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Abstract

:

In this paper, the impulsive conformable calculus approach is applied to the introduction of an   M 1   oncolytic virotherapy neural network model. The proposed model extends some existing mathematical models that describe the dynamics of the concentrations of normal cells, tumor cells, nutrients,   M 1   viruses and cytotoxic T lymphocyte (CTL) cells to the impulsive conformable setting. The conformable concept allows for flexibility in the modeling approach, as well as avoiding the complexity of using classical fractional derivatives. The impulsive generalization supports the application of a suitable impulsive control therapy. Reaction–diffusion terms are also considered. We analyze the stable behavior of sets of states, which extend the investigations of the dynamics of separate equilibrium points. By applying the impulsive conformable Lyapunov function technique, sufficient conditions for the uniform global exponential stability of sets of states are established. An example is also presented to illustrate our results.






Keywords:


oncolytic virotherapy; immune response; M1 virus; conformable derivative; impulses; reaction–diffusion; stability of sets




MSC:


26A33; 34A08; 34A37; 34D35












1. Introduction


The development of innovative approaches to modeling and studying the dynamics in various problems in biology and medicine is a very hot topic of interest. Numerous researchers contributed in the area of the mathematical modeling of phenomena studied in virology, infection diseases, epidemics and other major medical problems [1,2,3,4,5]. A very good overview of the mathematical modeling in virology is presented in [6].



There are various mathematical models related to a major health problem in our society—cancer. Studies proposed different modeling strategies to understand and describe tumor cell dynamics in cancer treatment. Oncolytic virus therapy or virotherapy is a cancer treatment that uses oncolytic viruses to harm cancer [7]. Among the efficient viruses applied in this treatment, the class of so called   M 1   alphaviruses has attracted research attention since it showed great promise in clinical trials [8]. Also, the role of the CTL immunological response in cancer therapy is of a great research interest [9]. However, most of the earlier researchers proposed integer-order models to describe the growth of normal cells, tumor cells,   M 1   viruses and antiviral immune responses [9,10,11].



Very recently, fractional calculus approaches were applied in the mathematical modeling of oncolytic virotherapy. For example, in [12], a fractional model for cancer therapy with the   M 1   oncolytic virus was introduced as


        D α   η 1   ( t )  = A − D  η 1   ( t )  −  β 1   η 1   ( t )   η 2   ( t )  −  β 2   η 1   ( t )   η 3   ( t )  ,             D α   η 2   ( t )  =  r 1   β 1   η 1   ( t )   η 2   ( t )  −  ( D +  ϵ 1  )   η 2   ( t )  ,             D α   η 3   ( t )  =  r 2   β 2   η 1   ( t )   η 3   ( t )  −  ( D +  ϵ 2  )   η 3   ( t )  −  β 3   η 3   ( t )   η 4   ( t )  ,             D α   η 4   ( t )  = B +  r 3   β 3   η 3   ( t )   η 4   ( t )  −  ( D +  ϵ 3  )   η 4   ( t )  ,       



(1)




where   t > 0   represents the time,   D α   is the Caputo fractional derivative operator of order   0 < α ≤ 1  ,   η 1   is the concentration of the nutrient at time t,   η 2   represent the normal cells at time t,   η 3   denotes the tumor cells at time t and   η 4   denotes the   M 1   viruses at time t. The parameters A and B denote the recruitment rate of nutrient and the recruitment rate of   M 1   viruses, which means the minimum effective dosage of medication, respectively. The factors    β 1   η 1   η 2    and    β 2   η 1   η 3    represent the rates of consuming the nutrients by normal and tumor cells, respectively. The factors    r 1   β 1   η 1   η 2    and    r 2   β 2   η 1   η 3    are the growth rates of normal and tumor cells, respectively. The factor    β 3   η 3   η 4    is the rate at which the   M 1   viruses infect and eradicate tumor cells. The   M 1   viruses reproduce at rate    r 3   β 3   η 3   η 4   . The constant D is the washout rate of nutrients and bacteria. The constant parameters    ϵ 1  ,  ϵ 2    and   ϵ 3   represent the natural death rates of normal cells, tumor cells and   M 1   viruses, respectively.



In fact, it is well known that the fractional-order modeling mechanism accounts for complex memory effects. This mechanism uses fractional-order derivatives, which generalize integer-order derivatives [13,14,15] and provide a modeling framework for phenomena in which the current state depends on some past interactions. This is why, in recent years, fractional-order models have attracted the attention of many researchers and their investigation has made significant progress [16,17,18,19,20,21].



In model (1), all non-constant parameters are at time t and the authors ignored their spatial dependence. However, diffusion effects exist in the distribution of cells and viruses. Hence, numerous researchers studied diffused models in virology and disease modeling [9,22,23,24]. In addition, the consideration of immune responses is crucial [1,3,9,25]. Motivated by the above considerations, the authors in [26] extended model (1) by considering the impacts of diffusion and the immune response on   M 1   oncolytic virotherapy and formulated the following system:


        ∂ t α   η 1   ( t , z )  =  d 1  Δ  η 1  + A − D  η 1   ( t , z )  −  β 1   η 1   ( t , z )   η 2   ( t , z )  −  β 2   η 1   ( t , z )   η 3   ( t , z )  ,             ∂ t α   η 2   ( t , z )  =  d 2  Δ  η 2  +  r 1   β 1   η 1   ( t , z )   η 2   ( t , z )  −  ( D +  ϵ 1  )   η 2   ( t , z )  ,             ∂ t α   η 3   ( t , z )  =  d 3  Δ  η 3  +  r 2   β 2   η 1   ( t , z )   η 3   ( t , z )  −  ( D +  ϵ 2  )   η 3   ( t , z )             −  β 3   η 3   ( t , z )   η 4   ( t , z )  −  β 4   η 3   ( t , z )   η 5   ( t , z )  ,            ∂ t α   η 4   ( t , z )  =  d 4  Δ  η 4  + B +  r 3   β 3   η 3   ( t , z )   η 4   ( t , z )  −  ( D +  ϵ 3  )   η 4   ( t , z )  ,             ∂ t α   η 5   ( t , z )  =  d 5  Δ  η 5  +  r 4   β 4   η 3   ( t , z )   η 5   ( t , z )  −  ( D +  ϵ 4  )   η 5   ( t , z )  ,          



(2)




where   ∂ t α   is the time Caputo fractional derivative;    η 1   ( t , z )   ,    η 2   ( t , z )   ,    η 3   ( t , z )   ,    η 4   ( t , z )    and    η 5   ( t , z )    denote the concentrations of nutrients, normal cells, tumor cells, M1 viruses and CTL cells at time t and position z, respectively;   t > 0  ;   z ∈ Θ  , where  Θ  is a bounded domain in   R n   with a smooth boundary   ∂ Θ   and a positive measure   mes  Θ > 0   containing the origin;    d j  ≥ 0  ,   j = 1 , 2 , 3 , 4 , 5  , are the corresponding diffusion coefficients; and   Δ  η j  =  ∑  i = 1  n      ∂ 2   η j   ( t , z )    ∂  z i       is the Laplace operator for   η j  ,   j = 1 , 2 , … , 5  . CTL immune cells destroy tumor cells at a rate of    β 4   η 3   η 5   , and they replicate at a rate of    r 4   β 4   η 3   η 5   ;   ϵ 4   represents the natural death rate of CTL cells.



One of the goals in this research was to further extend model (2) to the conformable setting. Indeed, the modeling of biological systems by fractional-order differential systems has more advantages than classical integer-order mathematical modeling since fractional calculus extends derivation and integration to arbitrary non-integer orders. However, most of the fractional-order operators, including the Caputo fractional derivative, are defined as integrals with different singular kernels, that is, they have a non-local structure. In short, non-locality is the main characteristic of fractional calculus when compared with integer-order calculus. Due to this fact, the use of classical fractional derivatives leads to complexities in mathematical modeling and the analysis of real-world phenomena. Some of the main difficulties in their use are the complicated chain rule and singularity properties. Also, the fractional derivatives do not have a corresponding Rolle’s theorem or a corresponding Mean Value Theorem. Among the new definitions introduced that attempt to avoid the limitations of fractional-order derivatives, the conformable derivatives introduced in [27,28] provide computational simplifications related to the derivatives of compositions of functions. This is mainly due to the fact that the corresponding definitions are limit-based [29,30,31,32,33]. The simplicity in their applications makes the conformable calculus a preferred and innovative tool in mathematical modeling [34,35], including models studied in biology and medicine [36,37,38]. However, the tool has not been applied to models in oncolytic virotherapy and we aimed to contribute to this topic.



