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Abstract: This paper addresses the problem of achieving consensus control for homo-
geneous multi-agent systems (MASs) under aperiodic sampled data and communication
delays. By incorporating additional delay information, this paper introduces two novel
delay-incorporating integral terms, an enhanced two-sided looped functional, and a novel
discontinuous function to further exploit system state responses observed during sampling
and data transmission. In addition, this paper introduces two additional zero equalities to
derive less conservative stability and stabilization conditions. Based on these, sufficient
conditions for guaranteeing consensus in MASs under this context are derived as linear ma-
trix inequalities (LMIs). Finally, the effectiveness and superiority of the proposed method
are validated through a numerical example.

Keywords: consensus control; sampled-data control; multi-agent systems; time delay

MSC: 93C57

1. Introduction
In recent years, the study of MASs has gained significant traction due to their

widespread applications in fields such as robotics, unmanned aerial vehicles, intelligent
transportation systems, and distributed sensor networks [1–4]. MASs consist of multi-
ple interconnected agents that collaborate to achieve common objectives, typically in a
decentralized manner. This decentralized nature makes MASs highly resilient, scalable,
and adaptable to dynamic environments. One of the core objectives in MAS research is
to achieve consensus, which aims to direct a group of agents toward reaching a unified
state, a process known as leaderless consensus control [5], or to ensure that agents track the
trajectory of a designated leader, referred to as leader-following consensus control [6]. In
this context, numerous modern control strategies have been explored and implemented
to address the consensus problem in MAS, such as the sampled-data control (SDC) [7–9],
event-triggered control [10–12], and impulsive control [13,14]. Especially, this consensus
problem becomes more complex when considering SDC strategies and networked com-
munication, which are common in practical scenarios involving processing latencies and
time delays.

With advancements in technology, research on digital networked control systems
has gained significant attention in the field of control systems (see [15–18]). Among these
studies, SDC has emerged as an effective technique for addressing the consensus challenge
in MASs, providing notable advantages in terms of robustness and resource efficiency.
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By updating control inputs at discrete time intervals rather than continuously, SDC sig-
nificantly reduces the demand on communication and computational resources (refer
to [19]). This approach makes SDC particularly well-suited for large-scale MASs and dis-
tributed networks, where continuous feedback may be impractical. Therefore, there has
been a significant amount of research aimed at dealing with the sampled-data consensus
problem in MASs [20,21]. Three main methods have been proposed for the mathemat-
ical modeling of sampled-data systems: the input-delay method [22], the discrete-time
method [23], and the impulsive method [24]. The input delay method, Ref. [25] addressed
the aperiodic sampled-data consensus control problem of MASs through the free-matrix-
based inequality approach. Subsequently, Ref. [26] introduced a memory-based SDC frame-
work for the consensus problem in MASs with time delays, employing a looped-functional
approach. More recently, Ref. [27] designed a sampled-data consensus controller for MASs
by deriving a two-sided looped functional that incorporates system state information be-
tween two consecutive sampling instants. Although both [26] and [27] address the problem
of sampled-data consensus with time delays, their approaches incorporate time delay infor-
mation solely within the time-delay-dependent Lyapunov function framework, which does
not fully exploit the delay information to accurately capture the system dynamics in the
sampled-data context. This study aims to address this limitation by directly incorporating
delay information into the looped-functional framework, thereby enabling a more accurate
representation of the system state in sampled data and transmission processes.

Building on the above discussion, this paper focuses on the problem of aperiodic
sampled-data consensus control for homogeneous MASs with communication delay.
In particular, this paper focuses on extending the maximized allowable sampling in-
terval, which is crucial for achieving an optimal balance between system performance
and communication efficiency. To achieve this objective, the paper makes the following
significant contributions:

• Unlike [26,27], this paper introduces two novel delay-incorporating integral terms,
which are used to establish an improved looped-functional. These enhancements
enable a more precise characterization of sampling-induced and network-induced
delays, effectively capturing their impacts on system stability and performance.

• Based on the free-matrix-based inequality approach, this paper introduces a novel
discontinuous function to improve the extraction of system state information from
the most recent transmitted data.

• To strengthen the connections between the novel delay-incorporating integral terms
and other elements, this paper introduces two new zero equalities. Furthermore, by
incorporating two additional slack variables, the conservatism of the stability and
stabilization conditions is effectively reduced.

