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Abstract: Nonlinear equations are essential in research and engineering because they
simulate complicated processes such as fluid dynamics, chemical reactions, and population
growth. The development of advanced methods to address them becomes essential for
scientific and applied research enhancements, as their resolution influences innovations by
aiding in the proper prediction or optimization of the system. In this research, we develop a
novel biparametric family of inverse parallel techniques designed to improve stability and
accelerate convergence in parallel iterative algorithm. Bifurcation and chaos theory were
used to find the best parameter regions that increase the parallel method’s effectiveness
and stability. Our newly developed biparametric family of parallel techniques is more
computationally efficient than current approaches, as evidenced by significant reductions
in the number of iterations and basic operations each iterations step for solving nonlinear
equations. Engineering applications examined with rough beginning data demonstrate
high accuracy and superior convergence compared to existing classical parallel schemes.
Analysis of global convergence further shows that the proposed methods outperform
current methods in terms of error control, computational time, percentage convergence,
number of basic operations per iteration, and computational order. These findings indicate
broad usage potential in engineering and scientific computation.

Keywords: parallel schemes; bifurcation; chaos; global convergence

MSC: 65H04; 65H05; 65H10; 65H17

1. Introduction
Nonlinear equations have been essential throughout history, especially in the

prehistoric understanding of astronomy, architecture, and natural occurrences [1,2].
Understanding proportional curves and stability requires basic nonlinear problem-solving
skills, which were implicitly used by early civilizations such as the Egyptians and
Babylonians [3] while building pyramids and ziggurat. Greek geometry advancements [4]
led to the employment of nonlinear concepts in architecture and mechanics, while ancient
astronomers [5] utilized them to study celestial bodies in order to anticipate eclipses and
planetary movements, which is a nonlinear undertaking due to complicated orbital patterns
and interactions.

Nowadays, scientific and engineering domains rely heavily on nonlinear equations

f (x) = 0, (1)
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which are used in population biology, fluid dynamics, electronics, and climate
modeling [6,7]. They play a crucial role in the modeling of electrical circuits with nonlinear
components such as diodes and transistors [8], the design of robust structures under varied
loads [9], and the comprehension of chaotic weather patterns [10]. The analysis of complex
systems also relies heavily on nonlinear dynamics, such as the interactions in ecological
or economic models where minor adjustments can have disproportionately big effects, a
phenomenon which is frequently seen in chaotic systems.

Analytical and exact approaches [11–13] for solving nonlinear equations are frequently
inadequate and ineffective when used to tackle challenging real-world issues. Although
these methods are effective for linear or specifically structured equations, nonlinear
equations usually have high degrees of complexity, chaotic behavior, or interconnected
variables that make explicit solutions all but impossible. In order to solve nonlinear
equations analytically, for example, certain forms and simplifications must be used, which
may not accurately reflect the system’s dynamics and lead to less accurate approximations.
Moreover, it might be tricky to obtain a single general solution utilizing exact methods,
as nonlinear equations often produce multiple solutions or show sensitivity to initial
conditions [14]. This rigidity significantly restricts the use of conventional analytical
methods in dynamic domains such as quantum mechanics, structural engineering, and
meteorology.

Niels Henrik Abel made a significant contribution in 1824 with the Abel Impossibility
Theorem [15], which demonstrated that conventional algebraic approaches will never be
sufficient for certain nonlinear equations. In consequence, research on the development of
numerical schemes to approximate solutions was initiated, bringing forth new methods
for solving nonlinear equations. As a result, Isaac Newton and Joseph Raphson devised
Newton’s numerical technique [16], which was widely used in the nineteenth and twentieth
centuries and became a cornerstone for approximating the roots of nonlinear functions.
Many studies were then conducted to develop single-step, two-step, and multi-step
algorithms with and without parameters for solving nonlinear equations; see, e.g., [17–20]
and references therein.

Although these single root-finding methods iteratively approached the exact solutions
using tangent lines, they had a number of significant drawbacks:

- These methods have local convergence behavior, and require close values for the initial
guess.

- Single root-finding methods are very sensitive to complex roots or equations.
- Equations with closely spaced roots can easily diverge or settle on an incorrect root.
- Single root-finding algorithms frequently diverge when the derivative of the functions

approaches zero.
- These methods require computing the first or higher derivative at each iteration, which

can be computationally costly, increasing overall time complexity.
- In certain circumstances, particularly when starting values are poorly chosen or

functions have complex shapes, the approach might enter cycles (bifurcation or
chaos [21]) in which it oscillates between points without reaching a solution, resulting
in waste of both computational resources and time.

To overcome these concerns, more complex strategies such as parallel techniques [22]
have been developed, which use several processors on a computer to find all the roots
of (1). These parallel algorithms provide more stability and are less susceptible to initial
guesses [23], making them especially valuable for complex nonlinear problems.

The Weierstrass–Durand–Kerner [24] algorithm is an iterative approach for solving
nonlinear equations by simultaneously improving all roots. Given enough initial guesses,
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the technique becomes efficient for nonlinear equations with distinct roots due to its
simplicity and quadratic convergence:

y[u]i = x[u]i − ℘
(

x[u]i

)
(2)

where ℘
(

x[u]i

)
is Weierstrass’ correction, provided as follows:

℘
(

x[u]i

)
=

f
(

x[u]i

)
n
Π
j=1
j ̸=i

(
x[u]i − x[u]j

) , (i, j = 1, . . . , n). (3)

The parallel scheme in (2) offers local quadratic convergence for sequentially finding
all roots of (1) at a time. The inverse Weierstrass method, which is a modified version of (1),
was developed by Nedzibov et al. [25], and is written as follows:

y[u]i =

(
x[u]i

)2 n
Π
j=1
j ̸=i

(
x[u]i − x[u]j

)
x[u]i

n
Π
j=1
j ̸=i

(
x[u]i − x[u]j

)
+ f

(
x[u]i

) . (4)

This is also known as the inverse Weierstrass method, which has quadratic
convergence.

y[u]i = x[u]i −
f
(

x[u]i

)(
1 + f

(
x[u]i

))
(

1 +
(

1 − α f
(

x[u]i

)))
+

f
(

x[u]i

)
x[u]i

(
1 + f

(
x[u]i

)) . (5)

The inverse parallel scheme shown above (5) has local quadratic convergence.
In 1977, Ehrlich [26] introduced a convergent simultaneous method of the third order:

y[u]i = x[u]i − 1

1
Ni

(
x[u]i

) − n
∑
j=1
j ̸=i

(
1(

x[u]i −x[u]j

)
) (6)

where Ni(x[u]i ) =
g
(

x[u]j

)
g′
(

x[u]j

) .

Shams et al. [27] presented the fractional parallel approach with a convergence order
of ψ + 1 for solving (1):

x[u+1]
i =

(
x[u]i

)2 n
Π
j=1
j ̸=i

(
x[u]i − v[u]j

)
(

x[u]i

) n
Π
j=1
j ̸=i

(
x[u]i − v[u]j

)
+ f

(
x[u]i

) (7)

where v[u]j = x[u]j −
(

Γ(ψ + 1)
f (x[u]j )[

č⅁
ψ
ψ1

]
f (x[u]j )

)1/ψ

. Further, we compare our newly developed

method with the Nourien method [28] (NSM[4]), which has a convergence order of four:
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x[u+1]
i = x[u]i −

℘
(

x[u]i

)
1 +

n
∑
j=1
j ̸=i

(
℘
(

x[u]j

)
(

x[u]i −℘
(

x[u]j

)
−x[u]j

)
) . (8)

Motivated by the aforementioned method, the main aim of this study, which relies
on the strengths of the earlier approaches, is to develop an efficient parallel scheme for
simultaneously obtaining all roots of (1). Using insights from bifurcation and chaos theory,
we can carefully avoid parameter regions within the scheme that are inclined toward
bifurcation and chaotic behavior.

