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Abstract: This paper presents an accurate method to obtain the bidiagonal decomposition
of some generalized Pascal matrices, including Pascal k-eliminated functional matrices and
Pascal symmetric functional matrices. Sufficient conditions to assure that these matrices
are either totally positive or inverse of totally positive matrices are provided. In these
cases, the presented method can be used to compute their eigenvalues, singular values and
inverses with high relative accuracy. Numerical examples illustrate the high accuracy of
our approach.

Keywords: bidiagonal decomposition; high relative accuracy; total positivity; k-eliminated
Pascal matrix
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1. Introduction

The famous Pascal’s triangle, formed by the binomial coefficients, appears in many
fields of mathematics, including combinatorics and number theory. Triangular and sym-
metric Pascal matrices arrange the binomial coefficients into matrices that possess many
special properties and connections (cf. [1]). Moreover, these matrices have been general-
ized in several ways (cf. [2-6]). These generalized classes of Pascal matrices also present
many applications to very different fields, for example, in signal processing, filter design,
probability theory, electrical engineering, or combinatorics, among other fields.

It is also known that Pascal matrices (see [7]) and their generalizations are very ill-
conditioned. However, for some generalized Pascal matrices, it has been proved in [8] that
many linear algebra computations can be performed with high relative accuracy. These
computations include the calculations of all singular values, eigenvalues, their inverses or
the solution of some associated linear systems. A value z is calculated with high relative
accuracy (HRA) if the relative error of the computed value Z satisfies ||z — Z|| /||z|| < Ku,
where K is a positive constant independent of the arithmetic precision and u is the unit
round-off (see [9,10]). An algorithm can be carried out with HRA if it does not use subtrac-
tions except for initial data, that is, if it only includes products, divisions, sums of numbers
of the same sign and sums of numbers of different sign involving only initial data.

Here, we prove that the mentioned linear algebra computations can be performed
with HRA for some generalized Pascal matrices of [2,3]. In order to prove these results, we
have previously proved that those matrices are totally positive. Let us recall that a matrix is
totally positive (TP) if all its minors are non-negative. The class of TP matrices presents ap-
plications to many different fields, including combinatorics, differential equations, statistics,
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mechanics, computer-aided geometric design, economics, approximation theory, biology or
numerical analysis (cf. [11-16]). Nonsingular TP matrices have a bidiagonal decomposition
and, when this decomposition can be obtained with HRA, then one can use the algorithms
of [17,18] to perform the mentioned linear algebra computations with HRA. Following this
framework, it has been proved that many computations can be carried out with HRA for
some subclasses of TP matrices (cf. [8,19-21]), and this was our approach.

We will now outline the layout of this paper. In Section 2, we present some basic
tools for TP matrices such as Neville elimination or their bidiagonal decomposition. In
Section 3, we present some generalized Pascal matrices, we prove that their bidiagonal
decompositions can be performed with HRA and we prove in some cases that they are
either TP or inverses of TP. In these cases, we guarantee that the mentioned linear algebra
computations can be performed with HRA. Finally, Section 4 illustrates the theoretical
results by including numerical examples showing the high accuracy of our approach.

2. Totally Positive Matrices and Bidiagonal Decomposition

Given a diagonal matrix D = (d;j)1<;j<n, we denote it by diag(dy,...,dn), with
di:=d;foralli=1,...,n.

Neville elimination (NE) is an alternative procedure to Gaussian elimination. This
algorithm produces zeros in a column of a matrix by adding an appropriate multiple of the
previous one to each row. For a nonsingular matrix A = (a;;)o<;,j<n, NE consists of 1 steps
and leads to the following sequence of matrices:
where U is an upper triangular matrix.

