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Abstract: This paper proposes a numerical algorithm for the nonlinear fifth-order Korteweg–
de Vries equations. This class of equations is known for its significance in modeling various
complex wave phenomena in physics and engineering. The approximate solutions are
expressed in terms of certain shifted Horadam polynomials. A theoretical background
for these polynomials is first introduced. The derivatives of these polynomials and their
operational metrics of derivatives are established to tackle the problem using the typical
collocation method to transform the nonlinear fifth-order Korteweg–de Vries equation gov-
erned by its underlying conditions into a system of nonlinear algebraic equations, thereby
obtaining the approximate solutions. This paper also includes a rigorous convergence
analysis of the proposed shifted Horadam expansion. To validate the proposed method,
we present several numerical examples illustrating its accuracy and effectiveness.

Keywords: generalized Fibonacci polynomials; Korteweg–de Vries equations; operational
matrices; convergence analysis; collocation method
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1. Introduction
Nonlinear differential equations (DEs) are vital since they can represent complicated

real-world phenomena in numerous fields of science and engineering branches. Complex
systems can be better understood by studying nonlinear DEs, which, in contrast to linear
ones, can display a wide range of behaviors. These behaviors include multistability,
chaos, and bifurcations. Many models in different disciplines, such as electrodynamics,
neuroscience, epidemiology, mechanical engineering, fluid dynamics, and economics, can
be modeled using nonlinear DEs; see, for example, [1–3]. Since most of these models lack
exact solutions, numerical methods are crucial in treating these nonlinear DEs. For example,
the authors of [4] followed a numerical approach for treating the Black–Scholes model. The
authors of [5] used a collocation approach to solve the Fitzhugh–Nagumo nonlinear DEs
in neuroscience. Another numerical approach was followed in [6] to solve the nonlinear
equations of Emden–Fowler models. Nonlinear thermal diffusion problems were handled
in [7]. In [8], a numerical scheme for solving a stochastic nonlinear advection-diffusion
dynamical model was handled. In [9], the authors employed Petrov-Galerkin methods
for treating some linear and nonlinear partial DEs. The authors of [10] used a specific
difference scheme for some nonlinear fractional DEs. The authors of [11] a collocation
procedure for treating the nonlinear fractional FitzHugh–Nagumo equation.
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An important nonlinear partial differential equation that describes the motion of
solitons (individual waves) in shallow water and other systems is the Korteweg–de Vries
(KdV) equation. Over the years, the KdV equation has undergone several revisions to
account for non-local interactions, dissipation effects, higher-order terms, and various
physical phenomena. Many scientific fields have used these modifications; nonlinear optics,
fluid dynamics, and plasma physics are just a few examples. The following are a few
notable variations of the KdV equation and the several scientific domains that have used
them: the standard KdV equations, the modified KdV equation, the generalized KdV
equation, the KdV–Burgers equation, and the KdV–Kawahara equation. Furthermore,
regarding some applications of some specific problems of the KdV-type equations, we
mention three of these problems and their applications.

• The Caudrey–Dodd–Gibbon problem. This problem has applications in shallow water
waves, nonlinear optics, and plasma physics; see [12].

• The Sawada–Kotera problem has applications in hydrodynamics, elasticity, plasma
physics, and soliton theory; see [13].

• The Kaup-Kuperschmidt problem has applications in fluid mechanics, biological wave
propagation, plasma physics, and quantum field theory; see [14].

Numerous contributions have focused on their handling due to the significance of
the various KdV-type equations. For example, in [15], analytical and numerical solutions
for the fifth-order KdV equation were presented. In [16], some hyperelliptic solutions of
certain modified KdV equations were proposed. A numerical study for the stochastic KdV
equation was presented in [17]. To treat the generalized Kawahara equation, an operational
matrix approach was proposed in [18]. The authors of [19] followed a finite difference
approach to handle the fractional KdV equation. Two algorithms were presented in [20] to
treat the nonlinear time-fractional Lax’s KdV equation. Another numerical approach was
given in [21] for approximating the modified KdV equation. A computational approach
was used to handle a higher-order KdV equation in [22]. The time-fractional KdV equation
was investigated numerically in [23]. In [24], the method of lines was proposed to solve
the KdV equation. A Bernstein polynomial basis was employed in [25] to treat the KdV-
type equations.

Special functions are fundamental in the scientific, mathematical, and engineering
fields. For examples of the usage of these polynomials in signal processing, quantum
mechanics, and physics, one can consult [26,27]. These functions have the potential to solve
several types of DEs. For example, the authors of [28] numerically treated the fractional
Rayleigh-Stokes problem using certain orthogonal combinations of Chebyshev polynomials.
The shifted Fibonacci polynomials were utilized in [29] to treat the fractional Burgers equa-
tion. In [30], the authors used Vieta–Fibonacci polynomials to treat certain two-dimensional
problems. Other two-dimensional FDEs were handled using Vieta Lucas polynomials
in [31]. The authors of [32] used Changhee polynomials to treat a high-dimensional chaotic
Lorenz system. In [33], some FDEs were treated using shifted Chebyshev polynomials.

Horadam sequences, named after the mathematician Alwyn Horadam, who initially
developed them in the 1960s, generalize several well-known polynomials, such as Fibonacci,
Lucas, Pell, and Pell Lucas polynomials. Many authors investigated Horadam sequences
of polynomials. For example, the authors in [34] investigated some generalized Horadam
polynomials and numbers. Some identities regarding Horadam sequences were developed
in [35]. Some subclasses of bi-univalent functions associated with the Horadam polynomials
were given in [36]. In [37], some characterizations of periodic generalized Horadam
sequences were introduced. An application to specific Horadam sequences in coding
theory was presented in [38].
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Spectral methods are becoming essential in the applied sciences; see, for instance [39,40],
for some of their applications in fields like engineering and fluid dynamics. These meth-
ods involve approximating differential and integral equation solutions by expansions of
various special functions. The three spectral techniques most frequently employed are
the collocation, tau, and Galerkin methods. The type of differential equation and the
boundary conditions it governs determine which spectral method is suitable. The three
spectral approaches use different trial and test functions. The Galerkin approach selects
all basis function members to satisfy the underlying conditions imposed by a specific dif-
ferential equation, treating the test and trial functions as equivalent. (For a few references,
see [41–43].) The tau method is easier than the Galerkin method in application since there
are no restrictions on selecting the trial and test functions; see, for example, [44–46]. The
collocation method is the most popular spectral method because it works well with nonlin-
ear DEs and can be used with all kinds of DEs, no matter what the underlying conditions
are; see, for example, [47–50].

We comment here that the motivations for our work are as follows:

• KdV-type equations are among the most important problems encountered in applied
sciences, which motivates us to investigate them using a new approach.

• Several spectral approaches were followed to solve KdV-type equations with various
orthogonal polynomials as basis functions. The basis functions used in this article are
a family of polynomials that are not orthogonal. This article will motivate us to apply
these polynomials to other problems in the applied sciences.

• To the best of our knowledge, the specific Horadam sequence of polynomials used in
this paper was not previously used in numerical analysis, which provides a compelling
reason to introduce and utilize them.

Furthermore, the work’s novelty is due to the following points:

• We have developed novel simplified formulas for the new sequence of polynomials,
including their high-order derivatives and operational matrices of derivatives.

• This paper presents a new comprehensive study on the convergence analysis of the
used Horadam expansion.

The main objectives of this paper can be listed in the following items:

(a) Introducing a class of shifted Horadam polynomials and developing new essential
formulas concerned with them.

(b) Developing operational matrices of derivatives of the introduced shifted polynomials.
(c) Analyzing a collocation procedure for solving the nonlinear fifth-order KdV equations.
(d) Investigating the convergence analysis of the proposed Horadam expansion.
(e) Verifying our numerical algorithm by presenting some illustrative examples.

