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Abstract: The increasing demand for secure and efficient encryption algorithms has intensi-
fied the exploration of alternative cryptographic solutions, including biologically inspired
systems like cellular automata. This study presents a symmetric block encryption design
based on multiple reversible cellular automata (RCAs) that can assure both computational
efficiency and reliable restoration of original data. The encryption key, with a length of
224 bits, is composed of specific rules used by the four distinct RCAs: three with radius-2
neighborhoods and one with a radius-3 neighborhood. By dividing plaintext into 128-bit
blocks, the algorithm performs iterative transformations over multiple rounds. Each round
includes forward or backward evolution steps, along with dynamically computed shift
values and reversible transformations to securely encrypt or decrypt data. The encryption
process concludes with an additional layer of security by encrypting the final RCA configu-
rations, further protecting against potential attacks on the encrypted data. Additionally,
the 224-bit key length provides robust resistance against brute force attacks. Testing and
analysis were performed using a custom-developed software (version 1.0) application,
which helped demonstrate the algorithm’s robustness, encryption accuracy, and ability to
maintain data integrity.

Keywords: multi-layer encryption; symmetric cryptography; block encryption; reversible
cellular automata; dynamical systems; data security
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1. Introduction
In today’s increasingly digitalized society, data security has become paramount as

critical sectors—such as healthcare, energy, water supply, and infrastructure—are vulner-
able to sophisticated cyberattacks. The expansion of connected systems like IoT, smart
cities, and online medical databases has brought significant advancements, yet it has also
created new opportunities for malicious actors. Attacks on such critical infrastructures
can lead to severe disruptions, putting both personal and state security at risk. In recent
years, cybersecurity incidents have targeted everything from patient records [1,2] to energy
grids [3], highlighting the urgency of securing sensitive information in an era where data
underpin both private and public sectors.

In the era of expanding digital communication, the security of sensitive data is
paramount, necessitating the continual advancement of encryption algorithms capable of
resisting emerging cyber threats. Traditional encryption methods like Advanced Encryp-
tion Standard (AES) [4] and Rivest–Shamir–Adleman (RSA) [5], used to secure digital data,
are increasingly vulnerable to sophisticated attacks. In response, research has increasingly
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explored alternative cryptographic foundations, including biologically inspired and com-
putationally efficient models like cellular automata (CAs). Cellular automata, originally
developed to model biological and physical systems, are uniquely suited to encryption
due to their simplicity, parallel processing potential, and inherent reversibility in certain
configurations. Notably, reversible cellular automata (RCAs) have garnered attention for
their ability to facilitate both encryption and decryption processes through rule-based
evolution, offering a promising direction for the design of symmetric encryption systems.

Recent advancements in cryptography have introduced innovative encryption method-
ologies leveraging chaos theory, neuron models, and complex dynamic systems. For in-
stance, the study presented in [6] explores the use of Arnold’s Cat Map to shuffle pixel
positions and values, achieving high resistance to known-text attacks and robust encryption
validated through randomness tests. Other works employ hyperchaotic maps combined
with pixel reorganization to enhance encryption efficiency and security, demonstrating
superior randomness and resistance to attacks in image encryption [7,8]. Moreover, the
memristive tabu learning neuron model introduces multi-wing chaotic attractors for image
encryption along with an implementation on FPGA hardware, showcasing scalability and
hardware feasibility [9]. Additionally, the study presented in [10] combines tabu search
optimization with hyperchaotic systems to enhance encryption performance, providing
resistance to brute force and differential attacks while ensuring high randomness and secu-
rity. Furthermore, the algorithm described in [11] utilizes quadratic polynomial hyperchaos
and pixel fusion strategies to produce highly secure encryption systems validated through
statistical testing and performance evaluation.

Recent studies have emphasized the potential of RCA-based cryptography. Different
investigations have been conducted to prove the potential of integration of cellular au-
tomata concepts in designing encryption systems in various domains [12,13]. Research into
data security through reversible cellular automata in cryptographic systems has been con-
ducted in order to analyze how different structures influence the encryption outcome [14].
Other studies, presented in [15] and [16], focused on exploring their use as an alternative to
traditional ciphers, demonstrating the ability of RCAs to generate complex patterns that can
significantly strengthen cryptographic systems. Studies like [17] focused on highlighting
RCAs’ potential for high-speed, low-power encryption, particularly suited for applica-
tions in resource-constrained environments. Specifically, reversible cellular automata have
gained attention for their potential to facilitate symmetric encryption by allowing precise
reconstruction of original data while maintaining computational efficiency [18]. RCA-based
cryptography is considered particularly promising for high-speed, low-power applications
in secure communications, making it an adaptable choice for modern cryptographic needs.

The primary purpose of this study is to develop a symmetric block encryption algo-
rithm based specifically on using multiple RCAs with different radius and complementary
rules to ensure accurate data restoration. The 224-bit encryption key design allows for
intricate data transformations across multiple encryption rounds while maintaining com-
putational efficiency and facilitating reversible operations. An important aspect of this
work is to demonstrate that the algorithm offers enhanced security, particularly through
the final encryption of RCA configurations to shield against potential reverse-engineering
attacks. The strength of the proposed algorithm is further amplified by the key length,
which effectively safeguards against brute force attacks. By addressing these needs, this
work contributes to the growing field of RCA-based cryptography, proposing a solution
that is adaptable to emerging security challenges.