The matrix A®) = (Eg{))oﬁiljgn is obtained from the matrix A%) = (“E;())Ogi,jgn by
a row permutation that moves to the bottom rows with a zero entry in column k below
the main diagonal. For nonsingular TP matrices, it is always possible to perform NE
without row exchanges (see [22]). If a row permutation is not necessary at the k-th step,
we have that A®) = A(®) The entries of AkTD = (al(;cﬂ))ogiljgn can be obtained from
AR = (5,(;())0§i,j§n using the following formula:

® Ay (k)
(k+1) a;;’ — N(l’() a5 ifk <j<i<mand 4"y #0,
T = i1k )
0 ’
a;;’,

fork =0,...,n — 1. Then, the (i, ) pivot of the NE of A is defined as

otherwise,

pi=al, 0<j<i<n,

when i = j, we call p;; a diagonal pivot. We define the (i, j) multiplier of the NE of A, with
0<j<i<mas

D e
vy Y ~AJ
T = S fad) o,
mij = 51@1,]' Pi-1j Y
0, ifa);  =o.

The multipliers satisfy that

m,']':()émhj:o Vh > i.
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NEis a very useful method to study TP matrices. In fact, NE can be used to characterize
nonsingular TP matrices. In [22], the following characterization of nonsingular TP matrices
was provided in terms of NE.

Theorem 1 (Theorem 5.4 of [22]). Let A be a nonsingular matrix. Then, A is TP if and only if
there are no row exchanges in the NE of A and U, and if the pivots of both NE are non-negative.

Nonsingular TP matrices can be expressed as a product of non-negative bidiagonal
matrices. The following theorem (see Theorem 4.2 and p. 120 of [13]) introduces this
representation, which is called the bidiagonal decomposition.

Theorem 2 (cf. Theorem 4.2 of [13]). Let A = (aij)ogi,jgn be a nonsingular matrix. Then, A is
TP if and only if it admits the following representation:

A=F, 1F2---FDGo- -Gy 2Gy 1, 3)

where D is the diagonal matrix diag(poo, - - ., Pun) with positive diagonal entries and F;, G; are the
non-negative bidiagonal matrices given by

F = 0 1 , G;= 1 T?li+1,0 , (4)
mip19 1 1

My n—i—1
My n—i—1 1 1

foralli € {0,...,n —1}. If, in addition, the entries m;j and m;; satisfy

mij:0:>mhj:0 Vh > i,
rﬁij:0:>ﬁ1hj:0 Vh > i,

then the decomposition is unique.

Let us remark that the entries m;; and p;; appearing in the bidiagonal decomposition
given by (3) and (4) are the multipliers and diagonal pivots, respectively, corresponding to
the NE of A (see Theorem 4.2 of [13] and the comment below it). The entries 71;; are the
multipliers of the NE of AT (see p- 116 of [13]).

Bidiagonal decomposition can be used to represent more classes of matrices. The
following remark shows which hypotheses of Theorem 2 are sufficient for the uniqueness
of a factorization following (3).

Remark 1. If we consider the factorization given by (3)—(5) without any further requirement than
the nonsingularity of D, by Proposition 2.2 of [23], the uniqueness of (3) holds.

In [17], the matrix notation BD(A) was introduced to represent the bidiagonal decom-
position of a nonsingular TP matrix,

ml-]-, ifi > j,
(BD(A))ij = 1y, ifi<j, (6)
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Taking into account Corollary 3.3 of [23], we can deduce the following remark.

Remark 2. The matrix A is nonsingular TP if and only if BD(A) has all its entries non-negative
with positive diagonal entries. The matrix A is the inverse of a nonsingular TP matrix if and only if
BD(A) has positive diagonal entries and non-positive off-diagonal entries.

