: Independence Test

In the first stage of the RLCI algorithm, edges caused by indirect causality are identified
and removed by performing conditional independence tests between nodes. We used the
Fisher Z-test [16] to conduct the conditional independence test (Supplementary Material S1).
We start with a fully connected network and apply the conditional independence test (Fisher
Z-test) for edge deletion [17]. We first determine the neighboring nodes of each variable.
One variable is selected as the conditional variable, and then each pair of connected nodes
is traversed to perform the independence test, and, if the nodes are independent from
each other, the edges between them are deleted. Subsequently, the independence test
is performed again by increasing the number of condition variables and updating the
neighboring node information. This process continues, adding one condition variable per
round, until the number of condition variables is greater than or equal to the number of
neighboring nodes of any node in the network. It is worth noting that, in order to avoid
the order of deleting edges affecting the final results, we uniformly delete edges after each
round of independence test. Refer to Algorithm 1 for the order in removing the edges. The
algorithm flow in Stage 1 is as follows:

Algorithm 1: Independence test

Assume that there are K observed variables X = {X1, X2...XK}, N samples.
Input: The dataset matrix of size N × K.
Output: Correlation network C, adjacency matrix A_M1 of size K × K.
1: Generate an all-one matrix A_M1 of size K × K
2: From the fully connected undirected network C on the vertex set X
3: L = 0
4: Repeat
5: L = L + 1
6: For all vertices Xi in C do
7: Let A(Xi) = Adj(C, Xi)
8: End for
9: For each neighboring node pair (Xi, Xj) do
10: For A(Xi)\{Xj} all subsets S in which the number of nodes is L do
11: If Xi and Xj are conditionally independent given S then
12: Delete edge ′Xi − Xj′ from C, Let A_M1ij = 0, A_M1ji = 0
13: Break
14: End if
15: End for
16: End for
17: until all pairs of adjacent vertices (Xi, Xj) in C satisfy |A(Xi)\{Xj}| ≤ L
18: return C, A_M1
Note: Adj(C, Xi) represents the set of neighbor nodes of Xi in network C. A(Xi)\{Xj} represents the
set after removing Xj from the set A(Xi).

In Stage 1, we can obtain an adjacency matrix of the correlation network, denoted as
A_M1 (Figure 1). A_M1ij = 0 means that there is no edge between variables Xi and Xj, and
A_M1ij = 1 means that there is an edge connecting the two variables Xi and Xj.
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2.2. Stage 2: Linear Regression

The test of independence can only delete the independent edges from the fully con-
nected network, but it cannot remove the edges with indirect causality, whereas the loss-
increased linear regression [18] can be further used to remove the indirect edges, e.g., the
dashed edge ‘a’ as in Figure 1.

The specific steps of the second stage in the algorithm are as follows:
Step 1: The data are first pre-processed and standardized for each observed variable X:

Xstd =
X − µ̂

S
(1)

where X is the original data, Xstd is the normalized value, µ̂ is the mean of the original data
set, and S is the standard deviation of the original data set (Table 1).

Step 2: From the adjacency matrix A_M1 generated in the first stage, we can obtain
the set of neighboring nodes for each variable. Assuming that Xj is one of the neighbouring
nodes of Xi, we analyze the effect of Xj on Xi as follows:

Xi = f1(Adj(Xi)) + ê1 (2)

Xi = f2
(
Adj(Xi)\

{
Xj
})

+ ê2 (3)

∆LossXj→Xi = ê1 − ê2 (4)

where f1 and f2 represent linear functions fitted using the least squares method, while
ê1 and ê2 are their respective mean squared errors (Table 1). Adj(Xi) denotes the set of
neighbor nodes of Xi, whereas Adj(Xi)\

{
Xj
}

denotes the set obtained after removing Xj
from the set Adj(Xi) (Table 1). ∆LossXj→Xi can be used as a measure of the impact of Xj on
the Xi.

