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Abstract: Tumor angiogenesis, the formation of new blood vessels from pre-existing vas-
culature, is a crucial process in cancer growth and metastasis. Mathematical modeling
through partial differential equations helps to understand this complex biological phe-
nomenon. Here, we provide a conservation properties analysis in a tumor angiogenesis
model describing the evolution of endothelial cells, proteases, inhibitors, and extracellular
matrix. The adopted approach introduces a numerical framework that combines spatial
and time discretization techniques. Here, we focus on maintaining solution accuracy
while preserving physical quantities during the simulation process. The method achieved
second-order accuracy in both space and time discretizations, with conservation errors
showing consistent convergence as the mesh was refined. The numerical schema demon-
strates stable wave propagation patterns, in agreement with experimental observations.
Numerical experiments validate the approach and demonstrate its reliability for long-term
angiogenesis simulations.

Keywords: tumor angiogenesis; partial differential equations; numerical methods;
numerical conservation

MSC: 65M06; 65M12; 35Q92; 35Q92; 65L70; 65L20; 35K57

1. Introduction
Differential equations represent a powerful mathematical tool for describing and ana-

lyzing complex phenomena among various scientific disciplines. In particular, the field of
mathematical biology has guaranteed significant developments through the application
of both ordinary and partial differential equations, enabling researchers to capture the
dynamic behavior of complex biological systems and predict their evolution over time.
This approach has become especially important in studying intricate biological processes
that involve multiple interacting components and feedback mechanisms. Angiogenesis,
the formation of new blood vessels from pre-existing vasculature, is a very important
mechanism in both physiological and pathological processes, particularly in tumor devel-
opment and metastasis [1,2]. This complex biological process manages interactions among
multiple components: endothelial cells (ECs), tumor angiogenic factors (TAFs), matrix
metalloproteinases (MMPs), and angiogenic inhibitors. The mathematical modeling of
such intricate biological dynamics through partial differential equations (PDEs) provides
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a powerful framework for understanding and predicting angiogenic behavior [3,4]. Let
us consider a one-dimensional tumor angiogenesis model, presented in [5], describing
the spatio-temporal evolution of four key variables, namely the endothelial cell density
C(x, t), protease concentration P(x, t), inhibitor concentration I(x, t), and extracellular
matrix (ECM) density F(x, t), where x ∈ Ω = [0, L f ] and t ∈ [t0, Tf ] denote, respectively,
the spatial and time domains. The coupling among these variables through chemotaxis,
haptotaxis, and chemical interactions is modeled by the following system of partial differ-
ential equations:

∂C
∂t

= dC
∂2C
∂x2 +

∂

∂x

(
f I

∂I
∂x

)
− ∂

∂x

(
fF

∂F
∂x

)
− ∂

∂x

(
fT

∂T
∂x

)
+ k1C(1 − C)

∂P
∂t

= dP
∂2P
∂x2 − k3PI + k4TC + k5T − k6P

∂I
∂t

= dI
∂2 I
∂x2 − k3PI

∂F
∂t

= −k2PF (x, t) ∈ Ω × [t0, Tf ],

(1)

where the chemotactic and haptotactic sensitivity functions are defined as follows:

fF = α1C, f I = α2C, fT =
α3C

1 + α4T
. (2)

The TAF concentration is modeled as follows:

T(x) = exp
(
−ϵ(L f − x)2

)
. (3)

The system (1) is subject to no-flux (Neumann) boundary conditions:

∂u
∂x

∣∣∣∣
x=0

=
∂u
∂x

∣∣∣∣
x=L f

= 0, for u ∈ {C, P, I, F} (4)

and the following initial conditions:

C(x, 0) =

C0, 0 ≤ x ≤ a

0, a < x ≤ L f
, u(x, 0) =


ξ1, if u = P

ξ2, if u = I

ξ3, if u = F

(5)

where C0 > 0 and ξi represent small random perturbations. In this paper, we analyze
the numerical conservation properties of this system and investigate the conservation-
preserving of discretization schema. The focus is on maintaining key physical quantities
during numerical integration while ensuring solution accuracy and stability. We start by
recalling from [5] the main steps and features of the numerical schema. Hence, we introduce
a framework for analyzing and preserving discrete conservation properties, which is im-
portant for obtaining physically meaningful solutions in long-time simulations. We employ
the Method of Lines (MOL) approach combined with the forward Euler time integration,
analyzing its capability to preserve main physical quantities during the simulation of tumor
angiogenesis. This analysis begins with the identification of the conservation properties
related to the continuous system (1)–(5). Particular attention is given to the preservation
of total mass and chemical species balance in the discrete setting. We also provide a the-
oretical analysis of the conservation properties in the discrete framework. Moreover, we
also include error estimates for both spatial and time discretizations, with a focus on how
these errors impact the conservation of key physical quantities. The analysis is performed
through numerical experiments that demonstrate the practical importance of conservation
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in tumor angiogenesis simulations. Several numerical approaches have been previously
proposed for solving angiogenesis models. Finite element implementations [6,7], while
accurate, can be computationally expensive and may not guarantee mass conservation.
Some recent works have employed splitting methods [8,9] that, although efficient, can in-
troduce artificial numerical diffusion. Spectral methods [10] provide high accuracy but face
challenges with the nonlinear terms typical in angiogenesis models. Moreover, existing nu-
merical frameworks typically focus either on accuracy [11] or conservation properties [12]
but rarely address both simultaneously. More recent attempts using hybrid methods [13,14]
have shown improvements but still face stability issues in long-term simulations. The aim
of this work is to analyze and establish the conservation properties of a numerical schema
for tumor angiogenesis simulations, with a particular focus on maintaining physical fidelity
during long-term integration. We aim to develop and validate a framework for preserving
discrete conservation laws while ensuring solution accuracy and stability. Furthermore,
we provide theoretical error estimates for both spatial and temporal discretizations, with
special attention to how these errors impact the conservation of key physical quantities. The
remaining parts of the paper are organized as follows: Section 2 examines the conservation
laws of the continuous system, deriving explicit expressions for the conserved quantities.
Section 3 presents an analysis of the numerical discretization schema proposed in [5], focus-
ing on its conservation properties, and theoretical error estimates for the conservation of
physical quantities. Section 4 presents numerical experiments that validate our theoretical
findings and demonstrate the importance of conservation in practical simulations. Finally,
Section 5 summarizes our findings and concludes the paper.

2. Conservation Law Analysis
Consider the system (1) on a bounded domain Ω ⊂ R with smooth boundary ∂Ω and

time interval [0, Tf ]; the system can be written in a compact form as follows:

∂u
∂t

= Au +F (u), (6)

where u = (C, P, I, F)T , and A is the linear differential operator:

Au =


dC

∂2C
∂x2

dP
∂2P
∂x2

dI
∂2 I
∂x2

0

, (7)

and F (u) contains all nonlinear reaction and taxis terms:

F (u) =


∂

∂x

(
f I

∂I
∂x

)
− ∂

∂x

(
fF

∂F
∂x

)
− ∂

∂x

(
fT

∂T
∂x

)
+ k1C(1 − C)

−k3PI + k4TC + k5T − k6P
−k3PI
−k2PF

. (8)

Let us establish the mathematical framework for analyzing the conservation properties
and deriving a priori estimates [15]. For this analysis, we set a Hilbert space H = L2(Ω)

equipped with the inner product

(u, v)L2 =
∫

Ω
u(x)v(x) dx,
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and the induced norm ∥u∥L2 =
√
(u, u)L2 . For higher regularity analysis, we work in the

Sobolev spaces Hk(Ω), k ∈ N, equipped with the norm

∥u∥Hk =

 ∑
|α|≤k

∥∂αu∥2
L2

1/2

.