3. Pascal k-Eliminated Functional Matrices

The Pascal k-eliminated functional matrix with two variables was introduced in [3] as

(i’-‘rk)xiijj’ i> ]'/
P )., = ¢ \Jtk 7
( n,k)l] { O, i< j/ ( )

wherei,j=0,...,nand k € NU {0}. We denote the set of positive integers by N.
In [2], an extension of this matrix depending on 27 variables was introduced based on
the following definition: Given the real numbers {t; } with ty = 1, we define the sequence

¢l — ¢ gln=1]
with n € Nand #9 := t; = 1. We will also use the notation introduced in [2]

t1]
Given two sequences x1, ..., x, and ¥y, . .., y, of real numbers, the Pascal k-eliminated
functional matrix with 2n variables ®, ¢[x1,..., X y1,...,¥u), for k € NU {0}, is

defined as

|+ k AT T4l
(an,k[xl/n-/xn}]/lw--ryn])ij = <;+k>x[] []]y[]+[]]; (8)

for 0 < j <i < nand 0 otherwise. This matrix is an extension of many well-known families
of Pascal matrices.

Theorem 3. Givenxy,...,x, € R,yq,...,yn € Randk € NU{0}, let D, [x1, ..., X0 Y1, -, Yn)
be the (n + 1) x (n+ 1) lower triangular matrix given by (8).

(i) Ifx,y; #0fori=1,...,n, then we have that

yllyll, i=j,
(BD(®ilxr, - X1, yn]))y = | Fxiys, >, ©)
0, i<j

(i) Ifx1y1, ..., XnYn > 0, then @, k[x1, ..., Xn; Y1, ..., Yn| is a nonsingular TP matrix.
(iii) If x1y1, ..., XnYn < O, then @y x[x1,...,Xu;Y1,...,Yn] is the inverse of a nonsingular TP
matrix.

Proof. Let B := @, k[x1,...,Xu;Y1,---,Yn] = (bij)o<ij<n be the matrix defined by (8) and
K
let D =: diag(y”) . Let us define the matrix A := (a;j)o<;j<n such that B = AD.
0<k<n

xlA]

. . +k 1 1
Hence, the entries of A are given by a;; = (;Ik)x[l] ylil,
Let us now apply NE to A. Let us consider A(Y) = (al(].t) Jo<ij<n as the matrix obtained
after performing t steps of NE to A. Let us prove by induction that

. =1/
() _ lil, 1 z+k>1‘[r_0(]—r) .
G =Y (j+k Hi;%)(i—r). (10)
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For the first step, t = 1, we see that the multipliers of the NE are

(R ity i)y gy

(ij;k)x[i]y[i] - i+1 Xir1Yi+1,

mit1,0 =

fori =0,...,n — 1. Then, we perform the first step of NE

Aiy1,; = < i+k )x[lﬂ]y[ﬂ]—(- k x[]ymmiﬂ,o

]+
_ (PR gy _ (TR iR
_< itk )x y itk YU i

:x[i+”y[l+1]<<l+k+l> <i+’k+1)z—‘]+1>
j+k jt+k i+1

_ i i) (R AT
v < itk Jix1
Thus, Formula (10) holds for t = 1. Now, let us assume that (10) is true and let us

check that the formula also holds for the index t + 1. First, we compute the multipliers for
this step of NE:

o GEDY T Go)idk
o (Hoxliyll  TEZii+1-r) i1

Xit1Yiv1, 1=¢t...,n—1

Now, let us perform the t 4 1 step of the NE:

(1) li+1], fi+1] i+1+k>nro(1—f)_ il | (“rk)ﬂ oi—r)
g T ( k)TN ir1-n Gk i)
iy i) i+1+k>W_ il | <l+k>H oG—ritk+1l
e ( j+k JTIZiG+1-7) Yk [Mii—r) i+1 gasties
:x[i+1]y[i+l]<i+l+k) HV 0(]_7’) (11_]+1>
jtk JTIZ5G+1—7) i—t+1

Hence, we conclude that

(t+1) _ x[i+1}y[i+1] <i+ 1 +k> I1,- 0] —-r j-t

i1 = jtk JIiZli+1—r i—t+1

and that (10) holds for t + 1. Therefore, we have

(BD(A)); = ﬂxzyu i>], (11)
0, i <j.
Since B = AD, we can deduce BD(B) from (11). Since we know the bidiagonal

decomposition of A,i.e., A =F,_1--- FyD with the multipliers and diagonal pivots given
by (11) when i > j and i = j, respectively, we see that

B=AD=F, 1---FRpDD =F,_1---F(DD).