Train the linear regression f1 by the Adj(Xi), obtain the mean squared error ê1, and
then remove Xj from the set of neighboring nodes of Xi. Train the linear regression f2 by the
Adj(Xi)\{X j}, obtain the mean squared error ê2, and ê2 − ê1 is the loss-increased: ∆Loss of
Xj concerning Xi, denoted as ∆LossXj→Xi . The significance of ∆LossXj→Xi can be interpreted
as the effect on the regression of Xi before and after the removal of Xj. Alternatively, it
can be thought of as a measure of the extent of the effect of Xj on Xi. Similarly, when we
take Xj as the dependent variable, we can obtain ∆LossXi→Xj in the same way. We obtain
the ∆loss values accordingly by iterating all the neighboring nodes by the above method
based on the adjacency matrix A_M1 generated in the first stage. We consider that, when
the regression model is sufficiently convergent, ∆Loss is constant ≥0. When ∆LossXj→Xi

and ∆LossXi→Xj all tend to 0, it is assumed that Xi and Xj are indirectly causally related
(Supplementary Material S2).

In practice, if there is a ∆loss tending to 0, indirect causality may not have been
completely removed in Stage 1. Therefore, we normalize each ∆Loss to map the range of
values to the interval [0, 1]:

∆Lossnorm =
∆Loss − ∆Lossmin

∆Lossmax − ∆Lossmin
(5)

where ∆Lossmax is the maximum of all ∆Loss and ∆Lossmin is the minimum of all ∆Loss.
It is easy to find that the ∆loss of indirect causality is significantly smaller than the

∆loss of direct causality and the ∆loss of pseudo-causality under the influence of hidden
variables, so a threshold t can be set after normalization (Supplementary Material S3):

When ∆LossXj→Xi < t and ∆LossXi→Xj < t, it is considered as an indirect causality that is
not detected in the first stage. The edge ‘Xi −Xj’ is deleted from the adjacency matrix A_M1;

While ∆LossXj→Xi ≥ t or ∆LossXi→Xj ≥ t, it is considered to be a direct causality or a
false causal relationship affected by hidden variables, and the edge ‘Xi − Xj’ is still retained.

In Stage 2, a new adjacency matrix A_M2 is obtained. Node Xi and node Xj are
considered to be connected by an edge if A_M2ij = 1 or A_M2ji = 1. Finally, after further
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correction, we successfully eliminated edges of indirect causality, like edge ‘a’ shown in
Figure 1 (Supplementary Materials S2 and S3).

Refer to Algorithm 2 for the detailed steps involved in calculating the regression loss
during Stage 2.

Algorithm 2: Linear regression

Assume that there are K observed variables X = {X1, X2...XK}, N samples.
Input: The dataset matrix of size N × K, The K × K adjacency matrix A_M1.
Output: The adjacency matrix A_M2 of size K × K, the loss-increased matrix L_M of size K × K.
1: generate K×K matrix L_M and A_M2 with all zeros
2: For each Xi in node list X = {X1, X2...XK} do
3: Adj(Xi) is obtained according to the matrix A_M1
4: Linear fit: Xi = f1(Adj(Xi)) + ê1 Obtain the mean squared error ê1
5: For each Xj in Adj(Xi) do
6: Linear fit: Xi = f2

(
Adj(Xi)\

{
Xj
})

+ ê2 Obtain the mean squared error ê2
7: ∆LossXj→Xi = ê1 − ê2
8: L_Mij = ∆LossXj→Xi

9: End for
10: End for
11: Set a threshold t
12: For each L_Mij that is not equal to 0 do
13: If L_Mij ≥ t then
14: A_M2ij = 1
15: End if
16: End for
17: return L_M, A_M2

2.3. Stage 3: Causal Intensity

After Stage 2, we eliminate the indirect causal impacts, and then we only need to
distinguish between the edges of direct causality and the spurious edges generated by the
influence of hidden variables. We defined a causal intensity indicator and found that the
causal intensity of two points with direct causality is significantly greater than the causal
intensity of two points that are jointly affected by the hidden variables and do not have
direct causality. The causal intensity [19] is denoted as:

CI
(
Xi, Xj

)
=

I
(
Xi, Xj

)
H
(
Xi, Xj

) =
H(Xi) + H

(
Xj
)
− H

(
Xi, Xj

)
H
(
Xi, Xj

) (6)

where I
(
Xi, Xj

)
is the mutual information [20] and H

(
Xi, Xj

)
is the joint entropy

(Supplementary Material S4).
Mutual Information is a statistical measure of correlation and dependence between

two random variables. It measures the information gained about one random variable
when we know the value of the other. When the mutual information is zero, it indicates
that the variables X and Y are independent of each other; i.e., knowing the value of one
variable does not help in predicting the value of the other variable. When the value of
mutual information is large, it means that there is a strong correlation between the variables
X and Y. Knowing the value of one variable provides more information about the other
variable. A larger value of mutual information indicates a stronger correlation between the
two variables. Joint Entropy (JE) is a concept in information theory used to measure the
uncertainty or amount of information between multiple random variables. It is the entropy
of the joint probability distribution of multiple random variables when these variables
are known. Joint entropy can be used to characterize the overall uncertainty or amount
of information between X and Y. If there is some dependence between X and Y, then
their joint entropy will be less than the sum of the entropies when each is independent. It
indicates that observing one variable can result in some speculation about the value of the
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other. If X and Y are independent of each other, then their joint entropy will be equal to
the sum of the entropies when each is independent, indicating that there is no correlation
between the two variables.

We define “causal intensity” as the ratio of mutual information to joint entropy, offering
a metric to gauge the strength of correlations and dependencies between variables. For
instance, in Figure 1, the causal intensity for edge ‘c’ stems from a direct causal link
between the variables. Conversely, edge ‘b’ represents a spurious causality, arising because
a hidden variable, labeled H, influences both variables X and Y (Figure 1). To ensure
comparability, we normalized the data for each variable. The causal intensity indicator
shows, both in theory and through empirical evidence, that the causal intensity for a direct
causality like edge ‘c’ in Figure 1 is significantly higher than that for a spurious edge
like edge ‘b’. This difference is crucial for detecting the influence of hidden variables
(Supplementary Material S4).

2.4. Stage 4: Reconstruction Causal Network

After the above stages, identifying the causal direction can be specific to each pair
of variables that have a direct causality. We utilized the Information Geometric Causal
Inference (IGCI) model [21], an entropy-based causal inference algorithm, to determine
the causal direction between pairs of observed variables. This model infers causality by
comparing the Kullback–Leibler (KL) divergence between a reference measure and the
distribution P(X) against the KL divergence between the same reference measure and P(Y).
Specifically, the reference distributions VX and VY for variables X and Y are assumed to be
Gaussian, reflecting the characteristics of the data (Table 1).

The KL divergence from the observation distribution to the reference distribution for
X, denoted as D(P(X)||VX), is calculated as follows:

D(P(X)||VX) =
∫

log
P(X)
VX

P(X)dx (7)

where P(X) is the true distribution of the variable X, VX is the reference distribution of
the variable X, and D(P(X)||VX) represents the KL divergence between the observed
distribution P(X) and the reference distribution VX. Similarly, the KL divergence for Y,
D(P(Y)||VY) , is computed using the same approach (Table 1).

The decision criterion for causality is defined by the equation:

VX→Y = D(P(X)||VX)− D(P(Y)||VY) (8)

If VX→Y < 0, it indicates a causal direction of X→Y (Table 1). Conversely, if VX→Y > 0, the
causal direction is determined as Y→X.

3. Results
3.1. Data

In this work, we compared the analysis of our method with eight classical structure
learning algorithms: PC, LiNGAM, DirectLiNGAM [22], FCI [23], GFCI [24,25], RFCI [26],
RCD [27], and CAM-UV [28]. Among these algorithms, PC, LiNGAM, DirectLiNGAM, and
RCD are linear methods, while the rest of the methods are nonlinear. FCI, GFCI, RFCI, RCD,
and CAM-UV consider hidden variables compared with the rest of the algorithms. For the
GFCI and RFCI algorithms, we utilized the code available at https://github.com/cmu-
phil/tetrad (accessed on 30 April 2024) with default parameters. The remaining algorithms
utilized code from https://causal-learn.readthedocs.io/en/latest/getting_started.html
(accessed on 30 April 2024).

