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Abstract

:

As an immensely important characteristic of natural images, the nonlocal self-similarity (NSS) prior has demonstrated great promise in a variety of inverse problems. Unfortunately, most current methods utilize either the internal or the external NSS prior learned from the degraded image or training images. The former is inevitably disturbed by degradation, while the latter is not adapted to the image to be restored. To mitigate such problems, this work proposes to learn a hybrid NSS prior from both internal images and external training images and employs it in image restoration tasks. To achieve our aims, we first learn internal and external NSS priors from the measured image and high-quality image sets, respectively. Then, with the learned priors, an efficient method, involving only singular value decomposition (SVD) and a simple weighting method, is developed to learn the HNSS prior for patch groups. Subsequently, taking the learned HNSS prior as the dictionary, we formulate a structural sparse representation model with adaptive regularization parameters called HNSS-SSR for image restoration, and a general and efficient image restoration algorithm is developed via an alternating minimization strategy. The experimental results indicate that the proposed HNSS-SSR-based restoration method exceeds many existing competition algorithms in PSNR and SSIM values.
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1. Introduction


Along with the advancement of various optical technologies and sensors, images have become one of the most important carriers of information. Unfortunately, image degradation is inevitable during acquisition, transmission, and storage because of defects in the imaging system and interference from various external factors. Therefore, image restoration, which strives to reconstruct the underlying uncorrupted image  x  from the corrupted measurement  y , is essential in a lot of fields of science and engineering. In general, the image degradation process is modeled as:


     y = Φ x + v ,     



(1)




where  Φ  denotes the degradation operator and  v  represents the white Gaussian noise. In Equation (1), different settings of  Φ  correspond to different image restoration problems. To be specific, when  Φ  is an identity matrix, Equation (1) becomes image denoising [1]; when  Φ  is a blurring matrix, Equation (1) converts to image deblurring [2,3]; and when  Φ  is a random projection matrix, Equation (1) denotes image compressive sensing [4,5].



As image restoration in Equation (1) is a typically ill-posed linear inverse problem, an image prior is often required to constrain the solution space. Specifically, from the standpoint of maximum a posteriori (MAP) estimation, the latent high-quality image can be inferred by solving the following regularization problem [2]:


      x ^  =   arg min  x    ∥ y − Φ x ∥   2  2  + η Ψ  ( x )  ,     



(2)




where    ∥ · ∥   2  2   denotes the   l 2  -norm,    ∥ y − Φ x ∥   2  2   is the fidelity term associated with Gaussian noise,   Ψ ( x )   is the regularization term that relies on the image prior, and  η  is employed to balance these two terms.



Due to the curse of dimensionality, it is almost impossible to model the whole image. A remedy is to use the image patch as the basic unit of modeling [6,7]. Thus, over the past few decades, the patch-based prior has been extensively studied and has achieved favorable image restoration performance, such as patch-based sparse representation [8,9,10,11,12,13] and patch-based image modeling [6,14,15,16]. Recently, deep learning has also been adopted to learn image priors in a supervised manner and has spawned promising results in various image restoration applications [17,18,19,20,21,22]. Both the model-based and deep learning-based approaches mentioned above, however, are dedicated to mining the local properties of images, whose performance is restricted by largely neglecting the self-similarity and nonlocal properties of images [1,23,24]. In addition, deep learning methods require a training set consisting of extensive degraded/high quality image pairs for supervised learning, which renders them difficult to apply or causes undesirable artifacts in some tasks, such as medical imaging and remote sensing [25,26].



As we all know, natural images have rich self-repeating structures in nonlocal regions, i.e., the so-called nonlocal self-similarity (NSS) prior [27,28]. Compared to the patch-based prior, the NSS prior enables us to cluster together nonlocal patches with similar patterns over the whole image and use such similar patch groups as the basic unit for restoration, which is especially helpful for recovering image structures [27,28,29], such as textures and edges. Given the great success of the nonlocal means (NLM) [27] method, a series of NSS prior-based methods have been developed successively and have shown impressive restoration effects. These approaches can be broadly summarized into three clusters, i.e., filter-based methods [27,29,30], patch group-based sparse representation methods [4,23,31,32,33,34,35,36,37,38], and low-rank approximation-based methods [2,39,40,41,42,43,44]. Apart from focusing on the internal NSS prior of the corrupted image, some recent approaches have paid attention to exploiting the external NSS prior learned from high-quality natural images [28,45,46]. For example, Xu et al. [28] developed a patch group prior-based denoising (PGPD) method for learning dictionaries from the natural image corpus. Liu et al. [46] formulated a external NSS prior-based group sparsity mixture model for image denoising. Although the aforementioned NSS prior-based methods have shown their potential in recovering image structures, exploiting the internal NSS of the observed image often suffers from overfitting data corruption [5], while the external NSS prior learned from training images is not well-adapted to the image to be recovered [47].



To rectify the weakness of using a single NSS prior, some more recent works proposed to jointly utilize internal and external NSS priors [1,3,5,7,24,26,48,49]. For instance, Zha et al. [1] developed a denoising method based on sparse residuals by using an external NSS prior. Liu et al. [49] proposed a group sparse representation-based super-resolution algorithm to leverage internal and external correlations. Zha et al. [24] proposed to simultaneously use internal and external NSS priors for image restoration. Yuan et al. [3] formulated a joint group dictionary-based structural sparse model for image restoration. Zha et al. [5] developed a hybrid structural sparsification error model to jointly exploit internal and external NSS priors. Yuan et al. [7] suggested the joint use of a low-rank prior and an external NSS prior. These methods have led to promising restoration results, since the complementary information of internal and external NSS priors is exploited.



Unlike the above works, in this paper, we propose to learn a hybrid NSS (HNSS) prior for image restoration. In particular, most of existing works mainly concentrate their attention on how to jointly utilize two priors, i.e., internal and external NSS priors, while this work focuses on developing a new paradigm to learn one HNSS prior from both the internal degraded and external natural image sets and applies the learned prior to image restoration. It can be seen that the technical route of our proposed method is quite different from the above existing works. The flowchart of our method is presented in Figure 1. To the best of our knowledge, how to learn an HNSS prior remains an unsolved problem, and this paper thus takes a stab at it. We summarize the main contributions as follows:




	
We develop a flexible yet simple approach to learn the HNSS prior from both internal degraded and external natural image sets.



	
An HNSS prior-based structural sparse representation (HNSS-SSR) model with adaptive regularization parameters is formulated for image restoration.



	
A general and efficient image restoration algorithm is developed by employing an alternating minimization strategy to solve the resulting image restoration problem.



	
Extensive experimental results indicate that our proposed HNSS-SSR model exceeds many existing competition algorithms in terms of quantitative and qualitative quality.








The remainder of this paper is organized as follows. Section 2 elaborates on how to learn the HNSS prior. Section 3 formulates an HNSS-SSR model for image restoration. Section 4 presents the experimental results, followed by the conclusion of this paper in Section 5.




2. Learning the Hybrid Nonlocal Self-Similarity Prior


Here, internal and external NSS priors are first learned from the observed image and training image sets. Specifically, the Gaussian mixture model (GMM) is employed to learn internal and external NSS priors, respectively, since Zoran and Weiss [14,50] have shown that GMM can learn priors more efficiently, i.e., obtaining higher log likelihood scores and better denoising performance, compared to other common methods. On this basis, the HNSS prior is then learned by singular value decomposition (SVD) and by an efficient yet simple weighting method.



2.1. Learning the Internal NSS Prior from a Degraded Image


Given a degraded image  y , our desired goal is to learn the NSS prior of its corresponding latent high-quality image  x , i.e., the internal NSS prior. However, since the underlying original image is unknown, it is first initialized to the degraded image, i.e.,   x = y  . Then, we divide  x  into N overlapped local patches   x i   with size    m  ×  m   , and the n most similar patches for each   x i   are found to construct a similar patch group     X ¯  i  =   {  x  i , j   }   j = 1  n   , where   x  i , j    is a vectorized image patch. Specifically, for patch   x i  , we compute the Euclidean distance between it and each patch, i.e.,    s  i , j   =   ∥   x i  −  x j    ∥   2  2   , j = 1 , ⋯ , N  , and then select n patches with the smallest distance as similar patches. In practice, this can be done via the K-Nearest Neighbor (KNN) [51] method.



In view of its great success in modeling image patches [6,14,15] and patch groups [28,52], GMM with finite Gaussian components is adopted in this paper to learn both internal and external NSS priors (which will be introduced in the next subsection). As a result, the following likelihood:


     p  (   X ¯  i  )  =   ∑  k = 1   K I     π  k , I     ∏  j = 1  n   N  (  x  i , j   |  μ  k , I   ,  Σ  k , I   )  ,     



(3)




is employed for each patch group    X ¯  i   to learn the internal NSS prior, where   K I   is a hyperparameter denoting the total number of Gaussian components;   μ  k , I   ,   Σ  k , I   , and   π  k , I    denote the mean vector, covariance matrix, and weight of the k-th Gaussian component, respectively; and    ∑  k = 1   K I    π  k , I   = 1  . Regarding all patch groups as independent samples [1,28,52], the overall log-likelihood function for learning the internal NSS prior can be given as:


     ln  L I  =   ∑  i = 1  N   ln    ∑  k = 1   K I     π  k , I     ∏  j = 1  n   N  (  x  i , j   |  μ  k , I   ,  Σ  k , I   )   .     