The rest of this paper is organized as follows: Section 2 presents the system model and
problem formulation, providing the mathematical foundation for the consensus control
design. Section 3 details the main theoretical results, including the derivation of the stability
conditions and the design of the sampled-data controller gain. Section 4 offers numerical
simulations to validate the proposed methodology. Finally, Section 5 concludes the paper
and outlines future research directions.

Notations: Throughout this paper, the set N0 indicates the natural numbers including
zero, the sets Rn and Rn×m are the sets of n-dimensional vectors, and n × m real matrices,
respectively. The notation P > 0 indicates that square matrix P is positive definite, P−1

is the inverse of P, PT is the transpose of P, and He{P} stands for P + PT . In symmetric
matrices, the symbol (*) is used to denote terms that arise from the symmetry of the matrix
structure. The operator ⊗ indicates the Kronecker product. The notation In denotes the
n-dimensional identity matrix, 0n×m is the n × m zero matrix, diag{·} stands for the block-
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diagonal matrix, col{·} is the column matrix,
[
aij

]
N×N is N × N matrix with aij at the

respective position (i, j).

2. Problem Statement
Let G = {V , E ,A} denote a directed weighted graph with the set of nodes

V = {v1, v2, . . . , vN}, the set of directed edges E ⊆ V × V , and the adjacency matrix
A =

[
aij

]
N×N with aii = 0. It is assumed that the graph G contains a directed spanning

tree. If node vi can receive information from node vj, then node vj is called a neighbor
of node vi, that is, aij > 0; otherwise, aij = 0. The Laplacian matrix L =

[
ℓij
]

N×N of the
directed graph G is defined as ℓii = ∑j ̸=i aij and ℓij = −aij.

This paper considers a homogeneous MAS given by the following dynamics:

żi(t) = Azi(t) + Bui(t) (1)

where A ∈ Rnz×nz and B ∈ Rnz×nu are constant matrices; zi(t) ∈ Rnz is the state of node vi,
for i ∈ {1, 2, . . . , N}, and ui(t) ∈ Rnu is the control input.

Definition 1 ([28]). The consensus of MAS (1) is achieved if and only if, for any i, j ∈
{1, 2, . . . , N}; the states of nodes vi and vj satisfy the equality

lim
t→∞

||zi(t)− zj(t)|| = 0.

As shown in Figure 1, this paper addresses the problem of sampling the state of all
nodes at specific instants tk where t0 = 0 and tk < tk+1, for k ∈ N0, and the sampling
interval hk = tk+1 − tk is bounded by hm and hM. Then, the sampled-data controller for
node vi with constant transmission delay τ is given as

ui(t) =− K
N

∑
j=1

aij
[
zi(tk − τ)− zj(tk − τ)

]
(2)

where K is the sampled-data controller gain to be designed. Let the error variable be
denoted by xi(t) = z1(t) − zi+1(t). From (1) and (2), the closed-loop error system is
obtained as

ẋ(t) =Āx(t)− (L̄ ⊗ BK)x(tk − τ) + C̄ f (x(t)) (3)

where

x(t) = col{x1(t), x2(t), . . . , xN−1(t)} ∈ Rn, n = (N − 1)nz

f (x(t)) = col{ f (x1(t)), f (x2(t)), . . . , f (xN−1(t))}
Ā = IN−1 ⊗ A, L̄ = Γ1LΓ2, C̄ = IN−1 ⊗ C

Γ1 =
[

1N−1 −IN−1

]
, Γ2 =

[
0N−1 −IN−1

]T
.
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Figure 1. Diagram of SDC of MASs.

3. Control Synthesis
Let us establish the following Lyapunov–Krasovskii-based functional:

V(t) = V1(t) + V2(t) + V3(t), t ∈ [tk, tk+1), ∀k ∈ N0 (4)

where

V1(t) = xT(t)Px(t) +
∫ t

t−τ
ηT

1 (s)Wη1(s)ds +
∫ 0

−τ

∫ t

t+θ
ẋT(s)Sẋ(s)dsdθ

V2(t) = d2(t)2ηT
2 (t)X1η3(t) + d1(t)2ηT

4 (t)X2η5(t) + d1(t)d2(t)ηT
6 Uη6

+ d2(t)
∫ t−τ

tk−τ
ẋT(s)R1 ẋ(s)ds − d1(t)