Another goal of this paper was to apply the impulsive control modeling and stability strategy. In fact, first, short-term impulsive perturbations are very common in the evolution of biological processes due to some internal factors, such as the random births and deaths of cells [39,40,41,42,43]. Second, impulsive control models in medicine were proposed for efficient impulsive control therapeutic approaches [44,45,46,47]. The known advantages of these approaches make them preferable control strategies. Hence, the investigation of some impulsive generalizations of known models in cancer therapy is of high importance. In [48], a new tumor immunotherapy regimen based on the impulsive control strategy was proposed. The authors of [49] addressed the design and computations of impulsive control therapies to reduce tumor sizes in patients, striking a balance that minimizes the toxic effects of treatments. The paper [50] proposes a tumor–immune model with state-dependent impulsive treatments. In [51], a competition model between drug-sensitive cells and drug-resistant cells was established, in which pulse intervention was introduced. Three optimal pulse control strategies were proposed for the process of cancer treatment by controlling the pulse interval and dose, minimizing the number of tumor cells at the end of the day at minimal cost. To realize the impulsive control line of extension, the theory of impulsive control systems was applied [52,53,54,55,56]. This theory is richer than the corresponding theory of impulse-free systems, and hence, leads to the development of more advanced models.



Our goal was to apply the hybrid impulsive conformable control approach in extending model (2). The combined idea was recently applied to the mathematical modeling of some biological systems [57,58,59,60]. It is based on the theory of impulsive conformable systems, which is still under development [61,62,63,64,65]. With all the benefits of the conformable derivatives and impulsive control, it seems that the impulsive conformable technique is very suitable for modeling in oncolytic virotherapy.



Theoretical investigations of the stability of mathematical models have a significant practical implication. The stability of a biological model is crucial for its analysis and efficiency. This explains the growing body of research on the stability of impulsive conformable systems [57,58,59,60,61,63,65].



However, in most of the previous studies, the researchers’ interests were on separate states of the model. The extended stability of sets concept extends the single-state stability and includes many particular cases. It is introduced in [66,67,68] as a response to the following question: How far can initial conditions be allowed to vary without disrupting the stability properties established in the immediate vicinity of steady states? The notion of stability of sets of a very general nature can be reduced to the stability of invariant sets, stability of integral manifolds and stability of a single solution, and was investigated for different problems [69,70,71,72,73,74,75]. It is of significant importance in numerous applications, and is essential for models that have more than a single equilibrium point, as well as in the study of multi-stable systems. Thus, the stability of sets approach offers a high-powered mechanism that can be applied not only for single solutions but also in the cases when sets or manifolds of solutions are attractors for the models. Some proven applications for the use of the stability of sets include adaptive systems and observer designs [67], hybrid dynamical systems [70], maneuvering systems [73] and neural network models [74]. Given the practical importance of the notion of stability of sets, the problem of its application to impulsive conformable models attracted our attention and was one of the main goals of our study.



In this paper, we apply the impulsive conformable approach when introducing an impulsive conformable   M 1   oncolytic virotherapy neural network model. We define the stability of sets concept and analyze the stable behavior of the introduced model.



The contributions of this paper are found in the following few points:



1. A new impulsive conformable   M 1   oncolytic virotherapy model is introduced. Diffusion effects are also considered.



2. The modeling approach is a combination of the use of conformable derivatives with the impulsive control technique.



3. The concept of stability sets is defined and analyzed for the introduced model. Efficient sufficient conditions are established.



4. The proposed conditions are new and include estimations of the model’s parameters and impulsive control functions. As such, they are straightforward for applications.



5. Finally, an example is provided to demonstrate the efficiency of the derived results.



The following basic notations are used throughout the text:  R  is the set of all real numbers,    | | z | |  =    z 1 2  +  z 2 2  + … +  z n 2      is the Euclidean norm of z in the n-dimensional real space   R n   and    R +  =  [ 0 , ∞ )   .




2. Preliminary Notes: Problem Formulation


2.1. Preliminary Notes from Conformable Calculus


In order to formulate the conformable impulsive extension of model (2), some background material from the theory is necessary.



Let    t 0  ∈  R +    and   a ≥  t 0   .



Definition 1

([27,28,31]). The conformable derivative    D  a  α  v  ( t )    of order α,   0 < α ≤ 1  , with the lower limit a for a function   v ( t ) : [ a , ∞ ) → R   defined as


   D  a  α   ( v  ( t )  )  =  lim  θ → 0      v ( t + θ   ( t − a )   1 − α   ) − v  ( t )   θ   .  













In particular, at   t 0  , we have


    D   t 0   α  v  ( t )  =  lim  θ → 0     v  ( t + θ   ( t −  t 0  )   1 − α   )  − v  ( t )   θ  .   











It is simple to prove that a function could be  α -differentiable at a point, but not ordinary differentiable. See [28] for details.



Since we define an impulsive control model below, consider the impulsive instances   τ k  ,   k = 1 , 2 , …  , defined as


    t 0  <  τ 1  <  τ 2  < … ,   lim  k → ∞    τ k  = ∞ .   



(3)







According to [57,59,63,64], for   a =  τ k   ,   k = 1 , 2 , …  , we have


   D   τ k   α  v  (  τ k  )  =  lim  t →  τ k +     D   τ k   α  v  ( t )  ,  








which is called the  α -generalized conformable derivative.



We denote the set of all functions that have  α -conformable derivatives for any   t ∈ ( a , ∞ )   by    C α   (  ( a , b )  , R )   . Also, the functions that have  α -generalized conformable derivatives for any   t ∈ ( a , ∞ )   are known [57,59,63,64] as  α -generalized conformable differentiable at any   t ∈ ( a , ∞ )  .



Remark 1.

The term “conformable derivative” is defined for a function defined on the positive half-line in [27,28,31]. After this, numerous generalizations of the initially defined “conformable derivative” were made. See, for example, [29,30,76,77,78] and the references therein. Most of the generalized definitions allow us to compute conformable derivatives of functions defined on any open set on the real line (and not just on the positive half-line). In our paper, we follow the impulsive conformable generalization approach defined in [57,59,63,64].





Consider again a function   v : [ a , ∞ ) → R  .



Definition 2

([57,59,63]). The conformable integral of order   0 < α ≤ 1   with a lower limit   a ,  a ≥  t 0   , of the function v is


   I  a  α  v  ( t )  =  ∫  a  t    ( σ − a )   α − 1   v  ( σ )  d σ .  













The following properties of the conformable derivatives are used in our analysis.



Lemma 1

([57,59,63]). Assume that the function   v : ( a , ∞ ) → R   is α-conformable differentiable on   ( a , ∞ )   for   0 < α ≤ 1  .



Then,



(i)    I  a  α   (  D  a  α  v  ( t )  )  = v  ( t )  − v  ( a )  ,  t > a ;  



(ii) If   y ( v ( t ) ) : ( a , ∞ ) → R   is differentiable with respect to   v ( t )  , then for any   t ∈ [ a , ∞ )   and   v ( t ) ≠ 0  , we have


    D  a  α  y  ( v  ( t )  )  =  y ′   ( v  ( t )  )   D  a  α  v  ( t )  ,   








where   y ′   is the derivative of   y ( · )  .





The physical and geometrical interpretations of conformable derivatives are given in [30,78].



Analogously to Definition 1, the time-conformable derivative is defined as follows.



Definition 3

([57,63]). For a function   γ = γ ( t , z )  ,   γ : ( a , ∞ ) × Θ → R  , the limit


      ∂ α  γ  ( t , z )    ∂ a   =  lim  θ → 0     γ ( t + θ   ( t − a )   1 − α   , z ) − γ  ( t , z )    θ  − 1    ,  t > a   








is the generalized conformable partial derivative along t of order α,   0 < α ≤ 1  , with the lower limit a.



For   a =  τ k   ,   k = 1 , 2 , …  , we have the following generalized time-conformable derivative:


       ∂ α  γ  ( t , z )    ∂  τ k    =  lim  t →  τ k +       ∂ α  γ  ( t , z )    ∂ a   .    













Remark 2.

Definition 3 complies with the computational relationship of the first partial derivative with respect to time, and as such, the properties of the α-generalized conformable differentiable functions listed in Lemma 1 are also true for α-generalized conformable differentiable functions with respect to time [57,63].





Finally, we use the conformable exponential function    E α   ( ν , σ )    for   0 < α ≤ 1  , which is defined by [27,28]


   E α   ( ν , σ )  = exp  ν    σ α  α    ,  ν ∈ R ,  σ ∈  R +  .  