This paper is structured as follows: Section 2 gives an overview of Horadam polyno-
mials, their representation, and some particular polynomials of them. Section 3 introduces
certain shifted Horadam polynomials and develops some theoretical formulas that will
be used to design our numerical algorithm. Section 4 presents a collocation approach for
treating the nonlinear fifth-order KdV-type equations. Section 5 discusses the convergence
and error analysis of the proposed expansion in more detail. Section 6 presents some
illustrative examples and comparisons. Finally, some discussions are given in Section 7.
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2. An Overview of Horadam Polynomials and Some
Particular Polynomials

Horadam presented a set of generalized polynomials in his seminal work [51]. These
polynomials may be generated using the following recursive formula:

Wj(x) = p(x)Wj−1(x) + q(x)Wj−2(x), W0(x) = 0, W1(x) = 1. (1)

The polynomials Wj(x) can be written in the following Binet’s form:

Wj(x) =

[
p(x) +

√
p2(x) + 4 q(x)

]j
−

[
p(x)−

√
p2(x) + 4 q(x)

]j

2j
√

p2(x) + 4 q(x)
, j ≥ 0. (2)

The above sequence of polynomials generalizes some well-known polynomials, such as
Fibonacci, Pell, Lucas, and Pell–Lucas polynomials.

The standard Fibonacci polynomials can be generated with the following recursive
formula:

Fj(x) = x Fj−1(x) + Fj−2(x), j ≥ 2, F0(x) = 0, F1(x) = 1. (3)

The standard Fibonacci polynomials, which are special ones of Horadam polynomials,
have several extensions. The generalized Fibonacci polynomials are one example of such a
generalization; they are derived using the following recursive formula:

Fa,b
k (x) = a x Fa,b

k−1(x) + b Fa,b
k−2(x), Fa,b

0 (x) = 1, Fa,b
1 (x) = a x, k ≥ 2. (4)

It is worth noting here that for every k, Fa,b
k (x) is of degree k. These polynomials involve

many celebrated sequences, such as Fibonacci, Pell, Fermat, and Chebyshev polynomials
of the second kind. More precisely, we have the following expressions:

Fi+1(x) = F(1,1)
i (x), Pi+1(x) = F(2,1)

i (x), (5)

Fi+1(x) = F(3,−2)
i (x), Ui(x) = F(2,−1)

i (x). (6)

Recently, the authors of [29] have developed some new formulas for the shifted Fibonacci
polynomials, defined as

F∗
i (x) = Fi(2x − 1).

In addition; they used these polynomials to solve the fractional Burgers’ equation. This
paper will introduce specific polynomials of the shifted generalized Fibonacci polynomials,
defined as

θm(x) = F−2,−1
m+1 (2x − 1). (7)

Note that for every m ≥ 0, θm(x) is of degree m.
The following formula is used to generate these polynomials:

θk(x) = −2 x θk−1(x)− θk−2(x), θ0(x) = 1, θ1(x) = −2(2x − 1), k ≥ 2. (8)

The following section introduces fundamental formulas concerning the introduced
polynomials θm(x).

3. Some New Formulas Concerned with the Introduced
Shifted Polynomials

We will develop new formulas for the specific shifted Horadam polynomials defined
in (7). The following two lemmas will present the power form representation and inversion
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formula for these polynomials, which are pivotal in this paper. Next, we will establish new
derivative expressions for these polynomials and their operational matrices of derivatives.

3.1. Analytic Form and Its Inversion Formula

Theorem 1. Let m be a non-negative integer. The power form representation of θm(x) is given by

θm(x) =
−1

2
√

π

m

∑
r=0

(1 + 2m − r)! Γ
(
− 1

2 − m + r
)

(m − r)! r!
xm−r. (9)

Proof. We will proceed by induction. Assume the validity of (9) for every j with j < m;
that is, we have

θj(x) =
j

∑
r=0

Ar,jxj−r, ∀ j < m, (10)

where

Ar,j =
−(1 + 2j − r)! Γ

(
− 1

2 − j + r
)

2
√

π(j − r)! r!
.

To complete the proof; we have to show the validity of (9).
Starting from the recurrence relation of θm(x), we have

θm(x) = −2 (2x − 1)θm−1(x)− θm−2(x). (11)

Making use of (10), we can write

θm(x) = −2(2x − 1)
m−1

∑
r=0

Ar,m−1 xm−r−1 −
m−2

∑
r=0

Ar,m−2 xm−r−2. (12)

The last formula can be written as

θm(x) = −4
m−1

∑
r=0

Ar,m−1 xm−r + 2
m−1

∑
r=0

Ar,m−1 xm−r−1 −
m−2

∑
r=0

Ar,m−2 xm−r−2, (13)

which has the form

θm(x) = −4
m−1

∑
r=0

Ar,m−1 xm−r + 2
m

∑
r=0

Ar−1,m−1 xm−r −
m

∑
r=0

Ar−2,m−2 xm−r

=
m

∑
r=0

(−4Ar,m−1 + 2 Ar−1,m−1 − Ar−2,m−2) xm−r.

If we note the identity:

−4Ar,m−1 + 2 Ar−1,m−1 − Ar−2,m−2 = Ar,m,

then, Formula (9) can be proved.

Theorem 2. Consider a non-negative integer m. The following inversion formula is valid:

xm =
m

∑
r=0

(−1)r−m21−2m(1 + m − r)(1 + 2m)!
(2 + 2m − r)!r!

θm−r(x). (14)
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Proof. We prove Formula (14) by induction. The formula holds for m = 0. Assume the
validity of (14), and we have to show the following formula:

xm+1 =
m+1

∑
r=0

(−1)r−m+1 2−1−2m (m − r + 2) (2m + 3)!
(2m − r + 4)! r!

θm−r+1(x). (15)

Now, if we multiply Formula (14) by x, and make use of the recursive formula (8) in the
following form:

x θm(x) =
1
4
(2 θm(x)− θm+1(x)− θm−1(x)), (16)

then the following formula can be obtained:

xm+1 =
m

∑
r=0

(−1)r−m2−1−2m(m − r + 1)(2m + 1)!
(2m − r + 2)!r!

(2θm−r(x)− θm−r+1(x)− θm−r−1(x)), (17)

which can be turned after some algebraic computations into the following form:

xm+1 =
m+1

∑
r=0

(−1)r−m+1 2−1−2m (m − r + 2) (2m + 3)!
(2m − r + 4)! r!

θm−r+1(x). (18)

This completes the proof.

3.2. Derivative Expressions and Operational Matrices of Derivatives of θm(x)

Based on Theorems 1 and 2, an expression for the high-order derivatives of θm(x)
in terms of their original polynomials can be deduced. The following theorem exhibits
this expression.

Theorem 3. Consider two positive integers m, p with m ≥ p. We have

Dpθm(x) =
m−p

∑
k=0

Uk,m,p θk(x), (19)

where

Uk,m,p =
vk,m,p 22p (−1)m−k(k + 1)

(
1
2 (4 + m + k − p)

)
p−1

(p) 1
2 (m−k−p)(

1
2 (m − k − p)

)
!

,

with

vk,m,p =


1, (m − k − p) even,

0, otherwise.

Proof. The analytic form of θm(x) in (9) enables one to write Dpθm(x) as

Dpθm(x) = − 1
2
√

π

m−p

∑
r=0

(1 + 2m − r)! Γ
(
− 1

2 − m + r
)
(1 + m − p − r)p

(m − r)! r!
xm−r−p. (20)
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The inversion formula in (14) converts the above formula into the following one:

Dpθm(x) =
−2
π

m−p

∑
r=0

(2m − r + 1)! Γ
( 3

2 + m − p − r
)
Γ
(
− 1

2 − m + r
)

r!
×

m−r−p

∑
n=0

(−1)−m+p+r+n(1 + m − p − r − n)
n! (2m − 2p − 2r − n + 2)!

θm−r−p−n(x).

(21)

The last formula can be rearranged to be written in a more convenient form:

Dpθm(x) =
2
π

m−p

∑
ℓ=0

(−1)−m+ℓ+p(−1 − m + ℓ+ p)×

ℓ

∑
r=0

(2m − r + 1)! Γ
( 3

2 + m − p − r
)
Γ
(
− 1

2 − m + r
)

r! (ℓ− r)! (2m − ℓ− 2p − r + 2)!
θm−p−ℓ(x).

(22)

Now, to obtain a simplified formula for the derivatives Dpθm(x)m ≥ p, we use symbolic
algebra to find a closed form for the second sum that appears in the right-hand side of (22).
For this purpose, we set

Sℓ,m,p =
ℓ

∑
r=0

(2m − r + 1)! Γ
( 3

2 + m − p − r
)
Γ
(
− 1

2 − m + r
)

r! (ℓ− r)! (2m − ℓ− 2p − r + 2)!
,

and use Zeilberger’s algorithm [52] to show that the following recursive formula is satisfied
by Sℓ,m,p:

(2 − ℓ− 2p)(−4 + ℓ− 2m + 2p)Sℓ−2,m,p + ℓ(−2 + ℓ− 2m) Sℓ,m,p = 0, (23)

with the following initial values:

S0,m,p =
4−1−m+p √π Γ

(
− 1

2 − m
)
(2m + 1)!