∫ tk+1−τ

t−τ
ẋT(s)R2 ẋ(s)ds

V3(t) = hMηT
7 (t)Q1η7(t) + 2

(
xT(t − τ)− xT(tk − τ)

)
Q2η7(t) +

∫ t−τ

tk−τ
ẋT(s)Q3 ẋ(s)ds

in which

d1(t) = t − tk, d2(t) = tk+1 − t, η1(t) = col
{

x(t), ẋ(t)
}

η2(t) = col
{

x(t − τ)− x(tk − τ),
∫ t−τ

tk−τ
x(s)ds,

∫ t−τ

tk−τ
(t − s)ẋ(s)ds

}
η3(t) = col

{
x(t − τ), x(tk − τ),

∫ t−τ

tk−τ
x(s)ds,

∫ t−τ

tk−τ
(t − s)ẋ(s)ds

}
η4(t) = col

{
x(tk+1 − τ)− x(t − τ),

∫ tk+1−τ

t−τ
x(s)ds,

∫ tk+1−τ

t−τ
(t − s)ẋ(s)ds

}
η5(t) = col

{
x(t − τ), x(tk+1 − τ),

∫ tk+1−τ

t−τ
x(s)ds,

∫ tk+1−τ

t−τ
(t − s)ẋ(s)ds

}
η6 = col

{
x(tk − τ), x(tk+1 − τ)

}
, η7(t) = col

{
x(t − τ), x(tk − τ)

}
P = PT ∈ Rn×n, W = WT ∈ R2n×2n, S = ST ∈ Rn×n, X1, X2 ∈ R3n×4n

R1 = RT
1 , R2 = RT

2 ∈ Rn×n, Q1 = QT
1 ∈ R2n×2n, Q2 ∈ Rn×2n, Q3 = QT

3 ∈ Rn×n

subject to P > 0, W > 0, S > 0, and

0 <

[
Q1 (∗)
Q2 Q3

]
. (5)
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Given that V2(t) satisfies V2(tk) = 0 and limt→t−k+1
V2(t) = 0, the positive definite-

ness of V2(t) can be omitted based on the looped-functional approach [29]. Then, since
condition (5) ensures

0 <
∫ t−τ

tk−τ

[
η7(t)
ẋ(s)

]T[
Q1 (∗)
Q2 Q3

][
η7(t)
ẋ(s)

]
ds

≤ hMηT
7 (t)Q1η7(t) + 2

(
xT(t − τ)− xT(tk − τ)

)
Q2η7(t) +

∫ t−τ

tk−τ
ẋT(s)Q3 ẋ(s)ds

follows that V3(t) ≥ 0 for all t ∈ [tk, tk+1). Furthermore, the term
∫ t

tk−τ ẋT(s)Q3 ẋ(s)ds
disappears at t = tk, i.e., lim

t→t−k
V3(t) ≥ V3(tk). This indicates that the jump in discontinuous

functional V3(t) at every sampling instance tk is diminished.

Remark 1. To capture the impacts of delay on system stability and performance, it is essential
to fully exploit the delay information within a Lyapunov–Krasovskii-based functional. Distinct
from [26] and [27], this paper proposes an improved looped-functional V2(t) and a novel discon-
tinuous function V3(t), which incorporate more comprehensive delay information. Furthermore,
two novel delay-incorporating integral terms,

∫ t−τ
tk−τ(t − s)ẋ(s)ds and

∫ tk+1−τ
t−τ (t − s)ẋ(s)ds, are

introduced into the looped-functional framework.

The following theorem establishes the stability condition for achieving consensus of
homogeneous MASs.