Our research introduces several key advancements in the field of encryption algo-
rithms. These contributions, which highlight the unique aspects and strengths of our
proposed system, are outlined below:
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• Usage of a bioinspired technique in developing an innovative encryption system uti-
lizing a multi-layer approach based on multiple reversible cellular automata arranged
in a cascade architecture, which improves the security of generated ciphertext;

• Our proposed encryption algorithm design is solely based on cellular automata con-
cepts for both the encryption/decryption process itself and also for producing the
initialization data required for cryptographic purposes, which provide consistency
and were based on analysis carried out in our previous works;

• Enhanced security through a vast keyspace provided by the 224-bit secret key, along
with the use of 128-bit encryption which guarantees strong data segmentation and
raises algorithm complexity;

• Comprehensive software simulation derived from the custom-developed application
used to simulate and validate the encryption algorithm, ensuring practical applicabil-
ity, along with optimization brought to implementation by operating with low-level
functions (bit operations) which lead to reduced computational complexity, guarantee-
ing efficiency and practical applicability.

This research is divided into five sections, organized as follows. Section 2 presents the
working principles of reversible cellular automata and the methods of integrating them into
encryption schemes. Section 3 provides an in-depth description of the proposed algorithm,
detailing the fundamentals of the multi-layer technique, which combines multiple RCAs
with distinct roles across multiple rounds. This section also explains how the encryption
key is generated and applied within the algorithm and presents the custom-developed
software application created to demonstrate theoretical concepts and enable comprehensive
analysis of the algorithm’s behavior under varying conditions. Section 4 outlines the testing
methods applied to assess the performance and efficiency of the encryption system, along
with a discussion and interpretation of the findings. Finally, Section 5 concludes this paper
by summarizing the key findings and the future development goals.

2. Materials and Methods
This section explores the integration of reversible cellular automata into encryption

systems, emphasizing their potential to enhance security and efficiency through precise,
rule-based transformations. It begins by outlining the fundamental principles of RCAs,
including their unique reversibility, which ensures accurate reconstruction of original data.
Building on this foundation, this section details the proposed symmetric block encryption
design leveraging RCAs in a multi-layer framework. This design combines multiple RCAs
with distinct roles, creating a robust, adaptable system capable of secure encryption across
multiple rounds.

2.1. Cellular Automata Classes Used in the Algorithm

Cellular automata are mathematical models consisting of a grid of cells, each of them
evolving over discrete time steps according to a set of predefined rules. The grid can
be one-dimensional (1D), two-dimensional (2D), or higher and serves as the framework
where cells are arranged. All cells update their value synchronously in discrete time steps.
Transition rules dictate how a cell’s state evolves over time based on its own current state
and the states of its neighbors within a defined radius, forming a “neighborhood” [19]. The
neighborhood structure defines which surrounding cells influence a given cell, determined
by the radius [20]. In cellular automata, the radius defines the number of neighboring
cells on either side of a given cell that influence its next state. This influences the state
transitions, making it a crucial factor in the complexity and behavior of the automaton.
Some of the lengths that may be considered for the radius including the evolution function
f are presented below. In each case, ci(x) denotes the state of i-th cell at time x.
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• Radius-1 includes the cell itself and one neighbor on each side (3 cells in 1D CA):

ci(t + 1) = f [ci−1(t), ci(t), ci+1(t)] (1)

• Radius-2 includes the cell itself and two neighbors on each side (5 cells in 1D CA):

ci(t + 1) = f [ci−2(t), ci−1(t), ci(t), ci+1(t), ci+2(t)] (2)

• Radius-3 includes the cell itself and three neighbors on each side (7 cells in 1D CA):

ci(t + 1) = f [ci−3(t), ci−2(t), ci−1(t), ci(t), ci+1(t), ci+2(t), ci+3(t)] (3)

Regardless of the considered radius, the finite cellular automata rules encounter the
problem of exceeding the grid limits for marginal cells due to lack of left and right neighbors.
In this case, boundary conditions define how cells at the edges of the grid interact with
their neighbors. Common boundary types include the following:

• Fixed Boundary: edge cells interact with fixed, predefined states outside the grid (e.g.,
always 0 or 1);

• Periodic Boundary: the grid wraps around, so the leftmost and rightmost cells are
considered neighbors;

• Reflective Boundary: edge cells mirror their immediate neighbors.

Figure 1 presents the graphical representation of the previously mentioned boundary
condition types, by considering a finite 8-cell, one-dimensional grid and radius-2:
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Figure 1. Visual representation of common boundary types.

Elementary cellular automata (ECAs) are the simplest class of cellular automata,
consisting of a one-dimensional grid where each cell has two possible states (0 or 1).
The evolution of each cell depends on its own state and the states of its two immediate
neighbors, forming a 3-cell neighborhood [21]. There are 256 possible rules for ECAs, as
each rule represents one of the 256 ways to map a 3-cell neighborhood to a new state.
Stephen Wolfram introduced a naming convention in which each rule is assigned a number
based on its binary representation as shown in Table 1, which presents two ECA rules (90
and 165).