The main contribution of this study are:

- We develop new efficient parallel scheme families for finding all solutions to (1) via
parallel processing.

- We investigate the local convergence of the proposed biparametric families of an
inverse parallel scheme.

- We use the notion of bifurcation and chaos to avoid the trap of regions having periodic
cycling and reduce the chance of divergence or slow convergence.

- We analyze the percentage computing efficiency of parallel schemes in comparison to
classical methods.

- We assess the global convergence behavior with random initial values.

To the best of our knowledge, this contribution is novel. A thorough literature survey
revealed that little work exists on construction, analysis, and chaos in inverse parallel
schemes that are designed to find all roots of Equation (1). The rest of this study is
structured as follows. First, in Section 2, we construct and analyze biparametric families of
parallel schemes and determine their local convergence. In order to prevent the zone of
instability and periodic doubling, tripling, and other issues, Section 3 discusses choices and
bifurcations. The percentage computational efficiency is developed in Section 4. Section 5
deals with numerical results from some engineering applications. The study is concluded
in the last section.

2. Development and Analysis of Inverse Parallel Scheme
Inverse parallel algorithms have made major contributions to solving nonlinear

equations by allowing for simultaneous root-finding. In contrast to sequential approaches,
these schemes update each estimate continuously and iteratively on a parallel processor,
tackling all roots as interdependent. The above procedure reduces the sensitivity to
initial guesses while simultaneously increasing convergence speed, which is especially
valuable for nonlinear equations that have multiple roots. These techniques are perfect for
sophisticated and high-degree complex nonlinear problems, as they minimize computing
time by utilizing parallel processing. Their parallel nature also improves robustness,
enabling the method to have a high percentage of computational efficiency and preserve
stability in systems that are prone to chaotic or cyclic behavior. Considering the following
single root-finding method [29]:

z[u] = y[u] −
4 f ′
(

y[u]
)

f ′
(
x[u]
)
− 3 f ′

(
y[u]
) f

(
y[u]
)

f ′
(
y[u]
)
+ f ′

(
x[u]
) , (9)
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where y[u] = x[u] − f (x[u])
f ′(x[u])

, replacing x[u]j by V[u]
j in (3), we have

℘
[∗]
i

(
x[u]i

)
=

f
(

x[u]i

)
n
Π
j=1
j ̸=i

(
x[u]i − V[u]

j

) , (10)

where V[u]
j = x[u]j −

f
(

x[u]j

)
f ′
(

x[u]j

)
 1

1+ϑ
[∗]
1

 f
(

x[u]j

)
1+ϑ

[∗]
2

(
f
(

x[u]j

))2



 is a single-step biparametric

(ϑ[∗]
1 , ϑ

[∗]
1 ∈ R) family of iterative methods (M[∗]) of convergence order 2 proposed by Shams

et al. [30]. Using (10) and Weierstrass’ correction in (9), we develop a new biparametric
family of inverse parallel schemes (BM[∗]) to locate all roots of (1) simultaneously, as follows:

z[u]i = y[u]i −



4
n
Π

j=1
j ̸=i

 y[u]i −y[u]j

x[u]i −x[u]j





f
(

y[u]i

)
n
Π

j=1
j ̸=i

(
y[u]i −y[u]j

)


1−3
n
Π

j=1
j ̸=i

 y[u]i −y[u]j

x[u]i −x[u]j



1+

n
Π

j=1
j ̸=i

y[u]i −y[u]j

x[u]i −x[u]j





1 +



4
n
Π

j=1
j ̸=i

 y[u]i −y[u]j

x[u]i −x[u]j





f
(

y[u]i

)
n
Π

j=1
j ̸=i

(
y[u]i −y[u]j

)


1−3
n
Π

j=1
j ̸=i

 y[u]i −y[u]j

x[u]i −x[u]j



1+

n
Π

j=1
j ̸=i

y[u]i −y[u]j

x[u]i −x[u]j




y[u]i

(11)

where y[u]i = x[u]i −

f
(

x[u]i

)
n
Π

j=1
j ̸=i

(
x[u]i −V[u]

j

)

1+

f
(

x[u]i

)
n
Π

j=1
j ̸=i

(
x[u]i −V[u]

j

)

x[u]i

and

V[u]
j = x[u]j −

f
(

x[u]j

)
f ′
(

x[u]j

)
 1

1+ϑ
[∗]
1

 f
(

x[u]j

)
1+ϑ

[∗]
2

(
f
(

x[u]j

))2



, ϑ
[∗]
1 , ϑ

[∗]
2 ∈ R. The methods should also

be written as follows:

z[u]i = y[u]i −
℘
[∗∗]
i

(
y[u]i

)
1 +

℘
[∗∗]
i

(
y[u]i

)
y[u]i

, (12)
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where ℘
[∗∗]
i

(
y[u]i

)
=



4
n
Π

j=1
j ̸=i

 y[u]i −y[u]j

x[u]i −x[u]j





f
(

y[u]i

)
n
Π

j=1
j ̸=i

(
y[u]i −y[u]j

)


1−3
n
Π

j=1
j ̸=i

 y[u]i −y[u]j

x[u]i −x[u]j



1+

n
Π

j=1
j ̸=i

y[u]i −y[u]j

x[u]i −x[u]j




,

℘i

(
y[u]i

)
=

 f
(

y[u]i

)
n
Π

j=1
j ̸=i

(
y[u]i −y[u]j

)
, y[u]i = x[u]i −

℘
[∗]
i

(
x[u]i

)
1+

℘
[∗]
i

(
x[u]i

)
x[u]i

,

℘
[∗]
i

(
x[u]i

)
=

 f
(

x[u]i

)
n
Π

j=1
j ̸=i

(
x[u]i −V[u]

j

)
, and

V[u]
j = x[u]j −

f
(

x[u]j

)
f ′
(

x[u]j

)
 1

1+ϑ
[∗]
1

 f
(

x[u]j

)
1+ϑ

[∗]
2

(
f
(

x[u]j

))2



.

The local order of convergence of the biparametric families of inverse parallel schemes
is determined by the subsequent theorem.

Theorem 1. Let ζ1, ..., ζσ be simple roots of a nonlinear equation, and assume that the initial
distinct estimates x[0]1 , ..., x[0]n are sufficiently close to the true roots; then, the BM[∗] method achieves
a convergence order of six.