Hence, we have that the off-diagonal entries of the BD(B) are equal to the off-diagonal

entries of BD(A) and that (BD(B));; = x[’]y“ = yllyll fori = 0,...,n. Therefore, by
the uniqueness of the bidiagonal decomposmon, we conclude that (9) holds.
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For (ii), it is straightforward to check that all the nonzero entries of the bidiagonal
decomposition of BD(®;, x[x1,...,Xn;Y1,...,Yn]) are non-negative whenever x;y; > 0 for
alli = 1,...,n. Moreover, the diagonal pivots are strictly positive since y; # 0 for all
i=1,...,n. Hence, ®,[x1,...,Xn;Y1,...,Yn] is a TP matrix by Remark 2.

Finally, with a proof analogous to that of (ii), (iii) also holds. [

The cases described in (ii) and (iii) of the previous theorem also provide an accurate
representation of ®,, x[x1,...,Xu; Y1, ..., Yx| that can be used to achieve accurate computa-
tions, as the following corollary shows.

Corollary 1. Given x;,y; # 0fori=1,...,n, we can compute (9) with HRA. Moreover, if either
the hypotheses of (ii) or of (iii) of Theorem 3 hold, then the following computations for the matrix
defined by (8) can be performed with HRA: all the eigenvalues and singular values, the inverse and
the solution of the linear systems whose independent term has alternating signs.

Proof. The first part of the result follows from the fact that (9) can be obtained without
subtractions. If the hypotheses of Theorem 3 (ii) hold, then the matrix is nonsingular TP
and the construction of its bidiagonal decomposition with HRA assures that the linear
algebra problems mentioned in the statement of this corollary can be performed to HRA
with the algorithms from [17,18]. Finally, if the hypotheses of Theorem 3 (iii) hold, then
the matrix is inverse of a TP matrix and Section 3.2 of [23] shows how the linear algebra
problems mentioned in the statement of this corollary can also be performed to HRA. O

Let us recall that the symmetric Pascal matrix P, is the (n + 1) x (n + 1) matrix
such that

(P) = (“],L]), forall 0 < i,j < n. (12)

It is a well-known and interesting result that the bidiagonal decomposition of the
symmetric Pascal matrix is formed by all ones (see, for example, [7]).

Proposition 1. Let Py = (pij)o<i,j<n be the symmetric Pascal matrix whose entries are given
by (12). Then, we have that

(BD(Py))ij=1 forall0<ij<n. (13)

Let us now consider the symmetric Pascal matrix with 2n variables ¥, [x1, ..., Xu; Y1, - - -, Yn),

(Ynlxr, - Xms Y1, Yn))ij = <Z ; ]> 1! []]y[l]-i-[l], (14)

for 0 <i,j < n. From the bidiagonal decomposition of the symmetric Pascal matrix given
in Proposition 1, we can obtain the bidiagonal decomposition of the wider class of matrices
considered in this paper, as it is shown in the following result. Let us now obtain the
bidiagonal decomposition of the symmetric Pascal matrix with 2n variables.

Theorem 4. Let Yy [x1,...,Xn; Y1, .., Yn| be the matrix defined by (14). Then, we have that
(i) Ifxj,y; #0fori=1,...,n, then

gyl i,

(BD(Tﬂ[xlf-'-/xn;]/lr--o/yn}))i]' = XiVYi, i> j, (15)
y]- . .
x*]_, 1<].

(i)  Ifx1y1,..., XuYn > 0, then ¥y [x1,..., Xn; Y1, - .., Yn] is a nonsingular TP matrix.
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(iti) If x1y1,..., Xuyn < O, then ¥y [x1,...,Xn;Y1,...,Yn] is the inverse of a nonsingular
TP matrix.