The solution vector u : Ω × [0, Tf ] → R4, which is defined as

u(x, t) = (C(x, t), P(x, t), I(x, t), F(x, t))T , (9)

belongs to the product space V = [H1(Ω)]4 at each fixed time t, with temporal regularity
u ∈ C([0, Tf ]; V). The choice of the H1(Ω) function space is motivated by its guarantee
of square-integrability for both the functions and their first derivatives, a property that is
fundamental for ensuring the well-posedness of the advection–diffusion terms within the
system (1).

Assumption 1 (solution regularity). Throughout this paper, we assume the following:

1. u ∈ C([0, Tf ]; V) with V = [H1(Ω)]4,
2. u ∈ C4(Ω × [0, Tf ]) for error estimates,
3. Initial data u0 ∈ V ∩ [L∞(Ω)]4.

Theorem 1 (local conservation laws). Let u be a strong solution to system (1). Then, for any
measurable set ω ⊂ Ω, where n denotes the outward unit normal vector to ∂ω, the following local
conservation laws hold:

d
dt

∫
ω

C dx =
∫

∂ω
[dC∇C + f I∇I − fF∇F − fT∇T] · n ds +

∫
ω

k1C(1 − C) dx,

d
dt

∫
ω

P dx =
∫

∂ω
dP∇P · n ds +

∫
ω
[−k3PI + k4TC + k5T − k6P] dx,

d
dt

∫
ω

I dx =
∫

∂ω
dI∇I · n ds − k3

∫
ω

PI dx,

d
dt

∫
ω

F dx = −k2

∫
ω

PF dx.

(10)

Proof. For the endothelial cell equation, we have

d
dt

∫
ω

C dx =
∫

ω

∂C
∂t

dx

=
∫

ω
[∇ · (dC∇C) +∇ · ( f I∇I)−∇ · ( fF∇F)

−∇ · ( fT∇T) + k1C(1 − C)] dx.

(11)

Applying the divergence theorem to the flux terms yields this result. Similar computations
apply to the remaining components.

Theorem 2 (a priori estimates). Let u be a strong solution to system (1) with initial data u0 ∈ V.
Then, there exists a constant K > 0 depending only on the system parameters such that

d
dt
∥u(t)∥2

L1 + 2
4

∑
i=1

di∥∇ui∥2
L2 ≤ K(1 + ∥u(t)∥2

L2). (12)

Moreover, the solution satisfies the maximum principle:
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0 ≤ C(x, t) ≤ max{1, ∥C0∥L∞},

0 ≤ P(x, t) ≤ KP(1 + ∥P0∥L∞),

0 ≤ I(x, t) ≤ KI(1 + ∥I0∥L∞),

0 ≤ F(x, t) ≤ ∥F0∥L∞ ,

(13)

where KP and KI are positive constants depending on the system parameters.

Proof. We first establish the global L2 estimate. Taking the inner product of Equation (6)
with u in L2(Ω)4, we obtain the following:

1
2

d
dt
∥u∥2

L2 +
4

∑
i=1

di∥∇ui∥2
L2 = (F (u), u)L2

≤
∫

Ω

[
k1C2 + (k4T + k5)P + k6P2

]
dx

≤ K1(1 + ∥u∥2
L2)

(14)

where we used the inequality of Young and the boundedness of T(x). The estimate in
(13) follows from (14) by Gronwall inequality. For the maximum principle, we employ
the invariant region technique. Let R+ = {(C, P, I, F) ∈ R4 : C, P, I, F ≥ 0}; the outward
normal flux on ∂R+ satisfies appropriate sign conditions ensuring the invariance of R+.
The upper bounds follow from comparison principles applied to each component.