Table 1. Binary representation of two evolution rules (90 and 165).

Rule 1 111 110 101 100 011 010 001 000

90 0 1 0 1 1 0 1 0
165 1 0 1 0 0 1 0 1

1 Rule in decimal form. The evolution of the central cell is considered in each case.
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Extending the radius considered for a cell increases the number of possible rules that
can be applied to the formed cellular automata. Therefore, there are 256 radius-1 rules, 232

radius-2 rules, and 2128 radius-3 rules.
Reversible cellular automata are a class of cellular automata where each configuration

can uniquely determine its predecessor, ensuring the process is invertible. This property is
achieved through specially designed transition rules that allow the automaton to evolve
forward and backward without losing information. RCAs are particularly useful in applica-
tions like encryption and data compression, where reversibility ensures that original data
can be reconstructed precisely [22]. They often use complementary rules or rely on specific
neighborhood and boundary conditions to maintain their reversible behavior.

In this paper, second-order reversible cellular automata are considered. They extend
the concept of traditional RCAs by determining a cell’s next state by combining its current
state, the states of its neighbors within a defined radius, and its own state from the previous
time step (t − 1). This combination ensures that the evolution of the system incorporates
both spatial and temporal information, maintaining reversibility by allowing the original
configuration to be reconstructed uniquely from subsequent states. This design expands
the complexity and utility of RCAs for applications requiring robust data transformations.
To illustrate this concept, Figure 2 presents the case of a one-dimensional reversible cellular
automata cell evolution, considering radius-2 for the evolution function.
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In reversible cellular automata, the rule comprises two complementary rules to ensure
reversibility. The first rule (denoted CR1) is applied when the cell’s previous state was
1, and the second rule is used when the previous state was 0. The second rule (denoted
CR2) is derived as the complement of the first, ensuring that the states remain uniquely
reversible. This is achieved by flipping all bits in the first rule, creating a bitwise negation.
Mathematically speaking, the second rule can be calculated starting from the first one
according to the following equations, where r is the radius considered for a cell.

CR2 = 2m − CR1 − 1 (4)

m = 22×r+1 (5)

These complementary rules guarantee accurate bidirectional evolution, preserving the
ability to reconstruct prior configurations. The reversibility of RCAs constructed in this
way is assured by the principle of bijectivity, which requires the function to be both injective
(no two inputs map to the same output) and surjective (every possible output is mapped
from some input). This ensures that each configuration leads to a unique subsequent state
and that any state can be traced back to its original configuration, maintaining the RCAs’
reversible nature.
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The integration of reversible cellular automata into encryption systems utilizes their
forward and backward iterative capabilities to encrypt and decrypt data securely. During
encryption, plaintext is encoded as part of the initial RCA state, and the automaton evolves
through multiple forward iterations using the predefined complementary rules. Decryption
reverses this process by backward evolution, applying the same rules and the same number
of iterations, enabling precise reconstruction of the original plaintext from the ciphertext. In
each case, the secret key consists in the reversible rule being applied during the encryption
and decryption process [23]. Figure 3 illustrates the fundamental concept of a symmetric
cryptographic system based on reversible cellular automata.
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Figure 3. Principles of encryption and decryption using reversible cellular automata.

Encryption and decryption using reversible cellular automata rely on precise configu-
rations of initial states. For encryption, the process begins with two states: s0, a randomly
generated state, and s1, which represents the plaintext to be secured. After forward itera-
tions for predetermined number of generations, the RCAs produce the ciphertext as state
sn−1 and an additional state sn, known as recovery data. To enhance security, this last state
sn is XORed with a defined value in accordance with Vernam algorithm [24] and becomes
part of ciphertext, ensuring that the recovery data remain protected, while facilitating
accurate plaintext reconstruction in reverse RCA iterations. During decryption, the initial
state is composed of s0 = sn (recovery data) and s1 = sn−1 (the ciphertext). The original data
are produced after backward iteration of the RCAs for the same number of generations
performed in the encryption process.

A good random number generator is critical in any encryption system to ensure
security and unpredictability [25]. In our RCA-based algorithm, this randomness is essential
for generating initial states during the encryption process. In order to maintain an exclusive
cellular automata design of the algorithm, the class of linear hybrid cellular automata
(LHCAs) based on rules 90 and 150, following Hortensius’ construction [26], is used to
implement this function. According to this, depending on the number of cells that compose
the LHCAs, one of the rules is used for evolving a cell state but in a precise order. Figure 4
below presents the rule construction order for an 8-bit LHCA with a null boundary.
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This approach leverages the properties of LHCAs to produce high-quality random
states, ensuring secure and consistent initialization without introducing external random-
ness sources, thereby preserving the algorithm’s integrity. The usage of 90/150 LHCAs
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in generating random data for the proposed encryption algorithm is presented in the
next subsection.