Theorem 1. For given positive scalars ε1, ε2, τ, hm, and hM, the consensus of MAS (1) can be
achieved, if there exist symmetric matrices 0 < P = PT ∈ Rn×n, 0 < W = WT ∈ R2n×2n,
0 < S = ST ∈ Rn×n, X1, X2 ∈ R3n×4n, R1 = RT

1 , R2 = RT
2 ∈ Rn×n, U = UT ∈ R2n×2n,

Q1 = QT
1 ∈ R2n×2n, Q2 ∈ Rn×2n, Q3 = QT

3 ∈ Rn×n, M ∈ Rn×2n, N1, N2 ∈ Rn×2n, Z1,
Z2 ∈ Rn×4n, and G ∈ Rn×n such that the following conditions are satisfied, for hk ∈ {hm, hM}:
LMI (5),

0 >

 Ψ1 + Ψ2(tk) (∗) (∗)
τMΞ8 −τS 0

hk N2Ξ10 0 −hkR2

 (6)

0 >

 Ψ1 + Ψ2(tk+1) (∗) (∗)
τMΞ8 −τS 0

hk N1Ξ9 0 −hkR1

 (7)

where

Ψ1 = He
{

eT
1 Pe9 − ΞT

2 X1Ξ3 + ΞT
4 X2Ξ5

}
+ ΞT

1 WΞ1 − Ξ̂T
1 WΞ̂1 + τeT

9 Se9

+ He
{

hMΞ̄T
7 Q1Ξ7 + eT

10Q2Ξ7 +
(
eT

2 − eT
3
)
Q2Ξ̄7 + eT

10Q3e10
}

+ He
{
(eT

1 − eT
2 )MΞ8 + (eT

2 − eT
3 )N1Ξ9 + (eT

4 − eT
2 )N2Ξ10

}
+ He

{
ΞT

11ZT
1
(
τ(e2 − e3) + e5 − e7

)
+ ΞT

12ZT
2
(
τ(e4 − e2) + e6 − e8

)
}

+ He
{

ΞT
13GT(Āe1 − (L̄ ⊗ BK)e3 + C̄e11 − e9

)}
Ψ2(t) = d2(t)He

{
Ξ̄T

2 X1Ξ3 + ΞT
2 X1Ξ̄3 + ΞT

6 UΞ6 + eT
10R1e10 − ΞT

11ZT
1 e3

}
+ d1(t)He

{
Ξ̄T

4 X2Ξ5 + ΞT
4 X2Ξ̄5 − ΞT

6 UΞ6 + eT
10R2e10 − ΞT

12ZT
2 e4

}
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in which

ei =
[

0n×(i−1)n In 0n×(11−i)n

]
, Ξ1 = col{e1, e9}, Ξ̂1 = col{e2, e10}

Ξ2 = col{e2 − e3, e5, e7}, Ξ̄2 = col{e10, e2, τe10 + e2 − e3}
Ξ3 = col{e2, e3, e5, e7}, Ξ̄3 = col{e10, 0, e2, τe10 + e2 − e3}
Ξ4 = col{e4 − e2, e6, e8}, Ξ̄4 = col{−e10, − e2, − τe10 + e4 − e2}
Ξ5 = col{e2, e4, e6, e8}, Ξ̄5 = col{e10, 0, − e2, − τe10 + e4 − e2}
Ξ6 = col{e3, e4}, Ξ7 = col{e2, e3}, Ξ̄7 = col{e10, 0}, Ξ8 = col{e1, e2}
Ξ9 = col{e2, e3}, Ξ10 = col{e2, e4}, Ξ11 = col{e2, e3, e5, e7}
Ξ12 = col{e2, e4, e6, e8}, Ξ13 = e1 + ε1e3 + ε2e9.

Proof. The time derivatives of (4) are derived as follows:

V̇1(t) = 2xT(t)Pẋ(t) + ηT
1 (t)Wη1(t)− ηT

1 (t − τ)Wη1(t − τ)

+ τẋT(t)Sẋ(t) −
∫ t

t−τ
ẋT(s)Sẋ(s)ds

:=T1(t)
(8)

V̇2(t) = d2(t)
(
2η̇T

2 (t)X1η3(t) + 2ηT
2 (t)X1η̇3(t) + ηT

6 Uη6
)

+ d1(t)
(
2η̇T

4 (t)X2η5(t) + 2ηT
4 (t)X2η̇5(t)− ηT

6 Uη6
)

− 2ηT
2 (t)X1η3(t) + 2ηT

4 (t)X2η5(t)

+ d2(t)ẋT(t − τ)R1 ẋ(t − τ) + d1(t)ẋT(t − τ)R2 ẋ(t − τ)

−
∫ t−τ

tk−τ
ẋT(s)R1 ẋ(s)ds

:=T2(t)

−
∫ tk+1−τ

t−τ
ẋT(s)R2 ẋ(s)ds

:=T3(t)
(9)