Proof. Let ϵi = x[u]i − ζi, ϵ′i = y[u]i − ζi, and ϵ
[∗]
i = z[u]i − ζi represent the errors in x[u]i , y[u]i ,

and u[u]
i , respectively. From the first step of BM[∗], we have

y[u]i − ζi = x[u]i − ζi −
℘
[∗]
i

(
x[u]i

)
1 +

℘
[∗]
i

(
x[u]i

)
x[u]i

, (13)

ϵ′i = ϵi −
℘
[∗]
i

(
x[u]i

)
1 +

℘
[∗]
i

(
x[u]i

)
x[u]i

= ϵi −

ϵi
n
Π
j=1
j ̸=i

x[u]i −ζ
[u]
j

x[u]i −V[u]
j

1 +
℘
[∗]
i

(
x[u]i

)
x[u]i

, (14)

ϵ′i = ϵi

1 −

n
Π
j=1
j ̸=i

x[u]i −ζ
[u]
j

x[u]i −V[u]
j

1 +
℘
[∗]
i

(
x[u]i

)
x[u]i

 = ϵi


1 −

n
Π
j=1
j ̸=i

x[u]i −ζ
[u]
j

x[u]i −V[u]
j

+ ϵi

x[u]i

n
Π
j=1
j ̸=i

x[u]i −ζ
[u]
j

x[u]i −V[u]
j

1 +
℘
[∗]
i

(
x[u]i

)
x[u]i

. (15)
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Utilizing
n
Π
j=1
j ̸=i

x[u]i −ζ
[u]
j

x[u]i −V[u]
j

− 1 =
n
∑

k ̸=j

−(ϵi)
2

x[u]i −V[u]
j

k−n
Π
j ̸=i

V[u]
i −ζ

[u]
j

x[u]i −V[u]
j

, we have

ϵ′i = ϵi


n
∑

k ̸=j

−(ϵj)
2

x[u]i −V[u]
j

k−n
Π
j ̸=i

(
V[u]

i −ζ
[u]
j

x[u]i −V[u]
j

)
+ (ϵi)

2

x[u]i

n
Π
j=1
j ̸=i

(
V[u]

i −ζ
[u]
j

x[u]i −V[u]
j

)

1 +
℘
[∗]
i

(
x[u]i

)
x[u]i

. (16)

If
∣∣ϵj
∣∣ = |ϵi| = |ϵ|, then

ϵ′i = ϵi.(ϵi)
2


n
∑

k ̸=j

−1
x[u]i −V[u]

j

k−n
Π
j ̸=i

(
V[u]

i −ζ
[u]
j

x[u]i −V[u]
j

)
+ 1

x[u]i

n
Π
j=1
j ̸=i

(
V[u]

i −ζ
[u]
j

x[u]i −V[u]
j

)

1 +
℘
[∗]
i

(
x[u]i

)
x[u]i

 = O
∣∣∣ϵ3
∣∣∣. (17)

In the second step, we obtain

z[u]i − ζi = y[u]i − ζi −
℘
[∗∗]
i

(
y[u]i

)
1 +

℘
[∗∗]
i

(
y[u]i

)
y[u]i

, (18)

where ℘
[∗∗]
i

(
y[u]i

)
=



4
n
Π

j=1
j ̸=i

 y[u]i −y[u]j

x[u]i −x[u]j





f
(

y[u]i

)
n
Π

j=1
j ̸=i

(
y[u]i −y[u]j

)


1−3
n
Π

j=1
j ̸=i

 y[u]i −y[u]j

x[u]i −x[u]j



1+

n
Π

j=1
j ̸=i

y[u]i −y[u]j

x[u]i −x[u]j




. Now, considering

n
Π
j=1
j ̸=i

(
y[u]i −y[u]j

x[u]i −x[u]j

)
≈ 1, we have

ϵ′i = ϵ′i −

ϵ′i
n
Π
j=1
j ̸=i

y[u]i −ζ
[u]
j

y[u]i −y[u]j

1 +
℘
[∗∗]
i

(
y[u]i

)
y[u]i

, (19)

z[u]i − ζi = y[u]i − ζi −
℘
[∗∗]
i

(
y[u]i

)
1 +

℘
[∗∗]
i

(
y[u]i

)
y[u]i

, (20)

ϵ
[∗]
i = ϵ′i

1 −

n
Π
j=1
j ̸=i

y[u]i −ζ
[u]
j

y[u]i −y[u]j

1 +
℘
[∗]
i

(
y[u]i

)
y[u]i

 = ϵ′i


1 −

n
Π
j=1
j ̸=i

y[u]i −−ζ
[u]
j

y[u]i −y[u]j

+ ϵi

y[u]i

n
Π
j=1
j ̸=i

y[u]i −ζ
[u]
j

y[u]i −y[u]j

1 +
℘
[∗∗]
i

(
y[u]i

)
y[u]i

. (21)
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Utilizing
n
Π
j=1
j ̸=i

y[u]i −ζ
[u]
j

y[u]i −y[u]j

− 1 =
n
∑

k ̸=j

−
(

ϵ′j

)
y[u]i −y[u]j

k−n
Π
j ̸=i

y[u]i −ζ
[u]
j

y[u]i −y[u]j

, we have

ϵ
[∗]
i = ϵ′i


n
∑

k ̸=j

−
(

ϵ′j

)
y[u]i −y[u]j

k−n
Π
j ̸=i

(
y[u]i −ζ

[u]
j

y[u]i −y[u]j

)
+

(
ϵ′j

)
y[u]i

n
Π
j=1
j ̸=i

(
y[u]i −ζ

[u]
j

y[u]i −y[u]j

)

1 +
℘
[∗]
i

(
y[u]i

)
y[u]i

. (22)

If
∣∣∣ϵ′j∣∣∣ = ∣∣ϵ′i∣∣ = |ϵ′|, then

ϵ
[∗]
i =

(
ϵ′j

)
.
(

ϵ′j

)


n
∑

k ̸=j

−1
y[u]i −y[u]j

k−n
Π
j ̸=i

(
y[u]i −ζ

[u]
j

y[u]i −y[u]j

)
+ 1

(ϵ′i)

n
Π
j=1
j ̸=i

(
y[u]i −ζ

[u]
j

y[u]i −y[u]j

)

1 +
℘
[∗]
i

(
y[u]i

)
y[u]i

 = O
∣∣∣(ϵ′)2

∣∣∣, (23)

ϵ
[∗]
i = O

∣∣∣(ϵ′)2
∣∣∣ = O

∣∣∣ϵ6
∣∣∣. (24)

This completes the proof.

3. Bifurcation Analysis of the Parallel Scheme
Bifurcation and chaos are essential in science and engineering, as they demonstrate

how even minor adjustments to parameters may significantly modify the behavior of a
system, thereby affecting its predictability and stability. Knowing about bifurcations [31]
aids in system design, helping to prevent undesirable transitions, while an understanding
of chaos [32] is necessary for managing unexpected dynamics in domains such as
fluid dynamics, electrical circuits, and weather forecasting. Both ideas have stimulated
innovation in control strategies, allowing for improved models in scientific study and more
robust engineering designs [33,34]. Bifurcation and chaos are important considerations in
the selection of parameters for numerical iterative schemes for solving nonlinear equations,
as they have a direct impact on the algorithm’s stability, speed, and convergence behavior.
The iterative technique M[∗] has two free parameters ϑ

[∗]
1 , ϑ

[∗]
2 that affect its convergence.

In this context, we can dissect the contributions of bifurcation and chaos to see how they
affect the convergence of schemes that simultaneously find all of the solutions at once.

