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Abstract: MATLAB programing language is one of the most popular scientific computing
tools, especially for solving linear algebra problems. LU factorization is an essential compo-
nent for the direct solution of linear equations systems. This paper studied a coarse-grained
column agglomeration parallel algorithm in MATLAB to analyze the implementation
performance among all the available computation resources. In this paper, we focus on
parallelizing the LU decomposition without pivoting algorithm using Gaussian elimination
under MATLAB R2020b platform. Numerical experiments were provided to demonstrate
the efficiency of CPU parallelization. Performances of the present methods were assessed
by comparing the speed and accuracy of different coarse-grained column agglomeration
algorithms using different sizes of matrices. Different algorithms were implemented in a
four-core Xeon E3-1220 v3 @ 3.10 GHz CPU with 16 GB RAM memory.
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1. Introduction
Matrix analysis and decomposition are critically important in various computational

fields, including engineering and physics. These methods provide powerful tools for
breaking down matrices into simpler components, facilitating the solution of systems of
equations and matrix inversion. Common matrix factorization techniques include Lower-
Upper (LU), QR, Cholesky, Eigenvalue, and Singular Value Decomposition (SVD).

LU decomposition is particularly prominent for solving linear systems and often
incorporates row pivoting to enhance numerical stability [1–7]. It is essential for addressing
dense linear systems and serves as a fundamental step in their direct solution. Linear
algebra systems can be solved using two primary approaches: direct and iterative methods.
Direct methods use specific algorithms to compute exact solutions for linear systems.
These methods are typically employed for dense matrices, such as those encountered in
solving continuous systems using the Finite Element Method (FEM). Gaussian elimination,
a widely recognized direct method, simplifies complex matrix computations into more
manageable operations, enabling the solution of linear systems, determinant computation,
and matrix inversion.

With modern computational advancements, it has become feasible to solve most dense
matrices using direct methods. To fully leverage the capabilities of computer memory and
multiprocessor systems, agglomeration parallel algorithms are often employed. The devel-
opment and analysis of agglomeration LU factorizations have been extensively studied by
various researchers [8,9]. A broader discussion on clustering LU factorizations and solving
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linear systems on parallel computing platforms can be found in [3,10–12]. Higham et al. [13]
have proposed a class of random dense matrices where LU factorization with pivoting
leads to large growth factors, significantly exceeding those of typical random matrices.
They were generated these matrices via a MATLAB function, exhibit unique properties,
and GMRES-based iterative refinement is shown to stabilize solutions effectively, even
under large growth conditions in low-precision LU factors. In another study [14], two
algorithms, pre-pivoted LU decomposition and mixed-precision panel factorization, were
introduced. Authors explored the use of half-precision arithmetic on GPUs to accelerate
LU decomposition in double precision.

MATLAB is one of the most popular scientific computing tools since the advent of nu-
merical methods. Numerous studies have explored LU factorization using MATLAB [15,16].
Its primary advantage lies in the efficiency of its code; a single command in MATLAB often
replaces multiple lines of code in languages like C or FORTRAN. However, transforming
MATLAB code to execute in parallel mode and fully utilize advanced computing power
remains a challenging task. A critical question is whether an algorithm can be implemented
for parallel computing in MATLAB in a manner similar to lower-level languages such as C
or FORTRAN. Historically, key challenges in developing a parallel MATLAB platform in-
cluded limitations in memory size, computational granularity, and business considerations,
as discussed in the 1995 article, “Why There Isn’t a Parallel MATLAB” [17]. Recent releases
of MATLAB have addressed these challenges by providing easier access to multi-threading
and enhanced computational capabilities, supporting large-scale projects. The MathWorks
Parallel Computing Toolbox extends MATLAB’s libraries and modifies the language it-
self to enable parallel computing [1,18,19]. Additional features include message passing,
implicit multi-threading for computations on multicore or multiprocessor machines, and
support for both CPU and GPU computing [20,21]. Furthermore, MATLAB offers robust
visualization and debugging tools, which significantly benefit the programming process.