2.2. RCA-Based Symmetric Block Encryption Design

The proposed encryption algorithm leverages a multi-layer design incorporating three
distinct layers formed by four reversible cellular automata in a cascading structure. Each
layer has a specific role, ensuring the secure transformation of plaintext into ciphertext
while maintaining reversibility for decryption. The design incorporates three layers made
up of reversible cellular automata as follows:

• Primary Layer: composed of two RCAs—primary left CA (PLCA) and primary right
CA (PRCA)—that takes the plaintext and provides the first step of encryption;

• Shift Layer: composed of one RCA—shift CA (SCA)—which provides shifting func-
tionalities;

• Binding Layer: composed of one RCA—boundary CA (BCA)—which integrates
the previous operations and provides the last step of encryption and generates
the ciphertext.

According to modern symmetric block cryptographic techniques like Data Encryption
Standard or Advanced Encryption Standard, the proposed RCA-based algorithm employs
16 successive rounds, each based on the multi-layer design. This multi-round structure
enhances security by repeatedly transforming the input states across multiple layers, in-
creasing diffusion and confusion with every iteration. Each round’s output serves as the
input for the next, ensuring robust protection. Figure 5 presents the architecture of a single
encryption round. Each round is composed of two initial states which differ in function of
the round number and generates two final states which form either next round initial data
or final data, that is, the encrypted or decrypted information.
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The algorithm follows the principles of symmetric block encryption, and it is specif-
ically designed to process 128-bit data blocks. This means that each RCA has a certain
length (number of cells).

The encryption algorithm is composed of four one-dimensional reversible cellular
automata defined as PLCA, PRCA, SCA, and BCA. The first two RCAs (PLCA and PRCA)
are composed of 64 cells, which is the length required after splitting the initial states. The
SCA is composed of 16 cells, and it is used to generate shifting values. The BCA, used to
generate the last step of encryption, is composed of 128 cells (equal to a block length). While
the reversible cellular automata in primary and shifting layers use a radius-2 neighborhood,
the Binding Layer incorporates a radius-3 RCA. Both encryption and decryption involve
four functions: evolution of PLCA, PRCA, SCA, and BCA. In each case, periodic boundary
is used to perform the iterations.

The plaintext is divided into 128-bit blocks, with encryption of each block beginning
using two 128-bit values, s0init and s1init. The plaintext blocks are mapped to s1init, while
s0init is randomly generated for the initial block. For subsequent blocks, s0init is derived
from the encryption result of the preceding block. Each encryption round produces two
outputs, s0final and s1final, which serve as initial values for the next round. Specifically,
s0final becomes s0init, and s1final becomes s1init.

The final two configurations produced after the last encryption round of a block,
labeled s0final and s1final, have distinct purposes. The first (s0final) becomes the ciphertext
block, while the second (s1final) serves as the initial state (s0init) for encrypting the sub-
sequent plaintext block, thus removing the need to generate initial data for each separate
block. The process of multiple blocks encryption is presented in Figure 6 below.
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Each round of the encryption algorithm begins with two 128-bit values, s0init and
s1init, which are divided into left (s0L, s1L) and right (s0R, s1R) halves. These halves
initialize two RCAs: PLCA processes s0L and s1L, while PRCA processes s0R and s1R. Both
RCAs are iterated for 19 steps, producing intermediate configurations: sn−1L, snL (from
PLCA) and sn−1R, snR (from PRCA). Next, a shift operation is applied, where snL shifts
left and snR shifts right by Xs positions, with Xs determined by SCA iterations, adding
complexity and security.

At the beginning of the encryption process, SCA is initialized only once, using two
starting configurations generated by the same random generator used for the initial state of
the first plaintext block in round 1. Before every round, SCA evolves through six iterations,
with the central cell producing a 6-bit number denoted Xs, as presented in Figure 7. This
was chosen so that Xs would take values between 0 and 26. This allows for all of 64 cells
composing PLCA and PRCA to be shifted partially or completely in a round.
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After the shift operations, the configurations snL and snR are transformed into snL*
and snR*, respectively. The shifting process concludes with swapping the positions of
sn−1L and sn−1R. These swapped values, combined with snL* and snR*, form the initial
states for BCA, which is then iterated for 22 steps, completing the round and producing the
final configurations required for encryption.

A random number generator based on a linear hybrid cellular automaton (LHCA)
using rules 90 and 150 offers a robust method for generating the 128-bit random data
required for encryption in this algorithm. Following Hortensius’s order construction
principles, four LHCA instances of 32 cells each will be employed to produce the necessary
bit length. These LHCA modules, operating in parallel, ensure high-quality randomness for
initializing the first block in the first round and the two initial states of SCA. This approach
leverages the studied behavior of rule 90/150 combinations to maintain consistency and
cryptographic strength [27]. The combination order of evolution rules for a 32-bit LHCA is
presented in Table 2, where ”0” denotes usage of rule 90 and ”1” denotes usage of rule 150.

Table 2. Combination of evolution rules.

Number of Cells Cycle Length Rule Combination

32 232 01000110000010011011101111010101

The 90/150 LHCA will be initialized with an arbitrary state, which will then be iterated
for a number of generations to produce the final value that will be considered as random
data in the encryption algorithm as presented in Figure 8 below.
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The last state of the LHCA will be saved as the new initial state for the next data
encryption. This is possible due to the design of the encryption system, which does not
require the random generated data to be remembered for the opposite process of decryption.