Convergence Stability and Stable Fixed Point: In the parallel scheme, stable fixed points
are values of the parameter ϑ

[∗]
1 , ϑ

[∗]
2 which ensure that the iterative scheme converges to an

exact solution of (1) without oscillations or divergence. A stable fixed point (see Table 1,
column 2) is critical for parallel algorithms, as it guarantees that the method will converge
to the root as desired. Whether or not the fixed points are stable via parallel iteration using
multiple processors to simulate all solutions of (1) at once depends on the choice of ϑ

[∗]
1 , ϑ

[∗]
2 .

If ϑ
[∗]
1 , ϑ

[∗]
2 is chosen in such a way that the fixed point becomes unstable, then the parallel

iterative algorithm may fail to converge or may converge slowly, requiring additional CPU
time and increasing the computational cost. Provided that the fixed point remains stable,
the parallel algorithms can show stable fast convergence by carefully choosing the values
of ϑ

[∗]
1 , and ϑ

[∗]
2 . This stability can improve the convergence rate by reducing the number of

iterations required to achieve the desire accuracy with less iteration steps, enabling parallel
schemes that are reliable, consistent, and robust.
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Table 1. Analysis of the bifurcation of the iterative scheme M1 containing the region of stability and
instability.

Figure
[
ϑ
[∗]
1 , ϑ

[∗]
2 , ϑ

]
S[∗]

1 B[∗]
1 B[∗]

2 B[∗]
4−8 B[∗]

n CSB[∗]
2

Figure 1a [1.5, 1.5, 1] [1, 1.5] (1.5, 2.6] No [3.4, 3.6] [2.7, 3.4] [3.6, 5]
Figure 1b [1.5, 1.5, 1.9] [1, 1.9] (1.9, 2.0] (2, 2.1] (2.4, 2.9) [2.12, 2.4] [3, 5]

Figure 1c [1.5, 1.5, 1.5] (1, 1.5] (1.5, 2) (2.1, 2.2) (2.2, 2.41)
 [2, 2.4]

(2.4, 2.6)
(2.6, 3.4)

(3.4, 5]

Figure 1d [3.5, 3.5, 1] [1, 2.2] No [3.9, 4] [3.6, 4] [2.21, 3.6] [4, 5]
Figure 1e [3.5, 3.5, 0.5] [1, 2.4] No No No [2.4, 2.7] [2.7, 5]
Figure 2a [3, 3, 2.9] [1, 2.1] No No [2.2, 2.4] [2.4, 3.5] [3.1, 5]
Figure 2b [3, 3, 1.1] [1, 2.1] No No [3.5, 3.9] [2.1, 3.5] [3.9, 5]
Figure 2c [3, 3, 2.1] [1, 2.2] No No [2.2, 2.4] [2.4, 3.1] [3.1, 5]

Figure 2d [2, 2, 1] [1, 1.5]
[1.6, 2]

[2.0, 2.6] No No
 [1.6, 1.7]

[2.0, 2.1]
[2.6, 3.6]

(3.7, 5]

Figure 2e [2, 2, 2.1] (1, 1.9) (2, 2.2) No No
{

(1.9, 2.0)
(2.2, 2.9)

(2.9, 5]

Figure 2f [2, 2, 3.1] (1.5, 1.9) (1.9, 2) (2, 2.2) No No [2.2, 2.5]

Figure 2g [1, 1, 0.3] [1, 1.6] (1.6, 1.7)
{

(2.6, 2.8)
(4.5, 4.51)

(2.8, 2.9)
 (1.6, 1.7)

(2.1, 2.6)
(4.4, 4.5)

(4.51, 5]

Figure 2h [1, 1, 0.4]
{

(1, 1.6)
(3, 3.6)

(1.6, 1.61) (2.5, 3) (4.2, 4.5)
 [1.6, 1.7]

(2.0, 2.5)
(4.0, 4.2)

(4.5, 5]

Figure 2i [1, 1, 0.7] (1, 1.6)
{

(1.6, 1.61)
(2.4, 3.4)

{
(1.9, 2.4)
[3.5, 4.0]

(1.61, 1.9) No (4.1, 5]

Parallel Schemes: Bifurcation and Transition to Periodic Behavior: When the parameters
of parallel schemes change, the system may undergo bifurcation (see Table 1, column
3), with the previously stable fixed point separating into periodic cycles. This indicates
that the parallel iteration values alternate between a predetermined number of points
rather than converging to the exact solutions of (1). In parallel iterative schemes, periodic
behavior shows that the algorithm is cycling between points rather than approaching
the exact solution of (1). In order to avoid parameter ranges where bifurcations occur,
it is possible to carefully select the parameter values so as to preserve a predictable and
monotonic convergence towards the exact solution of (1). By identifying critical values
of the parameter used in the parallel scheme where the system transitions from stable
convergence to periodic cycles (see Table 1, column 3–4), bifurcation analysis can help to
make for a more informed choice of parameters for sure convergence to the exact solutions
that are required for accuracy.

Parallel Schemes’ Chaos and Sensitivity to Initial Conditions: The iterative sequence
will become very sensitive to initial conditions and exhibit unpredictable, non-converging
behavior if the parallel computer algorithm enters a chaotic phase for certain parameter
values. Chaos in parallel iterative algorithms is problematic because it implies that even a
minor change to the initial guess can result in an entirely different outcome, making the
process unpredictable and unreliable. Chaotic behavior affects the rate of convergence
because it prevents the method from settling near to the root and instead produces an
apparently random series of points. To keep the method in a stable or periodic setting
which supports convergence, parameter selection should avoid values that produce chaos
(see Table 1, column 6).
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To examine bifurcation and chaos in the parallel iterative sequence, we can apply the
following nonlinear function:

f (x) = x3 + ϑx + 1. (25)

In the parallel iterative scheme with damping parameter θ [35], we see distinct types
of chaotic behavior for various parameter values ϑ

[∗]
1 , ϑ

[∗]
2 , as shown in Table 1 and

Figures 1a–e and 2a–i . Figures 1a–e and 2a–i depicts how the iterative scheme progresses
from stability to chaos as the parameters are changed. Initially, the system behaves
consistently, with predictable and reliable convergence; however, if the parameters deviate,
period-doubling bifurcations occur, causing the system to move towards more complex
periodic orbits such as two- and four-period cycles. Eventually, the system enters a
chaotic regime characterized by scattered and irregular behavior with no clear periodicity,
highlighting its sensitivity to initial conditions and parameter changes. This chaotic
behavior highlights the scheme’s fluctuation in many places, where slight modifications
might result in significantly distinct results. Despite this, transition zones demonstrate that
the system can recover from chaos and restore stability, returning to predictable periodic
orbits or fixed-point convergence when the parameters are carefully adjusted.

(a) ϑ
[∗]
1 = 1.5, ϑ

[∗]
2 = 1.5, ϑ = 1.0. (b) ϑ

[∗]
1 = 1.5, ϑ

[∗]
2 = 1.5, ϑ = 1.9. (c) ϑ

[∗]
1 = 1.5, ϑ

[∗]
2 = 1.5, ϑ = 1.5.

(d) ϑ
[∗]
1 = 3.5, ϑ

[∗]
2 = 3.5, ϑ = 1.0. (e) ϑ

[∗]
1 = 3.5, ϑ

[∗]
2 = 3.5, ϑ = 05.

Figure 1. (a–e) Bifurcation and chaos in biparametric inverse parallel scheme for (25).

In Table 1, S[∗]1 ,B[∗]
1 −B[∗]

n and CSB[∗]
2 represents the following:

S[∗]1 : The system converges to a fixed point at these parameter values, represented by
a single straight line. These values show that the approach is stable.