(m − p + 1)!
, S1,m,p = 0,

which can be solved to obtain

Sℓ,m =


(−1)ℓ/2 2−2−2m+ℓ+2p √π (2m − ℓ+ 1)! Γ

(
1
2 (−1 − 2m + ℓ)

)
(p) ℓ

2

( ℓ2 )!
(

m − ℓ
2 − p + 1

)
!

, ℓ even,

0, ℓ odd,

and accordingly, Formula (22) reduces into the following one:

Dpθm(x) = 22p
⌊m−p

2 ⌋
∑
k=0

(−1)p(1 − 2k + m − p)
(

1
2 (4 − 2k + 2m − 2p)

)
p−1

(p)k

k!
θm−p−2k(x). (24)

The last formula can be written in the following alternative form:

Dpθm(x) = 22p
m−p

∑
k=0

v(m, k, p)
(−1)m−k(k + 1)

(
1
2 (4 + m + k − p)

)
p−1

(p) 1
2 (m−k−p)(

1
2 (m − k − p)

)
!

θk(x), (25)
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with

vk,m,p =


1, (m − k − p) even,

0, otherwise.

This finalizes the proof of Theorem 3.

The following four corollaries exhibit the first-, second-, third-, and fifth-order deriva-
tives of the polynomials θm(x). They are all consequences of Theorem 3.

Corollary 1. The first derivative of θm(x) can be expressed in the following form:

d θm(x)
d x

=
m−1

∑
k=0

λ1
k,m θk(x), m ≥ 1, (26)

where
λ1

k,m = 4 (k + 1)(−1)m−k vm,k,1. (27)

Corollary 2. The second derivative of θm(x) can be expressed in the following form:

d2 θm(x)
d x2 =

m−2

∑
k=0

λ2
k,m θk(x), m ≥ 2, (28)

where
λ2

k,m = 4 (k + 1) (−1)m−k (m − k) (k + m + 2) vm,k,2. (29)

Corollary 3. The third derivative of θm(x) can be expressed in the following form:

d3 θm(x)
d x3 =

m−3

∑
k=0

λ3
k,m θk(x), m ≥ 3, (30)

where

λ3
k,m = 2 (k + 1) (−1)m−k (k − m − 1) (k − m + 1) (k + m + 1) (k + m + 3) vm,k,3. (31)

Corollary 4. The fifth derivative of θm(x) can be expressed in the following form:

d5 θm(x)
d x5 =

m−5

∑
k=0

λ4
k,m θk(x), m ≥ 5, (32)

where

λ4
k,m =

8 (k + 1) (−1)m−k (k + m − 1) (k + m + 1) (k + m + 3) (k + m + 5)Γ
(

1
2 (−k + m + 5)

)
vm,k,5

3 Γ
(

1
2 (−k + m − 3)

) . (33)

Proof. The proof of Corollaries 1–4 can be easily obtained after putting p = 1, 2, 3, 5
respectively in Theorem 3.

The following corollary presents the operational matrices of the integer derivatives of
the polynomials θm(x), which can be deduced from the above four corollaries.

Corollary 5. If we consider the following vector:

θ(x) = [θ0(x), θ1(x), . . . , θN(x)]T , (34)
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then, the first-, second-, third-, and fifth-order derivatives of the vector θ(x) can be written in the
following matrix forms:

d θ(x)
d x

= A θ(x),

d2 θ(x)
d x2 = B θ(x),

d3 θ(x)
d x3 = F θ(x),

d5 θ(x)
d x5 = G θ(x),

(35)

where A = (λ1
k,m), B = (λ2

k,m), F = (λ3
k,m), and G = (λ4

k,m) are the operational matrices of
derivatives of order (N + 1)2.

Proof. The expressions in (35) are direct consequences of Corollaries 1–4.

4. A Collocation Approach for the Nonlinear Fifth-Order KdV-Type
Partial DEs

Consider the following nonlinear fifth-order KdV-type partial differential equation [53,54]:

∂ η(x, t)
∂ t

+ a η(x, t)2
(

∂ η(x, t)
∂ x

)
+ b

(
∂ η(x, t)

∂ x

)(
∂2 η(x, t)

∂ x2

)
+ d η(x, t)

(
∂3 η(x, t)

∂ x3

)
+

∂5 η(x, t)
∂ x5 = 0, 0 ≤ x, t ≤ 1,

(36)

governed by the following initial and boundary conditions:

η(x, 0) = f (x), (37)

η(0, t) =g0(t), η(1, t) = g1(t), (38)

∂ η(0, t)
∂ x

=g2(t),
∂ η(1, t)

∂ x
= g3(t),

∂2 η(0, t)
∂ x2 = g4(t), (39)

where a, b, d are arbitrary constants.
Now, consider the following space:

ZN = span{θm(x) θn(t) : 0 ≤ m, n ≤ N}. (40)

Consequently, it can be assumed that any function ηN = ηN(x, t) ∈ ZN can be repre-
sented as

ηN =
N

∑
m=0

N

∑
n=0

η̂mn θm(x) θn(t) = θ(x)T η̂ θ(t), (41)

where θ(x) is the vector defined in (34), and η̂ = (η̂mn)0≤m,n≤N is the matrix of unknowns,
whose order is (N + 1)2.
Now, we can write the residual RN(x, t) of Equation (36) as

RN(x, t) =
∂ ηN
∂ t

+ a ηN
2
(

∂ ηN
∂ x

)
+ b

(
∂ ηN
∂ x

)(
∂2 ηN

∂ x2

)
+ d ηN

(
∂3 ηN

∂ x3

)
+

∂5 ηN

∂ x5 . (42)
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Thanks to Corollary 5 along with the expansion (41), the following expressions for the

terms
∂ηN
∂t

, η2
N

(
∂ηN
∂x

)
,
(

∂2ηN

∂x2

)
, ηN

(
∂3ηN

∂x3

)
and

∂5ηN

∂x5 , can be obtained:

∂ηN
∂t

= θ(x)T η̂ (A θ(t)), (43)

η2
N

(
∂ηN
∂x

)
= [θ(x)T η̂ θ(t)]2 [(A θ(x))T η̂ θ(t)], (44)(

∂ηN
∂x

)(
∂2ηN

∂x2

)
= [(A θ(x))T η̂ θ(t)] [(B θ(x))T η̂ θ(t)], (45)

ηN

(
∂3ηN

∂x3

)
= [θ(x)T η̂ θ(t)] [(F θ(x))T η̂ θ(t)], (46)

∂5ηN

∂x5 = (G θ(x))T η̂ θ(t). (47)

By virtue of the expressions (43)–(47), the residual RN(x, t) can be written in the follow-
ing form:

RN(x, t) =θ(x)T η̂ (A θ(t)) + a [θ(x)T η̂ θ(t)]2 [(A θ(x))T η̂ θ(t)]

+ b [(A θ(x))T η̂ θ(t)] [(B θ(x))T η̂ θ(t)]

+ d [θ(x)T η̂ θ(t)] [(F θ(x))T η̂ θ(t)] + (G θ(x))T η̂ θ(t).

(48)

Now, to obtain the expansion coefficients cmn, we apply the spectral collocation method by
forcing the residual RN(x, t) to be zero at some collocation points

(
m+1
N+2 , n+1

N+2

)
, as follows:

RN

(
m + 1
N + 2

,
n + 1
N + 2

)
= 0, 0 ≤ m ≤ N − 5, 0 ≤ n ≤ N − 1. (49)

Moreover, the initial and boundary conditions (37)–(39) imply the following equations:

θ

(
m + 1
N + 2

)T
η̂ θ(0) = f

(
m + 1
N + 2

)
, 0 ≤ m ≤ N, (50)

θ(0)T η̂ θ

(
n + 1
N + 2

)
= g0

(
n + 1
N + 2

)
, 0 ≤ n ≤ N − 1, (51)

θ(1)T η̂ θ

(
n + 1
N + 2

)
= g1

(
n + 1
N + 2

)
, 0 ≤ n ≤ N − 1, (52)

(A θ(0))T η̂ θ

(
n + 1
N + 2

)
= g2

(
n + 1
N + 2

)
, 0 ≤ n ≤ N − 1, (53)

(A θ(1))T η̂ θ

(
n + 1
N + 2

)
= g3

(
n + 1
N + 2

)
, 0 ≤ n ≤ N − 1, (54)

(B θ(0))T η̂ θ

(
n + 1
N + 2

)
= g4

(
n + 1
N + 2

)
, 0 ≤ n ≤ N − 1. (55)

The (N + 1)2 nonlinear system of equations formed by the equations in (50)–(55) and (49)
may be solved with the use of a numerical solver, such as Newton’s iterative technique,
and thus the approximate solution given by (41) can be found.
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5. The Convergence and Error Analysis
This section provides a detailed convergence analysis of the proposed approximate

expansion. To begin this study, specific inequalities are necessary.