In total, we tested three simulated datasets (Sim1, Sim6, and DREAM4) and three
real datasets (BEELINE, food chain dataset, and TCGA dataset). In addition, since the
Sim1 and Sim6 datasets are large and impractical for some algorithms, we randomly
selected 1000 samples in the Sim1 and Sim6 datasets, respectively, and tested them again.

https://github.com/cmu-phil/tetrad
https://github.com/cmu-phil/tetrad
https://causal-learn.readthedocs.io/en/latest/getting_started.html
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To evaluate the performance of these algorithms, we employed precision (Equation (9)),
recall (Equation (10)), and the comprehensive evaluation metric F1 score (Equation (11)) as
evaluation metrics.

precision =
{discovered causalities} ∩ {actual causalities}

{discovered causalities} (9)

recall =
{discovered causalities} ∩ {actual causalities}

{actual causalities} (10)

F1 score =
2 × precision × recall

precision + recall
(11)

3.2. The Performance of RLCI on Simulation Data

We evaluated our proposed method on Sim1 and Sim6 datasets from FMRI [29]
(https://www.fmrib.ox.ac.uk/datasets/netsim/, accessed on 30 April 2024).

3.2.1. Sim1

The Sim1 dataset comprises 10,000 samples for five variables and the true causal
relations are shown in Figure 2. We assume that X1 is the hidden variable, and the remaining
four variables are observed variables (Supplementary Material S5). Then, we can obtain a
new dataset with only four observed variables, and the network was reconstructed by RLCI
and other existing methods for the new dataset. From the reconstruction results, we can see
that only RLCI can predict the hidden variable from the observed data and other methods
cannot test the hidden variable from the new dataset (Figure 2a). Meanwhile, there are
five directed edges in the real network, and RLCI accurately predicts four of them, and the
other one is correctly predicted in the position but opposite in the direction, so the precision
and recall of RLCI are both 80% in the real network, while all other methods are below 60%
(Supplementary Table S1). There is no exact edge to be predicted from the new dataset by
RCD and CAM-UV (Figure 2a). Then, we randomly choose 1000 samples from the new
dataset and reconstruct the network based on RLCI and other methods (Figure 2b). The
RLCI can also identify the hidden variable (Figure 2b), and infer the causal network with a
precision of 80% (Supplementary Table S2). The best result among the other algorithms is
CAM-UV with a precision of 75% (Supplementary Table S2).

3.2.2. Sim6

The Sim6 dataset contains 60,000 samples of 10 variables. We hid variables X1 and X6,
and the remaining variables were used as observation variables to form a new dataset with
only eight variables (Supplementary Material S5). By reconstructing the causal network
by every method on the new dataset, the RLCI can identify all the two hidden variables,
while the FCI and GFCI algorithms found only one hidden variable in the remaining
methods (Figure 3a). In addition, RLCI recognized nine edges in the real network, and
the other two edges were incorrectly predicted in terms of direction but correctly judged
in terms of position in the real work. Therefore, RLCI outperforms the other algorithms
in all evaluation metrics, with an accuracy and recall of 81.8%, much higher than the rest
of the algorithms (Supplementary Table S3). Among other methods, GFCI is the highest
at 45.5% in precision, and LiNGAM and DirectLiNGAM have the highest recall at 63.6%
(Supplementary Table S3). Although LiNGAM and DirectLiNGAM have identified more
correct edges, they have also generated many erroneous edges, resulting in significant false
positives (Figure 3a). The comprehensive F1 score of other algorithms is below 47.7%, far
lower than RLCI (Supplementary Table S3). Similarly, we randomly selected 1000 samples
from the new dataset with variables X1 and X6 removed and conducted further testing
(Figure 3b). The F1 score of RLCI is still the highest at 72.7% (Supplementary Table S4), and
RLCI can still accurately identify two hidden variables, while only RFCI can identify one
hidden variable among other algorithms (Figure 3b).