(4)




By maximizing Equation (4) over all patch groups    {   X ¯  i  }   i = 1  N  , the parameters of the GMM can be learned, which describe the internal NSS prior. Note that the subscript  I  is used to indicate the internal NSS prior.



However, it is a fact that different patch groups contain different fine-scale details of the image be recovered. Accordingly, in this paper, when learning the internal NSS prior, instead of directly optimizing Equation (4), we assign an exclusive Gaussian component to each patch group, i.e.,


     p  ( k |   X ¯  i  ,  μ  k , I   ,  Σ  k , I   )  =        1   when   k = i  ,         0  otherwise  .          



(5)




Hence, the total number of Gaussian components for learning the internal NSS prior is naturally set as    K I  = N  , and for each patch group    X ¯  i  , its corresponding   μ  i , I    and   Σ  i , I    are obtained by the following maximum likelihood (ML) estimate [15,52]:


      (  μ  i , I   ,  Σ  i , I   )  =   arg max    μ  i , I   ,  Σ  i , I     log p  (   X ¯  i  |  μ  i , I   ,  Σ  i , I   )  .     



(6)




Specifically,   μ  i , I    and   Σ  i , I    can be estimated as:


      μ  i , I   =  1 n    ∑  j = 1  n    x  i , j   ,     



(7)






      Σ  i , I   =  1 n    ∑  j = 1  n    (  x  i , j   −  μ  i , I   )    (  x  i , j   −  μ  i , I   )  T  .     



(8)








2.2. Learning the External NSS Prior from a Natural Image Corpus


With a set of pre-collected natural images, a total of L similar patch groups are first extracted to form an external training patch group set, which is denoted as    {   Z ¯  l  }   l = 1  L  , where     Z ¯  l  =   {  z  l , j   }   j = 1  d   ,   z  l , j    is the j-th vectorized patch of patch group    Z ¯  l  , and d is the number of similar patches. As in Equation (4), by the use of the GMM, the log-likelihood function over the training set    {   Z ¯  l  }   l = 1  L   for learning the external NSS prior is formulated as:


     ln  L E  =   ∑  l = 1  L   ln    ∑  k = 1   K E     π  k , E     ∏  j = 1  d   N  (  z  l , j   |  μ  k , E   ,  Σ  k , E   )   ,     



(9)




where the subscript  E  is used to indicate the external NSS prior, and the other variables have meanings similar to those in Equation (4).



Instead of capturing fine-scale details of the image be recovered, the aim of the external NSS prior is to learn the rich structural information of the images, such as edges with different orientations and contours with various shape. As a result, the Expectation Maximization (EM) algorithm [53] is adopted to maximize Equation (9). In the E-step, the posterior probability and mixing weight for the k-th component are updated as follows:


     p  ( k |   Z ¯  l  ,  μ  k , E   ,  Σ  k , E   )  =    π  k , E    ∏  j = 1  d  N  (  z  l , j   |  μ  k , E   ,  Σ  k , E   )     ∑  i = 1   K E    π  i , E    ∏  j = 1  d  N  (  z  l , j   |  μ  i , E   ,  Σ  i , E   )    ,     



(10)






      q k  =   ∑  l = 1  L   p  ( k |   Z ¯  l  ,  μ  k , E   ,  Σ  k , E   )  ,     



(11)






      π  k , E   =   q k  L  .     



(12)




In the M-step, the k-th Gaussian component is calculated as:


      μ  k , E   =    ∑  l = 1  L  p  ( k |   Z ¯  l  ,  μ  k , E   ,  Σ  k , E   )   ∑  j = 1  d   z  l , j     q k   ,     



(13)






      Σ  k , E   =    ∑  l = 1  L  p  ( k |   Z ¯  l  ,  μ  k , E   ,  Σ  k , E   )   ∑  j = 1  d   (  z  l , j   −  μ  k , E   )    (  z  l , j   −  μ  k , E   )  T    q k   .     



(14)







The external NSS prior can be progressively learned by performing the above two steps successively until convergence. Please refer to [53] for more details about the EM algorithm. In practice, it is notable that, as the internal NSS prior has learned the main background information of the image be recovered, i.e.,    {  μ  i , I   }   i = 1  N  , it is not a requirement to learn them from training images. Therefore, all patch groups in    {   Z ¯  l  }   l = 1  L   are preprocessed by mean subtraction, and   μ  k , E    in Equation (13) is naturally set to be  0 . This mean subtraction operation can also greatly reduce the total number of mixing components needed to learn [1,28].




2.3. Learning the Hybrid NSS Prior for Patch Groups


Now, for each patch group of the image be recovered, we learn the HNSS prior from its corresponding internal and external NSS priors. As described in Section 2.1, the Gaussian component with parameters   μ  i , I    and   Σ  i , I    depicts the internal NSS prior of    X ¯  i  , and the most suitable external NSS prior for    X ¯  i   is determined by calculating the MAP probability:


     k =   arg max  v     ∏  j = 1  n  N  (  x  i , j   −  μ  i , I   | 0 ,  Σ  v , E   +   σ  2  I )     ∑  l = 1   K E    ∏  j = 1  n  N  (  x  i , j   −  μ  i , I   | 0 ,  Σ  l , E   +   σ  2  I )    ,     



(15)




where  I  denotes the identity matrix. The corresponding Gaussian component is parameterized by  0  and   Σ  k , E   .



Next, to better characterize the structure and detail information contained in patch group    X ¯  i  , we first learn a set of internal and external bases by performing SVD on   Σ  i , I    and   Σ  k , E   , respectively:


      Σ  i , I   =  D  i , I    S  i , I    D  i , I  T  ,     



(16)






      Σ  k , E   =  D  k , E    S  k , E    D  k , E  T  .     



(17)




With the internal NSS prior   (  μ  i , I   ,  D  i , I   )   and external NSS prior   D  k , E   , an improved HNSS prior for    X ¯  i   can then be learned by the following form:


           μ  i , H   =  μ  i , I           D  i , H   =  D  k , E   diag  (  w k  )  +  D  i , I   diag  ( 1 −  w k  )  ,         



(18)




where    w k  =   [  w  k , 1   , ⋯ ,  w  k , r   , ⋯ ,  w  k , m   ]  T    with   0 ≤  w  k , r   ≤ 1  . One can see that Equation (18) provides a simple yet flexible way to learn the HNSS prior. Specifically, a weighting scheme that allows different weights to be assigned to different bases is employed, and Equation (18) can be reduced to the internal or external prior by setting    w k  = 0   or    w k  = 1  .



As shown in Equation (18), the problem becomes how to learn   w k  . A straightforward approach is to set   w =  0 . 5   , but it treats each basis equally. However, as   D  k , E    is learned from external natural images and represents the k-th subspaces of the external NSS prior, it is beneficial to recover the common latent structures, but it cannot be adaptive to the given image. While   D  i , I    can characterize the fine-scale details that are particular to the degraded image, the common structures are disturbed by degradation. As a result, different weights should be assigned to different bases. Actually, the SVD in Equation (17) has helped us learn such weights implicitly. It is well-known that singular values in   S  k , E    characterize the properties of singular vectors in   D  k , E   . Concretely, singular value vectors with large singular values characterize the main structure of the image, while singular value vectors with small singular values represent the fine-scale details. Hence, in this work, each weight is computed as follows:


      w  k , r   =   s  r , E     ∑  p = 1  m   s  p , E     ,     



(19)




where   s  r , E    is the r-th singular value of   S  k , E   .



By learning the HNSS prior for each patch group in the above manner, the HNSS prior for the whole image can be formed as    {  (  μ  i , H   ,  D  i , H   )  }   i = 1  N  . In the next section, the learned prior is used for image restoration.





3. Image Restoration via the Hybrid NSS Prior


In this section, we first formulate an HNSS prior-based structural sparse representation (HNSS-SSR) model with adaptive regularization parameters and then develop a general restoration algorithm by applying it to image restoration.



3.1. HNSS Prior-Based Structural Sparse Representation


As described in Section 2, the learned HNSS prior can characterize the common structures and fine-scale details of the given image well. On the other hand, the structural sparse representation has exhibited notable success in many image restoration tasks [1,4,23,24,28,35]. As a result, we incorporate the learned HNSS prior into the structured sparse representation. Specifically, by using the learned HNSS prior as the dictionary, the proposed HNSS-SSR model is formulated as:


       A ^  i  =   arg min   A i    ∥   X i  −  Γ i  −  D  i , H    A i    ∥   F  2  +   ∥  λ  i  T   A i  ∥  1  ,     



(20)




where    ∥ · ∥  F 2   denotes the Frobenius norm,    X i  =  [  x  i , 1   , ⋯ ,  x  i , j   , ⋯ ,  x  i , n   ]  ∈  R  m × n     is the matrix form of    X ¯  i  ,    Γ i  =  [  γ  i , 1   , ⋯ ,  γ  i , j   , ⋯ ,  γ  i , n   ]    with    γ  i , j   =  μ  i , H    ,   A i   stands for the group sparse coefficient,    ∥ · ∥  1   denotes that the   l 1  -norm is imposed on each column in   A i  , and    λ i  =   [  λ  i , 1   , ⋯ ,  λ  i , r   , ⋯ ,  λ  i , m   ]  T    is a regularization parameter vector with non-negative   λ  i , r   . Note that, since   X i   contains similar patches, the same regularization parameter   λ  i , r    is assigned to the coefficients associated with the r-th atom in   D  i , H   .