Proof. Let B := ¥y,[x1,...,Xu; Y1, .., Yn] be the matrix defined by (14). By its definition,
we have the following factorization for this matrix:

= di (il i [i] /il

B = diag(x"y")p<i<, Pydiag (y /x )ng‘gn' (16)
]
write P, = E,---EDG; - -- G, where F; and G; are bidiagonal matrices defined by (4)
whose nonzero entries are all ones. The diagonal matrix D reduces to the identity matrix in

where P, is the symmetrical Pascal matrix such that (P )o<;j<x = (/). By (13), we can

this case. Hence, we can rewrite (16) as

B = diag(x[i]y[i])ogignﬁn - BGp--- Gndiag (ym /x[i]> 17)

0<i<n’

In (17), we have a representation of B that relates to its bidiagonal decomposition.
In order to retrieve BD(B) from it, we need to move the diagonal matrices so that they
appear in the center of the formula, between the matrices F; and the matrices G;. Let us
first compute the bidiagonal matrices F;, . . ., F; that satisfy the following:

diag(xyM)ocicp By v -+ Fo = Fyq - - - Fodiag(xllylyo i ..

For that, let us pay attention to the relationship DF; = F;D for any diagonal matrix
D = diag(d;)p<i<, and F;. Whenever dj # 0 for all k, the previous equation is equivalent
to DEED~! = F.. Hence, the diagonal entries of F; are equal to those of E; (all ones) and a

nonzero off-diagonal entry at the position (k + 1, k) is multiplied by d";—:l. Hence, we have
k1) k1]
R
Now let us compute the bidiagonal matrices Gy, ..., G, that verify

that the nonzero off-diagonal entries of F; are = Xp1Ykp1 fork =i,...,n—1.

G- Gndiag<y[i]/x[i]) — diag(y[i]/x[i]> Gy -Gy

0<i<n 0<i<n

Let us notice that we can use the same strategy for this case. If we consider the
equation D~1G;D = F;, we have once again that the diagonal entries of G; are ones and

that the off-diagonal (k, k + 1) entry of G is now multiplied by d("i—:l. Thus, we have that the

nonzero off-diagonal entries of G; are yletl) = y fork=1i,...,n—1.
& i YT = T rees

Now, rewriting B in terms of the bidiagonal matrices F; and G;, we see that

B=F,-- ~Fldlag(x[l]y[’])Ogigndlag (y[l]/xm)ogignGl -+ Gy.

Therefore, by the uniqueness of the bidiagonal decomposition, we conclude that
B=F,---FDG;---G,withD := diag(x[i]y[i])ogigndiag (ym/xm)o<'< = diag(y[i]y[i])ogign
and (15) holds. =

For (ii), it is straightforward to check that all the entries of the bidiagonal decom-
position of BD(¥,[x1,...,Xu;Y1,--.,Yn]) are non-negative whenever x;y; > 0 for all
i = 1,...,n. Furthermore, the diagonal pivots are all strictly positive since y; # 0 for
alli =1,...,n. Then, we conclude that ¥, [x1,...,Xs;Y1,. .., Yx] is a nonsingular TP matrix
by Remark 2. Moreover, with a proof analogous to that of (if), (iii) also holds. O

As we did previously with the Pascal k-eliminated functional matrices, in the cases
(ii) and (iii) of Theorem 4 we presented values of the parameters for which an accurate
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representation of the matrix ¥, [x1,...,Xu; Y1, ..., Yn| can be obtained and used to achieve
computations with HRA. We state this property in the following corollary:

Corollary 2. Given x;,y; # 0fori =1,...,n, we can compute (15) with HRA. Moreover, if either
the hypotheses of (ii) or of (iii) of Theorem 4 hold, then the following computations for the matrix
defined by (14) can be performed with HRA: all the eigenvalues and singular values, the inverse and
the solution of the linear systems whose independent term has alternating signs.