2.2. Problem Development


In this section, we extend model (2) to conformable settings by including the impact of impulsive short-term perturbations during   M 1   oncolytic virotherapy. Since we are studying the behavior of tumor-free states, we consider the following generalized conformable impulsive control extension of system (2):


          ∂ α   η 1   ( t , z )    ∂  τ k    =  d 1  Δ  η 1  + A − D  η 1   ( t , z )  −  β 1   η 1   ( t , z )   η 2   ( t , z )  −  β 2   η 1   ( t , z )   η 3   ( t , z )  ,               ∂ α   η 2   ( t , z )    ∂  τ k    =  d 2  Δ  η 2  +  r 1   β 1   η 1   ( t , z )   η 2   ( t , z )  −  ( D +  ϵ 1  )   η 2   ( t , z )  ,               ∂ α   η 3   ( t , z )    ∂  τ k    =  d 3  Δ  η 3  +  r 2   β 2   η 1   ( t , z )   η 3   ( t , z )  −  ( D +  ϵ 2  )   η 3   ( t , z )             −  β 3   η 3   ( t , z )   η 4   ( t , z )  −  β 4   η 3   ( t , z )   η 5   ( t , z )  ,  t ≠  τ k  ,              ∂ α   η 4   ( t , z )    ∂  τ k    =  d 4  Δ  η 4  + B +  r 3   β 3   η 3   ( t , z )   η 4   ( t , z )  −  ( D +  ϵ 3  )   η 4   ( t , z )  ,               ∂ α   η 5   ( t , z )    ∂  τ k    =  d 5  Δ  η 5  +  r 4   β 4   η 3   ( t , z )   η 5   ( t , z )  −  ( D +  ϵ 4  )   η 5   ( t , z )  ,  t ≠  τ k  ,            η j   (  τ k +  , z )  =  η j   (  τ k  , z )  +  J  j k    (  η j   (  τ k  , z )  )  ,  j = 3 , 5 ,         



(4)




where   t >  t 0   ;   z ∈ Θ  ;   0 < α < 1  ; and the variables    η 1   ( t , z )   ,    η 2   ( t , z )   ,    η 3   ( t , z )   ,    η 4   ( t , z )    and    η 5   ( t , z )    and the system’s parameters A, B, D,   d j  ,   Δ  η j    (  j = 1 , 2 , … , 5  ),   β i  ,   r i   and   ϵ i   (  i = 1 , 2 , 3 , 4  ) have the same meanings as in (2). The points   {  τ k  } ,  k = 1 , 2 , …  , denote the moments of impulsive perturbations at which abrupt changes in the tumor cells and immune responses    η j   ( t , z )   ,   j = 3 , 5  , from the states    η j   (  τ k −  , z )  =  η j   (  τ k  , z )    into the states    η j   (  τ k +  , z )    are observed;    η j   (  τ k +  , z )  =  η j   (  τ k  , z )  ,  j = 1 , 2 , 4  , and   J  j k    are the impulsive control functions for   j = 3 , 5   and   k = 1 , 2 , …  , which determine the magnitude of the impulsive jump between the state variables    η j   (  τ k +  , z )    and    η j   (  τ k  , z )    at   τ k  ,   j = 3 , 5  ,   k = 1 , 2 , …  .



Remark 3.

The impulsive model (4) extends several existing integer-order and fractional-order models for cancer therapy with the   M 1   oncolytic virus [6,9,12,26] to the impulsive conformable case. Hence, it is a new modeling approach that takes into account the following advantages: (i) The use of generalized conformable derivatives that provide more flexibility in mathematical modeling than integer-order derivatives and offers simplifications in the use of the chain rule compared with the classical fractional-order derivatives. (ii) The application of the control effects of some impulsive perturbations of the model’s performance during   M 1   oncolytic virotherapy. In particular, the fact that impulsive control virotherapy is applied to the variables   η 3   and   η 5   means that the goal is to impulsively reduce the number of tumor cells and affect the immune response. Also, different from some existing models [12], the diffusion effect in the cell distribution is considered, which is an important subject in models in virology, and in medicine more generally. For   α = 1  ,    t 0  = 0   and    J  j k   = 0  ,   j = 3 , 5  ,   k = 1 , 2 , …  , system (4) reduces to the model introduced in [22].





We consider model (4) under the following boundary and initial conditions:


     ∂  η j   ( t , z )    ∂ n    = 0 ,  z ∈  ∂ Θ  ,  t ≥  t 0  ,  



(5)






   η j   (  t 0 +  , z )  =  ϕ  0 i    ( z )  ≥ 0 ,  z ∈ Θ ,  



(6)




where   ϕ 0   is the initial function;    ϕ 0  =   (  ϕ 01  ,  ϕ 02  , … ,  ϕ 05  )  T   ; for any   j = 1 , 2 , … , 5  , the functions    φ  0 j    ( z )    are continuous real-valued and defined on  Θ ; and    ∂  ∂ n     is the outward normal derivative on   ∂ Θ  .



The solution to the initial boundary value problem (IBVP) (4)–(6) is denoted by


  η  ( t , z )  = η  ( t , z ;  t 0  ,  ϕ 0  )  .  











It follows from the theory of impulsive conformable systems [57,59,63] that the solution   η ( t , z )   of the IBVP (4)–(6) is a piecewise continuous function with points of discontinuity of the first kind   τ k  , at which it is left-continuous and is  α -generalized conformable differentiable on   R +   for   z ∈ Θ  .



Remark 4.

The boundary condition (5) means, as in the impulse-free cases [12,26], that the nutrients, normal cells, tumor cells,   M 1   viruses and CTL cells do not move across the boundary   ∂ Θ  . The initial condition (6) guarantees that the corresponding solution   η ( t , z )   is positive, which is important from a biological perspective.





We assume that for any initial data    t 0  ∈  R +    and    ϕ 0  ∈  R + 5   , the corresponding solution   η  ( t , z )  = η  ( t , z ;  t 0  ,  ϕ 0  )    of system (4) is uniquely defined for   t ≥  t 0    and   z ∈ Θ  . The criteria for existence and uniqueness of impulsive conformable reaction–diffusion neural network models can be found in [63].



For the function   η  ( t , z )  ∈  R 5   ,   η  ( t , z )  =   (  η 1   ( t , z )  ,  η 2   ( t , z )  , … ,  η 5   ( t , z )  )  T   ,   t ∈  R +   ,   z ∈ Θ  , we denote


     | | η  ( t , · )  | |  2  =    ∫ Θ   ∑  j = 1  5   η j 2   ( t , z )  d z   1 / 2   .   











In the proofs of our main results, we need the following Poincarè-type integral inequality [57].



Lemma 2.

Let Θ be a bounded domain in   R n   with a smooth boundary   ∂ Θ  , and   V : Θ →  R +    be a real-valued function belonging to    H 1   ( Θ )    that satisfies      ∂ V ( z )   ∂ n    |  ∂ Θ   = 0   . Then,


    ζ 1   ∫ Θ    | V  ( z )  |  2   d x ≤  ∫ Θ    | ∇ V  ( z )  |  2   d x ,   








where   ζ 1   is the smallest positive eigenvalue of the Neumann boundary problem:





        − Δ χ ( z ) = ζ χ ( z ) ,  z ∈ Θ ,            ∂ χ ( z )   ∂ n   = 0 ,  z ∈  ∂ Θ         








and   ∇   is the gradient operator.






2.3. Stability of Sets Approach


Instead of studying single equilibria of the model (4), we apply the extended stability of sets strategy [66,67,68,69,70,71,72,73,74,75]. To this end, we introduce the following notations and definitions.



Consider a set   M ⊂  [  t 0  , ∞ )  × Θ ×  R + 5    of a very general nature, and introduce the following notations:




	
  M  ( t , z )  =  η ∈  R + 5  :  ( t , z , η )  ∈ M ,  t ∈  R +  ,  z ∈ Θ   ;



	
   d  ( η , M  ( t , z )  )  =  inf   η ˜  ∈ M  ( t , z )     | | η  −  η ˜    | |  2     is the distance between   η ∈  R + 5    and   M ( t , z )  ;



	
  M  ( t , z )   ( ϵ )  =  η ∈  R + 5  :  d  ( η , M  ( t , z )  )  < ϵ    ( ϵ > 0 )  ;  



	
   M ¯   ( t , z )   ( ϵ )  =  η ∈  R + 5  :  d  ( η , M  ( t , z )  )  ≤ ϵ   ;



	
   S ρ   = { η ∈   R 5    :  | | η | |  2   < ρ }   .








We also assume that for any   t ∈  R +    and   z ∈ Θ  , the set   M ( t , z )   is not empty and that there exists a compact set   U ⊂  R + 5    such that   M ( t , z ) ⊂ U   for any   t ∈  R +    and   z ∈ Θ  .



Definition 4.

The solutions of model (4) are as follows:



(a) Equi-M-bounded if for any    t 0  ∈  R +    and any positive constants   ρ ,  σ > 0  , there exists a constant   β = β (  t 0  , ρ , σ ) > 0   such that   z ∈ Θ   and    ϕ 0  ∈  S ρ  ∩  M ¯   (  t 0 +  , z )   ( σ )    imply   η  ( t , z ;  t 0  ,  ϕ 0  )  ∈ M  ( t , z )   ( β )  ,  t ≥  t 0  ;  



(b) Uniformly M-bounded if the number β in (a) depends only on σ.





Definition 5.