V̇3(t) = 2hMη̇7(t)Q1η7(t) + 2ẋT(t − τ)Q2η7(t)

+ 2
(
xT(t − τ)− xT(tk − τ)

)
Q2η̇7(t) + ẋT(t − τ)Q3 ẋ(t − τ). (10)

Since it is clear that

0 ≤
∫ β

α

(
ẋT(s)R + ηT(t)MT)R−1(Rẋ(s) + Mη(t)

)
ds

=
∫ β

α
ẋT(s)Rẋ(s)ds + (β − α)ηT(t)MT R−1Mη(t) + 2(xT(β)− xT(α))Mη(t)

the following inequalities is satisfied:

T1(t) ≤ τηT
8 (t)MTS−1Mη8(t) + 2(xT(t)− xT(t − τ))Mη8(t) (11)

T2(t) ≤ d1(t)ηT
9 (t)NT

1 R−1
1 N1η9(t) + 2(xT(t − τ)− xT(tk − τ))N1η9(t) (12)

T3(t) ≤ d2(t)ηT
10(t)NT

2 R−1
2 N2η10(t) + 2(xT(tk+1 − τ)− xT(t − τ))N2η10(t) (13)

where η8(t) = col
{

x(t), x(t − τ)
}

, η9(t) = col
{

x(t − τ), x(tk − τ)
}

, η10(t) = col
{

x(t −
τ), x(tk+1 − τ)

}
. Next, using integration by parts, the following zero equalities hold:

0 = 2ηT
11(t)ZT

1

(
−

∫ t−τ

tk−τ
(t − s)ẋ(s)ds + τ(x(t − τ)− x(tk − τ))

− d1(t)x(tk − τ) +
∫ t−τ

tk−τ
x(s)ds

)
(14)

0 = 2ηT
12(t)ZT

2

(
−

∫ tk+1−τ

t−τ
(t − s)ẋ(s)ds + τ(x(tk+1 − τ)− x(t − τ))

− d2(t)x(tk+1 − τ) +
∫ tk+1−τ

t−τ
x(s)ds

)
. (15)
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Additionally, based on (3), we have

0 = 2ηT
13(t)G

T(Āx(t)− (L̄ ⊗ BK)x(tk − τ) + C̄ f (x(t))− ẋ(t)
)
. (16)

Subsequently, by combining (8)–(16), we can obtain

V̇(t) ≤ ηT(t)Ψ(t)η(t) (17)

where

η(t) = col
{

x(t), x(t − τ), x(tk − τ), x(tk+1 − τ),
∫ t−τ

tk−τ
x(s)ds,

∫ tk+1−τ

t−τ
x(s)ds,∫ t−τ

tk−τ
(t − s)ẋ(s)ds,

∫ tk+1−τ

t−τ
(t − s)ẋ(s)ds, ẋ(t), ẋ(t − τ), f (x(t))

}
Ψ(t) = Ψ1 + Ψ2(t) + τΞT

8 MTS−1MΞ8 + d1(t)ΞT
9 NT

1 R−1
1 N1Ξ9 + d2(t)ΞT

10NT
2 R−1

2 N2Ξ10.

As a result, from t ∈ [tk, tk+1) and hk ∈ [hm, hM], the stability condition V̇(t) < 0 can be
represented as the following linear convex combination, for hk ∈ {hm, hM}:

0 > Ψ1 + Ψ2(tk) + τΞT
8 MTS−1MΞ8 + hkΞT

10NT
2 R−1

2 N2ΞT
10

0 > Ψ1 + Ψ2(tk+1) + τΞT
8 MTS−1MΞ8 + hkΞT

9 NT
1 R−1

1 N1Ξ9

which are transformed into (6) and (7) using the Schur complement.

Remark 2. The inclusion of new elements in the looped-functional requires careful consideration of
the relationship between these elements. Compared to [26] and [27], this paper establishes two new
zero equalities, (14) and (15), within the stability analysis framework. Building upon this, two slack
variables, Z1 and Z2, are integrated into the stability condition, thereby reducing the conservatism
of the results.

Based on the stability condition of Theorem 1, the corresponding sampled-data con-
troller is provided in the following theorem.