Lemma 1. The following inequality holds [55]:

|In(x)| ≤ xn cosh(x)
2n Γ(n + 1)

, x > 0, (56)

where In(x) is the modified Bessel function of order n of the first kind.

Lemma 2. Consider the infinitely differentiable function g(x) at the origin. g(x) can be expanded as

g(x) =
∞

∑
n=0

∞

∑
s=n

4 (−1)n g(s)(0) (n + 1) Γ
(
s + 3

2
)

√
π (s − n)! (n + s + 2)!

θn(x). (57)

Proof. Consider the following expansion for g(x):

g(x) =
∞

∑
n=0

g(n)(0)
n!

xn. (58)

As a result of the inversion formula (14), the previous expansion transforms into the
following form:

g(x) =
∞

∑
n=0

n

∑
r=0

(−1)r g(n)(0) 21−2 n (2 n + 1)! (r + 1)
n! (n − r)! (2 + n + r)!

θr(x). (59)

Now, expanding the right-hand side of the last equation and rearranging the similar terms,
the following expansion can be obtained:

g(x) =
∞

∑
n=0

∞

∑
s=n

4 (−1)n g(s)(0) (n + 1) Γ
(
s + 3

2
)

√
π (n − s)! (n + s + 2)!

θn(x). (60)

This completes the proof of this lemma.

Lemma 3. Consider any non-negative integer m. The following inequality holds for θm(x):

|θm(x)| ≤ m + 1, x ∈ (0, 1). (61)

Proof. Using the analytic form for θm(x) in (9), we can write

|θm(x)| = 1
2
√

π m!

∣∣∣∣∣ m

∑
r=0

(
m

m − r

)
Γ
(
−1

2
− r

)∣∣∣∣∣, x ∈ (0, 1). (62)

Now, we will use the symbolic algebra to find a closed formula for the summation in (62).
Set

Sm =
m

∑
r=0

(
m

m − r

)
Γ
(
−1

2
− r

)
.

Zeilberger’s algorithm [52] aids in demonstrating that the following first-order recursive
formula is satisfied by Sm:

Sm+1 + (m + 2)Sm = 0, S0 = −2
√

π,
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which can be immediately solved to give

Sm = 2(−1)m+1 √π(m + 1)!,

and this implies the following inequality:

|Sm| ≤ 2
√

π(m + 1)!. (63)

Now, it is easy to see from (62) along with the inequality (63), that

|θm(x)| ≤ m + 1. (64)

This proves Lemma 3.

Theorem 4. If g(x) is defined on [0, 1] and |g(i)(0)| ≤ µi, i > 0, where µ is a positive constant

and g(x) =
∞

∑
n=0

ûn θn(x), then we obtain

|ûn| ≤
(eµ + 1)2−2n−1µn

n!
. (65)

Moreover, the series converges absolutely.

Proof. Based on Lemma 2 and the assumptions of the theorem, we can write

|ûn| =
∣∣∣∣∣ ∞

∑
s=n

4 (−1)n g(s)(0) (n + 1) Γ
(
s + 3

2
)

√
π (s − n)! (n + s + 2)!

∣∣∣∣∣
≤

∞

∑
s=n

4 µs (n + 1) Γ
(
s + 3

2
)

√
π (s − n)! (n + s + 2)!

=
4 eµ/2 (n + 1) In+1

( µ
2
)

µ
.

(66)

The application of Lemma 1 enables us to write the previous inequality as

|ûn| ≤
4 eµ/2 (n + 1) cosh

( µ
2
) ( µ

2
)n+1

µ 2n+1 (n + 1)!
, (67)

which can be rewritten after simplifying the right-hand side of the last inequality as

|ûn| ≤
(eµ + 1) 2−2 n−1 µn

n!
. (68)

We now show the second part of the theorem. Since we have

∞

∑
n=0

|ûn θn(x)| ≤
∞

∑
i=0

2−2 n−1(eµ + 1)µn (n + 1)
n!

=
1
8

eµ/4 (eµ + 1) (µ + 4), (69)

so the series converges absolutely.

Theorem 5. If f (x) satisfies the hypothesis of Theorem 4, and eN(x) =
∞

∑
n=N+1

ûn θn(x), then the

following error estimation is satisfied:

|eN(x)| <
(eµ + 1)

(
eµ/4(µ + 4) + 4

)
2−2N−5µN+1

N!
. (70)
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Proof. The definition of eN(x) enables us to write

|eN(x)| =
∞

∑
n=N+1

|cn| |θn(x)|

≤
∞

∑
n=N+1

2−2 n−1(eµ + 1)µn (n + 1)
n!

=
(eµ + 1)2−2N−3

(
µN+1 + eµ/4(µ + 4) 4N (

N! − Γ
(

N + 1, µ
4
)))

N!

<
(eµ + 1)

(
eµ/4(µ + 4) + 4

)
2−2N−5µN+1

N!
,

(71)

where Γ(., .) denotes upper incomplete gamma functions [56].

Theorem 6. Let η(x, t) = χ1(x) χ2(t) =
∞

∑
i=0

∞

∑
j=0

η̂ij θi(x) θj(t), with |χ(i)
1 (0)| ≤ ℓi

1 and

|χ(i)
2 (0)| ≤ ℓi

2, where ℓ1 and ℓ2 are positive constants. One has

|η̂ij| ≤

(
eℓ1 + 1

) (
eℓ2 + 1

)
2−2 (i+j+1) ℓi

1 ℓ
j
2

i! j!
. (72)

Moreover, the series converges absolutely.

Proof. If we apply Lemma 2 and use the assumption η(x, t) = χ1(x) χ2(t), then we
can write

η̂ij =
∞

∑
p=i

∞

∑
q=j

16 (−1)i+j χ
(p)
1 (0) χ

(q)
2 (0) (i + 1) (j + 1) Γ

(
q + 3

2
)

Γ
(

p + 3
2
)

π (p − i)! (i + p + 2)! (q − j)! (j + q + 2)!
. (73)

If we use the assumptions: |χ(i)
1 (0)| ≤ ℓ1

i, and |χ(i)
2 (0)| ≤ ℓ2

i, then we obtain

|η̂ij| ≤
∞

∑
p=i

4 (−1)i χ
(p)
1 (0) (i + 1) Γ

(
p + 3

2
)

√
π (p − i)! (i + p + 2)!

×
∞

∑
q=j

4 (−1)j χ
(q)
2 (0) (j + 1) Γ

(
q + 3

2
)

√
π (q − j)! (j + q + 2)!

. (74)

We obtain the desired result by performing similar steps as in the proof of Theorem 4.

Theorem 7. If η = η(x, t) satisfies the hypothesis of Theorem 6, then we have the following upper
estimate on the truncation error:

|EN | = |η − ηN | <
eℓ1/4

(
eℓ1 + 1

)
(ℓ1 + 4)

(
eℓ2 + 1

)(
eℓ2/4(ℓ2 + 4) + 4

)
2−2N−5ℓN+1

2

N!

+
eℓ2/4

(
eℓ2 + 1

)
(ℓ2 + 4)

(
eℓ1 + 1

)(
eℓ1/4(ℓ1 + 4) + 4

)
2−2N−5ℓN+1

1

N!
.