The set  M  is said to have the following properties:



(a) Stable with respect to system (4) if for any    t 0  ∈  R +    and for any positive constants   ρ > 0   and   ϵ > 0  , there exists a constant   δ = δ (  t 0  , ρ , ϵ ) > 0   such that   z ∈ Θ   and    ϕ 0  ∈  S ρ  ∩ M  (  t 0 +  , z )   ( δ )    imply   η  ( t , z ;  t 0  ,  ϕ 0  )  ∈ M  ( t , z )   ( ϵ )  ,  t ≥  t 0  ;  



(b) Uniformly stable with respect to system (4) if the number δ in (a) depends only on ϵ;



(c) Uniformly globally attractive with respect to system (4) if for any positive constants   p > 0   and   ϵ > 0  , there exists a constant   q = q ( p , ϵ ) > 0   such that    t 0  ∈  R +   ,   ρ > 0  ,   z ∈ Θ   and    ϕ 0  ∈  S ρ  ∩  M ¯   (  t 0 +  , z )   ( p )    imply   η  ( t , z ;  t 0  ,  ϕ 0  )  ∈ M  ( t , z )   ( ϵ )  ,  t ≥  t 0  + q ;  



(d) Uniformly globally asymptotically stable with respect to system (4) if  M  is a uniformly stable and uniformly globally attractive set of system (4), and if the solutions of system (4) are uniformly M-bounded;



(e) Uniformly globally exponentially stable with respect to system (4) if there exist strictly positive constants k and κ such that


   d  ( η  ( t , z ;  t 0  ,  ϕ 0  )  , M  ( t , z )  )  ≤ k d  (  ϕ 0  , M  (  t 0 +  , z )  )   E α w   ( − κ , t −  t 0  )  ,   t ≥  t 0  ,  z ∈ Θ , w > 0 .   













Remark 5.

The standard stability of sets concept was introduced for integer-order impulse-free systems that do not consider reaction–diffusion terms [66,67,68,69,70]. Definition 5 generalizes the concept to the impulsive conformable reaction–diffusion case.





Remark 6.

The stability of sets notion defined by Definition 5 also extends the notion of the stability of a single state (zero state, equilibrium state). For a particular choice of the set   M ( t , z )  , it can be reduced to the existing stability by Lyapunov concepts. In the case when   M ( t , z )   only consists of the tumor-free equilibrium    (  η 1 *  ,  η 2 *  , 0 ,  η 4 *  , 0 )  T  [26], where    J  j k   = 0  ,   j = 3 , 5  ,   k = 1 , 2 , …  ,    η 1 *  =    D +  ϵ 1     r 1   β 1      ,    η 2 *  =   D  β 1     (  A 1  − 1 )   ,    η 4 *  =   B  D +  ϵ 3       and    A 1  =    A  r 1   β 1    D ( D +  ϵ 1  )    > 1  , then Definition 5 is reduced to definitions of the Lyapunov-type uniform stability and uniform global asymptotic stability of the tumor-free equilibrium. The cases of other separate equilibria, such as the competition-free equilibrium, the treatment failure immune-free equilibrium, the partial success immune-free equilibrium, the treatment failure equilibrium and the coexistence equilibrium [22,26], can also be extended using appropriate impulsive conditions. Also, since the set  M  is of a very general nature, the stability of sets notion is very suitable for practical models that have sets of states as global attractors.






2.4. Conformable Lyapunov Functions Method


In the proof of our main results, we apply a generalized conformable Lyapunov function approach [57,60,63]. Some estimates of the conformable derivative for simple Lyapunov-type functions have expanded the possibilities of the direct Lyapunov method when studying systems with conformable derivatives [31]. Many of these results are generalized for impulsive conformable differential equations [57,59,60,63], where Lyapunov functions and the corresponding comparison principles are applied to study different types of stability of the solutions. The conformable Lyapunov method for impulsive conformable systems requires the use of piecewise continuous Lyapunov functions with generalized conformable derivatives. For this reason, we need the following notations:


   A ˜  η =   (  d 1  Δ  η 1  ,  d 2  Δ  η 2  ,  d 3  Δ  η 3  ,  d 4  Δ  η 4  ,  d 5  Δ  η 5  )  T  ,  










  F  ( η  ( t , z )  )  =       A − D  η 1   ( t , z )  −  β 1   η 1   ( t , z )   η 2   ( t , z )  −  β 2   η 1   ( t , z )   η 3   ( t , z )             r 1   β 1   η 1   ( t , z )   η 2   ( t , z )  −  ( D +  ϵ 1  )   η 2   ( t , z )            r 2   β 2   η 1   ( t , z )   η 3   ( t , z )  −  ( D +  ϵ 2  )   η 3   ( t , z )  −  β 3   η 3   ( t , z )   η 4   ( t , z )  −  β 4   η 3   ( t , z )   η 5   ( t , z )            B +  r 3   β 3   η 3   ( t , z )   η 4   ( t , z )  −  ( D +  ϵ 3  )   η 4   ( t , z )             r 4   β 4   η 3   ( t , z )   η 5   ( t , z )  −  ( D +  ϵ 4  )   η 5   ( t , z )       ,  










   J k   ( η  (  τ k  , z )  )  =       0           0           J  3 k    (  η 3   ( x ,  τ k  )  )            0           J  5 k    (  η 4   ( x ,  τ k  )  )       ,   k = 1 , 2 , … .  











Now, system (4) can be presented abstractly as


          ∂ α  η  ( t , z )    ∂  τ k    =  A ˜  η  ( t , z )  + F  ( η  ( t , z )  )  =  F ˜   ( η  ( t , z )  )  ,  t ≠  τ k  ,           η  (  τ k +  , z )  = η  (  τ k  , z )  +  J k   ( η  (  τ k  , z )  )  ,  k = 1 , 2 , … .      



(7)







Define the sets


   G k  =  {  ( t , η )  : t ∈  (  τ  k − 1   ,  τ k  )  ,  η ∈  R + 5  }  ,  k = 1 , 2 , … ,   τ 0  =  t 0  ,  G =  ⋃  k = 1  ∞   G k  .  











We use the class    V   τ k   α   M    of nonnegative Lyapunov functions  V  [57,63] for any    τ k  ∈  R +  ,  k = 1 , 2 , …  , such that   V ( t , η ) = 0   for   η ∈ M ( t , z )  ,    ( t , z )  ∈  R +  × Θ  ,   t ≥  τ k   ;  V  is continuous in  G ,  α -generalized conformable differentiable in t and locally Lipschitz continuous with respect to  η  on each of the sets   G k  ; and for each   k = 1 , 2 , …   and   η ∈  R + 5   , there exist the finite limits


  V  (  τ k −  , η )  =  lim   t <  τ k    t →  τ k     V  ( t , η )  = V  (  τ k  , η )  ,  V  (  τ k +  , η )  =  lim   t >  τ k    t →  τ k     V  ( t , η )  .  











For a function   V ∈   V   τ k   α   M    , the following upper-right  α -generalized conformable derivative is defined [57,63] as


    D   τ k   α   +    V  ( t , η )  =  lim  θ →  0 +    sup    V  ( t + θ   ( t −  τ k  )   1 − α   ,  η  ( t + θ   ( t −  τ k  )   1 − α   , · )  )  − V  ( t , η  ( t , · )  )   θ   .  



(8)







Using the notations in (7), the  α -generalized time-conformable derivative of the function   V ( t , η )   with respect to the solution   η = η ( t , z ;  t 0  ,  ϕ 0  )   of the problem (4)–(6) is given by [57,63]


    D   τ k   α   +    V  ( t , η )  =  lim  θ →  0 +    sup    V  ( t + θ   ( t −  τ k  )   1 − α   ,  η + θ   ( t −  τ k  )   1 − α    F ˜   ( η )  )  − V  ( t , η )   θ   .  



(9)







In the case when   V ( t , η ( t , · ) ) = V ( η ( t , · ) )  ,   0 < α ≤ 1  ,  V  is differentiable on  η  and   η ( t , · )   is  α -generalized time-conformable differentiable, similarly to Lemma 1 (ii), we have


    D   τ k   α   +    V  ( t , η )  =   V  ′   ( η  ( t , · )  )    D   τ k   α  η  ( t , · )  .  



(10)







We will also need the following result from [57,63].



Lemma 3.

For a function   V ∈   V   τ k   α   M     such that for   t ∈  R +   ,   η ∈  R + 5   ,


   V  (  τ k +  , η  (  τ k  , · )  +  J k   ( η  (  τ k  , · )  )  )  ≤ V  (  τ k  , η  (  τ k  , · )  )  ,   













     D   τ k   α   +    V  ( t , η  ( t , · )  )  ≤ − κ V  ( t , η  ( t , · )  )  ,  t ≠  τ k  ,  k = 1 , 2 , … ,   








where   κ = c o n s t ≥ 0  , we have





   V  ( t , η  ( t , · )  )  ≤ V  (  t 0 +  ,  ϕ 0  )   E α   ( − κ , t −  t 0  )  ,  t ≥  t 0  .   