B[∗]
1 : The interval where a single line separates into many branches, representing the

first bifurcation. This first split results in a two-period orbit in which the system oscillates
between two values rather than resting on one.

B[∗]
2 : Intervals that suggest period-doubling bifurcations.

B[∗]
4−8 : The intervals during which the system transitions from two-period to four-

period, eight-period, and so on, resulting in progressively more complex periodic orbits
that lead to a dense region where chaos occurs.

B[∗]
n : The dense cluster of points in this region with values that appear to be scattered

and lack obvious periodicity implies chaotic behavior. This chaotic zone indicates that
inverse families of parallel schemes are extremely sensitive, with even minor changes
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in parameters or initial starting values resulting in dramatically different results as the
method diverges.

CSB[∗]
2 : These intervals indicate that the iterative sequence is transitioning from the

chaotic regime to more predictable periodic orbits, and that it may eventually converge to
stable behavior for the interval containing the parameter values (see Table 1, last column).
The bifurcation analysis illustrates how sensitive the iterative technique is to parameter
choice, exhibiting transitions from stable convergence to chaos. Stable regions S[∗]1 relate
to fixed-point convergence, which has predictable and reliable behavior. As deviation in
parameters takes place, a period-doubling bifurcation occurs (B[∗]

2 ); then, higher orders of

periodic orbits occur (B[∗]
4−8) and chaos regimes take place (B[∗]

n ), which leads to irregular

sensitivity to initial conditions. However, the CSB[∗]
2 transition intervals demonstrate that

the system can readily return from chaos into a predictable orbit if the parameters are
controlled appropriately. These findings demonstrate the importance of tuning parameters
for stability, preventing chaos, and ensuring efficient iterative convergence of the scheme.

(a) ϑ
[∗]
1 = 3, ϑ

[∗]
2 = 3, ϑ = 2.9. (b) ϑ

[∗]
1 = 3, ϑ

[∗]
2 = 3, ϑ = 1.1. (c) ϑ

[∗]
1 = 3, ϑ

[∗]
2 = 3, ϑ = 2.1.

(d) ϑ
[∗]
1 = 2, ϑ

[∗]
2 = 2, ϑ = 1.0. (e) ϑ

[∗]
1 = 2, ϑ

[∗]
2 = 2, ϑ = 2.1. (f) ϑ

[∗]
1 = 2, ϑ

[∗]
2 = 2, ϑ = 3.1.

(g) ϑ
[∗]
1 = 1, ϑ

[∗]
2 = 1, ϑ = 0.3. (h) ϑ

[∗]
1 = 1, ϑ

[∗]
2 = 1, ϑ = 0.4. (i) ϑ

[∗]
1 = 1, ϑ

[∗]
2 = 1, ϑ = 0.7.

Figure 2. (a–i) Bifurcation and chaos in biparametric inverse parallel scheme for (25).

The choice of the parameters that the scheme utilizes influences how fast the error
decreases with each iteration. Along with the stability of the fixed point, both of these
factors affect the convergence rate of parallel iterative schemes. Delayed convergence
can occur when choosing parameter values that are either too large or too small, as the
correction term may not properly bring the current estimate closer to the exact solution of
(1). The convergence rate can be increased by carefully adjusting the parameters to keep
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the parallel scheme within a stable range. This allows the correction term to effectively
minimize the error in each iterative step, improving the stability, consistency, and robustness
of the scheme. Numerical schemes that prevent bifurcation and chaos tend to have faster
convergence, as the iterations are well-directed toward the exact solution of (1).

4. Computational Efficiency and Numerical Results
Percentage computational efficiency is essential in iterative approaches, as it measures

how well computer resources are used to achieve convergence. This measure shows
how quickly and effectively the algorithm produces accurate results by comparing the
method’s speed and resource consumption to the ideal or maximum possible performance.
High computational efficiency indicates that the approach uses less memory, time, and
computing power, all of which are critical for complicated or large-scale systems where
these resources are scarce.

Through computational efficiency, we can find out more about:

- Convergence Performance: Efficiency provides information about how fast a method
converges to a practical solution, which helps in choosing the right technique based
on the desired convergence speed.

- Optimization of Resources: High efficiency indicates that the technique requires less
memory and CPU, which is vital for large-scale or real-time engineering applications.

- Flexibility: Effective techniques are better suited to parallel computing, which reveals
how well they tackle higher-degree complex problems.

- Error Minimization: This emphasizes how effectively the technique reduces error every
repetitions, which is crucial in applications requiring accuracy.

Computational efficiency provides a comprehensive evaluation of the method’s overall
performance, guiding iterative approach selection based on resource requirements, speed,
and accuracy. The efficiency index for the parallel iterative scheme (PS) £(PS, n) is provided
as follows:

£(PS, n) =
log[r]
⅁ (26)

where r is the convergence order of the parallel scheme and ⅁ is the computational cost [36].
To evaluate the computing cost ⅁, we utilize arithmetic operation per iteration with a
specific weight based on the execution time of the operation. The weights used for division,
multiplication, and addition plus subtraction are ϕas, ϕm, and ϕd, respectively. The notation
ASn, Mn, and Dn represents the number of divisions, multiplications, additions, and
subtractions for each root for a given polynomial of degree n. The computation cost can be
estimated as

⅁ = ϕas ASn + ϕm Mn + Dnϕd. (27)

Thus,

(SB[∗], φ) =

£
(

SB[∗], n
)

£(φ, n)
− 1

× 100. (28)

Here, we compare the computational efficiency of our newly designed biparametric family
to the previous technique.
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Zhang et al. proposed the following method [37] (ZM[∗]):

x[u+1]
i = x[u]i −

w
(

x[u]i

)

1 + ∆[∗]
(

x[u]i

)
+

√√√√√√√√
(

1 + ∆[∗]
(

x[u]i

))2
+

4℘
(

x[u]i

) n
∑
j=1
j ̸=i

(
℘
(

x[u]j

)
(

x[u]i −x[u]j

)(
x[u]i −℘(x[u]i )−x[u]j

)
)

, (29)

where ∆[∗]
(

x[u]i

)
=

n
∑
j=1
j ̸=i

(
℘
(

x[u]j

)
x[u]i −x[u]j

)
. Using x[u]j = v[u]j as a correction in (4), Petkovic et al. [38]

accelerated the convergence order from three to six (abbreviated as PM[∗]):

x[u+1]
i = x[u]i − 1

1
Ni(x[u]i )

−
n
∑
j=1
j ̸=i

(
1(

x[u]i −v[u]j

)
) (30)

where v[u]j = x[u]j −
f
(

s[u]j

)
− f
(

x[u]j

)
2 f
(

s[u]j

)
− f
(

x[u]j

) f
(

x[u]j

)
f ′
(

x[u]j

) , and s[u]j = x[u]j −
f
(

x[u]j

)
f ′
(

x[u]j

) . Shams et al. presented

the following parallel schemes (SM[∗]) of sixth-order convergence [39]:

x[u+1]
i = x[u]i − 1

1
Ni(x[u]i )

−
n
∑
j=1
j ̸=i

(
1(

x[u]i −Z[u]
j

)
) (31)

where Z[u]
j = y[u]j −

f
(

x[u]j

)
f ′
(

x[u]j

)


 f
(

y[u]j

)
f
(

x[u]j

)


1−2

 f
(

y[u]j

)
f
(

x[u]j

)
+ϑ

[∗]
1

 f
(

y[u]j

)
f
(

x[u]j

)
2

,

y[u]j = x[u]j −
f
(

x[u]j

)
f ′
(

x[u]j

) , and ϑ
[∗]
1 ∈ R. Table 2 displays the number of basic arithmetic

operations used by parallel algorithms in each iterative iteration to approximate all roots
of (1) and (Table 3), illustrates the percentage computational efficiency.