To make the proposed HNSS-SSR model more stable, we connect the sparse estimation problem in Equation (20) with the MAP estimation problem to adaptively update regularization parameters. Concretely, for a given patch group    X i  =  Γ i  +  D  i , H    A i  + v  , where   v ∼ N ( 0 ,  σ 2  )   is the Gaussian noise, we can form the MAP estimation of   A i   as:


       A ^  i  =   arg min   A i    1  2  σ 2      ∥  X i  −  Γ i  −  D  i , H    A i  ∥   F  2  − ln p  (  A i  )  .     



(21)




In literature, the i.i.d. Laplacian distribution is usually used to characterize the statistical properties of sparse coefficients [1,11,13,28,35,47]. Hence, by imposing the Laplacian distribution with the same parameter on the coefficients associated with the same atom of   D  i , H   ,   p (  A i  )   can be written as:


     p  (  A i  )  =   ∏  r = 1  m     ∏  j = 1  n    1   2   θ  i , r     exp  −   2   θ  i , r     |  α  i , r , j   |   ,     



(22)




where   α  i , r , j    is the   ( r , j )  -th element of   A i  , and   θ  i , r    is the estimated standard deviation of    {  α  i , r , j   }   j = 1  n   [13,39]. Substituting Equation (22) into Equation (21) and deriving, we have the following:


       A ^  i  =   arg min   A i    1  2  σ 2     ∥   X i  −  Γ i  −  D  i , H    A i    ∥   F  2  +   ∑  r = 1  m     ∑  j = 1  n     2   θ  i , r     |  α  i , r , j   |  .     



(23)




By connecting Equation (20) with Equation (23), each   λ  i , r    can be adaptively calculated as follows:


      λ  i , r   =   2  2   σ 2     θ  i , r   + ε   ,     



(24)




where  ε  is a small constant for numerical stability.



Once the group sparse coefficient    A ^  i   is estimated by solving Equation (20), the corresponding patch group can be reconstructed as:


       X ^  i  =  D  i , H     A ^  i  +  Γ i  .     



(25)








3.2. Image Restoration


The proposed HNSS-SSR model is now used for image restoration tasks, and we develop a general restoration algorithm. Specifically, by embedding our proposed HNSS-SSR of Equation (20) into the regularization problem of Equation (2), the HNSS-SSR-based restoration framework can be first formulated as:


      (  x ^  ,   {   A i  ^  }   i = 1  N  )  =   arg min   x ,   {  A i  }   i = 1  N      ∥ y − Φ x ∥   2  2  + η   ∑  i = 1  N    ∥   R i   ( x )  −  Γ i  −  D  i , H    A i    ∥   F  2  +   ∥  λ  i  T   A i  ∥  1  ,     



(26)




where    R i   ( x )  =  [  R  i , 1   x , ⋯ ,  R  i , n   x ]    denotes the patch group extraction operation, and   R  i , n    is a patch extraction matrix. With the learned HNSS prior, the proposed restoration framework in Equation (26) can both adapt to the image to be recovered and also mitigate the overfitting to degradation.



Then, we employ the alternating minimization strategy to efficiently solve Equation (26). In particular, Equation (26) can be decomposed into  x  sub-problem and   A i   sub-problems, which can be solved efficiently.



3.2.1. Solving the   A i   Sub-Problem


Given  x , Equation (26) reduces to the following   A i   sub-problem:


       {   A i  ^  }   i = 1  N  =   arg min    {  A i  }   i = 1  N     ∑  i = 1  N    ∥   R i   ( x )  −  Γ i  −  D  i , H    A i    ∥   F  2  +   ∥  λ  i  T   A i  ∥  1  ,     



(27)




which consists of a series of HNSS-SSR problems proposed in Equation (20). As a result, we here adopt the Iterative Soft Thresholding Algorithm (ISTA) [54] to update   A i  , i.e.,


        A ^   i  =  S   λ i  / 2 c    (    A ^   i  −  1 c   D  i , H  T   (  D  i , H      A ^   i  −  R i   ( x )  +  Γ i  )  )  ,     



(28)




where c represents the square spectral norm of   D  i , H   , and   S   λ i  / 2 c    is the soft-thresholding operator:


      S λ   ( C )  = sgn  ( C )  ⊙  max ( | C |  −   λ h  T   , 0 ) ,      



(29)




where   h ∈  R  n × 1     with all elements 1, and ⊙ represents the element-wise multiplication operation. Note that ISTA has been proven to converge effectively to a global optimum.




3.2.2. Solving the x Sub-Problem


Given the updated   A i  , let     X ^  i  =  D  i , H     A ^  i  +  Γ i   , and we can naturally obtain the  x  sub-problem as follows:


      x ^  =   arg min  x    ∥ y − Φ x ∥   2  2  + η   ∑  i = 1  N    ( ∥   R i   ( x )  −   X ^  i    ∥  F  2  )  ,     



(30)




which allows for the following solution:


      x ^  =     Φ  T  Φ + η   ∑  i  N     ∑  j  n    R  i , j  T   R  i , j     − 1      Φ  T  y + η   ∑  i  N     ∑  j  n    R  i , j  T    x ^   i , j    ,     



(31)




where    x ^   i , j    stands for the j-th column vector in    X ^  i  .



In practice, the higher performance can be achieved by alternately solving the above   A i   and  x  sub-problems T times. To mitigate the effect of degradation on prior learning, in the t-th iteration, the output   x  t − 1    of the previous iteration is used to update the HNSS prior. Furthermore, to steadily create solutions, the iterative regularization strategy [55] is employed to estimate  σ  in each iteration as follows:


      σ t  = γ    σ 2  −   ∥    x   t − 1   − y  ∥  2 2    ,     



(32)




where  γ  denotes a constant. To conclude, Algorithm 1 fully summarizes our proposed HNSS-SSR-based restoration algorithm.






	Algorithm 1 HNSS-SSR-based Image Restoration



	
Input: Degraded image  y , measurement matrix  Φ , and external NSS prior GMM model



Output: The restored image   x ^  .



	  1:

	
Initialization:



Set      x ^   0  = y  ;



Set parameters m, n, T,  γ ,  η , and  σ .




	  2:

	
for   t = 1   to T do




	  3:

	
   Compute   σ t   by Equation (32);




	  4:

	
   Perform KNN search on     x ^    t − 1    to get   {  X  i   t − 1   }  ;




	  5:

	
   for Each   X  i   t − 1    do




	  6:

	
     Learn internal NSS prior by Equations (7) and (8);




	  7:

	
     Select the most suitable external prior by Equation (15);




	  8:

	
     Learn HNSS prior   (  μ  i , H   ,  D  i , H   )   by Equations (16)–(19);




	  9:

	
     Update   λ i   by Equation (24);




	10:

	
     Update    A ^  i   by Equation (28);




	11:

	
     Recover    X ^  i   by Equation (25);




	12:

	
   end for




	13:

	
   Reconstruct     x ^   t   by Equation (31).




	14:

	
end for




	15:

	
Return The final restored image     x ^   T  .

















4. Experimental Results


Here, we conduct image denoising and deblurring experiments to reveal the validity of our learned HNSS prior and proposed restoration algorithm. Figure 2 illustrates 16 test images used in this work. As the human vision system is susceptible to variations in illuminance, the restoration for color images is only focused on the luminance channel. To objectively assess the different restoration algorithms, the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [56] are jointly used as evaluation metrics. To achieve fair comparisons, we run the source codes released by the authors to obtain the restoration results of other competing approaches. In external NSS prior learning, the total number of Gaussian components   K E   and the number of similar patches d are set to 32 and 10, respectively. The patch groups for learning were extracted from the Kodak photoCD dataset (http://r0k.us/graphics/kodak/, accessed on 13 September 2022).



4.1. Image Denoising


This subsection performs image denoising experiments using our proposed HNSS-SSR restoration algorithm. It is worth noting that image denoising is an ideal benchmark for evaluating image priors and restoration algorithms. The noisy observations are generated by disturbing test images with additive white Gaussian noises. The detailed parameter settings for denoising experiments are given below. The size of the image patch    m  ×  m    is set to   7 × 7  ,   8 × 8  , and   9 × 9   for   σ ≤ 30  ,   30 < σ ≤ 60  , and   60 < σ  , respectively. The number of similar patches n, scaling factor  γ , and iteration times T are set to   ( 70 , 0.70 , 8 )  ,   ( 90 , 0.68 , 8 )  ,   ( 120 , 0.65 , 8 )  , and   ( 140 , 0.64 , 10 )   for   σ ≤ 20  ,   20 < σ ≤ 40  ,   40 < σ ≤ 60  , and   60 < σ  , respectively. We empirically fix the regularization parameter   η = 0.14   for all cases.