(75)

Proof. From definitions of η and ηN , we obtain

|EN | = |η − ηN | =
∣∣∣∣∣ ∞

∑
i=0

∞

∑
j=0

η̂ij θi(x) θj(t)−
N

∑
i=0

N

∑
j=0

η̂ij θi(x) θj(t)

∣∣∣∣∣
≤

∣∣∣∣∣ N

∑
i=0

∞

∑
j=N+1

η̂ij θi(x) θj(t)

∣∣∣∣∣+
∣∣∣∣∣ ∞

∑
i=N+1

∞

∑
j=0

η̂ij θi(x) θj(t)

∣∣∣∣∣.
(76)
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If Theorem 6 and Lemma 3 are applied, then the following inequalities can be obtained:

N

∑
i=0

2−2i−1(i + 1)
(

eℓ1 + 1
)
ℓi

1

i!
=

(
eλ + 1

)
2−2N−5(N + 1)ℓN+1

1

(
eℓ1/4(ℓ1 + 4)E−N

(
ℓ1
4

)
− 4

)
(N + 1)!

< eℓ1/4
(

eℓ1 + 1
)
(ℓ1 + 4),

(77)

∞

∑
i=N+1

2−2i−1(i + 1)
(

eℓ1 + 1
)
ℓi

1

i!
=

(
eℓ1 + 1

)
2−2N−3

N!

(
ℓN+1

1 + eℓ1/4(ℓ1 + 4)4N

×
(

N! − Γ
(

N + 1,
ℓ1

4

)))

<

(
eℓ1 + 1

)(
eℓ1/4(ℓ1 + 4) + 4

)
2−2N−5ℓN+1

1

N!
,

(78)

∞

∑
i=0

2−2i−1(i + 1)
(

eℓ1 + 1
)
ℓi

1

i!
=

1
8

eℓ1/4
(

eℓ1 + 1
)
(ℓ1 + 4) < eℓ1/4

(
eℓ1 + 1

)
(ℓ1 + 4), (79)

and accordingly, we obtain

|η − ηN | <
eℓ1/4

(
eℓ1 + 1

)
(ℓ1 + 4)

(
eℓ2 + 1

)(
eℓ2/4(ℓ2 + 4) + 4

)
2−2N−5ℓN+1

2

N!

+
eℓ2/4

(
eℓ2 + 1

)
(ℓ2 + 4)

(
eℓ1 + 1

)(
eℓ1/4(ℓ1 + 4) + 4

)
2−2N−5ℓN+1

1

N!
.

(80)

This completes the proof of this theorem.

6. Illustrative Examples
In this section, we present numerical examples to validate and demonstrate the appli-

cability and accuracy of our proposed numerical algorithm. We also present comparisons
with some other methods. Now, if we consider the successive errors EN and EN+1, then the
order of convergence for the given method can be calculated as [57]

Order =
log EN+1

EN

log N+1
N

. (81)

Example 1 ([53,54]). Consider the following Lax equation of order five:

∂ η

∂ t
+ 30 η2

(
∂ η

∂ x

)
+ 20

(
∂ η

∂ x

)(
∂2 η

∂ x2

)
+ 10 η

(
∂3 η

∂ x3

)
+

∂5 η

∂ x5 = 0, 0 ≤ x, t ≤ 1, (82)

governed by

η(x, 0) =2k2(3 tanh(k x0 − kx) + 2), (83)

η(0, t) =2k2
(

3 tanh
(

k x0 + 56 k5 t
)
+ 2

)
, (84)

η(1, t) =2k2
(

2 − 3 tanh
(
−k x0 − 56 k5 t + k

))
, (85)

∂ η(0, t)
∂ x

=− 6k3sech2
(

k x0 + 56 k5 t
)

, (86)

∂ η(1, t)
∂ x

=− 6k3sech2
(
−k x0 − 56 k5 t + k

)
, (87)

∂2 η(0, t)
∂ x2 =− 12k4 tanh

(
k x0 + 56 k5 t

)
sech2

(
k x0 + 56 k5t

)
, (88)
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where the analytic solution of this problem is

η(x, t) = 2k2
(

2 − 3 tanh
(

k x − 56 k5 t − k x0

))
.

Table 1 presents a comparison of L∞ error between our method at N = 12 and the method in [53]
when k = 0.01 and x0 = 0. Table 2 shows the CPU time used in seconds of the results in Table 1.
Moreover, Table 3 shows the absolute errors (AEs) at different values of t when k = 0.01 and
x0 = 0. Table 4 shows the maximum AEs and the order of convergence, which is calculated by (81)
at different values of N. Figure 1 illustrates the AEs (left) and approximate solution (right) at
N = 12 when k = 0.01 and x0 = 0.

Table 1. The L∞ error of Example 1.

Method in [53]

2 M̂ ∆t = 1
10 ∆t = 1

100 ∆t = 1
1000

Our Method at N = 12

2 1.0635 × 10−7 8.5821 × 10−8 1.0503 × 10−7

4 2.8529 × 10−7 2.0122 × 10−8 6.3916 × 10−9

8 2.9616 × 10−7 3.0049 × 10−8 3.4426 × 10−9
1.06572 × 10−15

16 3.0042 × 10−7 3.0238 × 10−8 3.2241 × 10−9

32 3.0009 × 10−7 3.0057 × 10−8 3.0645 × 10−9

64 3.0045 × 10−7 3.0055 × 10−8 3.0198 × 10−9

Table 2. CPU time used in seconds of Table 1.

Method in [53]

2 M̂ Time at ∆t = 1
10 Time at ∆t = 1

100 Time at ∆t = 1
1000

Time of Our Method at N = 12

2 0.148614 0.117720 1.000305
4 0.058584 0.117451 0.968710
8 0.081574 0.41234 1.078842 1105.1616 0.163095 0.182400 1.269367

32 0.035235 0.190048 1.602233
64 0.040135 0.232144 1.893176

Table 3. The AEs of Example 1.

x t = 0.2 t = 0.4 t = 0.6 t = 0.8

0.1 1.0842 × 10−19 2.71051 × 10−19 1.6263 × 10−19 9.21572 × 10−19

0.2 1.79209 × 10−25 2.71051 × 10−19 2.71051 × 10−19 7.04731 × 10−19

0.3 2.71051 × 10−19 2.1684 × 10−19 4.33681 × 10−19 4.11997 × 10−18

0.4 5.96311 × 10−19 1.6263 × 10−19 7.58942 × 10−19 9.59519 × 10−18

0.5 1.0842 × 10−18 2.71051 × 10−19 1.13841 × 10−18 1.62088 × 10−17

0.6 1.51788 × 10−18 1.6263 × 10−19 1.46367 × 10−18 2.22261 × 10−17

0.7 1.68051 × 10−18 1.0842 × 10−19 1.57209 × 10−18 2.54788 × 10−17

0.8 1.51788 × 10−18 1.6263 × 10−19 1.40946 × 10−18 2.29309 × 10−17

0.9 9.21572 × 10−19 2.71051 × 10−19 6.50521 × 10−19 1.21431 × 10−17
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Table 4. The maximum AEs and order of convergence for Example 1.

N Error Order

4 3.48827 × 10−7 -

5 5.97282 × 10−8 0.96358

6 1.05960 × 10−8 0.99163

7 8.55756 × 10−10 1.04696

8 9.73067 × 10−11 1.03323

9 5.90808 × 10−12 1.06141

10 4.43248 × 10−12 0.96484

11 7.07445 × 10−12 0.94307

12 2.18521 × 10−15 1.26877

0

2.×10-14

4.×10-14

6.×10-14

8.×10-14

1.×10-13

0.0003940

0.0003950

0.0003960

0.0003970

0.0003980

0.0003990

0.0004000

Figure 1. The AEs and the approximate solution for Example 1.

Remark 1 (Stability). We comment that our proposed method is stable in the sense that
|ηN+1 − ηN | is sufficiently small for sufficiently large values of N, see [58]. To confirm this
regarding Problem (82), we plot Figure 2 that shows that our method remains stable for x = t.

Remark 2 (Consistency). To show the consistency of our numerical method in the sense that
|RN(x, t)| is small for sufficiently large values of N, we plot Figure 3 that gives the absolute
residual |RN(x, t)| at t = 0.5 for Problem (82). This figure shows the absolute residual |RN(x, t)|
at t = 0.5 is sufficiently small for sufficiently large values of N.
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Figure 2. Stability |ηN+1 − ηN | for Example 1.
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Figure 3. The absolute residual |RN(x, t)| at t = 0.5 for Example 1.