3. Boundedness and Global Stability Results


Theorem 1.

Assume the following:



1.   M ⊂  [  t 0  , ∞ )  × Θ ×  R + 5   .



2. The impulsive control functions   J  j k   ,   j = 3 , 3  ,   k = 1 , 2 , …   are such that


    J  j k    (  η j   (  τ k  , z )  )  = −  ξ  j k    η j   (  τ k  , z )  ,    0 <  ξ  j k   < 2 ,   








where   ξ  i k    are constants,   j = 3 , 5  ,   k = 1 , 2 , …  .



3. The functions    η j   ( t , z )  ,    j = 1 , 2 , … , 5   are such that for   t ≠  τ k   ,   k = 1 , 2 , …  ,


    η j   ( t , z )  ≤   η ^  j  ,    η ^  j  = c o n s t > 0 ,   ( t , z )  ∈  R +  × Θ .   











4. The system’s parameters are such that


    k 1  = min  {  Ω 1  + D ,  Ω 2  + D +  ϵ 1  ,  Ω 3  + D +  ϵ 2  ,  Ω 4  + D +  ϵ 3  ,  Ω 5  + D +  ϵ 4  }    










   ≥ max      η ^  1  2    (  β 1  +  β 2  )  +     η ^  2  2    β 1   ( 2 +  r 1  )  +     η ^  3  2    β 2   ( 2 +  r 2  )  ,     η ^  1  2    β 1   ( 1 + 2  r 1  )  +     η ^  2  2    r 1   β 1  ,    










       η ^  1  2    β 2   ( 1 + 2  r 2  )  +     η ^  3  2    (  r 2   β 2  +  β 3  +  β 3  )  +     η ^  4  2    β 3   ( 2 +  r 3  )  +     η ^  5  2    β 4   ( 2 +  r 4  )  ,   










        η ^  3  2    β 3   ( 1 + 2  r 3  )  +     η ^  4  2    r 3   β 3  ,     η ^  3  2    β 4   ( 1 + 2  r 4  )  +     η ^  4  2    r 4   β 4   =  k 2  > 0 ,   








where    Ω j  = n  ζ 1   d j   ,   j = 1 , 2 , … , 5  .



Then, the solutions of system (4) are uniformly M-bounded.





Proof. 

Let    t 0  ∈  R +   ,   z ∈ Θ   and   ϕ 0   be the continuous initial function in (6). Let   η  ( t , z )  = η  ( t , z ;  t 0   ϕ 0  )   , where


  η =   (  η 1  ,  η 2  ,  η 3  ,  η 4  ,  η 5  )  T   








be a solution of the IBVP (4)–(6).



Since the set   M ( t , z )   is not empty, there exists at least one solution of (4):    η ˜  =  η ˜   ( t , z )  =   (   η ˜  1   ( t , z )  ,   η ˜  2   ( t , z )  ,   η ˜  3   ( t , z )  ,   η ˜  4   ( t , z )  ,   η ˜  5   ( t , z )  )  T  ∈ M  ( t , z )   .



We use a Lyapunov function   V ∈   V   τ k   α   M     defined as


   V  ( t , η )  =  1 2   d 2   ( η , M  ( t , z )  )  =  1 2     inf   η ˜  ∈  M ( t , z )     | | η  −  η ˜    | |  2   2    













   =  inf   η ˜  ∈  M ( t , z )      1 2    ∫ Θ   ∑  j = 1  5   (     η j   ( t , z )  −   η ˜  j   ( t , z )   2  d z .   



(11)







First, we suppose that   t =  τ k   ,   k = 1 , 2 , …  . Then, condition 2 of Theorem 1 implies


    1 2    ∫ Θ     η j   (  t +  , z )  −   η ˜  j   (  t +  , z )   2   d z =   1 2    ∫ Θ    ( 1 −  ξ  j k   )  2     η j   ( t , z )  −   η ˜  j   ( t , z )   2   d z  










  <   1 2    ∫ Θ     η j   ( t , z )  −   η ˜  j   ( t , z )   2   d z ,  j = 3 , 5 ,  








and


    1 2    ∫ Θ     η j   (  t +  , z )  −   η ˜  j   (  t +  , z )   2   d z =   1 2    ∫ Θ     η j   ( t , z )  −   η ˜  j   ( t , z )   2   d z ,  j = 1 , 2 , 4 .  











Hence, we have


  V  (  τ k +  , η  (  τ k  , · )  +  J k   ( η  (  τ k  , · )  )  )  ≤ V  (  τ k  , η  (  τ k  , · )  )  ,  k = 1 , 2 , … .  



(12)







Next, for any   t ≠  τ k   ,   k = 1 , 2 , …  , for the  α -generalized conformable derivative of the function


   V ˜   ( t , η  ( t , · )  )  =   1 2    ∫ Θ   ∑  j = 1  5   (     η j   ( t , z )  −   η ˜  j   ( t , z )   2  d z ,  








from the fact that    η ˜  ∈ M  ( t , z )   , it follows that


      ∂ α   V ˜   ( t , η  ( t , · )  )    ∂  τ k    =  ∫ Θ    η 1   ( t , z )  −   η ˜  1   ( x , t )   [  d 1  Δ   η 1   ( t , z )  −   η ˜  1   ( t , z )   − D   η 1   ( t , z )  −   η ˜  1   ( t , z )     













   −  β 1    η 1   ( t , z )   η 2   ( t , z )  −   η ˜  1   ( t , z )    η ˜  2   ( t , z )   −  β 2    η 1   ( t , z )   η 3   ( t , z )  −   η ˜  1   ( t , z )    η ˜  3   ( t , z )   ]  d z   










   +  ∫ Θ    η 2   ( t , z )  −   η ˜  2   ( t , z )   [  d 2  Δ   η 2   ( t , z )  −   η ˜  2   ( t , z )     










   −  ( D +  ϵ 1  )    η 2   ( t , z )  −   η ˜  2   ( t , z )   −  r 1   β 1    η 1   ( t , z )   η 2   ( t , z )  −   η ˜  1   ( t , z )    η ˜  2   ( t , z )   ]  d z   










   +  ∫ Θ    η 3   ( t , z )  −   η ˜  3   ( t , z )   [  d 3  Δ   η 3   ( t , z )  −   η ˜  3   ( t , z )     










   −  ( D +  ϵ 2  )    η 3   ( t , z )  −   η ˜  3   ( t , z )   −  r 2   β 2    η 1   ( t , z )   η 3   ( t , z )  −   η ˜  1   ( t , z )    η ˜  3   ( t , z )     










   −  β 3    η 3   ( t , z )   η 4   ( t , z )  −   η ˜  3   ( t , z )    η ˜  4   ( t , z )   −  β 4    η 3   ( t , z )   η 5   ( t , z )  −   η ˜  3   ( t , z )    η ˜  5   ( t , z )   ]  d z   










   +  ∫ Θ    η 4   ( t , z )  −   η ˜  4   ( t , z )   [  d 4  Δ   η 4   ( t , z )  −   η ˜  4   ( t , z )     










   −  ( D +  ϵ 3  )    η 4   ( t , z )  −   η ˜  4   ( t , z )   −  r 3   β 3    η 3   ( t , z )   η 4   ( t , z )  −   η ˜  3   ( t , z )    η ˜  4   ( t , z )   ]  d z   










   +  ∫ Θ    η 5   ( t , z )  −   η ˜  5   ( t , z )   [  d 5  Δ   η 5   ( t , z )  −   η ˜  5   ( t , z )     










   −  ( D +  ϵ 4  )    η 5   ( t , z )  −   η ˜  5   ( t , z )   −  r 4   β 4    η 3   ( t , z )   η 5   ( t , z )  −   η ˜  3   ( t , z )    η ˜  5   ( t , z )   ]  d z .   











By the boundary conditions (5) of model (4), the Gauss formula and Lemma 2, we obtain


   ∫ Θ    η j   ( t , z )  −   η ˜  j   ( t , z )   [  d j  Δ   η j   ( t , z )  −   η ˜  j   ( t , z )   d z  













   ≤ −  d j   ∑  i = 1  n   ∫ Θ        η j   ( t , z )  −   η ˜  j   ( t , z )    ∂  z i      2  d z = − n  d j   ∫ Θ        η j   ( t , z )  −   η ˜  j   ( t , z )    ∂  z i      2  d z   










   ≤ −  Ω j   ∫ Θ     η j   ( t , z )  −   η ˜  j   ( t , z )   2  d z ,  j = 1 , 2 , … , 5 .   