https://www.fmrib.ox.ac.uk/datasets/netsim/
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Figure 2. Results of reconstructing causal networks on Sim1. (a) Reconstructing causal networks on
Sim1. Node X1 is hidden and treated as a hidden variable, H1 is the reconstructed variable, and the
remaining nodes are observed variables. Black lines indicate correctly predicted edges, while red lines
indicate incorrectly predicted edges. The blue line indicates a predicted relationship between two
nodes with an unknown causal direction, which is not considered in our analysis. (b) Reconstructing
causal networks on Sim1 of 1000 samples. The interpretations of different nodes and edges in (b) are
consistent with those in (a).

3.2.3. DREAM4

The DREAM challenges [30,31] are widely regarded as a benchmark dataset for causal
inference. In our experiment, we selected a dataset with 10 genes from DREAM4, and the
regulatory relationships between genes are shown in Figure 4. We assumed that gene G1 is
a hidden variable and the remaining genes are observed variables; then, we removed G1 to
obtain a new dataset (Supplementary Material S5). The complex regulatory relationships
between genes in DREAM4 (represented by bidirectional arrows) pose a challenge for
reconstructing the causal network. Despite these challenges, our method stands out by
uniquely identifying the hidden variable (Figure 4b). In addition, RLCI scored the highest
in precision, recall, and F1 score (Supplementary Table S5). RLCI achieves a 50% accuracy
and the rest of the methods are all under 45.5% (Supplementary Table S5). In terms of recall,
RLCI and DirectLiNGAM are the highest at 33.3% (Supplementary Table S5). In terms of
the composite metrics F1 score, RLCI reaches 40%, while FCI is the highest among the rest
of the methods at 38.5% (Supplementary Table S5).

3.3. Performance on BEELINE_VSC

We used the BEELINE-VSC dataset, which consists of 2000 samples and eight genes,
with the gene Nkx22 deliberately obscured as a hidden variable (Figure 5a). We assumed
that each observed variable is influenced by no more than one hidden variable. Based on
this premise, we infer a hidden variable labeled H1 that simultaneously affects three specific
genes: Pax6, Olig2, and Irx3 (Figure 5b and Supplementary Material S5). Except for the
RCD and CAM-UV algorithms, which did not predict the results, the rest of the algorithms
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including RLCI incorrectly assumed that there is a regulatory relationship between the
genes Dbx1, Dbx2, and genes Nkx62, Dbx2, respectively (Figure 5). However, RLCI correctly
judged that there is no regulatory relationship between Dbx2 and Irx3 (Figure 5b), and the
rest of the algorithms misjudged (Figure 5c–j). Due to the complexity of the regulatory
relationships between the genes in BEELINE_VSC, many gene-regulated relationships were
not identified, and the overall accuracy of the causal networks reconstructed by RLCI and
other methods was relatively low (Supplementary Table S5). However, compared with the
benchmark network, the precision of RLCI reconstruction can still reach 66.7%, while the
precision of other algorithms is below 33.3% (Supplementary Table S5).
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3.4. Performance in the Food Chain

The food chain dataset contains time-series data on the abundance of plankton species
isolated from the Baltic Sea. The food web was sampled and observed twice a week for
over 2300 days. The network constructed from this dataset involves four planktonic species:
rotifers, calanoids, picophytoplankton, and nanophytoplankton (Figure 6a).