To objectively demonstrate its denoising capability, our proposed HNSS-SSR is first contrasted with several existing superior denoising algorithms, which include BM3D [29], NCSR [13], PGPD [28], GSRC-ENSS [1], RRC [41], and SNSS [24]. Among them, BM3D, NCSR, and RRC utilize the internal NSS prior, while PGPD uses the external NSS prior. Moreover, GSRC-ENSS and SNSS jointly use internal and external NSS priors and achieve superior denoising effects. Table 1 and Table 2 illustrate the denoising results of various competing approaches, and we mark the highest objective metric values in bold. It is obvious that our proposed HNSS-SSR delivers admirable denoising capabilities. Specifically, in Table 1, one can observe that our proposed HNSS-SSR has the highest PSNR in a majority of cases. Furthermore, in terms of average PSNR, our proposed HNSS-SSR enjoys a performance gain over BM3D by 0.35 dB, over NCSR by 0.50 dB, over PGPD by 0.18 dB, over GSRC-ENSS by 0.25 dB, over RRC by 0.22 dB, and over SNSS by 0.17 dB. In Table 2, it can be observed that the SSIM results of the proposed HNSS-SSR exceed other competing approaches in most cases. In terms of average SSIM, our proposed HNSS-SSR realizes 0.0112–0.0278, 0.0116–0.0228, 0.0044–0.0254, 0.0149–0.0225, 0.0058–0.0170, and 0.0075–0.0133 gains over the other six denoising methods respectively mentioned above. Moreover, the visual denoising results of various approaches are presented in Figure 3 and Figure 4. From Figure 3, we can observe that the comparison methods have a tendency to over-smooth edge details. In Figure 4, it can be observed that the comparison algorithms not only are likely to smooth the latent structure, but also suffer from different degrees of undesired artifacts. Fortunately, our proposed HNSS-SSR is extremely beneficial in recovering the latent structure and fine-scale details while effectively suppressing artifacts.



We also evaluate the proposed HNSS-SSR on the BSD68 dataset [57]. In addition to the above methods, two recently proposed methods with excellent denoising performance, i.e., GSMM [46] and LRENSS [7], are also used to compare with our method. Table 3 lists the corresponding PSNR and SSIM results. Note that the denoising results of GSMM are quoted from Reference [46]. From Table 3, it can be seen that the proposed HNSS-SSR consistently outperforms all other methods except LRENSS. Furthermore, the denoising results of the proposed HNSS-SSR are comparable to LRENSS in terms of PSNR and SSIM.



The validity of our proposed HNSS-SSR is further demonstrated by comparing it with the deep learning-based denoising approaches. Specifically, we evaluate our proposed HNSS-SSR, TNRD [19], and S2S [58] on the Set12 dataset [20]. The average PSNR and SSIM results are listed in Table 4, with the best results highlighted in bold. It can be seen that the proposed HNSS-SSR is better than TNRD and S2S across the board. In particular, the proposed HNSS-SSR achieves {0.19 dB, 0.43 dB} average PSNR gains, and {0.0072, 0.0196} average SSIM gains over TNRD and S2S, respectively.




4.2. Image Deblurring


In this subsection, we apply the proposed HNSS-SSR to image deblurring. Following prior works [13,24], we adopt the uniform blur kernel with size   9 × 9   and the Gaussian kernel with standard deviation 1.6 to assess all deblurring approaches. For each test image, it is first blurred by a blur kernel and then corrupted by the additive white Gaussian noise with standard deviation   2   to generate the degraded image. In deblurring experiments, we set   (  m  ×  m  , n , T , η , γ )   to   ( 6 × 6 , 30 , 200 , 0.04 , 1 )  , respectively.



The deblurring performance of our proposed HNSS-SSR is verified by comparing it with several leading methods, including BM3D [59], EPLL [14], NCSR [13], JSM [60], MS-EPLL [6], and SNSS [24]. Note that BM3D, EPLL, and NCSR are three typical deblurring approaches, and JSM, MS-EPLL, and SNSS are recently developed algorithms with advanced performance. The single NSS prior is utilized by all comparison methods except SNSS, which uses both internal and external NSS priors. The deblurring results of different algorithms are presented in Table 5 and Table 6. We can observe that our proposed HNSS-SSR has the highest PSNR and SSIM in most cases compared to other competing deblurring approaches, and only SNSS is slightly better than the proposed HNSS-SSR in individual cases. Furthermore, for uniform blur, the proposed HNSS-SSR achieves {1.35 dB, 3.25 dB, 0.33 dB, 3.16 dB, 2.85 dB, 0.18 dB} average PSNR gains and {0.0391, 0.0391, 0.0135, 0.1672, 0.0340, 0.0030} average SSIM gains over BM3D, EPLL, NCSR, JSM, MS-EPLL, and SNSS, respectively. For Gaussian blur, our proposed HNSS-SSR achieves {1.22 dB, 5.51 dB, 0.67 dB, 1.64 dB, 4.78 dB, 0.35 dB} average PSNR gains and {0.0265, 0.0440, 0.0214, 0.0675, 0.0408, 0.0034} average SSIM gains over BM3D, EPLL, NCSR, JSM, MS-EPLL, and SNSS, respectively. The visual deblurring results of different approaches are presented in Figure 5 and Figure 6. It can be obviously observed that BM3D, NCSR, JSM, and MS-EPLL produce a lot of unpleasant artifacts, while EPLL and SNSS cause over-smoothing phenomena. In comparison, our proposed HNSS-SSR method effectively eliminates artifacts while delivering a friendly visual perception.



The proposed HNSS-SSR is also tested on the Set14 dataset [61], and compared with the recently proposed JGD-SSR model [3] and LRENSS prior [7]. Note that JGD-SSR jointly utilizes the internal and external NSS priors, while LRENSS jointly utilizes the low-rank prior and external NSS prior. The average PSNR and SSIM results are listed in Table 7. It can be seen that the proposed HNSS-SSR has performance comparable to JGD-SSR and LRENSS and has considerable PSNR and SSIM gains compared to other methods.



The benefit of our proposed HNSS-SSR is further evidenced by making a comparison with deep learning-based approaches, specifically involving RED [62], IRCNN [63], and H-PnP [64], on the Set14 dataset [61]. Table 8 presents the deblurring results. One can clearly see that our proposed HNSS-SSR is far preferable to RED. Meanwhile, the proposed HNSS-SSR not only yields comparable PSNR results with IRCNN and H-PnP, but also has the best SSIM results. As we all know, SSIM is more consistent with human vision than PSNR, so SSIM can usually lead to a more objective quantitative evaluation [56]. In particular, the SSIM gains of our proposed HNSS-SSR over RED, IRCNN, and H-PnP are 0.0081, 0.0045, and 0.0038, respectively.




4.3. Computational Time


In this subsection, we report the running time of different denoising and deblurring methods on the   256 × 256   image in Table 9. All methods are tested on Intel® Core™ i7-9700 3.00 GHz CPU PC under the MATLAB 2019a environment. Note that the experimental results of GSMM are obtained from Reference [46], so its running time is not reported here. One can see that, for image denoising, the proposed HNSS-SSR is slower than only BM3D and PGPD, and for image deblurring, the proposed HNSS-SSR is faster than SNSS and LRENSS.





5. Conclusions


This paper proposed to learn a new NSS prior, namely the HNSS prior, from both internal and external image data and applied it to the image restoration problem. Two sets of GMMs for depicting internal and external NSS priors were first learned from the degraded observation and natural image sets, respectively. Subsequently, based on learned internal and external priors, the HNSS prior that can better characterize the image structure and detail information was efficiently learned by SVD and a simple weighting method. An HNSS prior-based structural sparse representation (HNSS-SSR) model with adaptive regularization parameters was then formulated for the image restoration problem. Further, we adopted an alternate minimization strategy to solve the corresponding restoration problem, resulting in a general restoration algorithm. Experimental results have validated that, compared to many classical or excellent approaches, our proposed HNSS-SSR algorithm not only provides better visual results but also yields competitive PSNR and SSIM metrics.
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Figure 1. The flowchart of the proposed method. 
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Figure 2. Test images in experiments. 
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Figure 3. Denoising visual results for Starfish with   σ  =  50  . (a) Original image; (b) BM3D [29] (PSNR = 25.04 dB, SSIM = 0.7433); (c) NCSR [13] (PSNR = 25.09 dB, SSIM = 0.7453); (d) PGPD [28] (PSNR = 25.11 dB, SSIM = 0.7454); (e) GSRC-ENSS [1] (PSNR = 25.44 dB, SSIM=0.7606); (f) RRC [41] (PSNR = 25.34 dB, SSIM = 0.7589); (g) SNSS [24] (PSNR = 25.25 dB, SSIM = 0.7491); (h) HNSS-SSR (PSNR = 25.53 dB, SSIM = 0.7671). 
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Figure 4. Denoising visual results for Leaves with   σ  =  75  . (a) Original image; (b) BM3D [29] (PSNR = 22.49 dB, SSIM = 0.8072); (c) NCSR [13] (PSNR = 22.60 dB, SSIM=0.8233); (d) PGPD [28] (PSNR = 22.61 dB, SSIM = 0.8121); (e) GSRC-ENSS [1] (PSNR = 22.90 dB, SSIM = 0.8339); (f) RRC [41] (PSNR = 22.91 dB, SSIM = 0.8377); (g) SNSS [24] (PSNR = 22.98 dB, SSIM = 0.8365); (h) HNSS-SSR (PSNR = 23.17 dB, SSIM = 0.8465). 