Table 2. Operations utilized by parallel schemes.

Scheme ZM[∗] PM[∗] SM[∗] BM[∗]

+,− 20∅[∗∗] 29∅[∗∗] 17∅[∗∗] 15∅[∗∗]

× 18∅[∗∗] 26∅[∗∗] 21∅[∗∗] 20∅[∗∗]

Here, ∅[∗∗] = n2 + O(n), where the number of division for all methods are the same,
i.e., 2∅[∗∗].

Table 3. Percentage computational efficiency.

Parallel Schemes φ = ZM[∗] φ = PM[∗] φ = SM[∗]

(SB[∗], φ) 55.65% 29.23% 20.76%
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To examine the effectiveness and stability of our proposed method, several engineering
applications are analyzed in this section. In our experiments, we used the following
termination criteria:

(i) ϵ
[u]
i =

∥∥∥x[u+1]
i − x[u]i

∥∥∥ < 10−32, (32)

where ϵ
[u]
i represents the norm-2 residual error.

4.1. Example 1: Beam Design Model—Mechanical Engineering Application

In mechanical engineering, the beam designing concept is essential to building
structures that can effectively support loads and are failure-proof. Through the prediction
of stress distribution, deflection, and probable failure spots under varied forces, this model
aids engineers in the design of beams. Beams are crucial load-bearing components in
machinery, building frameworks, automobile chassis, and bridge construction, among other
applications for the model. The beam design model helps to minimize material usage and
optimize design by mimicking real-world conditions and guaranteeing structural integrity
and safety. Such models are crucial for increasing the overall performance of mechanical
systems, reducing expenses, and boosting durability. These models also aid in adhering
to industry norms and rules, resulting in engineering solutions that are dependable and
robust. The model [40] uses the following nonlinear equations:

f (x) = x4 + 4.0x3 − 24.0x2 + 16(x + 1) (33)

or
f (x) = (x − 2)2

(
x2 + 8.0x ++4.0

)
. (34)

Using MatLab’s built-in command, we obtained the following exact radical roots:

ζ1,2 = 2, 2, ζ3,4 = −4 ± 2
√

3i. (35)

Using the information in Table 1, we selected the optimal parameter values and obtained
numerical results for extremely rough initial guess values of

[x[0]1 , x[0]2 , x[0]3 , x[0]4 ] = [5, 4,−6 + 3i,−6 − 3i], (36)

as shown in Table 4.

Table 4. Numerical results of parallel schemes for (31).

Method e[6]1 e[6]2 e[6]3 e[6]4
CPU-time

ZM[∗] 4.1 × 10−25 0.1 × 10−14 8.1 × 10−33 2.7 × 10−44 3.2234534
PM[∗] 6.0 × 10−32 0.5 × 10−32 8.5 × 10−35 6.0 × 10−27 2.9283224
SM[∗] 3.4 × 10−34 0.0 1.8 × 10−22 3.5 × 10−24 2.3453532
BM[∗] 2.1 × 10−54 2.0 × 10−55 2.4 × 10−51 0.0 1.2345353

Table 4 clearly shows that our newly created methods are more efficient in terms of
residual error and computing time in seconds compared to existing approaches. To test the
global convergence of the parallel scheme, we can consider random initial starting values
such as



Mathematics 2025, 13, 67 15 of 24

x[0] = [x[0]1 , x[0]2 , x[0]3 , x[0]4 ], (37)

x[0]1 = [0.23, 0.32, 0.53, 0.54],

x[0]2 = [0.13, 0.21, 0.03, 0.34],

x[0]3 = [0.23, 0.32, 0.03, 0.34].

The numerical outcomes using initial approximation (37) are presented in Table 5.

Table 5. Consistency analysis of the parallel schemes for (31).

Scheme Max-Err Max-It [±,×,÷] P-Con Local-COC
PM[∗] 0.1 × 10−08 7 59.0 31.453% 4.4003224
NN[∗] 6.6 × 10−10 5 46.0 55.657% 5.67008645
NF[∗] 8.9 × 10−11 5 55.0 76.765% 5.45556455
SB[∗] 1.4 × 10−19 4 24.0 98.766% 6.1546746

Table 5 demonstrates the better performance of our newly developed inverse family
of parallel schemes SB[∗] for random initial values in terms of maximum error (Max-Err),
number of average iterations needed for convergence (Max-It), total number of basic
arithmetic operations per iteration ([±,×,÷]), percentage convergence (P-Con), and local
computational order of convergence (Local-COC) compared to PM[∗], NN[∗], NF[∗]. The
results show that our inverse parallel scheme SB[∗] is more feasible, consistent, and efficient
than the existing PM[∗], NN[∗], and NF[∗] methods. For random iterations, the greatest
residual error is shown in Figure 3.
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Figure 3. Error graph of the parallel scheme for solving (34) using random test vectors.

4.2. Example 2: Thermodynamics Mechanical Engineering Application [41]

Numerous businesses rely on thermodynamics, a mechanical engineering application,
to design systems that transform energy between different forms. The devices used
in these applications include compressors, engines, turbines, and refrigerators, all of
which are critical components of manufacturing, HVAC systems, and power generation.
In order to minimize energy losses and maximize performance, engineers can lower
operating costs by assessing energy transformations and efficiencies. Understanding the
characteristics of working fluids, heat transmission, and work exchanges is made possible
by thermodynamic concepts, which also enable efficient system design. These insights
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are used by mechanical engineers to create technology that is more dependable, efficient,
and ecologically friendly. The future of energy-efficient technologies will ultimately be
shaped by these applications, which are propelling developments in industrial automation,
transportation, and renewable energy. The following nonlinear equations are frequently
modeled by thermodynamic systems:

ρ = 1.9520.0 × 10−14x4 − 9.5838 × 10−11x3 + 9.7215 × 10−8x2 + 1.671 × 10−4x + 0.99403, (38)

where ρ is the specific hear and For ρ = 1.20. This simplifies to

f (x) = 1.9520.0 × 10−14x4 − 9.5838 × 10−11x3 + 9.7215 × 10−8x2

+1.671 × 10−4x + 0.99403.00. (39)

The nonlinear Equation (39) has the following exact roots accurate up to two decimal places:

ζ1 = 1126.009, ζ2,3 = 2536.83 ± 910.50i, ζ4 = −1289.95. (40)

Using the information in Table 1, we selected the optimal parameter values and obtained
the numerical results for extremely rough initial guess values, as shown in Table 6:

[x[0]1 , x[0]2,3, x[0]4 ] = [1500, 2700 ± 11i,−1500]. (41)

The numerical outcomes using the initial approximation (39) are presented in Table 6.

Table 6. Numerical results of parallel schemes for (39).