Theorem 3 (energy dissipation). Define the generalized energy functional

E(t) =
1
2

4

∑
i=1

[
∥∇ui∥2

L2 + λi∥ui∥2
L2

]
, (15)

where λi > 0 are appropriately chosen constants. Then, there exist positive constants α and β

such that
d
dt

E(t) + αE(t) ≤ β
(

1 + ∥u(t)∥2
L2

)
. (16)

Proof. Differentiating E(t) and using Equation (6), we have

d
dt

E(t) =
4

∑
i=1

[(∇ui,∇∂tui)L2 + λi(ui, ∂tui)L2 ]

=
4

∑
i=1

[
−di∥∆ui∥2

L2 − λidi∥∇ui∥2
L2

]
+ (F (u), u)V

≤ −min
i
{di}

4

∑
i=1

∥∆ui∥2
L2 − min

i
{λidi}

4

∑
i=1

∥∇ui∥2
L2

+K(1 + ∥u∥2
L2).

(17)

Choosing α = min{mini{di}, mini{λidi}} yields (16).

Theorem 4 (chemical kinetic conservation). For protease–inhibitor interaction, we define

QPI(t) =
∫

Ω
[P(x, t) + 2I(x, t)] dx. (18)

Then,

d
dt
QPI(t) =

∫
Ω
[k4TC + k5T − k6P] dx. (19)
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Proof. Direct differentiation of QPI(t) using the evolution equations for P and I yields

d
dt
QPI(t) =

∫
Ω

[
∂P
∂t

+ 2
∂I
∂t

]
dx

=
∫

Ω
[dP∆P − k3PI + k4TC + k5T − k6P + 2dI∆I − 2k3PI] dx

=
∫

Ω
[k4TC + k5T − k6P] dx,

(20)

where we used the no-flux boundary conditions to eliminate the diffusion terms.

3. Numerical Methods
In order to provide a numerical approximation of system (1), we adopt the MOL [16]

approach combined with forward Euler time integration proposed and described in [5].
Let us first recall the main aspects of this numerical framework. In order to discretize in
space direction, we introduce a uniform partition of Ω = [0, L f ]:

{xi = (i − 1)h : i = 1, . . . , M, h = L f /(M − 1)}, (21)

where M is the number of grid points and h is the mesh size. For each function u(x, t)
in (1), we consider its restriction to the grid lines (xi, t):

ui ≡ ui(t) = u(xi, t), i = 1, . . . , M. (22)

The spatial derivatives are approximated using central difference operators [17]:

Dxui =
ui+1 − ui−1

2h
, Dxxui =

ui+1 − 2ui + ui−1

h2 , (23)

which provide O(h2) accuracy. The no-flux boundary conditions (4) are defined in discrete
counterpart as follows:

u2 = u0, uM−1 = uM+1 for u ∈ {C, P, I, F}. (24)

The semi-discrete system resulting from the MOL application takes the following
form:

d
dt

Ci = dCDxxCi + Dx( f I Dx Ii)− Dx( fFDxFi)− Dx( fT DxTi) + k1Ci(1 − Ci),

d
dt

Pi = dPDxxPi − k3Pi Ii + k4TiCi + k5Ti − k6Pi,

d
dt

Ii = dI Dxx Ii − k3Pi Ii,

d
dt

Fi = −k2PiFi, i = 1, . . . , M,

(25)

where ( fF)i = α1Ci, ( f I)i = α2Ci, and ( fT)i = α3Ci/(1+α4Ti). In order to discretize in time
direction, we employ the forward Euler method [18] with time step τ:

un+1
i = un

i + τY(u)n
i , i = 1, . . . , M, n = 0, 1, . . . , N − 1, (26)

where un
i represents the numerical approximation to u(xi, tn) and Y(u)n

i is defined as

Y(u)n
i = A(u)n

i +F (u)n
i ,
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where the right-hand side of (25) is evaluated at time step n, with A(u)n
i and F (u)n

i
representing the discrete counterparts of the operators in (6). This numerical schema
achieves O(h2) +O(τ) accuracy:

|u(xi, tn)− un
i | = O(h2) +O(τ), ∀i = 1, . . . , M, ∀n = 1, . . . , N. (27)