During our analysis, we observed a low causal intensity between rotifers and picophyto-
plankton, as well as between picophytoplankton and calanoids (Supplementary Material S5).
Therefore, we hypothesized the existence of a hidden variable H1, that simultaneously
affects rotifers, picophytoplankton, and calanoids (Figure 6b). Since cyclopoids can prey
on rotifers [32], we hypothesized that cyclopoids might serve as the hidden variable H1
(Figure 6b).
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Figure 4. Results of reconstructing causal networks on DREAM4. (a) Ground truth. Node G1 is hidden
and treated as a hidden variable and the remaining nodes are observed variables. It is worth noting that
DREAM4 is the simulated data of gene regulation, so there are bidirectional edges in the real network
representing two genes regulating each other. (b) Result of RLCI. H1 is the reconstructed variable. Black
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(f) Result of FCI. (g) Result of GFCI. (h) Result of RFCI. (i) Result of RCD. (j) Result of CAM-UV.
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Figure 5. Results of reconstructing causal networks on BEELINE_VSC. (a) Ground truth. Gene Nkx22
is used as a hidden variable and the remaining genes are used as observed variables. It is worth
noting that BEELINE_VSC is a gene regulation dataset, so there may be mutual regulation between
genes; that is, they are represented in the real network as bidirectional edges. (b) Result of RLCI. H1

is the reconstructed variable. Black lines represent correctly predicted edges and red lines represent
incorrectly predicted edges. The blue line indicates a predicted relationship between two nodes with
an unknown causal direction, which is not considered in our analysis. (c) Result of PC. (d) Result
of LiNGAM. (e) Result of DirectLiNGAM. (f) Result of FCI. (g) Result of GFCI. (h) Result of RFCI.
(i) Result of RCD. (j) Result of CAM-UV.

A research study has shown that cyclopoids can take cyanobacteria as food, and the
picophytoplankton is a kind of cyanobacteria with the smallest cell size [33,34]. Therefore,
the causality from cyclopoids to picophytoplankton inferred by RLCI may be true for the
food chain (Figure 6).

Furthermore, nautilus and copepods have been documented as common aquatic
herbivores and a common prey for copepods [35], which confirms that cyclopoids can
prey on calanoids (Figure 6b). Although there is no confirmed research paper indicating



Mathematics 2024, 12, 1375 12 of 16

that nanophytoplankton feeds on picophytoplankton, recent findings [36] suggest that
phytoplankton can exhibit predatory behavior in addition to photosynthesis. The existence
of phytoplankton species that exhibit a combination of two different modes of nutrition,
photosynthesis and predation, has been revealed. Therefore, the ability of the nanophyto-
plankton to prey on the picophytoplankton may also exist, but further investigations are
needed to confirm this (Figure 6b).
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3.5. Performance on the COAD Dataset in TCGA

The development and progression of cancer involve intricate molecular regulations.
Analyzing the gene regulatory network (GRN) of oncogenes can provide valuable insights
for cancer prevention and treatment. This study focuses on analyzing the GRN of onco-
genes in colon adenocarcinoma (COAD) as an example. The RNA-Seq data for COAD
was obtained from the TCGA database, which can be accessed at http://xena.ucsc.edu/,
accessed on 30 April 2024. We filtered out the tumor samples and excluded samples labeled
as ‘cancer stage I’ or ‘not reported’.

To establish a gold standard regulatory network for COAD data, we used the Col-
orectal cancer pathway (hsa05210) from the KEGG (Kyoto Encyclopedia of Genes and
Genomes) database at https://www.kegg.jp/kegg/pathway.html, accessed on 30 April
2024. We selected a subset of the pathway consisting of 10 nodes, with a total of 27 genes
(Figure 7). This subset served as the reference regulatory network for COAD data.

In the experiment, we deliberately concealed the KRAS gene. The results of our method
indicate that the edges “PIK3CD-RALGDS” and “BRAF-PIK3R1” are spurious causal
relationships, which are caused by the influence of hidden variables. Upon considering the
actual network, it was confirmed that KRAS simultaneously affects these four genes. This
finding further validates the accuracy of our algorithm.