Theorem 2. For given positive scalars ε1, ε2, τ, hm, and hM, the consensus of MAS (1) can be
achieved, if there exist symmetric matrices 0 < P̄ = P̄T ∈ Rn×n, 0 < W̄ = W̄T ∈ R2n×2n,
0 < S̄ = S̄T ∈ Rn×n, X̄1, X̄2 ∈ R3n×4n, R̄1 = R̄T

1 , R̄2 = R̄T
2 ∈ Rn×n, Ū = ŪT ∈ R2n×2n,

Q̄1 = Q̄T
1 ∈ R2n×2n, Q̄2 ∈ Rn×2n, Q̄3 = Q̄T

3 ∈ Rn×n, M̄ ∈ Rn×2n, N̄1, N̄2 ∈ Rn×2n, Z̄1,
Z̄2 ∈ Rn×4n, 0 < Ḡ = IN−1 ⊗ Ĝ ∈ Rn×n, and K̄ ∈ Rnu×nz , such that the following conditions
are satisfied, for hk ∈ {hm, hM}:

0 <

[
Q̄1 (∗)
Q̄2 Q̄3

]
(18)

0 >

 Ψ̄1 + Ψ̄2(tk) (∗) (∗)
τM̄Ξ8 −τS̄ 0

hk N̄2Ξ10 0 −hkR̄2

 (19)

0 >

 Ψ̄1 + Ψ̄2(tk+1) (∗) (∗)
τM̄Ξ8 −τS̄ 0

hk N̄1Ξ9 0 −hkR̄1

 (20)
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where

Ψ̄1 = He
{

eT
1 P̄e9 − ΞT

2 X̄1Ξ3 + ΞT
4 X̄2Ξ5

}
+ ΞT

1 W̄Ξ1 − Ξ̂T
1 W̄Ξ̂1 + τeT

9 S̄e9

+ He
{

hMΞ̄T
7 Q̄1Ξ7 + eT

10Q̄2Ξ7 +
(
eT

2 − eT
3
)
Q̄2Ξ̄7 + eT

10Q̄3e10
}

+ He
{
(eT

1 − eT
2 )M̄Ξ8 + (eT

2 − eT
3 )N̄1Ξ9 + (eT

4 − eT
2 )N̄2Ξ10

}
+ He

{
ΞT

11Z̄T
1
(
τ(e2 − e3) + e5 − e7

)
+ ΞT

12Z̄T
2
(
τ(e4 − e2) + e6 − e8

)
}

+ He
{

ΞT
13
(

ĀḠe1 − (L̄ ⊗ BK̄)e3 + C̄Ḡe11 − Ḡe9
)}

Ψ̄2(t) = d2(t)He
{

Ξ̄T
2 X̄1Ξ3 + ΞT

2 X̄1Ξ̄3 + ΞT
6 ŪΞ6 + eT

10R̄1e10 − ΞT
11Z̄T

1 e3
}

+ d1(t)He
{

Ξ̄T
4 X̄2Ξ5 + ΞT

4 X̄2Ξ̄5 − ΞT
6 ŪΞ6 + eT

10R̄2e10 − ΞT
12Z̄T

2 e4
}

Then, the control gain is reconstructed by K = K̄Ĝ−1.

Proof. Let us construct several congruent transformation matrices G2 = I2 ⊗ Ḡ,
G3 = I3 ⊗ Ḡ, G4 = I4 ⊗ Ḡ, and G13 = I13 ⊗ Ḡ. Then, using the subsequent
replacement variables:

G = Ḡ−1, K̄ = KĜ, P̄ = ḠT PḠ, W̄ = GT
2 WG2, S̄ = ḠT S̄Ḡ, X̄1 = GT

3 X1G4, X̄2 = GT
3 X2G4

R̄1 = ḠT R1Ḡ, R̄2 = ḠT R2Ḡ, Ū = GT
2 UG2, Q̄1 = GT

2 Q1G2, Q̄2 = ḠTQ2G2, Q̄3 = ḠTQ3Ḡ

M̄ = ḠT MG2, N̄1 = ḠT N1G2, N̄2 = ḠT N2G2, Z̄1 = ḠTZ1G4, Z̄2 = ḠTZ2G4

condition (18)–(20) are derived by pre- and post-multiplying (5)–(7) by GT
3 , GT

13, and GT
13

and their transpose, respectively.