In order to analyze the conservation properties of this numerical schema, we introduce
the discrete mass [19,20]:

Mh(vh) = h
M−1

∑
j=1

vj +
h
2
(v0 + vM), (28)

and the discrete energy functional

En
h =

h
2

M−1

∑
j=1

[
dC|DxCn

j |2 + dP|DxPn
j |2 + dI |Dx In

j |2 + |Fn
j |2
]
. (29)

Conservation Properties of the Numerical Schema

In this section, we analyze how the numerical schema presented in Section 3 preserves
the conservation properties of the continuous system (1). We begin by introducing discrete
analogs of the mass integrals using the trapezoidal rule approximation:

Mn
C,h = h

M−1

∑
j=1

Cn
j +

h
2
(Cn

0 + Cn
M),

Mn
P,h = h

M−1

∑
j=1

Pn
j +

h
2
(Pn

0 + Pn
M),

Mn
I,h = h

M−1

∑
j=1

In
j +

h
2
(In

0 + In
M),

Mn
F,h = h

M−1

∑
j=1

Fn
j +

h
2
(Fn

0 + Fn
M).

These discrete masses represent numerical approximations of the continuous mass
integrals (28) (see [21] for more information). The numerical schema is able to preserve
discrete analogs of the continuous conservation laws. This preservation is formalized in
the following theorem:

Theorem 5 (discrete conservation laws). The numerical solution generated by schema (26)
satisfies the following:

Mn+1
C,h −Mn

C,h

τ
= h

M−1

∑
j=1

[
dC(DxCn

j )(DxCn
j ) + Dx( f I

j Dx In
j )− Dx( f F

j DxFn
j )

−Dx( f T
j DxTj)

]
+ h

M−1

∑
j=1

k1Cn
j (1 − Cn

j ),

Mn+1
P,h −Mn

P,h

τ
= h

M−1

∑
j=1

[
dP(DxPn

j )(DxPn
j )− k3Pn

j In
j + k4TjCn

j + k5Tj − k6Pn
j

]
,

Mn+1
I,h −Mn

I,h

τ
= h

M−1

∑
j=1

[
dI(Dx In

j )(Dx In
j )− k3Pn

j In
j

]
,

Mn+1
F,h −Mn

F,h

τ
= −k2h

M−1

∑
j=1

Pn
j Fn

j ,

(30)
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where Dx is the central difference operator defined in (23).

These discrete conservation laws mirror their continuous counterparts from Theorem 1.
The proof follows from an analysis of the discrete operators and summation by parts,
taking advantage of the no-flux boundary conditions. Of particular biological interest is
the preservation of total mass in the system. Hence, the numerical schema maintains this
property with second-order accuracy:

Theorem 6 (global mass conservation). The discrete total mass satisfies the following:∣∣∣Mh(Cn
h + Pn

h + In
h + Fn

h )−Mh(C0
h + P0

h + I0
h + F0

h )
∣∣∣ ≤ Kh2, (31)

where Mh is the discrete mass operator defined in (28) and K is independent of h and τ.

Another aspect is the preservation of the protease–inhibitor balance. For this, we
define the discrete analog:

Qn
PI,h = Mh(Pn

h + 2In
h ), (32)

which evolves according to the following:

Qn+1
PI,h −Qn

PI,h

τ
=

M−1

∑
j=1

[k4TjCn
j + k5Tj − k6Pn

j ]. (33)

Corollary 1 (local discrete conservation). For each j = 1, . . . , M − 1, the discrete quantities
satisfy the following:

h
j+1

∑
i=j−1

[Cn
i + Pn

i + In
i + Fn

i ]− h
j+1

∑
i=j−1

[C0
i + P0

i + I0
i + F0

i ] = O(h2). (34)

The stability of our numerical schema is guaranteed under appropriate time step
restrictions.