3.6. Analysis of Evaluation Metrics

The RLCI algorithm was compared with other algorithms on four datasets: Sim1, Sim6,
DREAM4, and BEELINE_VSC. The reconstructed causal network is evaluated for precision,
recall, and F1 score (Figure 8). Among other algorithms, LiNGAM and DirectLiN-GAM
perform better in recall, but their precision is poor due to the high false positivity in the
results (Figure 8). The PC algorithm assumes that there are no potential confounding
factors or omitted variables in the data generation process; that is, all factors that affect the
relationships between variables have been observed. FCI is an improved version of the PC
that takes into account the influence of hidden variables. GFCI, RFCI, and FCI are similar
methods. GFCI is a variant of FCI, which combines the FCI algorithm and greedy search
strategy. RFCI is a further simplification and optimization of FCI, aimed at improving the
computational efficiency of the algorithm while maintaining its ability to handle potential
confounding factors and select bias. These four algorithms can identify the causal direction

http://xena.ucsc.edu/
https://www.kegg.jp/kegg/pathway.html
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between part of the variables, and can also generate some undirected edges, which can only
determine whether there is a relationship between the variables, but cannot determine the
causal direction between these variables (Figures 2–5). The CAM-UV algorithm is greatly
affected by the size of the data and performs well on small datasets, but performs poorly
on large datasets. The RCD algorithm is based on the linear and non-Gaussian nature of
the data, and identifies causal relationships between variables through an iterative process,
resulting in an overall performance bias on nonlinear data. In summary, RLCI outperforms
other algorithms in three evaluation metrics and is not affected by the dataset size. RLCI
still performs well on a large sample dataset, demonstrating excellent stability (Figure 8).

Mathematics 2024, 12, 1375 13 of 16 
 

 

3.5. Performance on the COAD Dataset in TCGA 
The development and progression of cancer involve intricate molecular regulations. 

Analyzing the gene regulatory network (GRN) of oncogenes can provide valuable insights 
for cancer prevention and treatment. This study focuses on analyzing the GRN of onco-
genes in colon adenocarcinoma (COAD) as an example. The RNA-Seq data for COAD was 
obtained from the TCGA database, which can be accessed at http://xena.ucsc.edu/, ac-
cessed on 30 April 2024. We filtered out the tumor samples and excluded samples labeled 
as ‘cancer stage I’ or ‘not reported’. 

To establish a gold standard regulatory network for COAD data, we used the Colo-
rectal cancer pathway (hsa05210) from the KEGG (Kyoto Encyclopedia of Genes and Ge-
nomes) database at https://www.kegg.jp/kegg/pathway.html, accessed on 30 April 2024. 
We selected a subset of the pathway consisting of 10 nodes, with a total of 27 genes (Figure 
7). This subset served as the reference regulatory network for COAD data. 

 
Figure 7. The KEGG pathway in human colorectal cancer. (a) Part of the KEGG pathway in human 
colorectal cancer. Each node may contain multiple genes. (b) Genes contained in each node in (a). 

In the experiment, we deliberately concealed the KRAS gene. The results of our 
method indicate that the edges “PIK3CD-RALGDS” and “BRAF-PIK3R1” are spurious 
causal relationships, which are caused by the influence of hidden variables. Upon consid-
ering the actual network, it was confirmed that KRAS simultaneously affects these four 
genes. This finding further validates the accuracy of our algorithm. 

3.6. Analysis of Evaluation Metrics 
The RLCI algorithm was compared with other algorithms on four datasets: Sim1, 

Sim6, DREAM4, and BEELINE_VSC. The reconstructed causal network is evaluated for 
precision, recall, and F1 score (Figure 8). Among other algorithms, LiNGAM and Direct-
LiN-GAM perform better in recall, but their precision is poor due to the high false posi-
tivity in the results (Figure 8). The PC algorithm assumes that there are no potential con-
founding factors or omitted variables in the data generation process; that is, all factors that 
affect the relationships between variables have been observed. FCI is an improved version 
of the PC that takes into account the influence of hidden variables. GFCI, RFCI, and FCI 
are similar methods. GFCI is a variant of FCI, which combines the FCI algorithm and 
greedy search strategy. RFCI is a further simplification and optimization of FCI, aimed at 
improving the computational efficiency of the algorithm while maintaining its ability to 
handle potential confounding factors and select bias. These four algorithms can identify 
the causal direction between part of the variables, and can also generate some undirected 
edges, which can only determine whether there is a relationship between the variables, 
but cannot determine the causal direction between these variables (Figures 2–5). The 

Figure 7. The KEGG pathway in human colorectal cancer. (a) Part of the KEGG pathway in human
colorectal cancer. Each node may contain multiple genes. (b) Genes contained in each node in (a).