Remark 3. The number of variables (NoVs) required for Theorems 1 and 2 are computed as follows:
NoVsTh1 = 49.5 n2+5.5 n and NoVsTh2 = 48.5 n2 + 5.5 n + n2

z + nunz, respectively.

4. Illuminate Examples
The simulation is performed using MATLAB R2023b software from MathWorks,

Inc. [30]. The LMI conditions (18)–(20) in Theorem 2 are numerically solved by LMI solver
in Robust Control Toolbox, MATLAB.

Consider a diode circuit system model with N = 5, as described in [27].{
żi1(t) = 0.2

C zi1(t) + 1
C zi2(t)

żi2(t) = − 1
L zi1(t)− R

L zi2(t) + 1
L ui(t), i ∈ {1, . . . , 5}

where zi1(t) = vD(t) represents the voltage across the diode (V) and zi2(t) = iD(t) denotes
the diode current (A). In particular, the system parameters are defined as capacitance
C = 0.2F, resistance R = 2Ω, and inductance L = 0.1H. Accordingly, the diode circuit
system model can be represented in the form (1) as follows:

A =

[
1 5

−10 −20

]
, B =

[
0

10

]
.

Following [27], we consider the Laplacian matrix given below:

L =


2 −1 0 0 −1

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1

−1 0 0 −1 2
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For comparison, Table 1 presents the maximized upper bound of the sampling
interval hM corresponding to various communication delays τ, as obtained from [25]
(Theorem 3), [26] (Theorem 3.1), [27] (Corollary 1), and Theorem 2, with ε1 = 1, ε2 = 1, and
hm = 10−4.

Table 1. Comparison of maximized hM for different τ.

Method τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.5 NoVs

[25] (Theorem 3) 0.6480 0.4959 0.3448 0.0733 248
[26] (Theorem 3.1) 0.8004 0.6433 0.4862 0.1721 1280
[27] (Corollary 1) 0.8763 0.7299 0.5887 0.3479 2704

Theorem 2 1.5322 1.0671 0.8165 0.5874 3154

Table 1 demonstrates that Theorem 2 provides a larger maximized upper bound hM

for all values of τ compared to [25] (Theorem 3), [26] (Theorem 3.1) and [27] (Corollary 1).
Specifically, when compared to [27] (Corollary 1) for τ = 0.5, although Theorem 2 requires
approximately 16.6% more in the NoV, it yields an increase of about 68.8% in the maximized
upper bound hM. This demonstrates that Theorem 2 provides a significantly larger maxi-
mized allowable sampling interval, despite the slightly higher computational complexity.

Then, by solving Theorem 2 with ε1 = 1, ε2 = 1, τ = 0.1, hm = 10−4, and hM = 1.5322,
the sampled-data controller gain can be determined as follows:

K =
[
−0.0168 −0.0238

]
.

For the initial value zi(0) = col{2i − i−1, i} for i ∈ 1, 2, . . . , 5, hk ∈ [10−4, 1.5322], and
τ = 0.1, the sampled state zi(tk) and the sampled state with time delay zi(tk − τ) for each
agent are shown in Figure 2a and Figure 2b, respectively. Subsequently, the SDC input ui(t)
is as illustrated in Figure 3a. Under this SDC input, the system state trajectories for each
agent are shown in Figure 3b. As observed in Figure 3, the system state trajectories of agent
i exhibit convergence to zero within a relatively brief time interval. Therefore, the proposed
sampled-data controller effectively ensures the consensus of homogeneous MASs.

Figure 2. (a) Sampled state zi(tk) and (b) sampled state with time delay z(tk − τ).
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Figure 3. (a) Control input u(t) and (b) system state zi(t).

5. Concluding Remarks
This paper presents an improved approach to designing a consensus controller for

homogeneous MASs with aperiodic sampled data and communication delay. To exploit
information about system state responses available during sampling and data transmission,
we have introduced two novel delay-incorporating integral terms, an improved two-sided
looped-functional, a novel discontinuous function, and two additional zero equalities into
the stability process. Subsequently, conditions sufficient to ensure consensus among MASs
in this context have been formulated as LMIs. Through simulation results, the efficiency of
the proposed method has been verified in extending the maximized allowable sampling
interval. In future work, we will focus on addressing more realistic problems, including
heterogeneous MASs and time-varying time delays.
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