The Single Program Multiple Data (SPMD) scheme is a widely used approach for
executing parallel LU factorization. SPMD operates by processing multiple coarse-grained
data blocks in parallel across multiple core processors, all controlled by a single code.
MATLAB supports this methodology through the SPMD command, which enables users
to distribute data blocks among the desired processors. This technique facilitates LU
factorization by discretizing a large array into multiple data blocks, which are then pro-
cessed concurrently by a single program. Parallel computation is essential for efficiently
processing large-scale data, particularly in solving linear algebra systems where matrix
operations dominate. MATLAB’s high-level abstraction simplifies development but often
struggles with parallel execution compared to low-level programming languages such as
C++ or FORTRAN. While MATLAB’s Parallel Computing Toolbox provides tools for multi-
threading, it lacks the control and efficiency of languages optimized for parallel algorithms.
Low-level languages such as C++ and CUDA allow fine-grained control over hardware
resources, including memory allocation, thread scheduling, and synchronization. For exam-
ple, LU factorization implemented in CUDA on NVIDIA GPUs achieves speedups of over
10× for matrices exceeding 1000 × 1000 in size, as reported in recent benchmarks [22–27].
In contrast, MATLAB struggles to surpass a speedup of 2× for similar matrix sizes due
to significant communication and synchronization overheads. Additionally, C++ with
OpenMP demonstrates efficient thread utilization, achieving parallel efficiencies exceeding
80%, compared to MATLAB’s suboptimal performance in scenarios requiring frequent
inter-thread communication.

Despite its potential, relatively few studies have implemented parallel algorithms
using the MATLAB language [28]. Most MATLAB-based parallelization efforts have
focused on built-in library functions. To the best of the authors’ knowledge, no prior study
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has specifically addressed the implementation of coarse-grained column agglomeration
(CGCA) parallel algorithms for LU factorization in MATLAB.

This study aims to address these gaps by implementing and evaluating a coarse-
grained column agglomeration (CGCA) parallel algorithm for LU factorization. Unlike
previous studies focusing solely on MATLAB’s built-in functions, this research benchmarks
custom parallel algorithms to highlight performance differences, communication overhead,
and limitations inherent to MATLAB. The primary objectives are to analyze the parallel
efficiency across available computational resources and establish a benchmark for MATLAB-
based CPU coarse-grain parallelization. Numerical experiments are conducted to evaluate
the efficiency of CPU parallelization. The performance of the proposed method is assessed
by comparing the speed and accuracy of different CGCA algorithms across varying matrix
sizes. The algorithms were implemented on a four-core Xeon E3-1220 v3 @ 3.10 GHz CPU
with 16 GB of RAM.

2. Methods
The algebraic process of the LU factorization begins by transforming a matrix A into a

product of a lower triangular matrix L, and an upper triangular matrix U whose elements
are only on the diagonal and above. Equation (1) shows the system of linear equations in
matrix form, where array A is factorized to L and U as it is demonstrated in Equation (2),

A x = b (1)

A = L × U (2)

considering the matrices A, L and U as aij, lij and uij, respectively, where i, j ∈ {1, 2, 3, . . . , n},
substituting Equation (2) into Equation (1) leads to the following statement:


a11 a12 . . . a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




x1

x2
...

xn

 ⇒


l11 0 · · · 0

l21 l22 0
...

...
...

. . . 0
ln1 ln2 · · · lnn




u11 u12 · · · u1n

0 u22 · · · u2n
... 0

. . .
...

0 · · · 0 unn




x1

x2
...

xn

 =


b1

b2
...

bn

, (3)

where the lii = 1 for i = 1, 2, 3, . . . , n. The Gaussian elimination algorithm without pivoting
of the basic LU factorization of a matrix A is described in Figure 1. The computational
complexity of the Gaussian elimination algorithm is of the order O

(
n3) corresponding to

n3/3 paired additions and multiplications in a serial model. The communication cost is of
the order O

(
n2) equivalent to n2/2 divisions. The matrix A is separated to matrices L and

U after the factorization is accomplished.
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Algorithm 2: The fine-grained LU decomposition algorithm 

1. For 𝑘 ∈  𝑛 − 1 do  

2.        For 𝑘 + 1 ∈  𝑛  do 

3.               𝐴௜,௞ = 𝐴௜,௞/𝐴௞,௞  
4.        End for 
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14.        End for 

15. End for 

Figure 1. Right blocking LU algorithm.

For each kth step, the algorithm is divided into two loops. The ith loop computes
the kth column starting from second row to the nth row, with a computation complexity
of O

(
n2). The jth loop calculates the kth lower sub-matrices, where the computational

complexity of this operation is O
(
n3). As shown in Algorithm 1, this algorithm exhibits
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high data dependences since ith loop is used to update the jth loop of sub-matrix. The jth

loop can only be executed after all updating in the ith loop are completed. Since the matrix
for decomposition is typically large, the ith loop must be read from memory during the
execution of the jth loop, resulting in a significant number of memory access operations.
The main disadvantage of this algorithm is that the two loops are executed sequentially.
Additionally, all intermediate matrices are written back to memory, further increasing
computational overhead.