Example 2 ([53,54]). Consider the following Sawada–Kotera equation of order five:

∂ η

∂ t
+ 45 η2

(
∂ η

∂ x

)
+ 15

(
∂ η

∂ x

)(
∂2 η

∂ x2

)
+ 15 η

(
∂3 η

∂ x3

)
+

∂5 η

∂ x5 = 0, 0 ≤ x, t ≤ 1, (89)

governed by

η(x, 0) =2k2sech2(k x0 − kx), (90)

η(0, t) =2k2sech2
(

k x0 + 16k5t
)

, (91)

η(1, t) =2k2sech2
(
−k x0 − 16k5t + k

)
, (92)

∂ η(0, t)
∂ x

=4k3 tanh
(

k
(

x0 + 16k4t
))

sech2
(

k
(

x0 + 16k4t
))

, (93)

∂ η(1, t)
∂ x

=− 4k3 tanh
(
−k x0 − 16k5t + k

)
sech2

(
k
(

x0 + 16k4t − 1
))

, (94)

∂2 η(0, t)
∂ x2 =4k4

(
cosh

(
2k
(

x0 + 16k4t
))

− 2
)

sech4
(

k
(

x0 + 16k4t
))

, (95)

where the analytic solution of this problem is

η(x, t) = 2 k2sech2
(

k x − 16 k5 t − k x0

)
.

Table 5 presents a comparison of L∞ error between our method at N = 12 and the method in [53]
when k = 0.2 and x0 = 0. Table 6 shows the CPU time used in seconds of the results in Table 5.
Moreover, Table 7 shows the AEs at different values of t when k = 0.2 and x0 = 0. Figure 4
illustrates the AEs (left) and approximate solution (right) at N = 12 when k = 0.2 and x0 = 0.

0

5.0×10-13

1.0×10-12

1.5×10-12

0.077

0.078

0.079

0.080

Figure 4. The AEs and the approximate solution for Example 2.
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Table 5. The L∞ error of Example 2.

Method in [53]

2 M̂ ∆t = 1
10 ∆t = 1

100 ∆t = 1
1000

Our Method at N = 12

2 1.1108 × 10−7 1.1618 × 10−7 1.1669 × 10−7

4 1.6982 × 10−8 2.3948 × 10−8 2.4639 × 10−8

8 2.6394 × 10−9 4.3489 × 10−9 5.0420 × 10−9
1.11577 × 10−14

16 6.6177 × 10−9 4.8615 × 10−10 1.1714 × 10−9

32 7.5484 × 10−9 4.7326 × 10−10 2.3286 × 10−10

64 7.7933 × 10−9 7.0392 × 10−10 5.9370 × 10−12

Table 6. CPU time used in seconds of Table 5.

Method in [53]

2 M̂ Time at ∆t = 1
10 Time at ∆t = 1

100 Time at ∆t = 1
1000

Time of Our Method at N = 12

2 0.086222 0.178449 1.073422
4 0.090816 0.122136 1.106796
8 0.038014 0.157665 1.095270 1111.0316 0.038951 0.143982 1.266360

32 0.041361 0.179976 1.616171
64 0.047167 0.227436 1.924651

Table 7. The AEs of Example 2.

x t = 0.1 t = 0.3 t = 0.6 t = 0.9

0.1 2.77564 × 10−17 1.11023 × 10−16 1.11023 × 10−16 9.312 × 10−15

0.2 8.04913 × 10−16 8.46546 × 10−16 8.18791 × 10−16 8.28504 × 10−15

0.3 2.70617 × 10−15 2.47025 × 10−15 2.45637 × 10−15 5.41234 × 10−15

0.4 5.49561 × 10−15 4.96826 × 10−15 4.96826 × 10−15 1.06861 × 10−15

0.5 8.86792 × 10−15 7.93811 × 10−15 7.95199 × 10−15 4.28825 × 10−15

0.6 1.19488 × 10−14 1.06443 × 10−14 1.0672 × 10−14 9.68671 × 10−15

0.7 1.34476 × 10−14 1.1921 × 10−14 1.19904 × 10−14 1.37529 × 10−14

0.8 1.18655 × 10−14 1.05333 × 10−14 1.06026 × 10−14 1.47382 × 10−14

0.9 5.99521 × 10−15 5.32908 × 10−15 5.37071 × 10−15 1.11577 × 10−14

Example 3 ([53,54]). Consider the following Caudrey–Dodd–Gibbon equation of order five:

∂ η

∂ t
+ 180 η2

(
∂ η

∂ x

)
+ 30

(
∂ η

∂ x

)(
∂2 η

∂ x2

)
+ 30 η

(
∂3 η

∂ x3

)
+

∂5 η

∂ x5 = 0, 0 ≤ x, t ≤ 1, (96)

governed by

η(x, 0) =
k2ekx(

ekx + 1
)2 , (97)

η(0, t) =
k2ek5t(

ek5t + 1
)2 , (98)

η(1, t) =
k2ek5t+k(

ek5t + ek
)2 , (99)
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∂ η(0, t)
∂ x

=
k3ek5t

(
ek5t − 1

)
(

ek5t + 1
)3 , (100)

∂ η(1, t)
∂ x

=
k3ek5t+k

(
ek5t − ek

)
(

ek5t + ek
)3 , (101)

∂2 η(0, t)
∂ x2 =

k4ek5t
(
−4ek5t + e2k5t + 1

)
(

ek5t + 1
)4 , (102)

where the analytic solution of this problem is

η(x, t) =
k2ek(x−k4t)(

ek(x−k4t) + 1
)2 .

Table 8 presents a comparison of L∞ error between our method at N = 12 and the method in [53]
when k = 0.01. Table 9 shows the AEs at different values of t when k = 0.01. Figure 5 illustrates
the AEs (left) and approximate solution (right) at N = 12 when k = 0.01.

Table 8. The L∞ error of Example 3.

Method in [53]

2 M̂ ∆t = 1
10 ∆t = 1

100 ∆t = 1
1000

Our Method at N = 12

2 1.0354 × 10−10 1.0418 × 10−10 1.0424 × 10−10

4 2.2802 × 10−11 2.3648 × 10−11 2.3732 × 10−11

8 3.1943 × 10−12 4.0357 × 10−12 4.1198 × 10−12
5.20417 × 10−18

16 4.7979 × 10−14 8.2657 × 10−13 9.1186 × 10−13

32 7.2377 × 10−13 1.2889 × 10−13 2.1392 × 10−13

64 8.9292 × 10−13 3.9850 × 10−14 4.5942 × 10−14

Table 9. The AEs of Example 3.

x t = 0.2 t = 0.4 t = 0.6 t = 0.8

0.1 1.69407 × 10−20 3.38813 × 10−21 1.35525 × 10−20 6.77626 × 10−21

0.2 6.77626 × 10−21 6.77626 × 10−21 3.0091 × 10−25 6.77626 × 10−21

0.3 6.77626 × 10−21 1.35525 × 10−20 8.7983 × 10−25 1.01644 × 10−20

0.4 1.69407 × 10−20 3.38813 × 10−21 1.35525 × 10−20 6.77626 × 10−21

0.5 2.03288 × 10−20 6.77626 × 10−21 3.38813 × 10−21 2.03288 × 10−20

0.6 1.35525 × 10−20 1.35525 × 10−20 1.35525 × 10−20 2.37169 × 10−20

0.7 2.37169 × 10−20 6.77626 × 10−21 1.01644 × 10−20 1.01644 × 10−20

0.8 1.69407 × 10−20 3.7324 × 10−24 1.69407 × 10−20 1.69407 × 10−20

0.9 2.71051 × 10−20 6.77626 × 10−21 2.03288 × 10−20 1.69407 × 10−20

0

5.0×10-17

1.0×10-16

1.5×10-16

2.0×10-16

0.0000249994

0.0000249996

0.0000249998

0.0000250000

Figure 5. The AEs and the approximate solution for Example 3
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Example 4 ([53,54]). Consider the following fifth-order Kaup–Kuperschmidt equation:

∂ η

∂ t
+ 20 η2

(
∂ η

∂ x

)
+ 25

(
∂ η

∂ x

)(
∂2 η

∂ x2

)
+ 10 η

(
∂3 η

∂ x3

)
+

∂5 η

∂ x5 = 0, 0 ≤ x, t ≤ 1, (103)

governed by

η(x, 0) =
24k2ekx

(
4ekx + e2kx + 16

)
(
16ekx + e2kx + 16

)2 , (104)

η(0, t) =
24k2ek5t

(
4ek5t + 16e2k5t + 1

)
(

16ek5t + 16e2k5t + 1
)2 , (105)

∂ η(0, t)
∂ x

=
24k2ek5t+k

(
16e2k5t + 4ek5t+k + e2k

)
(

16e2k5t + 16ek5t+k + e2k
)2 , (106)

∂ η(1, t)
∂ x

=
24k3ek5t

(
4ek5t − 1

)3(
4ek5t + 1

)
(

16ek5t + 16e2k5t + 1
)3 , (107)

∂2 η(0, t)
∂ x2 =−

24k3ek5t+k
(

ek − 4ek5t
)3(

4ek5t + ek
)

(
16e2k5t + 16ek5t+k + e2k

)3 , (108)

where the analytic solution of this problem is

η(x, t) =
24 k2ek(x−k4t)

(
4 ek(x−k4t) + e2k(x−k4t) + 16

)
(

16 ek(x−k4t) + e2k(x−k4t) + 16
)2 .