The encryption algorithm utilizes a 224-bit key designed specifically for the multi-
layered reversible cellular automata framework. This key is composed of segments allo-
cated to each of the four RCAs based on their respective neighborhood radius. The radius
determines the size of the rules needed to evolve each RCA, ensuring that the algorithm
maintains consistency and reversibility in its operations.

PLCA and PRCA, operating with a radius-2 neighborhood, are assigned 32-bit rules
each. Similarly, SCA, also a radius-2 RCA, is assigned another 32 bits from the key. These
segments ensure that PLCA, PRCA, and SCA perform their roles efficiently, with rules
designed for localized transformations and bit-shifting processes.

The remaining 128 bits are allocated to BCA, which uses a radius-3 neighborhood.
This larger radius requires a more complex rule set, as it incorporates a broader influence
of neighboring cells during its evolution. By assigning 128 bits to BCA, the algorithm
ensures that the final integration of the intermediate states from the Primary Layer is robust
and secure.

The architecture of the 224-bit key is specifically designed based on the radius of the
RCAs used in the encryption algorithm, containing the rules that govern their evolution.
However, the key structure does not include reversible rules in their entirety according to
the formal definition. Instead, the key is constructed to contain only the rules applied when
the previous state of an RCA cell is “1”. This design choice simplifies the key structure
while maintaining the algorithm’s functionality, as the complementary rule for cells in
a previous state of “0” can be easily derived by complementing the specified rule in the
key. This approach not only reduces the complexity of the key but also ensures that the
reversibility of the RCA system is preserved, as the complementary rules are inherently
determined by the algorithm’s design.

The choice of a 224-bit key length is directly related to the structure of the encryption
algorithm, which incorporates four reversible cellular automata with specific rules based
on their radius. The key is divided into segments corresponding to the evolution rules
for each RCA: two 32-bit rules for each RCA in the Primary Layer (PLCA, PRCA) with
a radius-2 neighborhood and one 128-bit rule for the BCA with a radius-3 neighborhood
used in the Binding Layer. The remaining 32 bits are allocated to the rule used by the Shift
Layer RCA, which also uses radius-2 for the evolution of the cells state. This design of the
key, in terms of bit length, is solely based on the chosen radiuses for the RCAs in the system
without being influenced by the length of the blocks. By selecting these specific radiuses,
the algorithm leverages the diverse complexity of neighborhood interactions, ensuring
a robust and scalable encryption process. The corresponding rule lengths of 32 bits and
128 bits provide an optimal balance between computational efficiency and cryptographic
strength. This structural design allows the key to encapsulate all necessary information for
the RCA rules while maintaining the overall 224-bit length.
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This key design ensures flexibility, allowing the algorithm to balance complexity and
efficiency. The distribution of the 224 bits, presented in Figure 9, ensures that each RCA
layer, whether performing transformations, shifts, or final integrations, has access to the
rule sets needed for secure and precise operations.
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The key not only governs the evolution of the RCAs but also acts as a safeguard for
the system’s outputs, ensuring that the encryption remains secure against potential attacks
and fully reversible during decryption. Specifically, it is used to secure the last state of the
system through a well-defined XOR operation. Thus, additional data are added to the final
ciphertext, with the role of making the process of decryption possible. These are called
Encrypted Recovery data (ERd), and they have the crucial role of securing the last state of
reversible cellular automata after the encryption process, in order to prevent potentially
attacks due to knowing two consecutive configurations of the system. Therefore, the ERd
are formed by securing the last state of BCA (recovery data for last plaintext block) along
with the last two states of the SCA through an XOR operation with certain bits of the secret
key. Thus, bits 64 to 191 are used to encrypt BCA’s last configuration, while bits from 192 to
223 are used for encryption of the last two configurations of SCA.

This will result in 160-bit length of the Encrypted Recovery data, which will be added
after the last ciphertext block. The corresponding operations that help the formation of
ERd are described by Equations (6)–(8) below:

ERd[0..127] = sn BCA[0..128] XOR Key[64..191] (6)

Erd[128..143] = sn – 1 SCA[0..15] XOR Key[192..207] (7)

Erd[144..159] = sn SCA[0..15] XOR Key[208..223] (8)

This process enhances the cryptographic robustness of the algorithm by protecting sen-
sitive data from unauthorized access or manipulation. The XOR operation is a lightweight
yet highly effective cryptographic tool, as it introduces an additional layer of security with-
out significantly increasing computational complexity. This dual functionality underscores
the key’s pivotal role in the algorithm’s overall security architecture.

In order to summarize the operation of securing data, a detailed step-by-step explana-
tion of actions performed for encryption is presented below:
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• Step 1: System initialization

Secret key is set along with the random initial data produced by the evolution of the
LHCA. The plaintext is divided into 128-bit blocks to ensure consistent processing.
If the final block is shorter than the required 128-bit length, padding is applied by
adding SPACE characters until the block reaches the necessary size.

• Step 2: Input initialization

The plaintext block (128 bits) is split into two 64-bit sections: s1L and s1R. The random
initial state is split into two 64-bit sections: s0L and s0R.