Theorem 7 (discrete stability). Under the CFL condition

τ ≤ min
{

h2

2dC
,

h2

2dP
,

h2

2dI
,

1
k2∥Ph∥∞

}
, (35)

the numerical solution remains bounded

max
0≤n≤N

∥un
h∥∞ ≤ K∥u0

h∥∞, (36)

where K depends only on T and system parameters.

The stability result confirms that the numerical solutions are well behaved [22], but
we also focus on quantifying how well they preserve the conservation properties of the
continuous system [23]. This leads to the following result:

Theorem 8 (conservation error estimates). Let u(x, t) be a solution of system (1) with regularity
u ∈ C4(Ω × [0, Tf ]) for u ∈ {C, P, I, F}. Under the CFL condition (35), for each component mass,
we have



Mathematics 2025, 13, 28 9 of 15

|MC(tn)−Mn
C,h| ≤ K1(h2 + τ),

|MP(tn)−Mn
P,h| ≤ K2(h2 + τ),

|MI(tn)−Mn
I,h| ≤ K3(h2 + τ),

|MF(tn)−Mn
F,h| ≤ K4(h2 + τ),

(37)

where the constants Ki depend on bounds for appropriate derivatives of the solution but are indepen-
dent of h and τ.

The proof of this result relies on the analysis of both space and time discretization
errors. For the spatial part, the trapezoidal rule provides second-order accuracy∣∣∣∣∫Ω

u(x, tn)dx −Mn
u,h

∣∣∣∣ ≤ Kh2∥uxx(tn)∥L∞(Ω), (38)

while the error comes from our forward Euler discretization:∣∣∣∣∣ d
dt
Mu(tn)−

Mn+1
u,h −Mn

u,h

τ

∣∣∣∣∣ ≤ Kτ∥utt∥L∞(Ω). (39)

In order to quantify the conservation of total physical quantities, we define the conser-
vation error

En =
|Mh(Cn

h + Pn
h + In

h + Fn
h )−Mh(C0

h + P0
h + I0

h + F0
h )|

Mh(C0
h + P0

h + I0
h + F0

h )
. (40)

The numerical schema (26) ensures that

En ≤ K(h2 + τ), (41)

where K depends only on the problem constants and the solution regularity. These
estimates lead to the main convergence result, which combines solution accuracy
with conservation.

Theorem 9 (convergence with conservation). For sufficiently regular solutions, the numerical
schema provides simultaneous convergence of the solution and its conservation properties:

max
0≤n≤N

(∥u(tn)− un
h∥∞ + |M(u(tn))−Mh(u

n
h)|) ≤ K(h2 + τ), (42)

where K depends on the regularity of the exact solution but is independent of h and τ.

4. Numerical Results and Discussion
In this section, we present some numerical experiments to confirm the expected

results achieved in the theoretical analysis. The numerical validation of the proposed
theoretical framework begins with computational experiments [24,25] conducted on the
spatial domain Ω = [0, 1] with final time Tf = 1. The model parameters were selected to
represent physiologically relevant conditions: diffusion coefficients dC = dP = dI = 0.001;
chemotactic/haptotactic sensitivities α1 = 0.4, α2 = 0.3, α3 = 0.5, α4 = 0.1; and reaction
rates k1 = 0.1, k2 = 0.3, k3 = 0.2, k4 = 0.4, k5 = 0.1, k6 = 0.2. Initial conditions were
prescribed as a discontinuous profile for endothelial cells:



Mathematics 2025, 13, 28 10 of 15

C0(x) =

1.0, 0 ≤ x ≤ 0.1

0, otherwise,
(43)

with protease, inhibitor, and ECM distributions initialized as P0(x) = 0.1 + 0.01ξ1(x),
I0(x) = 0.1 + 0.01ξ2(x), and F0(x) = 1.0 + 0.01ξ3(x), where ξi(x) represent uniform
random perturbations in [0, 1]. In order to implement the CFL condition established in
Theorem 7 in practice, we focus on demonstrating that selecting an appropriate time step
size is systematically achieved in our numerical experiments. The system parameters
(dC, dP, dI) = (0.001, 0.001, 0.001) and k2 = 0.3 allow for a systematic determination of
stable time steps. Using identical diffusion coefficients, the parabolic stability constraint
reduces to the following:

τdiff =
h2

2d
= 500h2, where d = dC = dP = dI = 0.001. (44)

For the reaction terms, we apply the maximum principle to ensure that ∥Ph∥∞ remains
bounded, leading to the reaction stability constraint:

τreac =
1

k2∥Ph∥∞
≤ 1

k2 max{1, ∥P0∥∞} ≈ 16.67. (45)

To ensure stability while maintaining efficiency, we choose the following:

τ = (1 − ϵ)min{τdiff, τreac} (46)

where ϵ = 0.1 is chosen based on numerical experiments as a safety factor to account for
discretization errors and floating-point arithmetic effects. For the mesh refinement analysis,
we employ a geometric sequence of spatial discretizations:

hk = 2−kh0, k = 6, 7, 8, 9, h0 = 1 (47)

corresponding to mesh sizes h ∈ {1/64, 1/128, 1/256, 1/512}. The associated time steps are
determined as follows:

τk = (1 − ϵ)min{500h2
k , 16.67}. (48)

The scheme preserves both the parabolic CFL condition τ ≤ h2

2d and the reaction’s
stability bound

τ ≤ 1
k2∥Ph∥∞

.

Furthermore, it ensures the optimal convergence rate O(h2 + τ) proven in Theorem 8,
which establishes that ∥u(tn)− un

h∥∞ ≤ C(h2 + τ) for some constant C independent of
both h and τ. The numerical results in Table 1 confirm the effectiveness of this approach,
showing both stability and the predicted convergence rates.

Figure 1 exhibits the spatial–temporal evolution of all system components. The en-
dothelial cell density shows characteristic traveling wave behavior with measured wave
speed v = 0.023 ± 0.001 units per time, consistent with experimental observations of angio-
genic expansion. The protease concentration shows localized peaks before the endothelial
cell front, while inhibitor profiles develop in response to protease activity, maintaining the
theoretically predicted balance. The conservation properties established in Theorem 5 were
validated through careful monitoring of the discrete masses Mn

C,h, Mn
P,h, Mn

I,h, and Mn
F,h.

The conservation error En defined in (40) exhibits second-order convergence under mesh
refinement, as shown in Table 1.
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Figure 1. Evolution of system components at times t = 0, t = 0.5, and t = 1.0. The profiles
demonstrate the maintenance of sharp interfaces and biologically relevant patterns.

Table 1. Conservation error convergence by varying both space and time grid step size.

h τ max En Rate

1/64 1/1000 2.43 × 10−4 -
1/128 1/4000 6.12 × 10−5 1.99
1/256 1/16,000 1.54 × 10−5 1.99
1/512 1/64,000 3.87 × 10−6 1.99

The global convergence behavior of our numerical schema was investigated through
an analysis of solution errors in multiple norms:

E∞(h, τ) = max
0≤n≤N

∥u(tn)− un
h∥∞, (49)

E2(h, τ) = max
0≤n≤N

(
h

M

∑
j=1

|u(xj, tn)− un
j |2
)1/2

, (50)

EM(h, τ) = max
0≤n≤N

|M(u(tn))− Mh(un
h)|. (51)

Figure 2 presents the convergence analysis results, confirming the theoretical predic-
tions of Theorem 9. All error measures exhibit second-order convergence rates when we
refine the mesh. Specifically, we use a reference solution computed on a very fine mesh
(h = 1/1024) as a substitute for the exact solution, since no analytical solution is available
for this nonlinear system.
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Figure 2. Convergence analysis demonstrating second-order accuracy in solution errors E∞, E2, and
mass conservation error EM. The dashed line indicates the O(h2) convergence rate.