Method e[6]1 e[6]2 e[6]3 e[6]4
CPU-time

ZM[∗] 5.7 × 10−15 1.0 × 10−19 9.1 × 10−23 6.7 × 10−44 4.546435
PM[∗] 4.5 × 10−22 0.1 × 10−32 4.1 × 10−25 9.9 × 10−27 3.453646
SM[∗] 1.1 × 10−24 0.7 × 10−21 6.0 × 10−22 1.0 × 10−24 2.342564
BM[∗] 0.1 × 10−54 0.0 0.0 0.1 × 10−64 1.976578

Table 6 clearly shows that our newly created methods are more efficient in terms of
residual error and computation time in seconds compared to the existing PM[∗], NN[∗], and
NF[∗] methods. To test the global convergence of the parallel approach, we can consider
random initial starting values such as

x[0] = [x[0]1 , x[0]2 , x[0]3 , x[0]4 ], (42)

x[0]1 = [0.00, 0.32, 0.73, 0.84],

x[0]2 = [0.05, 0.11, 0.06, 0.38],

x[0]3 = [0.11, 0.42, 0.53, 0.09].

The numerical outcomes using initial approximation (42) are presented in Table 7.

Table 7. Consistency analysis of the parallel schemes for (39).

Scheme Max-Err Max-It [±,×,÷] P-Con Local-COC
PM[∗] 6.1 × 10−10 9 45 48.876% 4.4533444
NN[∗] 8.7 × 10−12 7 35 61.879% 5.67545645
NF[∗] 0.1 × 10−11 6 27 95.980% 5.87864545
SB[∗] 1.2 × 10−17 4 19 99.879% 6.04353546
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Our newly developed inverse family of parallel schemes BM[∗] outperforms with
respect to the maximum error, number of iterations needed for convergence, total number
of basic arithmetic operations per iteration, percentage divergence, and local computational
order of convergence for random initial values, as Table 7 demonstrates. Consequently,
our parallel technique BM[∗] is more realistic, consistent, and efficient than the current
PM[∗], NN[∗], and NF[∗] methods. Figure 4, illustrates the highest residual error on
random iterations.
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Figure 4. Error graph of the parallel scheme for solving (38) using random test vectors.

4.3. Example 3: Chinese Women’s Osteoporosis

Chinese women are more likely to develop osteoporosis due to genetic, dietary, and
lifestyle factors. When bone density decreases with age, Chinese women are more prone
to fractures, which can lead to disability and a reduced quality of life. In this population,
talking about osteoporosis is essential for raising awareness and promoting preventative
measures, as early treatments such as diet, exercise, and medication can dramatically reduce
risk. Addressing this issue adds to public health measures aimed at minimizing the burden
of osteoporosis among China’s aging population. The design of such osteoporosis measures
can be mathematically modeled [42], leading to the following nonlinear equation [38]:

Λ[∗] = 0.0039x3 − 0.78x2 + 39.9x + 3383, (43)

where Λ[∗] = 3850 provides the nonlinear equations

h(x) = 0.0039x3 − 0.78x2 + 39.9x − 467. (44)

The exact roots up to one decimal place are obtained using the built-in “Solve[.]” command
in Matlab, as follows:

ζ1 = 16.702300, ζ2 = 56.574000, ζ3 = 126.723500. (45)

Using the information provided in Table 1, we selected the optimal parameter values and
achieved the numerical results displayed in Table 8 for very rough initial guess values:

[x[0]1 , x[0]2 , x[0]3 ] = [20, 60, 130]. (46)

The numerical outcomes using initial approximation (44) are presented in Table 8.
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Table 8. Numerical results of parallel schemes for (44).

Method e[6]1 e[6]2 e[6]3
CPU-time

ZM[∗] 4.1 × 10−5 5.1 × 10−14 8.1 × 10−13 2.343535
PM[∗] 6.0 × 10−32 1.1 × 10−22 0.0 2.135034
SM[∗] 0.0 0.0 6.0 × 10−42 1.438593
BM[∗] 0.0 0.0 2.0 × 10−51 0.002133

Table 8 clearly shows that our newly created methods are more efficient in terms of
residual error and computation time in seconds than the existing PM[∗], NN[∗], and NF[∗]

methods. To test the global convergence, we considered random initial starting values
such as

x[0] = [x[0]1 , x[0]2 , x[0]3 ], (47)

x[0]1 = [0.17, 0.11, 0.53],

x[0]2 = [0.03, 0.01, 0.00],

x[0]3 = [0.20, 0.03, 0.14].

The numerical outcomes using initial approximation (47) are presented in Table 5.
Table 9 shows that for random initial values, our newly developed inverse family of

parallel schemes BM[∗] outperforms the existing PM[∗], NN[∗], and NF[∗] methods in terms
of maximum error, number of iterations needed for convergence, total number of basic
arithmetic operations per iteration, percentage divergence, and local computational order
of convergence. Consequently, our parallel computation algorithm BM[∗] is more flexible,
consistent, and efficient than the current PM[∗], NN[∗], and NF[∗] methods. Figure 5 shows
the maximum residual error on random iterations.

Table 9. Consistency analysis of the parallel schemes for (31).

Scheme Max-Err Max-It [±,×,÷] P-Con Local-COC
PM[∗] 7.1 × 10−03 10 67 33.879% 4.0653403
NN[∗] 8.8 × 10−07 8 41 78.876% 5.67545645
NF[∗] 0.9 × 10−11 7 34 87.875% 5.87000945
SB[∗] 2.2 × 10−18 5 29 98.765% 6.11343546
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Figure 5. Error graph of the parallel scheme for solving (44) using random test vectors.
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4.4. Example 4: Fractional Relaxation Oscillation Equations: Chemical Engineering Application

An important tool in chemical engineering, fractional relaxation oscillation equations
shed light on processes such as memory effects and anomalous diffusion that frequently
occur in complicated fluids and porous media. In situations where conventional integer-
order models might not be adequate, these equations use fractional derivatives to simulate
oscillatory and relaxation behaviors. Viscoelastic materials and catalytic processes are
examples of systems with time-dependent features whose dynamics can be precisely
captured by engineers by varying the fractional order. They are very helpful in chemical
engineering for modeling processes such as transport phenomena, adsorption, and reaction
kinetics. This fractional technique improves prediction and control when developing
effective separation systems and reactors. It also helps to optimize parameters in order
to attain the necessary level of process stability and product quality. The fractional
relaxation can be mathematically modeled [43], leading to the following nonlinear
differential equations:

dng(x)
dxn + ϕ[∗]g(x) = gn(x) + 1; σ0 ≤ x ≤ σ

[∗]
0

dn−1g(σ0)
dxn−1 = σ

[∗]
n−1,

dn−2g(σ0)
dxn−2 = σ

[∗]
n−2,

...

g(σ0) = σ
[∗]
0

(48)

where n = 2, σ
[∗]
n−1 = 1, σ

[∗]
n−2 =, ...,= σ

[∗]
∗ = 0. Using the method defined in [44], we

simulated (48) by the following nonlinear function:

g(x) =
x

Γ(2)
+

x2

Γ(3)
+

2x4

Γ(5)
+

6x5

Γ(6)
+

6x6

Γ(7)
(49)

where Γ(.) represents the gamma function. The exact roots up to one decimal place were
obtained using the built-in “Solve[.]” commend in MatLab:

ζ1,2 = 1.2401 ± 1.7446i, ζ3,4 = −3.3561 ± 1.7321i, ζ5 = 0.0, ζ6 = −1.608. (50)

For higher accuracy, we utilized the information regarding parameter selection in Table 1
to implement the parallel scheme to simultaneously find all solutions, as shown in Table 10,
by choosing the following rough initial approximations:

[x[0]1 , x[0]2 , x[0]3 , x[0]4 , x[0]5 , x[0]6 ] =

[
3 + 2i, 3 − 2i,−6 + 3i,
−6 − 3i, 3.0,−3.0

]
. (51)

Table 10. Consistency analysis of the parallel schemes for solving (48).