• Step 3: Primary Layer transformations

The two composing RCAs in this layer are initialized: PLCA is set with initial states
s0L and s1L, while PRCA is set with initial states s0R and s1R. After their evolution,
each produced the outputs, consisting of the last two states as follows: PLCA outputs
sn−1L and snL, while PRCA outputs sn−1R and snR.

• Step 4: Shift Layer transformations

In this step, the shift value Xs is calculated. SCA is initialized with two random 64-bit
states derived from the same LHCA used in step 1. SCA evolves for 6 steps, and the
shift value Xs is produced as a 6-bit number formed by the concatenated values of the
central cell derived from the 6 states of the SCA. The second function subsequent to
this layer is the actual operation of shifting the previous obtained states, snL and snR,
by Xs positions left or right accordingly.

snL* = LeftShift (snL, Xs) (9)

snR* = RightShift (snR, Xs) (10)

• Step 5: Binding Layer transformations

The RCAs in this layer, operating on 128 bits, are initialized by combining 64-bit states
obtained in previous steps as follows:

s0BCA = sn − 1R + sn − 1L (11)

s1BCA = snL* + snR* (12)

The evolution of BCA produces two outputs denoted sn-1final and snfinal.

• Step 6: Final operations

The ciphertext blocks are formed using sn–1final. The recovery data (snfinal) are
secured through XOR operations as previously described, and they are saved for
decryption process.

The process of decryption, which has to reconstruct the original data, starts from
the Encrypted Recovery data, incorporated in the ciphertext. The first step of decryption
involves applying the same XOR operation as in the encryption process, using the same
values derived from the secret key. This operation ensures that the original recovery states
of BAC and SCA are securely retrieved, allowing the decryption process to proceed.

The ciphertext is processed in fixed blocks of 128 bits, maintaining consistency with
the block size used during encryption. However, a critical distinction in this RCA-based
algorithm is that the decryption process works from the end to the start, beginning with
the last ciphertext block. The importance of starting decryption from the last ciphertext
block lies in the RCAs’ design, which inherently relies on the final states of the system
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to reconstruct earlier configurations. This means that the last two states of the system,
derived from the encryption of the last plaintext block, are essential for decrypting all
previous blocks.

Decryption proceeds in reverse by reconstructing each plaintext block sequentially,
starting with the last block. The outputs from each RCA layer in the final round are
processed in reverse order, iterating backward to retrieve the initial states. These initial
states are then used to decrypt the preceding ciphertext block, continuing the backward
sequence until the first plaintext block is recovered. This approach leverages the bijective
nature of RCAs, which ensures that each step of the decryption accurately reverses the
transformations applied during encryption.

Basically, decryption is performed by executing the same operations as in the encryp-
tion process but in reverse order. While encryption traverses the layers in the sequence of
the Primary Layer, Shift Layer, and Binding Layer, decryption reverses this order, starting
with the Binding Layer, followed by the Shift Layer, and concluding with the Primary Layer.
The Binding Layer first combines the decrypted states to provide the inputs for the Shift
Layer. In this reversed process, the Shift Layer reconstructs the original states by shifting
the PLCA data to the right and the PRCA data to the left, effectively undoing the shifts
applied during encryption. Finally, the Primary Layer processes the reconstructed states
to produce the plaintext block, completing the decryption round. This reversed traversal
ensures that the original plaintext is accurately restored.

3. Encryption Algorithm Implementation
This section presents the methods and techniques used for the software-level imple-

mentation of the multi-layer encryption algorithm. The implementation was developed
in order to test, verify, and validate the concepts of encryption using multiple RCAs, as
outlined in Section 2. The software application, developed in this stage, allows for thorough
testing of the correct evolution of each RCA, the specific functions performed by each layer,
and, most importantly, whether data can be successfully encrypted and decrypted.

The implementation process closely adhered to the proposed system design. For
every operation performed within a layer, a corresponding function (method) was carefully
developed to ensure the functionality and correctness of that layer, taking into consideration
all possible scenarios like incomplete blocks of data. Since the encryption algorithm
operates on fixed blocks of 128 bits (equivalent to 16 characters at 8 bits per character), any
incomplete block must be properly handled to maintain the required block size. To address
this, padding is applied to the last block of data using SPACE characters until the block
reaches the necessary 16-character length. This ensures that the RCA in the Primary Layer
receives input with the correct bit length, allowing for seamless processing and maintaining
the algorithm’s consistency and functionality.