Figure 4. Denoising visual results for Leaves with   σ  =  75  . (a) Original image; (b) BM3D [29] (PSNR = 22.49 dB, SSIM = 0.8072); (c) NCSR [13] (PSNR = 22.60 dB, SSIM=0.8233); (d) PGPD [28] (PSNR = 22.61 dB, SSIM = 0.8121); (e) GSRC-ENSS [1] (PSNR = 22.90 dB, SSIM = 0.8339); (f) RRC [41] (PSNR = 22.91 dB, SSIM = 0.8377); (g) SNSS [24] (PSNR = 22.98 dB, SSIM = 0.8365); (h) HNSS-SSR (PSNR = 23.17 dB, SSIM = 0.8465).
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Figure 5. Deblurring results for Lake with uniform kernel. (a) Original image; (b) BM3D [59] (PSNR = 27.32 dB, SSIM = 0.8230); (c) EPLL [14] (PSNR = 25.12 dB, SSIM = 0.8285); (d) NCSR [13] (PSNR = 28.12 dB, SSIM = 0.8471); (e) JSM [60] (PSNR = 25.90 dB, SSIM = 0.7021); (f) MS-EPLL [6] (PSNR = 25.74 dB, SSIM = 0.8288); (g) SNSS [24] (PSNR = 28.06 dB, SSIM = 0.8538); (h) HNSS-SSR (PSNR = 28.41 dB, SSIM = 0.8609). 
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Figure 6. Deblurring results for Flowers with Gaussian kernel. (a) Original image; (b) BM3D [59] (PSNR = 29.84 dB, SSIM = 0.8592); (c) EPLL [14] (PSNR = 25.14 dB, SSIM = 0.8397); (d) NCSR [13] (PSNR = 30.20 dB, SSIM = 0.8617); (e) JSM [60] (PSNR = 29.51 dB, SSIM = 0.8081); (f) MS-EPLL [6] (PSNR = 27.20 dB, SSIM = 0.8569); (g) SNSS [24] (PSNR = 30.25 dB, SSIM = 0.8773); (h) HNSS-SSR (PSNR = 30.52 dB, SSIM = 0.8827). 
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Table 1. PSNR comparison of BM3D [29], NCSR [13], PGPD [28], GSRC-ENSS [1], RRC [41], SNSS [24], and HNSS-SSR for image denoising.






Table 1. PSNR comparison of BM3D [29], NCSR [13], PGPD [28], GSRC-ENSS [1], RRC [41], SNSS [24], and HNSS-SSR for image denoising.





	

	
    σ = 30    

	
    σ = 50    




	
Methods

	
BM3D

	
NCSR

	
PGPD

	
GSRC-

ENSS

	
RRC

	
SNSS

	
HNSS-

SSR

	
BM3D

	
NCSR

	
PGPD

	
GSRC-

ENSS

	
RRC

	
SNSS

	
HNSS-

SSR




	
Bear

	
28.89

	
28.76

	
29.01

	
28.78

	
28.89

	
28.96

	
29.09

	
26.82

	
26.71

	
26.81

	
26.67

	
26.74

	
26.77

	
26.84




	
Bike

	
25.91

	
25.94

	
26.11

	
25.91

	
26.11

	
26.06

	
26.42

	
23.00

	
23.05

	
23.39

	
23.23

	
23.36

	
23.39

	
23.57




	
Buddhist

	
31.87

	
31.45

	
31.82

	
31.54

	
31.81

	
31.64

	
31.82

	
29.48

	
29.09

	
29.36

	
29.05

	
29.43

	
29.19

	
29.38




	
Butterfly

	
27.55

	
27.94

	
27.74

	
28.23

	
28.27

	
28.18

	
28.59

	
24.79

	
25.05

	
25.21

	
25.64

	
25.59

	
25.51

	
25.83




	
Cameraman

	
28.64

	
28.58

	
28.54

	
28.20

	
28.43

	
28.58

	
28.75

	
26.13

	
26.15

	
26.46

	
26.30

	
26.27

	
26.39

	
26.48




	
Corn

	
26.59

	
26.83

	
26.72

	
27.15

	
27.02

	
26.91

	
27.35

	
23.76

	
23.77

	
23.77

	
24.39

	
24.22

	
24.20

	
24.54




	
Cowboy

	
27.61

	
27.56

	
27.66

	
27.65

	
27.73

	
27.67

	
27.92

	
24.75

	
24.74

	
25.05

	
25.02

	
25.03

	
25.08

	
25.21




	
Flower

	
27.97

	
27.91

	
28.11

	
28.10

	
28.12

	
28.14

	
28.47

	
25.49

	
25.32

	
25.64

	
25.63

	
25.72

	
25.83

	
26.00




	
Flowers

	
27.84

	
27.66

	
28.04

	
27.83

	
27.96

	
27.99

	
28.29

	
25.39

	
25.10

	
25.51

	
25.38

	
25.47

	
25.51

	
25.59




	
Girls

	
26.29

	
26.25

	
26.44

	
26.26

	
26.28

	
26.29

	
26.61

	
23.66

	
23.57

	
23.90

	
23.70

	
23.78

	
23.88

	
24.03




	
Hat

	
29.77

	
29.79

	
29.91

	
29.58

	
29.87

	
29.87

	
30.21

	
27.60

	
27.46

	
27.88

	
27.67

	
27.91

	
27.97

	
28.06




	
Lake

	
26.74

	
26.76

	
26.90

	
26.98

	
26.89

	
26.83

	
27.14

	
24.29

	
24.19

	
24.49

	
24.51

	
24.48

	
24.44

	
24.63




	
Leaves

	
27.81

	
28.14

	
27.99

	
28.15

	
28.35

	
28.25

	
28.69

	
24.68

	
24.95

	
25.02

	
25.23

	
25.30

	
25.25

	
25.52




	
Lena

	
29.68

	
29.57

	
29.81

	
29.65

	
29.88

	
29.82

	
29.96

	
27.14

	
27.18

	
27.38

	
27.12

	
27.39

	
27.41

	
27.49




	
Plants

	
30.70

	
30.26

	
30.73

	
30.50

	
30.90

	
30.87

	
30.96

	
28.11

	
27.66

	
28.25

	
27.87

	
28.32

	
28.38

	
28.29




	
Starfish

	
27.65

	
27.77

	
27.67

	
28.03

	
27.95

	
27.81

	
28.19

	
25.04

	
25.09

	
25.11

	
25.44

	
25.34

	
25.25

	
25.53




	
Average

	
28.22

	
28.20

	
28.46

	
28.28

	
28.40

	
28.37

	
28.65

	
25.63

	
25.57

	
25.92

	
25.80

	
25.90

	
25.90

	
26.06




	