Table 10 presents a comparison of L∞ error between our method at N = 12, and the method in [53]
when k = 0.01. Table 11 shows the AEs at different values of t when k = 0.01. Figure 6 illustrates
the AEs (left) and approximate solution (right) at N = 12 when k = 0.01.

0

1.×10-15

2.×10-15

3.×10-15

4.×10-15

0.00004630

0.00004632

0.00004634

0.00004636

Figure 6. The AEs and the approximate solution for Example 4.

Table 10. The L∞ error of Example 4.

Method in [53]

2 M̂ ∆t = 1
1000

Our Method at N = 12

2 2.9045 × 10−10

4 4.5383 × 10−10

8 5.0035 × 10−10
3.90177 × 10−17

16 5.1233 × 10−10

32 5.1535 × 10−10

64 5.1611 × 10−10
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Table 11. The AEs of Example 4.

x t = 0.15 t = 0.4 t = 0.65 t = 0.9

0.1 4.40951 × 10−26 4.74338 × 10−20 1.35525 × 10−20 4.29412 × 10−17

0.2 1.35525 × 10−20 4.74338 × 10−20 3.38813 × 10−20 4.23652 × 10−17

0.3 2.03288 × 10−20 6.77626 × 10−21 3.38813 × 10−20 3.99867 × 10−17

0.4 2.71051 × 10−20 6.77626 × 10−21 3.38813 × 10−20 3.6436 × 10−17

0.5 3.38813 × 10−20 1.35525 × 10−20 6.09864 × 10−20 3.24109 × 10−17

0.6 4.74338 × 10−20 1.35525 × 10−20 6.77626 × 10−20 2.89279 × 10−17

0.7 4.74338 × 10−20 4.74338 × 10−20 9.48677 × 10−20 2.77081 × 10−17

0.8 2.71051 × 10−20 2.71051 × 10−20 7.45389 × 10−20 3.07168 × 10−17

0.9 6.77626 × 10−21 1.35525 × 10−20 4.06576 × 10−20 3.90177 × 10−17

Example 5 ([53,54]). Consider the following fifth-order Ito equation:

∂ η

∂ t
+ 2 η2

(
∂ η

∂ x

)
+ 6

(
∂ η

∂ x

)(
∂2 η

∂ x2

)
+ 3 η

(
∂3 η

∂ x3

)
+

∂5 η

∂ x5 = 0, 0 ≤ x, t ≤ 1, (109)

governed by

η(x, 0) =10k2
(

2 − 3 tanh2(k(x0 + x))
)

, (110)

η(0, t) =10k2
(

2 − 3 tanh2
(

k
(

x0 − 96k4t
)))

, (111)

η(1, t) =10k2
(

2 − 3 tanh2
(

k x0 − 96k5t + k
))

, (112)

∂ η(0, t)
∂ x

=− 60k3 tanh
(

k
(

x0 − 96k4t
))

sech2
(

k
(

x0 − 96k4t
))

, (113)

∂ η(1, t)
∂ x

=− 60k3 tanh
(

k x0 − 96k5t + k
)

sech2
(

k x0 − 96k5t + k
)

, (114)

∂2 η(0, t)
∂ x2 =60k4

(
cosh

(
2k
(

x0 − 96k4t
))

− 2
)

sech4
(

k
(

x0 − 96k4t
))

, (115)

where the analytic solution of this problem is

η(x, t) = 20 k2 − 30 k2 tanh2
(

k x − 96 k5 t + k x0

)
.

Table 12 presents a comparison of L∞ error between our method at N = 12 and the method in [53]
when k = 0.12 and x0 = 0. Table 13 shows the AEs at different values of t when k = 0.12 and
x0 = 0. Figure 7 illustrates the AEs (left) and approximate solution (right) at N = 10 when
k = 0.12 and x0 = 0. Table 14 shows the maximum AEs and order of convergence (81) at different
values of N.

Remark 3. Figure 8 confirms that the method remains stable when x = t for higher values of N.
Finally, Figure 9 verifies that the |RN(x, t)| at x = t is sufficiently small for sufficiently large
values of N, and this proves the consistency of the presented method.
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Table 12. The L∞ error of Example 5.

Method in [53]

2 M̂ ∆t = 1
10 ∆t = 1

100 ∆t = 1
1000

Our method at N = 12

2 3.8776 × 10−6 1.1080 × 10−6 8.3693 × 10−7

4 4.6387 × 10−6 7.1764 × 10−7 3.3455 × 10−7

8 4.4590 × 10−6 5.1088 × 10−7 1.2552 × 10−7
1.55598 × 10−13

16 4.4709 × 10−6 4.5665 × 10−7 6.4702 × 10−8

32 4.4544 × 10−6 4.4071 × 10−7 4.8748 × 10−8

64 4.4562 × 10−6 4.3726 × 10−7 4.4826 × 10−8

Table 13. The AEs of Example 5.

x t = 0.1 t = 0.3 t = 0.6 t = 0.9

0.1 4.31486 × 10−19 5.55128 × 10−17 4.28135 × 10−19 4.87388 × 10−14

0.2 7.21651 × 10−16 4.9961 × 10−16 3.8859 × 10−16 4.82947 × 10−15

0.3 1.99842 × 10−15 1.60985 × 10−15 1.16577 × 10−15 9.17599 × 10−14

0.4 4.10786 × 10−15 3.38623 × 10−15 2.38705 × 10−15 2.37477 × 10−13

0.5 6.71691 × 10−15 5.49568 × 10−15 3.83037 × 10−15 4.07507 × 10−13

0.6 9.10391 × 10−15 7.38308 × 10−15 5.16267 × 10−15 5.5611 × 10−13

0.7 1.03252 × 10−14 8.21576 × 10−15 5.77331 × 10−15 6.16396 × 10−13

0.8 9.43697 × 10−15 7.27206 × 10−15 5.10716 × 10−15 5.04319 × 10−13

0.9 5.55115 × 10−15 3.83032 × 10−15 2.72011 × 10−15 1.55598 × 10−13

0

2.×10-12

4.×10-12

6.×10-12

0.282

0.284

0.286

0.288

Figure 7. The AEs and the approximate solution for Example 5.

Table 14. The maximum AEs and order of convergence for Example 5.

N Error Order

4 4.81759 × 10−8 -

5 8.14415 × 10−8 0.834512

6 6.08548 × 10−10 1.16769

7 4.26518 × 10−10 0.936205

8 3.37397 × 10−12 1.14569

9 1.31867 × 10−12 0.980054

10 3.48999 × 10−13 1.00061
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Figure 8. Stability |ηN+1 − ηN | for Example 5.
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Figure 9. The absolute residual |RN(x, t)| at x = t for Example 5.

Example 6. Consider the following Sawada–Kotera equation of order five:

∂ η

∂ t
+ 45 η2

(
∂ η

∂ x

)
+ 15

(
∂ η

∂ x

)(
∂2 η

∂ x2

)
+ 15 η

(
∂3 η

∂ x3

)
+

∂5 η

∂ x5 = 0, 0 ≤ x, t ≤ 1, (116)

governed by

η(x, 0) = η(0, t) = η(1, t) = 0, (117)

∂ η(0, t)
∂ x

=
∂ η(1, t)

∂ x
=

∂2 η(0, t)
∂ x2 = 0, (118)

Since the exact solution is not available, so we define the following absolute residual error norm:

RE = max
(x,t)∈[0,1]2

∣∣∣∣∂ ηN
∂ t

+ 45 η2
N

(
∂ ηN
∂ x

)
+ 15

(
∂ ηN
∂ x

)(
∂2 ηN

∂ x2

)
+ 15 ηN

(
∂3 ηN

∂ x3

)
+

∂5 ηN

∂ x5

∣∣∣∣, (119)

and applying the presented method at N = 5 to obtain Table 15, which illustrates the RE.