Mathematics 2024, 12, 1375 14 of 16 
 

 

CAM-UV algorithm is greatly affected by the size of the data and performs well on small 
datasets, but performs poorly on large datasets. The RCD algorithm is based on the linear 
and non-Gaussian nature of the data, and identifies causal relationships between variables 
through an iterative process, resulting in an overall performance bias on nonlinear data. 
In summary, RLCI outperforms other algorithms in three evaluation metrics and is not 
affected by the dataset size. RLCI still performs well on a large sample dataset, demon-
strating excellent stability (Figure 8). 

 
Figure 8. Comparison of algorithm results. The x, y, and z axis represent precision, recall, and F1 
score, respectively, to evaluate the results of the reconstructed networks. The same marker and color 
indicate that the algorithms achieved identical results across three evaluation metrics. (a) Perfor-
mance of the evaluation metrics on Sim1. (b) Performance of the evaluation metrics on Sim1 of 1000 
samples. (c) Performance of the evaluation metrics on Sim6. (d) Performance of the evaluation met-
rics on Sim6 of 1000 samples. (e) Performance of the evaluation metrics on DREAM4. (f) Perfor-
mance of the evaluation metrics on BEELINE_VSC. 

4. Conclusions 
The identification of causal relationships is crucial for advancing scientific knowledge 

and driving innovation across diverse disciplines. In this study, we have developed the 
Regression Loss-increased with Causal Intensity (RLCI) algorithm, which effectively un-
covers hidden variables. RLCI has demonstrated its efficacy in accurately identifying un-
observed variables and determining causal directions between observed variables. The 
RLCI algorithm is particularly effective when applied to datasets with large samples, out-
performing traditional algorithms. These results demonstrate the potential of RLCI to re-
veal hidden variables and improve causal inference in various research domains. 

However, there is still room for improvement in the RLCI algorithm. Currently, the 
algorithm cannot recognize bidirectional edges and struggles to identify situations where 
two directly connected observed variables are simultaneously influenced by a hidden var-
iable. Future efforts should focus on developing a nonlinear version of the algorithm to 
address these limitations or relaxing certain assumptions. For instance, broadening the 
algorithm’s applicability and enhancing its accuracy could be achieved by considering 
cases where observed variables are affected by multiple hidden variables. 

Figure 8. Comparison of algorithm results. The x, y, and z axis represent precision, recall, and F1
score, respectively, to evaluate the results of the reconstructed networks. The same marker and color
indicate that the algorithms achieved identical results across three evaluation metrics. (a) Performance
of the evaluation metrics on Sim1. (b) Performance of the evaluation metrics on Sim1 of 1000 samples.
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4. Conclusions

The identification of causal relationships is crucial for advancing scientific knowledge
and driving innovation across diverse disciplines. In this study, we have developed
the Regression Loss-increased with Causal Intensity (RLCI) algorithm, which effectively
uncovers hidden variables. RLCI has demonstrated its efficacy in accurately identifying
unobserved variables and determining causal directions between observed variables. The
RLCI algorithm is particularly effective when applied to datasets with large samples,
outperforming traditional algorithms. These results demonstrate the potential of RLCI to
reveal hidden variables and improve causal inference in various research domains.

However, there is still room for improvement in the RLCI algorithm. Currently, the
algorithm cannot recognize bidirectional edges and struggles to identify situations where
two directly connected observed variables are simultaneously influenced by a hidden
variable. Future efforts should focus on developing a nonlinear version of the algorithm
to address these limitations or relaxing certain assumptions. For instance, broadening the
algorithm’s applicability and enhancing its accuracy could be achieved by considering
cases where observed variables are affected by multiple hidden variables.

By addressing these challenges and further refining the RLCI algorithm, its capabilities
can be expanded, and its utilization can be facilitated beyond the scope of this study. This
would enable a deeper understanding of causal relationships and contribute to more precise
and comprehensive analyses in various research fields.
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