	
   σ = 75   

	
   σ = 100   




	
Methods

	
BM3D

	
NCSR

	
PGPD

	
GSRC-

ENSS

	
RRC

	
SNSS

	
HNSS-

SSR

	
BM3D

	
NCSR

	
PGPD

	
GSRC-

ENSS

	
RRC

	
SNSS

	
HNSS-

SSR




	
Bear

	
25.34

	
25.13

	
25.30

	
25.27

	
25.13

	
25.13

	
25.28

	
24.28

	
24.08

	
24.35

	
24.25

	
24.10

	
23.97

	
24.20




	
Bike

	
21.12

	
21.01

	
21.42

	
21.33

	
21.32

	
21.47

	
21.60

	
19.94

	
19.68

	
20.09

	
19.91

	
20.01

	
20.22

	
20.33




	
Buddhist

	
27.56

	
27.10

	
27.51

	
27.29

	
27.42

	
27.19

	
27.50

	
26.22

	
25.81

	
26.21

	
26.11

	
26.18

	
25.84

	
26.06




	
Butterfly

	
22.83

	
22.95

	
23.03

	
23.51

	
23.35

	
23.41

	
23.72

	
21.38

	
21.31

	
21.48

	
22.06

	
21.77

	
22.03

	
22.23




	
Cameraman

	
24.33

	
24.23

	
24.64

	
24.52

	
24.46

	
24.59

	
24.71

	
23.08

	
22.93

	
23.23

	
23.22

	
23.02

	
23.40

	
23.46




	
Corn

	
21.83

	
21.68

	
21.75

	
22.20

	
21.99

	
22.08

	
22.42

	
20.54

	
20.26

	
20.49

	
20.80

	
20.55

	
20.71

	
20.99




	
Cowboy

	
22.88

	
22.65

	
23.04

	
23.04

	
23.02

	
23.11

	
23.23

	
21.68

	
21.26

	
21.71

	
21.69

	
21.60

	
21.81

	
21.91




	
Flower

	
23.82

	
23.50

	
23.83

	
23.87

	
23.77

	
24.06

	
24.11

	
22.66

	
22.23

	
22.66

	
22.50

	
22.46

	
22.73

	
22.77




	
Flowers

	
23.99

	
23.47

	
24.00

	
23.76

	
23.86

	
23.97

	
23.95

	
23.12

	
22.49

	
23.15

	
22.83

	
22.83

	
22.90

	
22.77




	
Girls

	
22.06

	
21.86

	
22.15

	
22.02

	
21.95

	
22.13

	
22.26

	
21.04

	
20.73

	
21.07

	
20.88

	
20.71

	
21.03

	
21.11




	
Hat

	
26.08

	
25.89

	
26.30

	
26.23

	
26.49

	
26.53

	
26.60

	
25.00

	
24.74

	
25.18

	
25.21

	
25.27

	
25.50

	
25.44




	
Lake

	
22.63

	
22.50

	
22.76

	
22.71

	
22.64

	
22.61

	
22.81

	
21.56

	
21.38

	
21.64

	
21.63

	
21.37

	
21.55

	
21.64




	
Leaves

	
22.49

	
22.60

	
22.61

	
22.90

	
22.91

	
22.98

	
23.17

	
20.90

	
20.86

	
20.95

	
21.46

	
21.22

	
21.48

	
21.54




	
Lena

	
25.38

	
25.23

	
25.51

	
25.49

	
25.55

	
25.66

	
25.78

	
24.08

	
23.82

	
24.22

	
24.30

	
24.35

	
24.54

	
24.56




	
Plants

	
26.25

	
25.75

	
26.34

	
26.03

	
26.40

	
26.39

	
26.39

	
24.98

	
24.48

	
25.07

	
24.71

	
24.91

	
25.08

	
25.02




	
Starfish

	
23.27

	
23.20

	
23.23

	
23.45

	
23.32

	
23.32

	
23.57

	
22.10

	
21.91

	
22.08

	
22.10

	
21.98

	
22.08

	
22.25




	
Average

	
23.87

	
23.67

	
24.00

	
23.98

	
23.97

	
24.04

	
24.19

	
22.66

	
22.37

	
22.70

	
22.73

	
22.65

	
22.80

	
22.89











 





Table 2. SSIM comparison of BM3D [29], NCSR [13], PGPD [28], GSRC-ENSS [1], RRC [41], SNSS [24], and HNSS-SSR for image denoising.
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    σ = 30    

	
    σ = 50    




	
Methods

	
BM3D

	
NCSR

	
PGPD

	
GSRC-

ENSS

	
RRC

	
SNSS

	
HNSS-

SSR

	
BM3D

	
NCSR

	
PGPD

	
GSRC-

ENSS

	
RRC

	
SNSS

	
HNSS-

SSR




	
Bear

	
0.7807

	
0.7780

	
0.7822

	
0.7784

	
0.7817

	
0.7815

	
0.7889

	
0.7111

	
0.7110

	
0.7113

	
0.7100

	
0.7169

	
0.7123

	
0.7187




	
Bike

	
0.8269

	
0.8203

	
0.8290

	
0.8194

	
0.8247

	
0.8208

	
0.8393

	
0.7146

	
0.7073

	
0.7262

	
0.7157

	
0.7285

	
0.7250

	
0.7360




	
Buddhist

	
0.8702

	
0.8672

	
0.8664

	
0.8623

	
0.8705

	
0.8673

	
0.8706

	
0.8170

	
0.8177

	
0.8087

	
0.8048

	
0.8194

	
0.8167

	
0.8202




	
Butterfly

	
0.9019

	
0.9073

	
0.9047

	
0.9092

	
0.9164

	
0.9143

	
0.9184

	
0.8440

	
0.8565

	
0.8574

	
0.8658

	
0.8729

	
0.8704

	
0.8755




	
Cameraman

	
0.8373

	
0.8394

	
0.8259

	
0.8204

	
0.8281

	
0.8285

	
0.8378

	
0.7828

	
0.7835

	
0.7774

	
0.7732

	
0.7801

	
0.7843

	
0.7883




	
Corn

	
0.8679

	
0.8716

	
0.8712

	
0.8793

	
0.8787

	
0.8741

	
0.8856

	
0.7774

	
0.7786

	
0.7793

	
0.8052

	
0.8041

	
0.7982

	
0.8137




	
Cowboy

	
0.8558

	
0.8544

	
0.8553

	
0.8540

	
0.8580

	
0.8520

	
0.8614

	
0.7837

	
0.7833

	
0.7882

	
0.7879

	
0.7968

	
0.7913

	
0.7978




	
Flower

	
0.8194

	
0.8176

	
0.8217

	
0.8214

	
0.8240

	
0.8230

	
0.8369

	
0.7283

	
0.7222

	
0.7331

	
0.7340

	
0.7413

	
0.7446

	
0.7552




	
Flowers

	
0.7950

	
0.7868

	
0.7980

	
0.7935

	
0.7989

	
0.7992

	
0.8122

	
0.6963

	
0.6885

	
0.6994

	
0.6949

	
0.7103

	
0.7061

	
0.7150




	
Girls

	
0.8065

	
0.8023

	
0.8089

	
0.8011

	
0.8001

	
0.7961

	
0.8152

	
0.7029

	
0.6962

	
0.7129

	
0.7044

	
0.7118

	
0.7096

	
0.7217




	
Hat

	
0.8326

	
0.8411

	
0.8319

	
0.8225

	
0.8360

	
0.8338

	
0.8456

	
0.7737

	
0.7776

	
0.7775

	
0.7710

	
0.7879

	
0.7883

	
0.7925




	
Lake

	
0.8287

	
0.8290

	
0.8298

	
0.8327

	
0.8323

	
0.8250

	
0.8418

	
0.7433

	
0.7431

	
0.7489

	
0.7515

	
0.7571

	
0.7482

	
0.7653




	
Leaves

	
0.9278

	
0.9324

	
0.9301

	
0.9343

	
0.9366

	
0.9337

	
0.9415

	
0.8680

	
0.8794

	
0.8793

	
0.8888

	
0.8910

	
0.8888

	
0.8977




	
Lena

	
0.8619

	
0.8637

	
0.8663

	
0.8625

	
0.8712

	
0.8675

	
0.8749

	
0.7971

	
0.8069

	
0.8047

	
0.7974

	
0.8125

	
0.8096

	
0.8182




	
Plants

	
0.8373

	
0.8297

	
0.8372

	
0.8346

	
0.8459

	
0.8461

	
0.8477

	
0.7669

	
0.7602

	
0.7672

	
0.7585

	
0.7789

	
0.7878

	
0.7796




	
Starfish

	
0.8289

	
0.8305

	
0.8276

	
0.8351

	
0.8304

	
0.8258

	
0.8397

	
0.7433

	
0.7453

	
0.7454

	
0.7606

	
0.7589

	
0.7491

	
0.7671




	
Average

	
0.8424

	
0.8420

	
0.8492

	
0.8413

	
0.8458

	
0.8430

	
0.8536

	
0.7657

	
0.7661

	
0.7778

	
0.7702

	
0.7793

	
0.7769

	
0.7851




	