Algorithm 1: The sequential LU decomposition algorithm

1. For k ∈ n − 1 do
2. For k + 1 ∈ n do
3. Ai,k = Ai,k/Ak,k

4. End for
5. For k + 1 ∈ n do
6. Ak+1,j = Ak+1,j − Ak+1,k × Ak,j

7. End for
8. End for

The first step in developing a parallel algorithm is to decompose the problem into
tasks that can be executed concurrently. Granularity refers to the amount of computational
cost performed by a task. In coarse-grain column parallelism, an algorithm is divided into a
large number of small groups of vertical tasks, which are individually assigned to multiple
processors. Each processor handles an evenly distributed workload associated with the
parallel tasks. The tasking model is based on the group topology of computational tasks
that arise during block-wise LU factorization. As shown in Algorithm 2, this algorithm is
particularly well-suited for multi-core processors and demonstrates significantly improved
parallel scaling behavior compared to a naive parallel-for-based LU factorization. In the
algorithm shown in Algorithm 2, processor calls are executed using SPMD MATLAB
commands, which enable specific distribution of CGCA tasks among the desired core
processors. In general, row interchanges (pivoting) may be required to ensure the existence
of LU factorization and the numerical stability of the Gaussian elimination algorithm.
However, for simplicity, this aspect is omitted in the present study. Additionally, all the
data used in this research consist of dense, diagonally dominant, and random matrices,
which eliminates the need for pivoting.

Message Passing Functions

Computational time and communication time are key factors regulating execution
time. High communication time can result in some parallel algorithms being slower than
their serial counterparts. The Message Passing Interface (MPI) protocol is commonly used
in parallel computing for data transfer between multiple processors. In parallel algorithms,
low-level programming languages such as C and FORTRAN often utilize the MPI library
for point-to-point communication. Many developers have efficiently employed MPI in
these low-level programming platforms for various parallel applications. Although MPI
specifications are not directly implemented in MATLAB, the MATLAB message-passing
library is built on the MPI-2 standard, adapting it for this high-level platform. According to
the MPI protocol, data must be identified by size and type before transmission. However,
in MATLAB, pre-allocating the size of arrays that will be used later in the program is
not mandatory.
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Algorithm 2: The fine-grained LU decomposition algorithm

1. For k ∈ n − 1 do
2. For k + 1 ∈ n do
3. Ai,k = Ai,k/Ak,k

4. End for
5. Broadcast A to N processors
6. For k + 1 ∈ n do
7. Call processor 1
8. Ak+1,j = Ak+1,j − Ak+1,k × Ak,j

9. Call processor 2
10. Ak+1,j+1 = Ak+1,j+1 − Ak+1,k × Ak,j+1

11. . . . . . . . . .
12. Call processor N
13. Ak+1,j+N−1 = Ak+1,j+N−1 − Ak+1,k × Ak,j+N−1

14. End for
15. End for

In low-level programming languages, it is mandatory to declare the type and size of
arrays in advance. In contrast, MATLAB allows the transmission of various data array
types, such as double-precision values, integers, characters, strings, structures, booleans,
and cells, without requiring prior declaration. Before sending data, MATLAB first transmits
a small header message to pre-allocate memory. This header contains information about the
size and type of the data, eliminating the need for extra time to search for larger contiguous
memory allocations. MATLAB provides several commands for point-to-point communi-
cation, including labSend, labReceive, and labSendReceive. These commands allow data
exchange without prior declaration. The labSend command utilizes non-blocking MPI
sending, enabling immediate execution for small messages (less than 256 KB). However,
for larger messages, labSend must wait for the MPI protocol to process the data on the
sending processor and for the receiving processor to be ready to execute labReceive [5].
Additionally, MATLAB offers the labBroadcast command for broadcasting data. However,
using labSend and labReceive provides greater control, allowing users to detect cyclic
deadlocks and miscommunications during parallel execution.