(13)







Using (13) and condition 3 of Theorem 1, we estimate each of the terms in      ∂ α   V ˜   ( t , η  ( t , · )  )    ∂  τ k     :


   ∫ Θ    η 1   ( t , z )  −   η ˜  1   ( x , t )   [  d 1  Δ   η 1   ( t , z )  −   η ˜  1   ( t , z )   − D   η 1   ( t , z )  −   η ˜  1   ( t , z )    










  −  β 1    η 1   ( t , z )   η 2   ( t , z )  −   η ˜  1   ( t , z )    η ˜  2   ( t , z )   −  β 2    η 1   ( t , z )   η 3   ( t , z )  −   η ˜  1   ( t , z )    η ˜  3   ( t , z )   ]  d z  










  ≤ −  (  Ω 1  + D )   ∫ Θ     η 1   ( t , z )  −   η ˜  1   ( t , z )   2  d z −  β 1   ∫ Θ    η 1   ( t , z )  −   η ˜  1   ( x , t )     η 1   ( t , z )   η 2   ( t , z )  −   η ˜  1   ( t , z )    η ˜  2   ( t , z )   d z  










  −  β 2   ∫ Θ    η 1   ( t , z )  −   η ˜  1   ( x , t )     η 1   ( t , z )   η 3   ( t , z )  −   η ˜  1   ( t , z )    η ˜  3   ( t , z )   d z  










  ≤ −  (  Ω 1  + D )   ∫ Θ     η 1   ( t , z )  −   η ˜  1   ( t , z )   2  d z +  β 1   ∫ Θ     η 1   ( t , z )  −   η ˜  1   ( t , z )   2   η 2   ( t , z )   d z  










  +  β 1   ∫ Θ   |   η 1   ( t , z )  −   η ˜  1    ( t , z )  | |    η ˜  1    ( t , z )  | |   η 2   ( t , z )  −   η ˜  2    ( t , z )  |  d z   










  +  β 2   ∫ Θ     η 1   ( t , z )  −   η ˜  1   ( t , z )   2   η 3   ( t , z )   d z  










  +  β 2   ∫ Θ   |   η 1   ( t , z )  −   η ˜  1    ( t , z )  | |    η ˜  1    ( t , z )  | |   η 3   ( t , z )  −   η ˜  3    ( t , z )  |  d z   










  ≤ −  (  Ω 1  + D )   ∫ Θ     η 1   ( t , z )  −   η ˜  1   ( t , z )   2  d z +   β 1    η ^  2  +  β 2    η ^  3    ∫ Θ     η 1   ( t , z )  −   η ˜  1   ( t , z )   2   d z  










  +     η ^  1  2    (  β 1  +  β 2  )   ∫ Θ     η 1   ( t , z )  −   η ˜  1   ( t , z )   2   d z +     η ^  1  2    β 1   ∫ Θ     η 2   ( t , z )  −   η ˜  2   ( t , z )   2   d z  










  +     η ^  1  2    β 2   ∫ Θ     η 3   ( t , z )  −   η ˜  3   ( t , z )   2   d z ,  



(14)




and


   ∫ Θ    η 2   ( t , z )  −   η ˜  2   ( t , z )   [  d 2  Δ   η 2   ( t , z )  −   η ˜  2   ( t , z )    













   −  ( D +  ϵ 1  )    η 2   ( t , z )  −   η ˜  2   ( t , z )   −  r 1   β 1    η 1   ( t , z )   η 2   ( t , z )  −   η ˜  1   ( t , z )    η ˜  2   ( t , z )   ]  d z   










   ≤ −  (  Ω 2  + D +  ϵ 1  )   ∫ Θ     η 2   ( t , z )  −   η ˜  2   ( t , z )   2  d z   










   −  r 1   β 1   ∫ Θ    η 2   ( t , z )  −   η ˜  2   ( x , t )     η 1   ( t , z )   η 2   ( t , z )  −   η ˜  1   ( t , z )    η ˜  2   ( t , z )   d z   










   ≤ −  (  Ω 2  + D +  ϵ 1  )   ∫ Θ     η 2   ( t , z )  −   η ˜  2   ( t , z )   2  d z +  r 1   β 1    η ^  1   ∫ Θ     η 2   ( t , z )  −   η ˜  2   ( t , z )   2   d z   










   +     η ^  2  2    r 1   β 1   ∫ Θ     η 1   ( t , z )  −   η ˜  1   ( t , z )   2   d z +     η ^  2  2    r 1   β 1   ∫ Θ     η 2   ( t , z )  −   η ˜  2   ( t , z )   2   d z .   



(15)







Next,


   ∫ Θ    η 3   ( t , z )  −   η ˜  3   ( t , z )   [  d 3  Δ   η 3   ( t , z )  −   η ˜  3   ( t , z )    










  −  ( D +  ϵ 2  )    η 3   ( t , z )  −   η ˜  3   ( t , z )   −  r 2   β 2    η 1   ( t , z )   η 3   ( t , z )  −   η ˜  1   ( t , z )    η ˜  3   ( t , z )    










  −  β 3    η 3   ( t , z )   η 4   ( t , z )  −   η ˜  3   ( t , z )    η ˜  4   ( t , z )   −  β 4    η 3   ( t , z )   η 5   ( t , z )  −   η ˜  3   ( t , z )    η ˜  5   ( t , z )   ]  d z  










  ≤ −  (  Ω 3  + D +  ϵ 2  )   ∫ Θ     η 3   ( t , z )  −   η ˜  3   ( t , z )   2  d z  










  +   r 2   β 2    η ^  1  +  β 3    η ^  4  +  β 4    η ^  5  +     η ^  3  2    (  r 2   β 2  +  β 3  +  β 4  )    ∫ Θ     η 3   ( t , z )  −   η ˜  3   ( t , z )   2   d z  










  +     η ^  3  2    r 2   β 2   ∫ Θ     η 1   ( t , z )  −   η ˜  1   ( t , z )   2   d z +     η ^  3  2    β 3   ∫ Θ     η 4   ( t , z )  −   η ˜  4   ( t , z )   2   d z  










  +     η ^  3  2    β 4   ∫ Θ     η 5   ( t , z )  −   η ˜  5   ( t , z )   2   d z ,  



(16)




and


   ∫ Θ    η 4   ( t , z )  −   η ˜  4   ( t , z )   [  d 4  Δ   η 4   ( t , z )  −   η ˜  4   ( t , z )    













   −  ( D +  ϵ 3  )    η 4   ( t , z )  −   η ˜  4   ( t , z )   −  r 3   β 3    η 3   ( t , z )   η 4   ( t , z )  −   η ˜  3   ( t , z )    η ˜  4   ( t , z )   ]  d z   










   ≤ −  (  Ω 4  + D +  ϵ 3  )   ∫ Θ     η 4   ( t , z )  −   η ˜  4   ( t , z )   2  d z +  r 3   β 3    η ^  3   ∫ Θ     η 4   ( t , z )  −   η ˜  4   ( t , z )   2   d z   










   +     η ^  4  2    r 3   β 3   ∫ Θ     η 3   ( t , z )  −   η ˜  3   ( t , z )   2   d z +     η ^  4  2    r 3   β 3   ∫ Θ     η 4   ( t , z )  −   η ˜  4   ( t , z )   2   d z .   



(17)







Finally,


   ∫ Θ    η 5   ( t , z )  −   η ˜  5   ( t , z )   [  d 5  Δ   η 5   ( t , z )  −   η ˜  5   ( t , z )    













   −  ( D +  ϵ 4  )    η 5   ( t , z )  −   η ˜  5   ( t , z )   −  r 4   β 4    η 3   ( t , z )   η 5   ( t , z )  −   η ˜  3   ( t , z )    η ˜  5   ( t , z )   ]  d z   










   ≤ −  (  Ω 5  + D +  ϵ 4  )   ∫ Θ     η 5   ( t , z )  −   η ˜  5   ( t , z )   2  d z +  r 4   β 4    η ^  3   ∫ Θ     η 5   ( t , z )  −   η ˜  5   ( t , z )   2   d z   










   +     η ^  5  2    r 4   β 4   ∫ Θ     η 3   ( t , z )  −   η ˜  3   ( t , z )   2   d z +     η ^  5  2    r 4   β 4   ∫ Θ     η 5   ( t , z )  −   η ˜  5   ( t , z )   2   d z .   