	
   σ = 75   

	
   σ = 100   




	
Methods

	
BM3D

	
NCSR

	
PGPD

	
GSRC-

ENSS

	
RRC

	
SNSS

	
HNSS-

SSR

	
BM3D

	
NCSR

	
PGPD

	
GSRC-

ENSS

	
RRC

	
SNSS

	
HNSS-

SSR




	
Bear

	
0.6538

	
0.6604

	
0.6532

	
0.6597

	
0.6619

	
0.6555

	
0.6645

	
0.6110

	
0.6260

	
0.6087

	
0.6179

	
0.6273

	
0.6177

	
0.6277




	
Bike

	
0.6166

	
0.6056

	
0.6263

	
0.6208

	
0.6254

	
0.6311

	
0.6396

	
0.5460

	
0.5293

	
0.5470

	
0.5366

	
0.5478

	
0.5618

	
0.5696




	
Buddhist

	
0.7576

	
0.7707

	
0.7567

	
0.7557

	
0.7684

	
0.7647

	
0.7746

	
0.7111

	
0.7360

	
0.7062

	
0.7093

	
0.7383

	
0.7285

	
0.7348




	
Butterfly

	
0.7882

	
0.8121

	
0.8005

	
0.8188

	
0.8274

	
0.8262

	
0.8324

	
0.7348

	
0.7638

	
0.7449

	
0.7777

	
0.7834

	
0.7904

	
0.7947




	
Cameraman

	
0.7340

	
0.7413

	
0.7301

	
0.7251

	
0.7214

	
0.7445

	
0.7466

	
0.6928

	
0.7057

	
0.6776

	
0.6816

	
0.6553

	
0.7130

	
0.7111




	
Corn

	
0.6839

	
0.6769

	
0.6792

	
0.7114

	
0.7044

	
0.7000

	
0.7275

	
0.6036

	
0.5837

	
0.5954

	
0.6236

	
0.6110

	
0.6137

	
0.6467




	
Cowboy

	
0.7143

	
0.7126

	
0.7188

	
0.7201

	
0.7313

	
0.7277

	
0.7335

	
0.6589

	
0.6559

	
0.6552

	
0.6578

	
0.6739

	
0.6746

	
0.6793




	
Flower

	
0.6482

	
0.6417

	
0.6472

	
0.6541

	
0.6499

	
0.6698

	
0.6728

	
0.5862

	
0.5763

	
0.5803

	
0.5795

	
0.5846

	
0.6047

	
0.6070




	
Flowers

	
0.6269

	
0.6176

	
0.6274

	
0.6199

	
0.6334

	
0.6356

	
0.6399

	
0.5848

	
0.5747

	
0.5779

	
0.5707

	
0.5690

	
0.5855

	
0.5885




	
Girls

	
0.6223

	
0.6156

	
0.6272

	
0.6248

	
0.6203

	
0.6299

	
0.6413

	
0.5651

	
0.5567

	
0.5639

	
0.5620

	
0.5505

	
0.5721

	
0.5828




	
Hat

	
0.7238

	
0.7367

	
0.7294

	
0.7325

	
0.7504

	
0.7530

	
0.7557

	
0.6833

	
0.7048

	
0.6813

	
0.6922

	
0.7170

	
0.7242

	
0.7232




	
Lake

	
0.6716

	
0.6739

	
0.6764

	
0.6786

	
0.6822

	
0.6731

	
0.6918

	
0.6178

	
0.6229

	
0.6173

	
0.6223

	
0.6233

	
0.6231

	
0.6403




	
Leaves

	
0.8072

	
0.8233

	
0.8121

	
0.8339

	
0.8377

	
0.8365

	
0.8465

	
0.7482

	
0.7627

	
0.7467

	
0.7883

	
0.7811

	
0.7900

	
0.7986




	
Lena

	
0.7359

	
0.7488

	
0.7424

	
0.7426

	
0.7565

	
0.7588

	
0.7657

	
0.6815

	
0.6989

	
0.6855

	
0.6945

	
0.7178

	
0.7205

	
0.7208




	
Plants

	
0.7006

	
0.7008

	
0.7014

	
0.6970

	
0.7172

	
0.7252

	
0.7180

	
0.6525

	
0.6593

	
0.6475

	
0.6428

	
0.6680

	
0.6776

	
0.6737




	
Starfish

	
0.6670

	
0.6695

	
0.6637

	
0.6807

	
0.6741

	
0.6691

	
0.6900

	
0.6053

	
0.6068

	
0.6021

	
0.6111

	
0.6081

	
0.6112

	
0.6288




	
Average

	
0.6970

	
0.7005

	
0.7070

	
0.7047

	
0.7101

	
0.7125

	
0.7213

	
0.6427

	
0.6477

	
0.6451

	
0.6480

	
0.6535

	
0.6630

	
0.6705











 





Table 3. Average denoising result comparison of BM3D [29], NCSR [13], PGPD [28], GSRC-ENSS [1], RRC [41], SNSS [24], GSMM [46], LRENSS [7], and HNSS-SSR on the BSD68 dataset [57].






Table 3. Average denoising result comparison of BM3D [29], NCSR [13], PGPD [28], GSRC-ENSS [1], RRC [41], SNSS [24], GSMM [46], LRENSS [7], and HNSS-SSR on the BSD68 dataset [57].





	
Methods

	
BM3D

	
NCSR

	
PGPD

	
GSRC-ENSS

	
RRC

	
SNSS

	
GSMM

	
LRENSS

	
HNSS-SSR






	
   σ = 15   

	
31.08

	
0.8722

	
31.19

	
0.8770

	
31.13

	
0.8696

	
31.06

	
0.8670

	
31.06

	
0.8644

	
31.29

	
0.8765

	
31.32

	
0.8804

	
31.36

	
0.8819

	
31.37

	
0.8829




	
   σ = 25   

	
28.56

	
0.8016

	
28.62

	
0.8045

	
28.62

	
0.7994

	
28.55

	
0.7985

	
28.56

	
0.7936

	
28.72

	
0.8007

	
28.80

	
0.8108

	
28.87

	
0.8122

	
28.85

	
0.8108




	
   σ = 50   

	
25.62

	
0.6866

	
25.59

	
0.6864

	
25.75

	
0.6870

	
25.61

	
0.6815

	
25.67

	
0.6840

	
25.73

	
0.6876

	
25.85

	
0.6959

	
25.90

	
0.7018

	
25.87

	
0.7012




	
Average

	
28.42

	
0.7868

	
28.37

	
0.7893

	
28.50

	
0.7853

	
28.41

	
0.7823

	
28.43

	
0.7806

	
28.58

	
0.7883

	
28.66

	
0.7957

	
28.71

	
0.7986

	
28.70

	
0.8013











 





Table 4. Average denoising result comparison of TNRD [19], S2S [58], and HNSS-SSR on the Set12 dataset [20].
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Methods

	
    σ = 15    

	
    σ = 25    

	
    σ = 50    

	
Average






	
TNRD

	
32.51

	
0.8967

	
30.06

	
0.8520

	
26.81

	
0.7666

	
29.78

	
0.8384




	
S2S

	
32.09

	
0.8894

	
30.04

	
0.8493

	
26.50

	
0.7392

	
29.54

	
0.8260




	
HNSS-SSR

	
32.64

	
0.8999

	
30.24

	
0.8566

	
27.02

	
0.7803

	
29.97

	
0.8456











 





Table 5. PSNR comparison of BM3D [59], EPLL [14], NCSR [13], JSM [60], MS-EPLL [6], SNSS [24], and HNSS-SSR for image deblurring.






Table 5. PSNR comparison of BM3D [59], EPLL [14], NCSR [13], JSM [60], MS-EPLL [6], SNSS [24], and HNSS-SSR for image deblurring.





	

	
Uniform Blur,    σ =  2    

	
Gaussian Blur,    σ =  2    






	
Methods

	
BM3D

	
EPLL

	
NCSR

	
JSM

	
MS-

EPLL

	
SNSS

	
HNSS-

SSR

	
BM3D

	
EPLL

	
NCSR

	
JSM

	
MS-

EPLL

	
SNSS

	
HNSS-

SSR




	
Bear

	
30.49

	
28.87

	
31.14

	
28.09

	
29.15

	
31.37

	
31.48

	
31.99

	
27.63

	
32.25

	
31.30

	
29.99

	
32.66

	
32.82




	
Bike

	
24.57

	
23.19

	
25.41

	
23.89

	
23.92

	
25.47

	
25.26

	
26.65

	
22.92

	
26.98

	
26.65

	
23.49

	
26.90

	
27.22




	
Buddhist

	
34.33

	
33.44

	
35.02

	
29.93

	
33.29

	
35.35

	
35.59

	
36.91

	
34.46

	
36.90

	
34.42

	
33.55

	
38.24

	
38.35




	
Butterfly

	
26.80

	
24.44

	
28.83

	
25.65

	
25.26

	
29.14

	
29.52

	
28.58

	
22.00

	
29.78

	
28.79

	
22.75

	
30.20

	
31.00




	
Cameraman

	
27.30

	
26.02

	
28.59

	
26.20

	
26.82

	
28.67

	
28.67

	
27.46

	
26.62

	
28.31

	
27.45

	
27.43

	
28.13

	
28.24




	
Corn

	
26.75

	
24.56

	
27.87

	
25.55

	
25.26

	
28.24

	
28.58

	
28.91

	
23.89

	
29.69

	
29.00

	
24.42

	
30.08

	
30.45




	
Cowboy

	
27.19

	
25.93

	
27.99

	
25.90

	
26.54

	
28.09

	
28.02

	
28.05

	
24.86

	
28.45

	
27.95

	
26.59

	
28.47

	
28.65




	
Flower

	
28.58

	
27.04

	
29.38

	
26.88

	
27.61

	
29.37

	
29.55

	
30.41

	
26.64

	
30.82

	
30.01

	
27.34

	
31.08

	
31.42




	
Flowers

	
28.54

	
26.31

	
29.28

	
26.87

	
26.74

	
29.31

	
29.42

	
29.84

	
25.14

	
30.20

	
29.51

	
27.20

	
30.25

	
30.52




	
Girls

	
26.47

	
24.00

	
27.15

	
25.29

	
24.00

	
27.22

	
27.34

	
27.82

	
22.70

	
28.11

	
27.72

	
23.21

	
28.15

	
28.50




	
Hat

	
30.63

	
29.22

	
31.30

	
28.23

	
29.44

	
31.45

	
31.60

	
31.78

	
29.20

	
32.24

	
31.06

	
28.04

	
32.53

	
32.76




	
Lake

	
27.32

	
25.12

	
28.12

	
25.90

	
25.74

	
28.06

	
28.41

	
29.17

	
22.60

	
29.48

	
28.91

	
26.23

	
29.63

	
29.91




	
Leaves

	
26.89

	
23.46

	
28.98

	
25.48

	
23.48

	
29.08

	
29.60

	
29.00

	
21.38

	
30.34

	
29.16

	
21.53

	
30.69

	
31.63




	
Lena

	
30.35

	
28.13

	
31.26

	
28.00

	
28.46

	
31.32

	
31.53

	
32.24

	
28.00

	
32.67

	
31.46

	
26.64

	
33.02

	
33.33




	
Plants

	
32.07

	
29.83

	
33.12

	
28.88

	
29.58

	
33.52

	
33.78

	
33.99

	
30.18

	
34.65

	
32.87

	
31.35

	
35.59

	
35.93




	
Starfish

	
28.08

	
26.32

	
29.20

	
26.63

	
27.08

	
29.42

	
29.63

	
30.20

	
26.20

	
30.98

	
30.08

	
26.35

	
31.40

	
31.76




	
Average

	
28.52

	
26.62

	
29.54

	
26.71

	
27.02

	
29.69

	
29.87

	
30.19

	
25.90

	
30.74

	
29.77

	
26.63

	
31.06

	
31.41











 