3. Results
To analyze the parallel performance on the MATLAB platform, different codes were

developed for the numerical experiments. In addition to the built-in function, four sequen-
tial and three parallel codes were created. The sequential code runs on a single thread, with
each algorithm implementing a different CGCA. In contrast, the parallel codes execute the
coarse-grained columns across two, three, or four threads. In this study, LU factorization of
matrix A was performed using both sequential and parallel codes based on the Gaussian
elimination approach. Matrix A is a diagonally dominant, dense array created from random
double-precision numbers. The matrix sizes selected for testing ranged from 100 × 100 to
15,000 × 15,000 elements. All computational analyses were carried out on a Dell Precision
T1700 Workstation running Ubuntu 16.04 LTS 64-bit operating system [29].

The execution time for the sequential and parallel algorithm codes was obtained using
the timeit MATLAB function. Figure 2 compares the execution time of the sequential
method with MATLAB’s built-in LU function for different matrix sizes. It can be seen that
the execution time of the MATLAB LU function is faster than the sequential code for all
array sizes, except for some cases where the matrix size is smaller than 100 × 100 elements.
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As shown by the trend of the curves in Figure 2, the gap between the MATLAB built-in
function and the sequential code remains constant after the matrix size reaches 5000 × 5000.
It is also worth noting that the fluctuation in the graphs decreases after the matrix size
exceeds 1000 × 1000 in the semi-logarithmic plot.
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Figure 2. Execution time vs. matrix size in a semi-logarithmic plot for a single processor using
various CGCA parallelization blocks. The blue color diagram shows MATLAB’s built-in LU function
execution time for different matrix sizes.

Furthermore, it was observed that there are no significant differences between the
various CGCA codes when executed on a single thread. Since a single processor handles
all calculations without shared data, the execution time for all applied methods is nearly
the same.

The mean absolute error of the single thread results was illustrated in Figure 3. The
error of the MATLAB built-in function is less than CGCA codes when running in single
thread. The trend of the error shows more consistency for large matrix sizes.
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Figure 4 shows the execution time of CGCA codes in comparison with MATLAB’s
built-in LU function for different matrix sizes. The CGCA codes were executed using both
single and multiple threads. The curve for the MATLAB built-in function shows similar
results to the single-thread algorithm for small matrix sizes (below 300 × 300). As shown,
the execution time for LU factorization and the CGCA code using a single thread is much
faster than the parallel multi-thread algorithms. This is due to the high communication cost
between threads in MATLAB. Since MATLAB is a high-level language, it does not allow
full control over data distribution among threads.
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Figure 4. Execution time vs. matrix size in a semi-logarithmic plot for a multi-processor system using
various CGCA parallelization blocks. The blue plot represents the execution time of MATLAB’s
built-in LU function for different matrix sizes.

However, it can be observed that increasing the number of threads from two to four
reduces the execution time. This is because the computational cost is divided among more
threads using MATLAB’s Parallel Computing Toolbox command (SPMD). However, there
is still a significant gap between the execution times of the single-thread and multi-thread
algorithms. The differences in execution time between two and three threads are more
pronounced than the differences between three and four threads. If this trend continues, it
can be concluded that after a certain number of threads, there will be no significant change
in the execution time curves.

Table 1 presents the results for the execution time of different matrix sizes. From
Table 1, the speedup and parallel efficiency were calculated and are presented in Tables 2
and 3, respectively. The speedup is calculated by dividing the sequential execution time
by the parallel execution time. The values in Table 2 indicate a slowdown rather than a
speedup when parallel algorithms are implemented. Parallel efficiency is calculated by
dividing the speedup values by the number of processors involved. It can be observed that
the parallel efficiency values are significantly low, highlighting the poor efficiency of the
CGCA algorithm implementation in MATLAB.
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Table 1. Comparing the execution time for different CGCA algorithms of different matrix sizes.

Methods
Size of the Matrices

100 200 300 400 500 600 700 800 900 1000

MATLAB LU
built-in function 0.004 0.024 0.053 0.039 0.062 0.067 0.082 0.086 0.096 0.101

Single block,
Single processor 0.006 0.027 0.074 0.169 0.320 0.545 0.850 1.266 1.820 2.434

Two blocks,
Single processors 0.006 0.026 0.076 0.173 0.328 0.557 0.888 1.300 1.855 2.504

Three blocks,
Single processors 0.006 0.026 0.077 0.174 0.331 0.565 0.886 1.320 1.878 2.536

Four block,
Single processors 0.006 0.027 0.078 0.175 0.332 0.568 0.899 1.330 1.892 2.554

Two blocks,
Two processors 74.86 292.3 718.5 1.4 × 103 2.5 × 103 3.9 × 103 6.2 × 103 9.3 × 103 1.3 × 104 1.8 × 104

Three blocks,
Three processors 50.40 203.7 507.8 937.9 1.7 × 103 2.7 × 103 4.3 × 103 6.8 × 103 9.0 × 103 1.1 × 104

Four blocks,
Four processors 39.51 160.2 399.4 711.0 1.3 × 103 2.1 × 103 3.3 × 103 5.1 × 103 6.6 × 103 8.2 × 103

Table 2. Comparing the speedup value for different CGCA algorithms of different matrix sizes.