(18)







Combining (15)–(18) for the  α -generalized conformable derivative of   V ˜   along the solution of model (4) for   t ≠  τ k  ,  k = 1 , 2 , …  , we obtain


      ∂ α   V ˜   ( t , η  ( t , · )  )    ∂  τ k     ≤ − 2  k 1   V ˜   ( t , η  ( t , · )  )  + 2  k 2   V ˜   ( t , η  ( t , · )  )  ,  



(19)




where


   k 1  = min   Ω 1  + D ,  Ω 2  + D +  ϵ 1  ,  Ω 3  + D +  ϵ 2  ,  Ω 4  + D +  ϵ 3  ,  Ω 5  + D +  ϵ 4   ,  













    k 2  = max      η ^  1  2    (  β 1  +  β 2  )  +     η ^  2  2    β 1   ( 2 +  r 1  )  +     η ^  3  2    β 2   ( 2 +  r 2  )  ,     η ^  1  2    β 1   ( 1 + 2  r 1  )  +     η ^  2  2    r 1   β 1  ,    










       η ^  1  2    β 2   ( 1 + 2  r 2  )  +     η ^  3  2    (  r 2   β 2  +  β 3  +  β 3  )  +     η ^  4  2    β 3   ( 2 +  r 3  )  +     η ^  5  2    β 4   ( 2 +  r 4  )  ,   










        η ^  3  2    β 3   ( 1 + 2  r 3  )  +     η ^  4  2    r 3   β 3  ,     η ^  3  2    β 4   ( 1 + 2  r 4  )  +     η ^  4  2    r 4   β 4   .   











From (19) and condition 4 of Theorem 1, for the derivative     D   τ k   α   +    V  ( t , η  ( t , · )  )    of the function   V ∈   V   τ k   α   M    , we have


    D   τ k   α   +    V  ( t , η  ( t , · )  )  ≤ 0 ,  t ≠  τ k  ,  k = 1 , 2 , … .  



(20)







From (12), (20) and Lemma 3, we obtain


  V  ( t , η  ( t , · )  )  ≤ V  (  t 0 +  ,  ϕ 0  )  ,  t ≥  t 0  .  



(21)







Let   σ > 0  . We can choose the constant   β = β ( σ ) > 0   so that   σ < β  . Let   ρ > 0  ,    t 0  ∈  R +    and    ϕ 0  ∈  S ρ  ∩  M ¯   (  t 0 +  , z )   ( σ )   .



Using (21), we obtain





    1 2    d 2   ( η , M  ( t , z )  )  = V  ( t , η  ( t , z )  )  ≤ V  (  t 0 +  ,  ϕ 0  )   










  =   1 2    d 2   (  ϕ 0  , M  (  t 0 +  , z )  )  ≤   1 2    σ 2  <   1 2    β 2  ,  








for   t ∈ [  t 0  , ∞ )  .



Hence   η  ( t , z ;  t 0  ,  ϕ 0  )  ∈ M  ( t , z )   ( β )    for   t >  t 0   ,   z ∈ Θ  , i.e., the solutions of system (4) are uniformly M-bounded. □





In order to establish our uniform global asymptotic stability of sets results, we use a function from the class  K  of functions defined by   K = { a ∈ C  [  R +  ,  R +  ]  :  a  is  strictly  increasing ,  a  ( 0 )  = 0 }  .



Theorem 2.

Assume that conditions 1–3 of Theorem 1 hold and instead of condition 4, we have



4’: there exists a function   c ∈ K   such that


    k 1  −  k 2  ≥   1 2   c  ( d  ( η , M  ( t , z )  )  )  ,  η ∈  R + 5  ,  z ∈ Θ ,  t ≠  τ k  ,  k = 1 , 2 , … .   











Then, the set  M  is uniformly globally asymptotically stable with respect to system (4).





Proof. 

First, we show that the set  M  is uniformly stable with respect to (4). Let   ϵ > 0  , and choose   δ = δ ( ϵ ) > 0   so that   δ < ϵ  . Let    t 0  ∈  R +   ,   ρ > 0  ,   z ∈ Θ  ,    ϕ 0  ∈  S ρ  ∩ M  (  t 0 +  , z )   ( δ )    and   η ( t , z ;  t 0  ,  ϕ 0  )   be the solution of system (4).



Consider again the Lyapunov function


  V  ( t , η  ( t , z )  )  =   1 2    d 2   ( η , M  ( t , z )  )  .  











Hence, we obtain (21), and


    1 2    d 2   ( η , M  ( t , z )  )  = V  ( t , η  ( t , z )  )  ≤ V  (  t 0 +  ,  ϕ 0  )   










  =   1 2    d 2   (  ϕ 0  , M  (  t 0 +  , z )  )  ≤   1 2    δ 2  <   1 2     ϵ  2   








for   t ∈ [  t 0  , ∞ )  .



Therefore,


  η  ( t , z ;  t 0  ,  ϕ 0  )  ∈ M  ( t , z )   ( ϵ )  ,  t ≥  t 0  ,  








which proves that the set  M  is uniformly stable with respect to (4).



Second, we prove the uniform global attractivity of the set  M  in regard to (4).



From (19) and condition 4’ of Theorem 2, for the  α -generalized conformable derivative     D   τ k   α   +    V  ( t , η  ( t , · )  )    of the function   V ∈   V   τ k   α   M    , we have


    D   τ k   α   +    V  ( t , η  ( t , · )  )  ≤ − c  ( d  ( η , M  ( t , · )  )  )  ,  t ≠  τ k  ,  k = 1 , 2 , … .  



(22)







Let   p > 0   and   ϵ > 0   be given. Let    ϕ 0  ∈  S ρ  ∩  M ¯   (  t 0 +  , z )   ( p )    for    t 0  ∈  R +   ,   ρ > 0  ,   z ∈ Θ   and   η ( t , z ;  t 0  ,  ϕ 0  )   be the solution of system (4).



Again, choose the number   δ = δ ( ϵ ) > 0   so that   δ < ϵ  .



We prove that there exists a   q = q ( p , ϵ ) > 0   such that for some    t *  ∈  [  t 0  ,  t 0  + q ]    and for   z ∈ Θ  , the following inequality holds:


  d ( η  (  t *  , z )  , M  (  t *  , z )  ) < δ .  



(23)







If (23) is not true, then for any   q > 0  , there exists a solution   η ( t , z ;  t 0  ,  ϕ 0  )   of system (4) for    t 0  ∈  R +   ,   z ∈ Θ  ,    ϕ 0  ∈  S ρ  ∩  M ¯   (  t 0 +  , z )   ( p )    and   ρ > 0  -arbitrary such that


  d ( η ( t , z ) , M ( t , z ) ) ≥ δ  



(24)




for   t ∈ [  t 0  ,  t 0  + q ]   and   z ∈ Θ  .



From (12) and (22) and Lemma 1 (i), we have


  V  ( t , η  ( t , · )  )  − V  (  t 0 +  ,  ϕ 0  )  =  I   t 0   α    D   t 0   α   +    V  ( t , η  ( t , · )  )  ≤ −  ∫   t 0   t    ( σ −  t 0  )   α − 1   c  ( d  ( η  ( σ , · )  , M  ( σ , · )  )  )  d σ .  



(25)







From the choice of the function   V ( t , η ( t , · ) )  , it follows that


   lim  t → ∞   V  ( t , η  ( t , · )  )  =   V  *  ≥ 0 .  



(26)







Then, we have


   ∫   t 0   ∞    ( t −  t 0  )   α − 1   c  ( d  ( η  ( t , · )  , M  ( t , · )  )  )  d t ≤   1 2    p 2  −   V  *  .  











We choose the number   q = q ( p , ε ) > 0   so that


     q α  α   =  ∫   t 0     t 0  + q     ( t −  t 0  )   α − 1   d t >     1 2   p 2  −   V  *  + 1   c ( δ )    .  











Then,


    1 2    p 2  −   V  *  ≥  ∫   t 0   ∞    ( t −  t 0  )   α − 1   c  ( d  ( η  ( t , · )  , M  ( t , · )  )  )  d t  










  ≥  ∫   t 0     t 0  + q     ( t −  t 0  )   α − 1   c  ( d  ( η  ( t , · )  , M  ( t , · )  )  )  d t ≥ c  ( δ )   ∫   t 0     t 0  + q     ( t −  t 0  )   α − 1   d t >   1 2    p 2  −   V  *  + 1 ,  








which is a contradiction.



Hence, there exists a   q = q ( p , ϵ ) > 0   such that for some    t *  ∈  [  t 0  ,  t 0  + q ]    and for   z ∈ Θ  , the inequality (23) holds.



Then, for   t ≥  t *    (and for any   t ≥  t 0  + q   as well), we have


    1 2    d 2   ( η , M  ( t , z )  )  = V  ( t , η  ( t , z )  )  ≤ V  (  t *  , η  (  t *  , z )  )   













   =   1 2    d 2   ( η  (  t *  , z )  , M  (  t *  , z )  )  ≤   1 2    δ 2  <   1 2     ϵ  2  .   











Therefore,


  η  ( t , z ;  t 0  ,  ϕ 0  )  ∈ M  ( t , z )   ( ϵ )  ,  t ≥  t 0  + q ,  








i.e., the set  M  is uniformly globally attractive with respect to system (4).



Finally, since Theorem 1 implies the uniform M-boundedness of the solutions of (4), then the set  M  is uniformly globally asymptotically stable with respect to system (4). □





In the particular case when   c ∈ K   is a constant, we have the following result.