Mathematics 2025, 13, 300 24 of 26

Table 15. The RE of Example 6.

x t = 0.1 t = 0.3 t = 0.5 t = 0.8

0.1 1.32384 × 10−20 2.52242 × 10−21 1.0856 × 10−21 1.54641 × 10−20

0.2 1.32389 × 10−20 2.52131 × 10−21 1.08586 × 10−21 1.54682 × 10−20

0.3 1.32394 × 10−20 2.51944 × 10−21 1.08649 × 10−21 1.54706 × 10−20

0.4 1.32404 × 10−20 2.51749 × 10−21 1.0876 × 10−21 1.54651 × 10−20

0.5 1.32421 × 10−20 2.51648 × 10−21 1.08921 × 10−21 1.54441 × 10−20

0.6 1.32444 × 10−20 2.51736 × 10−21 1.09124 × 10−21 1.54018 × 10−20

0.7 1.3247 × 10−20 2.52061 × 10−21 1.09352 × 10−21 1.53379 × 10−20

0.8 1.32496 × 10−20 2.52588 × 10−21 1.09575 × 10−21 1.52601 × 10−20

0.9 1.32516 × 10−20 2.53158 × 10−21 1.09749 × 10−21 1.51877 × 10−20

7. Conclusions
This study successfully developed and analyzed a numerical algorithm to treat the

fifth-order KdV-type equations, producing highly accurate results. The main idea was to
introduce new shifted Horadam polynomials to act as basis functions. We established many
basic formulas for these polynomials to design the proposed numerical method. In addition,
some specific formulas and inequalities helped to investigate the convergence of the shifted
Horadam approximate solutions in depth. We also offered numerical examples to confirm
the method’s applicability and usefulness in tackling complicated nonlinear problems in
mathematical physics and related domains. To the best of our knowledge, this is the first
time these polynomials have been used in the scope of numerical solutions of DEs. We plan
to employ these polynomials to treat other types of DEs in the applied sciences.
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36. Srivastava, H.M.; Altınkaya, Ş.; Yalçın, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials.
Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 1873–1879. [CrossRef]

37. Bagdasar, O.D.; Larcombe, P.J. On the characterization of periodic generalized Horadam sequences. J. Differ. Equ. Appl. 2014,
20, 1069–1090. [CrossRef]

38. Srividhya, G.; Rani, E.K. A new application of generalized k-Horadam sequence in coding theory. J. Algebr. Stat. 2022, 13, 93–98.
39. Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods in Fluid Dynamics; Springer: Berlin/Heidelberg, Germany,

1988.
40. Hesthaven, J.S.; Gottlieb, S.; Gottlieb, D. Spectral Methods for Time-Dependent Problems; Cambridge University Press: Cambridge,

UK, 2007; Volume 21.
41. Alsuyuti, M.M.; Doha, E.H.; Ezz-Eldien, S.S. Galerkin operational approach for multi-dimensions fractional differential equations.

Commun. Nonlinear Sci. Numer. Simul. 2022, 114, 106608. [CrossRef]
42. Rezazadeh, A.; Darehmiraki, M. A fast Galerkin-spectral method based on discrete Legendre polynomials for solving parabolic

differential equation. Comput. Appl. Math. 2024, 43, 315. [CrossRef]
43. Abd-Elhameed, W.M.; Alsuyuti, M.M. Numerical treatment of multi-term fractional differential equations via new kind of

generalized Chebyshev polynomials. Fractal Fract. 2023, 7, 74. [CrossRef]
44. Atta, A.G.; Abd-Elhameed, W.M.; Moatimid, G.M.; Youssri, Y.H. Advanced shifted sixth-kind Chebyshev tau approach for

solving linear one-dimensional hyperbolic telegraph type problem. Math. Sci. 2023, 17, 415–429. [CrossRef]
45. Ahmed, H.F.; Hashem, W.A. Novel and accurate Gegenbauer spectral tau algorithms for distributed order nonlinear time-

fractional telegraph models in multi-dimensions. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107062. [CrossRef]
46. Zaky, M.A. An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized

second grade fluid. Comput. Math. Appl. 2018, 75, 2243–2258. [CrossRef]
47. Abd-Elhameed, W.M.; Youssri, Y.H.; Amin, A.K.; Atta, A.G. Eighth-kind Chebyshev polynomials collocation algorithm for the

nonlinear time-fractional generalized Kawahara equation. Fractal Fract. 2023, 7, 652. [CrossRef]
48. Amin, A.Z.; Lopes, A.M.; Hashim, I. A space-time spectral collocation method for solving the variable-order fractional Fokker-

Planck equation. J. Appl. Anal. Comput. 2023, 13, 969–985. [CrossRef]
49. Abdelkawy, M.A.; Lopes, A.M.; Babatin, M.M. Shifted fractional Jacobi collocation method for solving fractional functional

differential equations of variable order. Chaos Solitons Fract. 2020, 134, 109721. [CrossRef]
50. Sadri, K.; Hosseini, K.; Baleanu, D.; Salahshour, S.; Park, C. Designing a matrix collocation method for fractional delay

integro-differential equations with weakly singular kernels based on Vieta–Fibonacci polynomials. Fractal Fract. 2021, 6, 2.
[CrossRef]

51. Horadam, A.F. Extension of a synthesis for a class of polynomial sequences. Fibonacci Q. 1996, 34, 68–74. [CrossRef]
52. Koepf, W. Hypergeometric Summation, 2nd ed.; Springer Universitext Series; Springer: Berlin/Heidelberg, Germany, 2014.
53. Saleem, S.; Hussain, M.Z. Numerical solution of nonlinear fifth-order KdV-type partial differential equations via Haar wavelet.

Int. J. Appl. Comput. Math. 2020, 6, 164. [CrossRef]
54. Bakodah, H.O. Modified Adomian decomposition method for the generalized fifth order KdV equations. Am. J. Comput. Math.

2013, 3, 53–58. [CrossRef]
55. Luke, Y.L. Inequalities for generalized hypergeometric functions. J. Approx. Theory 1972, 5, 41–65. [CrossRef]
56. Jameson, G.J.O. The incomplete gamma functions. Math. Gaz. 2016, 100, 298–306. [CrossRef]
57. Fakhari, H.; Mohebbi, A. Galerkin spectral and finite difference methods for the solution of fourth-order time fractional partial

integro-differential equation with a weakly singular kernel. J. Appl. Math. Comput. 2024, 70, 5063–5080. [CrossRef]
58. Yassin, N.M.; Aly, E.H.; Atta, A.G. Novel approach by shifted Schröder polynomials for solving the fractional Bagley-Torvik

equation. Phys. Scr. 2024, 100, 015242. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s40995-018-0647-0
http://dx.doi.org/10.1080/10236198.2014.891022
http://dx.doi.org/10.1016/j.cnsns.2022.106608
http://dx.doi.org/10.1007/s40314-024-02792-6
http://dx.doi.org/10.3390/fractalfract7010074
http://dx.doi.org/10.1007/s40096-022-00460-6
http://dx.doi.org/10.1016/j.cnsns.2022.107062
http://dx.doi.org/10.1016/j.camwa.2017.12.004
http://dx.doi.org/10.3390/fractalfract7090652
http://dx.doi.org/10.11948/20220254
http://dx.doi.org/10.1016/j.chaos.2020.109721
http://dx.doi.org/10.3390/fractalfract6010002
http://dx.doi.org/10.1080/00150517.1996.12429098
http://dx.doi.org/10.1007/s40819-020-00907-1
http://dx.doi.org/10.4236/ajcm.2013.31008
http://dx.doi.org/10.1016/0021-9045(72)90028-7
http://dx.doi.org/10.1017/mag.2016.67
http://dx.doi.org/10.1007/s12190-024-02173-6
http://dx.doi.org/10.1088/1402-4896/ad9963

	Introduction
	An Overview of Horadam Polynomials and Some Particular Polynomials
	Some New Formulas Concerned with the Introduced Shifted Polynomials
	Analytic Form and Its Inversion Formula
	Derivative Expressions and Operational Matrices of Derivatives of m(x)

	A Collocation Approach for the Nonlinear Fifth-Order KdV-Type Partial DEs
	The Convergence and Error Analysis
	Illustrative Examples
	Conclusions
	References