Methods
Size of the Matrices

100 200 300 400 500 600 700 800 900 1000

2 B, 2 P 8.01 × 10−5 8.89 × 10−5 1.06 × 10−4 1.24 × 10−4 1.31 × 10−4 1.43 × 10−4 1.43 × 10−4 1.40 × 10−4 1.43 × 10−4 1.39 × 10−4

3 B, 3 P 1.19 × 10−4 1.28 × 10−4 1.52 × 10−4 1.86 × 10−4 1.95 × 10−4 2.09 × 10−4 2.06 × 10−4 1.94 × 10−4 2.09 × 10−4 2.31 × 10−4

4 B, 4 P 1.52 × 10−4 1.69 × 10−4 1.95 × 10−4 2.46 × 10−4 2.55 × 10−4 2.70 × 10−4 2.72 × 10−4 2.61 × 10−4 2.87 × 10−4 3.11 × 10−4

Table 3. Comparing the Parallel efficiency for different CGCA algorithms of different matrix sizes.

Methods
Size of the Matrices

100 200 300 400 500 600 700 800 900 1000

2 B, 2 P 4.01 × 10−5 4.45 × 10−5 5.29 × 10−5 6.18 × 10−5 6.56 × 10−5 7.14 × 10−5 7.16 × 10−5 6.99 × 10−5 7.13 × 10−5 6.96 × 10−5

3 B, 3 P 3.97 × 10−5 4.25 × 10−5 5.05 × 10−5 6.18 × 10−5 6.49 × 10−5 6.98 × 10−5 6.87 × 10−5 6.47 × 10−5 6.96 × 10−5 7.68 × 10−5

4 B, 4 P 3.80 × 10−5 4.21 × 10−5 4.88 × 10−5 6.15 × 10−5 6.38 × 10−5 6.76 × 10−5 6.81 × 10−5 6.52 × 10−5 7.17 × 10−5 7.79 × 10−5

4. Conclusions and Contributions
MATLAB strategies focus on improving single-processor computations. Its paral-

lelism emphasizes MATLAB functions and readily available parallel templates, making it
accessible to both novices and experts. This study analyzes the efficiency of coarse-grained
column agglomeration (CGCA) parallel algorithms in MATLAB. The results demonstrate the
implementation of one-, two-, three-, and four-column agglomeration parallel algorithms.

It was observed that applying the CGCA parallelization block for a single-thread core
yields results similar to MATLAB’s built-in functions for small matrix sizes. However, as
the matrix size increases, the performance of the CGCA parallelization blocks deteriorates,
leading to a reduction in the speed of the algorithms. Parallel computation in MATLAB
faces two major challenges: communication time and the overhead associated with call-
ing the parallel toolbox (SPMD). Communication time refers to the duration required
to transmit data between different threads. Parallelizing algorithms for multi-threaded
execution increases communication and synchronization overhead between core processors
in MATLAB. Sending and receiving large arrays across multiple threads in any parallel
structure leads to longer allocation times in MATLAB’s shared and distributed memory.
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It was also observed that the parallelism of CGCA algorithms in MATLAB can be
slower than the original sequential approach. This is because the responsibility for optimiz-
ing CGCA parallelism lies with the compiler, not the program itself. As a result, CGCA
algorithms perform better in low-level languages that support faster communication. Ad-
ditionally, shared memory systems with low communication times are more suitable for
CGCA parallelism. Based on these findings, it is recommended that MATLAB is not ideal
for programming parallel algorithms, except when using its built-in functions.

As the structure of the PYTHON programming language is very similar to that of
MATLAB, its parallel computing capabilities using multiple processors remain largely
unexplored. Since PYTHON does not have a direct equivalent to MATLAB’s SPMD,
multiprocessing is required to simulate parallel computation. This investigation can be
conducted in future studies.
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