Theorem 3.

Assume that conditions 1–3 of Theorem 1 hold and instead of condition 4, we have:



4”: there exists a constant   κ > 0   such that system’s parameters are such that


    k 1  −  k 2  ≥ κ .   











Then, the set  M  is uniformly globally exponentially stable with respect to system (4).





Proof. 

Let   t ≥  t 0   ,   z ∈ Θ   and   η = η ( t , z ;  t 0  ,  ϕ 0  )   be the solution of the IBVP (4)–(6) with an initial continuous function   ϕ 0  .



If we again consider the Lyapunov function  V  from Theorem 1, we can again obtain (12).



Also, (12), (19) and condition 4” lead to


    D   τ k   α   +    V  ( t , η  ( t , · )  )  ≤ − 2 κ V  ( t , η  ( t , · )  )  ,  t ≠  τ k  ,  k = 1 , 2 , … .  











The above estimate, (12) and Lemma 3 imply


  V  ( t , η  ( t , · )  )  ≤ V  (  t 0 +  ,  ϕ 0  )   E α   ( − 2 κ , t −  t 0  )  ,  t ≥  t 0  .  











Hence,


  d  ( η  ( t , z ;  t 0  ,  ϕ 0  )  , M  ( t , z )  )  ≤ d  (  ϕ 0  , M  (  t 0 +  , z )  )   E α  1 / 2    ( − 2 κ , t −  t 0  )  ,   t ≥  t 0  ,  z ∈ Θ ,  








i.e., the set  M  is uniformly globally exponentially stable with respect to system (4). □





Remark 7.

Theorems 1–3 offer criteria for the uniform M-boundedness, uniform global asymptotic stability and uniform global exponential stability of sets of states related to the extended impulsive conformable model (4). The supplied criteria are given as inequality types for the model parameters and impulse control functions and are therefore convenient for applications. Also, all the established sufficient conditions are independent of the recruitment rate of nutrients and the recruitment rate of   M 1   viruses, making the theoretical findings more comprehensive.





Remark 8.

Since the asymptotic behavior is very important for the viral dynamics, numerous researchers investigated the global asymptotic stability of single states of mathematical models in biology and medicine [4,6,9,12,24,26,39,40,60]. Theorems 2 and 3 extend all these results to the stability of sets case. Also, it is again demonstrated that exponential stability is a particular case of the asymptotic stability behavior.





Remark 9.

The consideration of appropriate impulsive functions can be used in the implementation of efficient impulsive drag-treatment strategies in non-impulsive models. In fact, Theorems 2 and 3 can be applied as impulsive control strategies that guarantee the uniform global asymptotic and exponential stabilities of a general set of cells to reduce the number of tumor cells and affect the immune response. Such an impulsive control strategy can be in the form of drag therapy applied to tumor cells that can decrease their number and increase the number of normal cells.





Remark 10.

It is well-known that models that include diffusion effects can adequately describe the temporal and spatial evolutions. Thus, their effects have been extensively studied in the literature [9,22,23,24,26]. If we remove all diffusion coefficients in model (4), i.e., if    d j  = 0  , then    Ω j  = 0  ,   j = 1 , 2 , … , 5  , in   k 1  . Hence, diffusion factors greatly affect the dynamics of the model.






4. Illustrative Example


In this section, the usefulness of the proposed method is demonstrated by an example.



Example 1.

We consider model (4) with   t ≥ 0  ,   z ∈ Θ ⊂  R + 3   ,   Θ   is a bounded set,   D = 0.02  ,    d 1  =  d 2  =  d 3  = 0.1  ,    d 4  =  d 5  = 0.03  ,    β 1  = 0.1  ,    β 2  = 0.03  ,    β 3  = 0.1  ,    β 4  = 0.03  ,    r 1  = 0.8  ,    r 2  = 0.8  ,    r 3  = 0.5  ,    r 4  = 0.8  ,    ϵ 1  = 0.0008  ,    ϵ 2  = 0.01  ,    ϵ 3  = 0.0006  ,    ϵ 4  = 0.01  ,    ξ  j k   =   3 2   −   1 k    ,   j = 3 , 5  ,   k = 1 , 2 , …  , and A and B are arbitrary. The biological meanings of all the parameters are the same as in model (4).



Consider the set   M ⊂  R +  × Θ ×  R + 5    such that


   M  ( t , z )  =  η ∈  R + 5  : η ≤ 0.4 ,   ( t , z , η )  ∈ M  .   








Hence, we have that     η ^  j  = 0.4  ,   j = 1 , 2 , … , 5  . We can check that all the conditions of Theorem 1 are satisfied for





    k 1  = min  {  Ω 1  + D ,  Ω 2  + D +  ϵ 1  ,  Ω 3  + D +  ϵ 2  ,  Ω 4  + D +  ϵ 3  ,  Ω 5  + D +  ϵ 4  }  = 0.32   








and


    k 2  = max      η ^  1  2    (  β 1  +  β 2  )  +     η ^  2  2    β 1   ( 2 +  r 1  )  +     η ^  3  2    β 2   ( 2 +  r 2  )  ,     η ^  1  2    β 1   ( 1 + 2  r 1  )  +     η ^  2  2    r 1   β 1  ,    













       η ^  1  2    β 2   ( 1 + 2  r 2  )  +     η ^  3  2    (  r 2   β 2  +  β 3  +  β 3  )  +     η ^  4  2    β 3   ( 2 +  r 3  )  +     η ^  5  2    β 4   ( 2 +  r 4  )  ,   













        η ^  3  2    β 3   ( 1 + 2  r 3  )  +     η ^  4  2    r 3   β 3  ,     η ^  3  2    β 4   ( 1 + 2  r 4  )  +     η ^  4  2    r 4   β 4   = 0.12442 > 0 .   











Hence, by Theorem 1, the solutions of (4) are uniformly M-bounded with respect to  M .



In addition, there exists a positive number κ such that


    k 1  −  k 2  = 0.1956 ≥ κ > 0 .   











Therefore, all the conditions of Theorem 3 are satisfied and the set  M  is uniformly globally exponentially stable with respect to (4).





Remark 11.

The authors in [26] investigated the global asymptotic stability of the tumor-free equilibrium    E 1  =   ( 0.35 , 0.3714 , 0 , 0.3846 , 0 )  T    of the model (3) using the same parameter values as in Example 1. They found that if   A = 0.02  ,   B = 0.01  ,


    A 1  =    A  r 1   β 1    D ( D +  ϵ 1  )    = 2.8571 > 1 ,   










   0.8 =  A 2  =    A  r 2   β 2    D ( D +  ϵ 2  )    <  A 1  +    A B  r 1   β 1   β 3    D  ( D +  ϵ 1  )   ( D +  ϵ 2  )   ( D +  ϵ 3  )     = 6.5201 ,   








the tumor-free equilibrium is globally asymptotically stable.



The set   M ( t , z )   in Example 1 includes the equilibrium   E 1  , and the values of   A 1   and   A 2   remain the same. Hence, our results generalize the results in [26] and some of the earliest results in [22] to the stability of sets case using the impulsive conformable approach. In addition, the impulsive controllers defined by the constants   ξ  j k   ,   j = 3 , 5  ,   k = 1 , 2 , …  , can be used to design an appropriate control therapeutic approach for tumor cells and CTL cells at the impulsive instances   τ k   [44,45,46,47]. Even in the case when the tumor-free equilibrium of the impulse-free model is unstable, the impulses may help control the tumor spread.






5. Conclusions


In this paper, we apply the impulsive conformable calculus approach to develop an   M 1   oncolytic virotherapy neural network model. The introduced model extends other models that describe the dynamics of the concentration of normal cells, tumor cells, nutrients,   M 1   viruses and cytotoxic T lymphocytes (CTL) cells [22,26]. The effect of diffusion coefficients, which is an important subject in virology models, is also considered. The advantages of the conformable derivatives make the developed model more adequate for practical applications. Also, the impulsive approach allows for the application of a suitable impulsive control therapy. The extended stability of sets concept is adopted for the introduced model. The impulsive conformable Lyapunov function technique is applied and criteria for boundedness of the solutions and uniform global asymptotic stability and global exponential stability of sets of a very general nature with respect to the model are established. The criteria are independent of the recruitment rate of the nutrients and the recruitment rate of the   M 1   viruses, and hence, make our theoretical findings more comprehensive. An example is also given to illustrate the proposed results. The established results open opportunities for applications and experimental work. Numerical studies of impulsive conformable and related models, such as those in [79,80,81], are also possible. The generalized set stability concept can be extended to study other types of impulsive control reaction–diffusion models in biology and medicine. An interesting direction for future consideration is to investigate the effect of delay factors. It is also possible to extend the proposed results to impulsive models with variable impulsive perturbations. Some potential extensions of this research include incorporating stochastic impulses or non-local diffusion terms.
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