Table 6. SSIM comparison of BM3D [59], EPLL [14], NCSR [13], JSM [60], MS-EPLL [6], SNSS [24], and HNSS-SSR for image deblurring.
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Uniform Blur,    σ =  2    

	
Gaussian Blur,    σ =  2    






	
Methods

	
BM3D

	
EPLL

	
NCSR

	
JSM

	
MS-

EPLL

	
SNSS

	
HNSS-

SSR

	
BM3D

	
EPLL

	
NCSR

	
JSM

	
MS-

EPLL

	
SNSS

	
HNSS-

SSR




	
Bear

	
0.8074

	
0.8251

	
0.8269

	
0.6621

	
0.8263

	
0.8386

	
0.8405

	
0.8618

	
0.8560

	
0.8618

	
0.8134

	
0.8673

	
0.8836

	
0.8852




	
Bike

	
0.7589

	
0.7393

	
0.7996

	
0.7046

	
0.7741

	
0.8081

	
0.8019

	
0.8511

	
0.8082

	
0.8599

	
0.8403

	
0.8274

	
0.8678

	
0.8730




	
Buddhist

	
0.8979

	
0.9158

	
0.9026

	
0.6701

	
0.8926

	
0.9205

	
0.9246

	
0.9337

	
0.9434

	
0.9256

	
0.8481

	
0.9297

	
0.9583

	
0.9563




	
Butterfly

	
0.8714

	
0.8743

	
0.9076

	
0.7629

	
0.8852

	
0.9212

	
0.9251

	
0.9157

	
0.8840

	
0.9220

	
0.8814

	
0.8922

	
0.9422

	
0.9470




	
Cameraman

	
0.8258

	
0.8345

	
0.8568

	
0.6731

	
0.8256

	
0.8592

	
0.8631

	
0.8416

	
0.8486

	
0.8547

	
0.7845

	
0.8271

	
0.8732

	
0.8756




	
Corn

	
0.8406

	
0.8175

	
0.8692

	
0.7753

	
0.8324

	
0.8844

	
0.8909

	
0.8970

	
0.8619

	
0.9079

	
0.8860

	
0.8678

	
0.9221

	
0.9264




	
Cowboy

	
0.8452

	
0.8544

	
0.8668

	
0.7181

	
0.8580

	
0.8766

	
0.8776

	
0.8861

	
0.8698

	
0.8880

	
0.8452

	
0.8838

	
0.9031

	
0.9045




	
Flower

	
0.8119

	
0.7984

	
0.8392

	
0.6937

	
0.8173

	
0.8445

	
0.8484

	
0.8701

	
0.8511

	
0.8773

	
0.8340

	
0.8608

	
0.8925

	
0.8975




	
Flowers

	
0.8022

	
0.7980

	
0.8273

	
0.6553

	
0.8105

	
0.8402

	
0.8402

	
0.8592

	
0.8397

	
0.8617

	
0.8081

	
0.8569

	
0.8773

	
0.8827




	
Girls

	
0.7907

	
0.7853

	
0.8216

	
0.7240

	
0.8081

	
0.8307

	
0.8310

	
0.8537

	
0.8203

	
0.8626

	
0.8404

	
0.8353

	
0.8732

	
0.8780




	
Hat

	
0.8427

	
0.8435

	
0.8505

	
0.6428

	
0.8220

	
0.8597

	
0.8645

	
0.8637

	
0.8673

	
0.8674

	
0.7938

	
0.8384

	
0.8909

	
0.8930




	
Lake

	
0.8230

	
0.8285

	
0.8471

	
0.7021

	
0.8288

	
0.8538

	
0.8609

	
0.8836

	
0.8566

	
0.8865

	
0.8457

	
0.8633

	
0.9021

	
0.9061




	
Leaves

	
0.8947

	
0.8792

	
0.9345

	
0.8179

	
0.8950

	
0.9410

	
0.9470

	
0.9338

	
0.8922

	
0.9452

	
0.9153

	
0.8986

	
0.9587

	
0.9654




	
Lena

	
0.8563

	
0.8649

	
0.8753

	
0.6966

	
0.8606

	
0.8862

	
0.8903

	
0.9028

	
0.8976

	
0.9036

	
0.8485

	
0.8944

	
0.9246

	
0.9267




	
Plants

	
0.8563

	
0.8636

	
0.8745

	
0.6707

	
0.8579

	
0.8932

	
0.8969

	
0.9042

	
0.9000

	
0.9057

	
0.8405

	
0.9011

	
0.9336

	
0.9349




	
Starfish

	
0.8178

	
0.8205

	
0.8521

	
0.7238

	
0.8290

	
0.8621

	
0.8652

	
0.8849

	
0.8653

	
0.8937

	
0.8612

	
0.8696

	
0.9094

	
0.9136




	
Average

	
0.8339

	
0.8339

	
0.8595

	
0.7058

	
0.8390

	
0.8700

	
0.8730

	
0.8839

	
0.8664

	
0.8890

	
0.8429

	
0.8696

	
0.9070

	
0.9104











 





Table 7. Average deblurring result comparison of BM3D [59], EPLL [14], NCSR [13], JSM [60], MS-EPLL [6], SNSS [24], JGD-SSR [3], LRENSS [7], and HNSS-SSR on the Set14 dataset [61].






Table 7. Average deblurring result comparison of BM3D [59], EPLL [14], NCSR [13], JSM [60], MS-EPLL [6], SNSS [24], JGD-SSR [3], LRENSS [7], and HNSS-SSR on the Set14 dataset [61].





	
Methods

	
BM3D

	
EPLL

	
NCSR

	
JSM

	
MS-EPLL

	
SNSS

	
JGD-SSR

	
LRENSS

	
HNSS-SSR






	
Uniform

	
29.13

	
0.8026

	
27.23

	
0.7979

	
30.03

	
0.8239

	
27.22

	
0.6819

	
27.26

	
0.8050

	
30.00

	
0.8222

	
30.38

	
0.8294

	
30.25

	
0.8308

	
30.34

	
0.8289




	
Gaussian

	
30.20

	
0.8544

	
27.21

	
0.8371

	
30.74

	
0.8529

	
29.86

	
0.8080

	
28.69

	
0.8434

	
30.96

	
0.8631

	
31.35

	
0.8683

	
31.30

	
0.8703

	
31.38

	
0.8697




	
Average

	
29.67

	
0.8285

	
27.22

	
0.8175

	
30.39

	
0.8384

	
28.54

	
0.7450

	
28.19

	
0.8242

	
30.48

	
0.8427

	
30.87

	
0.8489

	
30.78

	
0.8506

	
30.86

	
0.8493











 





Table 8. Average deblurring result comparison of RED [62], IRCNN [63], H-PnP [64], and HNSS-SSR on the Set14 dataset [61].
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Methods

	
Uniform Blur

	
Gaussian Blur

	
Average






	
RED

	
30.03

	
0.8238

	
30.91

	
0.8566

	
30.47

	
0.8402




	
IRCNN

	
30.30

	
0.8281

	
31.29

	
0.8596

	
30.78

	
0.8438




	
H-PnP

	
30.25

	
0.8238

	
31.33

	
0.8651

	
30.79

	
0.8445




	
HNSS-SSR

	
30.34

	
0.8289

	
31.38

	
0.8697

	
30.86

	
0.8493











 





Table 9. Running time in seconds (s) of different denoising and deblurring methods.
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Image Denoising (   σ = 50   )

	






	
Methods

	
BM3D [29]

	
NCSR [13]

	
PGPD [28]

	
GSRC-ENSS [1]

	
RRC [41]

	
SNSS [24]

	
GSMM [46]

	
LRENSS [7]

	
HNSS-SSR




	
Time (s)

	
0.8

	
224.3

	
8.3

	
369.2

	
226.6

	
602.1

	
-

	
108.6

	
49.4




	
Image Deblurring

	




	
Methods

	
BM3D [59]

	
EPLL [14]

	
NCSR [13]

	
JSM [60]

	
MS-EPLL [6]

	
SNSS [24]

	
JGD-SSR [3]

	
LRENSS [7]

	
HNSS-SSR




	
Time (s)

	
0.9

	
49.7

	
98.1

	
158.9

	
214.2

	
4830.4

	
405.8

	
707.6

	
690.3
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