The preservation of chemical kinetics, particularly the protease–inhibitor balance
quantified by Qn

PI,h, satisfies the discrete balance law:

Qn+1
PI,h − Qn

PI,h

τ
=

M−1

∑
j=1

[k4TjCn
j + k5Tj − k6Pn

j ] +O(h2 + τ). (52)

In Figure 3, the evolution of the discrete energy functional En
h is important in charac-

terizing solution behavior:

En
h =

h
2

M−1

∑
j=1

[
dC|DxCn

j |2 + dP|DxPn
j |2 + dI |Dx In

j |2 + |Fn
j |2
]
. (53)

Figure 3. Evolution of discrete masses over time, demonstrating preservation of conservation
properties within theoretical bounds.
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Figure 4 demonstrates that the numerical rate of energy change satisfied the following:

En+1
h − En

h
τ

+ 0.1En
h ≤ 1.2(1 + ∥un

h∥
2
2). (54)

Figure 4. Semi-logarithmic plot of discrete energy evolution demonstrating the predicted dissipation
behavior.

The stability characteristics were investigated through variation in the stability parameter:

λ =
τ

min(h2/(2dC), h2/(2dP), h2/(2dI), 1/(k2∥Ph∥∞))
. (55)

For λ ≤ 1, solutions remained bounded with

max
0≤n≤N

∥un
h∥∞ ≤ 1.5∥u0

h∥∞. (56)

The ECM density had degradation patterns that closely followed protease distribution,
with degradation rates satisfying the following:∣∣∣∣ d

dt

∫
Ω

F(x, t)dx + k2

∫
Ω

P(x, t)F(x, t)dx
∣∣∣∣ ≤ Kh2 (57)

where K ≈ 1.8, confirming the conservation of ECM mass up to the second-order of
accuracy [26]. From a computational perspective, this approach achieves the theoretical
O(h2 + τ) convergence rate, with conservation errors demonstrating steady second-order
convergence as the mesh is refined. The framework keeps physical fidelity throughout
numerical simulations through the discrete mass operators Mh and energy functional En

h ,
which effectively mirror their continuous counterparts while remaining computationally
efficient. The biological significance of our numerical findings is supported by several
observations: the endothelial cell density shows characteristic traveling wave patterns
with measured wave speeds (v = 0.023 ± 0.001 units per time) that correspond with
experimental data, peaks in protease concentration appropriately occur before the leading
edge of endothelial cells, and inhibitor profiles respond realistically to protease activity.
The demonstrated conservation properties provide a reliable foundation for more complex
models while achieving a balance between accuracy and stability. This framework allows
us to preserve conservation laws while accurately capturing complex biological dynamics,
serving as a template for future research in mathematical biology.



Mathematics 2025, 13, 28 14 of 15

5. Conclusions
In this study, we conducted an analysis of conservation laws in numerical schema

for tumor angiogenesis simulations. Our theoretical and numerical investigation focused
on establishing and validating conservation properties that are important for accurate
long-term simulations. A mathematical analysis was carried out to investigate the ability
of the proposed numerical framework to maintain conservation properties, with error
bounds of O(h2) +O(τ) for both space and time discretizations. Numerical experiments
supported the theoretical predictions, which showed that the discrete conservation laws
were in agreement with the continuous ones, which were from the original PDE system.
While our approach demonstrates robust conservation properties and numerical stability,
some limitations should be acknowledged. The framework is currently restricted to one-
dimensional domains and assumes constant diffusion coefficients, which may not fully
capture the complex three-dimensional nature and heterogeneous characteristics of biolog-
ical tissues. These limitations present opportunities for future research in extending the
model to higher dimensions and incorporating variable diffusion coefficients. The adopted
numerical approach indeed maintains these quantities during the simulations, and this
study is able to retain second-order accuracy based on convergence analysis as the mesh is
refined. To conclude, the numerical tests confirm both of our theoretical frameworks and
underlie the significance of conservation in the simulations of tumor angiogenesis.
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