Proof. The first part of the result follows from the fact that (15) can be obtained without
subtractions. If the hypotheses of Theorem 4 (ii) hold, then the matrix is nonsingular TP
and the construction of its bidiagonal decomposition with HRA assures that the linear
algebra problems mentioned in the statement of this corollary can be performed to HRA
with the algorithms from [17,18]. Finally, if the hypotheses of Theorem 4 (iii) hold, then
the matrix is inverse of a TP matrix, and Section 3.2 of [23] shows how the linear algebra
problems mentioned in the statement of this corollary can also be performed to HRA. [

4. Numerical Experiments

As has been pointed out in the proofs of Corollaries 1 and 2, if the bidiagonal decom-
position BD(A) of a nonsingular TP matrix A can be constructed with HRA, then the fol-
lowing linear algebra problems can be solved to HRA with the algorithms from [17,18,24]:

¢ Computation of all the eigenvalues and singular values of A.

e  Computation of the inverse A~1.

¢  Computation of the solution of linear systems Ax = b where b has an alternating
pattern of signs.

In [25], the software library TNTool (version January 2018) containing an implemen-
tation of the four algorithms mentioned above for Matlab/Octave is available. The corre-
sponding functions of the software library for solving those problems are TNEigenValues,
TNSingularValues, TNInverseExpand and TNSolve. By using this software library, several
numerical experiments were carried out to illustrate the accuracy of the bidiagonal decom-
positions of both generalized Pascal matrices presented in this work. In this article, we
used Matlab R2023b for the numerical experiments presented.

Remark 3. The bidiagonal decompositions of the generalized Pascal matrices considered in this pa-
per, BD(®y k[x1,. .., Xu; Y1, -, Yn]) and BD(¥u[x1, ..., Xn; Y1, ..., Yn]) (given by (9) and (15),
respectively), can be obtained via HRA with a computational cost of O(n) elementary operations.
Then, the function TNSolve solve linear systems of equations with these generalized Pascal matrices
with a computational cost of O (n?) elementary operations. Analogously, for the case of the inverse,
TNInverseExpand will provide it also with a computational cost of O (n?) elementary operations.
The computation of the eigenvalues and singular values of these matrices with TNEigenValues and
TNSingularValues needs O(n>) elementary operations.

4.1. Example 1

For the first example, the matrices ®,,1[x1,...,Xu; Y1, .., Yn] defined by (8) of orders
n+1=25,10,...,60 were considered for the case where

x=(1,2,...,n) and y=(1,V2,...,V/n). (18)
First, the singular values of the considered matrices, O'iH_l > 02”4“1 > e > Ugﬂ,

were computed with Mathematica by using a 200 digit precision. Then, these singular
values were obtained with Matlab in two different ways. The first one was acquired
by using the Matlab function svd. The second one was obtained by using the function
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TNSingularValues of the software library TNTool (see [25]). Figure 1 shows the singular
values for the case where n + 1 = 20. The differences between the singular values computed
with TNSingularValues and the ones obtained with svd for the case n +1 = 20 can be
observed. Therefore, the obtained approximations are quite different, except for the greater
singular values.

10°%° [ T T T T T T ! T
=]
® O TNSingularValues
1020* ® X svd B
2]
2
(0] ® X
=
= 1010L o X i
g 10 o X 5
L o X
% o S X
[o)]
c 0L o X _
P 10 fo) X
(o] o X
(o] X
= o
-10 _ i
10 5
| | | | 1 | | |
0 2 4 6 8 10 12 14 16 18 20

Figure 1. Singular values (71.20 fori=1,2,...,20.

| &n+1 _ 0_n+1 1
% of the approximations ¢

1 ‘U;Hrl ntl
. . n+ . . . .
imal singular values 0,7 were computed considering the singular values provided by

Then, the relative errors of the obtained min-

Mathematica as exact. It was observed that the lower the singular value is, the greater the
relative error is for the usual standard method. Figure 2 shows these relative errors for
the minimal singular values agill, n+1=5,10,...,60, obtained in Matlab via these two
different ways (svd and TNSingularValues). The figures are shown using a logarithmic
scale for the Y-axis. Hence, when a relative error is zero for a certain n + 1, the line for that
value does not appear (all the figures in this work showing relative errors use a logarithmic
scale for the Y-axis). It can be observed that the results calculated with the new HRA
algorithms (the algorithm obtaining the HRA bidiagonal decomposition of the matrix
together with TNSingularValues) are very accurate in contrast to the poor results obtained

with the standard algorithm.