Scheme Max-Error Max-It [±,×,÷] Per-Divergence Local-COC
ZM[∗] 6.1 × 10−05 8 45 18.657656% 4.40075148
PM[∗] 1.5 × 10−12 8 35 38.87576% 5.11345645
SM[∗] 3.9 × 10−14 6 27 51.65865% 5.77000175
BM[∗] 1.0 × 10−19 5 19 88.76878% 6.08009465

Using the information in Table 1, we selected the optimal parameter values and
achieved the numerical results displayed in Table 11 for extremely rough initial estimations.
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Table 11. Numerical results of parallel schemes for solving (48).

Method e[6]1 e[6]2 e[6]3 e[6]4 e[6]5 e[6]6
CPU-time

ZM[∗] 0.1 × 10−15 5.1 × 10−14 0.0 1.7 × 10−44 1.3 × 10−21 4.1 × 10−35 4.324242
PM[∗] 1.0 × 10−32 1.1 × 10−32 0.0 1.0 × 10−27 5.6 × 10−29 6.0 × 10−42 3.535335
SM[∗] 9.9 × 10−54 9.1 × 10−31 0.0 3.0 × 10−24 5.5 × 10−25 0.0 2.356464
BM[∗] 8.7 × 10−64 0.0 0.0 0.1 × 10−74 0.0 0.0 1.543563

Table 4 clearly shows that our novel approaches are more efficient in terms of residual
error and computing time in seconds when compared to the existing PM[∗], NN[∗], and
NF[∗] methods. Taking into account a random initial starting value, we can check the
method’s global convergence as follows:

x[0] = [x[0]1 , x[0]2 , x[0]3 , x[0]4 , x[0]5 , x[0]6 ], (52)

x[0]1 = [0.23, 0.92, 0.53, 0.54, 24, 06],

x[0]2 = [0.09, 0.21, 0.01, 0.34, 65, 70],

x[0]3 = [0.00, 0.32, 0.03, 0.34, 30, 13].

The numerical outcomes using initial approximation (52) are presented in Table 10.
Table 10 shows that for random initial values, our newly developed inverse family of

parallel schemes BM[∗] performs better then the classical parallel methods PM[∗], NN[∗],
and NF[∗] in terms of the maximum error, number of iterations required for convergence,
total number of basic arithmetic operations per iteration, percentage divergence, and local
computational order of convergence. Therefore, in comparison to the existing methods
PM[∗], NN[∗], and NF[∗], our parallel approach BM[∗] is more reliable, consistent, and
effective. In Figure 6, the maximum residual error on random iterations is depicted.
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Figure 6. Error graph of the parallel scheme for solving (48) using random test vectors.

Results and Discussion

An inverse biparametric family of parallel algorithms BM[∗] was developed in this
study to solve nonlinear equations more efficiently. Bifurcation diagrams displaying chaotic
behavior in the parameter space were used to determine the ideal parameter values that
result in solution stability and enhanced performance.

Efficiency Analysis: The suggested approach was tested on three different applications
and compared to other methods (PM[∗], NN[∗], NF[∗]). The key performance indicators
we examined included the error, CPU time, percentage convergence–divergence, and
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percentage computational efficiency. Our suggested approach performed better than the
current approaches in these tests in the following ways:

- Our BM[∗] technique outperformed the PM[∗], NN[∗], and NF[∗] parallel algorithms in
terms of overall computation efficiency when accuracy and speed were combined (see
Tables 2 and 3). This high percentage efficiency demonstrates its practical applicability.

- The suggested method’s error was substantially lower than that of PM[∗], NN[∗], and
NF[∗]. This further illustrates its accuracy and dependability in root-finding procedures
(see Tables 4, 6, 8 and 11).

- The proposed method had lower computational costs as assessed by CPU time. These
advantages can be ascribed to carefully selected parameter values and an optimized
parallel structure (see Tables 5, 7, 9 and 10 and Figures 3–6).

- Our algorithm exhibited a higher proportion of convergence to the correct roots and
fewer divergent scenarios (see Table 1 and Figures 1 and 2). This indicates its robust
stability across a wide range of starting estimations and problem environments.

The validity of the inverse biparametric family of parallel schemes is confirmed by
the results. The proposed technique using bifurcation analysis for parameter optimization
represents a more reliable, faster, and accurate alternative to classical schemes such as
PM[∗], NN[∗], and NF[∗]. The proposed approach provides a significant advancement in
solving nonlinear equations, especially in cases when computing efficiency and precision
are crucial.

The proposed parallel techniques improved computing performance in engineering
models, but have limitations when applied to nonlinear equations or higher-dimensional
problems due to their increased complexity. Using parallel techniques for root-finding of
dimension higher than one requires significant reconfiguration.

In the future, the proposed approach could be used to solve systems of nonlinear
equations or generic higher-dimensional problems. To achieve this, research on
novel parallel schemes tailored specifically to multidimensional spaces, as well as to
convergence and efficiency, may be required. Hybrid strategies that combine the proposed
method with global optimization techniques such as swarm intelligence or evolutionary
algorithms will be more reliable in reducing the risk of initial estimates by investigating
globalization strategies.

5. Conclusions
In this study, we construct a new family of inverse biparametric parallel techniques

BM[∗] in order to improve the stability, convergence order, and efficiency of parallel
iterative schemes. Utilizing the concepts of bifurcation and chaos theory, we computed
the ideal parameter values in which the biparametric family of inverse parallel techniques
shows the best stability and fastest convergence (see, e.g., Figures 1–3). According to a
comparison with the current PM[∗], NN[∗], and NF[∗] techniques, the suggested strategies
not only produce faster convergence rates but also enhance computing efficiency. This was
assessed using percentage computational efficiency, revealing a considerable reduction in
computational cost and a more efficient iteration process (see Tables 1 and 2).

The usefulness of the proposed biparametric family of inverse parallel schemes BM[∗]

was further tested through engineering applications. Even with rough initial values,
the proposed schemes show strong convergence behavior and good accuracy (see, e.g.,
Tables 4, 6, 8 and 11). We also tested the BM[∗],PM[∗],NN[∗], and NF[∗] algorithms on
random initial values to investigate their global convergence qualities. The findings
demonstrated that our BM[∗] method consistently beats the previous PM[∗], NN[∗], and NF[∗]

approaches in terms of maximum error, number of iterations, basic arithmetic operations
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per iteration, and local computational order of convergence (see Tables 5, 7, 9 and 10 and
Figures 4–6).

Future work might concentrate on applying these biparametric families of inverse
parallel methods to more complex scientific and engineering applications where reliable
and quick convergence is essential. Furthermore, investigating adaptive parameter tuning
processes may improve the stability and effectiveness of the proposed parallel approach in
a variety of contexts. Higher computational efficiency could be achieved by optimizing
these techniques for high-performance computing settings [45,46] through more research
into parallel computation implementations.
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