Although the software implementation’s main goal is to demonstrate the theory behind
the encryption method, computational improvements were made in order to optimize RCA
evolution, thus increasing efficiency regarding parameters like execution time and resources.
Among the functions implemented in the algorithm, a key component is the ApplyRCARule
function. This method is critical, as it governs the evolution of the reversible cellular
automata utilized in the system, operating with a radius-2 neighborhood and periodic
boundary conditions (wrap-around). Optimizations were made in this function so that it
could determine the next state of a cell using bitwise operations which are highly efficient
high-level operations. The C# source code for function ApplyRCARule is as follows:
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public static string ApplyRCARule (string previousRow, string currentRow, BigInteger
rule)
{

char[] nextRow = new char[currentRow.Length];
for (int i = 0; i < currentRow.Length; i++)
{
// Extract 2 neighbors to the left and 2 neighbors to the right (radius 2)
int leftNeighbor1 = (i < 2) ? currentRow[currentRow.Length - 2 + i] - ’0’ :

currentRow[i - 2] - ’0’;
int leftNeighbor2 = (i < 1) ? currentRow[currentRow.Length - 1] - ’0’ : currentRow[i -

1] - ’0’;
int rightNeighbor1 = (i >= currentRow.Length - 1) ? currentRow[0] - ’0’ :

currentRow[i + 1] - ’0’;
int rightNeighbor2 = (i >= currentRow.Length - 2) ? currentRow[i -

currentRow.Length + 2] - ’0’ : currentRow[i + 2] - ’0’;
// Form a 5-bit neighborhood (radius 2)
int pattern = (leftNeighbor1 << 4) | (leftNeighbor2 << 3) | (currentRow[i] << 2) - ’0’

| (rightNeighbor1 << 1) | rightNeighbor2;
// Choose rule based on the previous state
if (previousRow[i] == ’1’)
// Rule 1 (when previous state is 1)
nextRow[i] = ((rule & (BigInteger.One << pattern)) >> pattern) == 1 ? ’1’ : ’0’;
else
// Complementary Rule 2 (when previous state is 0)
nextRow[i] = (((~rule) & (BigInteger.One << pattern)) >> pattern) == 1 ? ’1’ : ’0’;
}
return new string(nextRow);

}

Both the Primary Layer and Shift Layer composing RCAs utilize this function in the
evolution of their states. The Binding Layer RCA, which evolves based on a radius-3
neighborhood, employs a similar version of this function (ApplyRCARule3R) where two
more additional cells, one left and one right, are considered in producing the future state of
the current cell.

To better illustrate the process of securing data, Algorithm 1 below presents the
description of the encryption procedure, using pseudocode:

Algorithm 1: Encryption Using Multi-Layer RCA-Based System

Input: Plaintext P (128-bit blocks) and Key K (224 bits)
rand_data = iterate(LHCA);
s0init = rand_data[0..127];
s0SCA = rand_data[0..15];
s1SCA = rand_data[16..31];
plaintext_blocks = split(P, 128);
for i = 1 to plaintext_blocks do
s1init = plaintext_blocks[i];
for j = 1 to 16 do
s0L(PLCA) = s0init[0..63];
// Split current plaintext block and random initial data into two 64-bit sections
var (s0L, s0R) = split(s0Init, 64);
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Algorithm 1: Cont.

var (s1L, s1R) = split(s1Init, 64);
// Evolve left (PLCA) and right (PRCA) parts of Primary Layer and save two last states
var (sn1L, snL) = EvolveRCA(s0L, s1L, plcaRule);
var (sn1R, snR) = EvolveRCA(s1L, s1R, prcaRule);
// Perform bitshift calculation—value Xs
Xs = CalculateXs(s0SCA, s1SCA, scaRule);
// Apply shift operations
snL* = BitShift(snL, “left”, Xs);
snR* = BitShift(snR, “right”, ns);
// Form BCA input states
s0BCA = qn1R + qn1L;
s1BCA = snL* + snR*;
// Evolve BCA and save two last states
var (s0final, s1final) = EvolveBCA(s0BCA, s1BCA, bcaRule);
s0init = s0final;
s1init = s1final;
end for
Ciphertext_blocks[i] = s0final;
s0init = s1final;
end for
// Securing of final states of BCA and SCA
ERd[0..127] = s1final[0..128] ˆ K[64..191];
ERd[128..143] = sn1SCA[0..15] ˆ K[192..207];
ERd[144..159] = snSCA[0..15] ˆ K[208..223];
Output: Ciphertext (Ciphertext_blocks) and Encrypted Recovery data (Erd).

The software interface offers a comprehensive environment for simulating and testing
the cryptographic process. The application supports both encryption and decryption
processes, allowing data to be inputted directly through the interface or select files for
processing in case of large data. It includes features that enable testing and validation of
data throughout the encryption and decryption process on data fed to the system. The
main sections include the following:

• Algorithm parameters: allow setting initial data, including the secret key and initial-
ization data, which are shown, in the interface, in hexadecimal format;

• Original data: section for setting original data to be encrypted (directly or from file);
• Encrypted data: show the result of encryption of original data with the option of

exporting it for further analysis and also the Encrypted Recovery data in hexadecimal
format;

• Decrypted data: show the result of decryption of encrypted data;
• Data analysis: provides information about the first and last two states of each RCA after

each round, both for encryption and decryption processes, through which intermediate
states can be analyzed.

The Data Analysis section extends, at the bottom of the interface, by presenting the
key architecture, offering a detailed breakdown of each segment’s composition in binary
format. Each segment corresponds to specific RCA evolution rules, as outlined in the
previous section, highlighting how the key integrates into the algorithm’s operations. The
binary data for each segment are clearly displayed, allowing for analyzing the relationship
between the key structure and the algorithm’s functionality.
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4. Results and Discussion
This section analyzes and discusses the results of the proposed encryption algorithm

to verify its functionality and performance. Additionally, this section examines the algo-
rithm’s performance through various tests, including statistical and graphical analysis
of the encrypted data. It also presents an evaluation of the secret key’s effectiveness in
securing encrypted data, highlighting its role in maintaining the system’s overall security
and reliability. Testing was conducted using a desktop computer with an Intel i7-7500U
processor (2.7 GHz frequency) and 16 GB of RAM.