10% p

—TNSingularValues .

ro|- - svd . |
1080 - : il

1040 B ]

Relative error
N

1020} K i

100+ i 1

1 0-20 I L I I I | |
0 10 20 30 40 50 60

n+1

Figure 2. Relative errors when computing the singular values (T,'errll forn+1=>5,10,...,60.
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Next, the systems of linear equations @, x[x1,..., X Y1,...,Yn)Xn = by forn+1 =15,

10,...,60 were considered, where b;, is the vector whose entries has an alternating pattern

of signs. Moreover, its absolute values were randomly generated as integers in the interval

[1,1000]. The systems were solved with Mathematica using 200 digits of precision, and the

computed results were considered to be exact. Then, we solved the systems with Matlab in

two different ways, like in the case of the singular values:

1. Using TNSolve and the bidiagonal decomposition of @, [x1,...,Xu;Y1,...,Yn]

to HRA.
2. Using the Matlab operator \.

Then, the relative errors

of the solutions obtained with Matlab X,, were

calculated, where X, are the solutions obtained with Mathematica. Figure 3 shows the

results.

10'0;

B —TNSolve
107 ==\

Relative error

1070 i

1 X0 — Xanll2

Figure 3.
[1Xnll2

n+1

40 50 60

,n+1=25,10,...,60, when solving @, x[x1,..., Xn; Y1, .., Yn|Xn = bu.

In the case of inverses (O, k[X1,..., X Y1,. .- ,yn])_l, they were first obtained with

Mathematica using a 200 digit precision. Then, they were calculated with Matlab in two

ways. Firstly, using TNInverseExpand with the new HRA biadiagonal decomposition.

Secondly, using the standard Matlab command inv. Then, component-wise relative errors

corresponding to the approximations obtained using Matlab were computed, taking the

results of Mathematica as being exact. Figure 4 shows the mean and the maximum of these

component-wise relative errors.

(a) Mean relative error

100 ‘
— TNInverseExpand
- - inv
S 100 e
5] 7
[ i
= -
8 .
& -
10710 e
0 10 20 30 40 50

n+1

Figure 4. Mean and maximum component-wise relative

(P [x1, - ..,xn;yl,...,yn])*l.

Relative error

1010,

10-10 L

(b) Maximum relative error

— TNInverseExpand e ’
- - inv L e

10 20 30 40 50 60
n+1

errors when computing the inverse
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Taking into account the numerical results, we can see that the new methods introduced
in this work outperform the standard algorithms for the three algebra problems that were
considered.

4.2. Example 2

For this second example, the symmetric Pascal matrices ¥, [xl, XYL, yn] de-
fined by (14), for n +1 = 5,...,60, in the case where x and y are given by (18), were
considered. Since these matrices are not triangular, their eigenvalues were also computed
with Matlab in two ways:

1. With the usual Matlab command eig.
2. With TNEigenValues of the library TNTool using the bidiagonal decomposition of the
matrices to HRA given in Theorem 4.

Figure 5 shows the eigenvalues A2 > A2% > ... > A2) computed in these two ways for
the symmetric Pascal matrix ¥19[x1, ..., X19; 41, - - ., Y19]. It can be observed than the approx-
imation to the greater eigenvalues obtained with both methods are very similar, whereas
the approximations to the lower eigenvalues are quite different. In fact, the eigenvalues
of a nonsingular totally positive matrix are positive real numbers, and the eigenvalues
AZ0,A30, 039, A28 of ¥19[x1, ..., X19; Y1, - - ., Y19] obtained with Matlab eig function are either
negative real numbers or even complex numbers with a negative real part.

Then, the relative errors for the minimal eigenvalues of the considered matrices
were calculated, taking the minimal eigenvalues provided by Mathematica with a 200-
digit precision as exact. Figure 6 shows these relative errors. It can be observed that
the approximations of the eigenvalues obtained with TNEigenValues and the new bidiag-
onal decomposition are much better than those obtained with the standard Matlab eig
command.

In addition, the same numerical tests of Example 1 were carried out for the symmetric
Pascal matrices considered now. Figure 7 shows the approximations to the singular values
(7120 > (7220 > (7228 of the matrix ¥i9[x1,...,X19; Y1, - - .,Y19]. The same conclusion for the
case of eigenvalues is obtained, with the lower singular values being more prone to higher
rounding errors. Thus, Figure 8 shows the relative errors for the minimal singular values
of matrices.

10%
[ ® 1
1028 L © TNEigenValues B
r ® % eig ]
100[ @ 1
2

® ]
1015 = =
) ]
g ° :
© ® J
> 10 _
§ 1 o x §
[i] . [ o = X ]
10°| N 2 ]
[ o s ]
o ]
100 R - * % -
o 5 ]
5 ]
10 ) ]
fo) il
10710 L I I | | | | I ]

0 2 4 6 8 10 12 14 16 18 20

Figure 5. Eigenvalues /\1.20 fori=1,2,...,20.
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10% w
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__eig ‘_—_____— 4
1010+ /_____——" |
5 T |
® e
2 0% S, 1
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¢ E |
//
10710 ,,/ B
10—20 | 1 | | I I
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n+1

Figure 6. Relative errors when computing the eigenvalues /\Zﬂ forn+1=>5,10,...,60.
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0 2 4 6 8 10 12 14 16 18 20
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Figure 7. Singular values 01.20 fori=1,2,...,20.
T T e b |
10100 - | —TNSingularValues g 8
| |- - svd g ]
. ’ i
o e 1
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g 10 L,
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k) 2
2 ]
100 L .
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Figure 8. Relative errors when computing the singular values (7;11111 forn+1=>5,10,...,60.

For the cases of linear systems of equations, 2-norm relative errors can be seen in
Figure 9.
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Relative error

10—10 L I/ |

1075 e

I | | | | | |

0 10 20 30 40 50 60
n+1

X0 = Xull2

Xl ,n+1=5,10,...,60, when solving ¥, [x1,..., Xu; Y1, .-, Yn]Xn = Un.
nl|2

Figure 9.
Finally, the mean and maximum component-wise relative errors for the computation of
the inverses of symmetric Pascal matrices ¥, [x1, ..., Xu; Y1, ..., Yn] can be seen in Figure 10.

(a) Mean relative error

(b) Maximum relative error
100 0 smmmmmmm e mm o - - ] 100+

___________________

Relative error
Relative error

0 10 20 30 40 50 60 0 10 20 30 40 50 60
n+1 n+1
Figure 10. Relative errors when computing the inverse (¥, [x1,..., X0 Y1, ..., yn})*l.

5. Conclusions

Pascal k-eliminated functional matrices and Pascal symmetric functional matrices
were studied previously in the literature. In this paper, we obtained the bidiagonal de-
composition of these generalized Pascal matrices. Appropriate conditions, provided that
these matrices were either totally positive or inverse of totally positive matrices, were
found. In those cases, the bidiagonal decomposition can be performed with high relative
accuracy. Consequently, many other linear algebra calculations with these matrices can be
computed with high relative accuracy, for example, the calculation of their eigenvalues,
singular values, inverses and of some associated linear systems. The high relative accuracy
of the presented method was illustrated with some numerical examples.
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Abbreviations

The following abbreviations are used in this manuscript:

P Totally positive
HRA  High relative accuracy
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