Using the software application, developed during this study, initial sample data were
provided to the system, along with the required algorithm parameters consisting of the
secret key and random initial data. After these configurations, the original data were
encrypted, thus producing the ciphertext and the associated additional data in the form of
Encrypted Recovery data (ERd). The next phase consisted in decryption of the previously
obtained results. In this case, the ciphertext was considered part of the initial configuration
of the system along with the ERd information. The obtained data after this process matched
the initial sample data provided, thus demonstrating the correct evolution and functionality
of the multi-layer encryption system.

The positive results regarding the validation of the system’s functionality marked the
first step in confirming the effectiveness of the encryption algorithm. These initial tests
demonstrated the system’s ability to accurately encrypt and decrypt data. Building on
this foundation, the testing process continued with a series of statistical analyses on the
encrypted data provided by the application.

Statistical testing represents a critical step in evaluating an encryption system, as it
assesses the randomness of the encrypted data produced by the algorithm. According to
cryptographic theory, a secure encryption system must generate output that appears statis-
tically random. This randomness is vital for preventing patterns that could be exploited
by attackers.

Statistical tests developed by the National Institute of Standards and Technology
(NIST) were employed to evaluate whether the generated sequences met the standards
for pseudo-random number generators [28]. This suite includes 14 tests and can identify
patterns of non-randomness in binary sequences generated by both hardware and software
cryptographic systems.

Each test produces a statistic used to calculate a p-value, representing the probability
of obtaining a sequence less random than the tested one. A significance level (α = 0.01) was
chosen, allowing 99% confidence in randomness while permitting up to 1 in 100 sequences
to fail. To ensure accurate results, approximately 1,000,000 bits of encrypted data were
analyzed, divided into ten streams of 100,000 bits each. In each test, the p-value and
pass rate (the percentage of passing sequences) were calculated. These results provided
a comprehensive evaluation of the randomness of the encrypted data, with the findings
summarized in Table 3.

The NIST statistical test suite also provides additional analyses on encrypted data
in respect to the distribution of values of zeroes and ones in the generated ciphertext for
each of the 10 sequences. An important characteristic of an encryption system is ensuring
a balanced distribution of zeroes and ones in the encrypted data. This balance enhances
randomness, making it more resistant to statistical attacks, as no discernible patterns can be
exploited by an attacker to deduce the original plaintext or the encryption key. The results
are presented in Table 4.
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Table 3. Results of p-values and the proportion of passing sequences (NIST test suite).

NIST Statistical Test p-Value Proportion (Pass Rate)

Frequency (monobits) 0.911413 10/10 (PASS)
Block frequency 0.911413 10/10 (PASS)
Runs 0.534146 10/10 (PASS)
Longest run of one in a block 0.035174 10/10 (PASS)
Cumulative sums (forward) 0.739918 10/10 (PASS)
Cumulative sums (reverse) 0.534146 10/10 (PASS)
Rank 0.739918 10/10 (PASS)
FFT 0.739918 10/10 (PASS)
Non-overlapping template 0.911413 10/10 (PASS)
Overlapping template 0.350485 9/10 (PASS)
Approximate Entropy 0.213309 10/10 (PASS)
Serial 1 0.534146 10/10 (PASS)
Serial 2 0.534146 10/10 (PASS)
Linear complexity 0.911413 10/10 (PASS)

Table 4. Frequency analysis on encrypted data (NIST).

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 Seq8 Seq9 Seq10

No. of zeroes 49,996 49,823 50,209 49,965 49,947 50,093 50,178 50,083 50,435 49,859
No. of ones 50,004 50,177 49,791 50,035 50,053 49,907 49,822 49,917 49,565 50,141

The National Institute of Standards and Technology’s tests evaluate critical proper-
ties like uniformity, scalability, and consistency, which are key indicators of a sequence’s
randomness. These tests rigorously assess whether a sequence demonstrates the character-
istics necessary for being classified as potentially random. According to NIST’s guidelines,
the minimum requirement for passing each statistical test is around 8 for a sample size
of 10 binary sequences. Based on the results obtained, the sequence exhibits proper-
ties that suggest it has the potential for randomness, aligning with the expectations for
cryptographic applications.

The same NIST statistical test suite was employed in a previous study [27] to evaluate
and validate the capability of the LHCA based on rules 90 and 150 in generating high-quality
random sequences. This reinforced the decision of using it for generation of necessary
random data in the proposed encryption algorithm.

The testing on encrypted data also included graphical analysis, conducted to examine
the diffusion rate of the original text over the ASCII interval. This analysis aimed to verify
how effectively the encryption algorithm dispersed the plaintext’s characters across the
ASCII range. By evaluating the graphical representation of character distribution in the
encrypted output, this study provided additional insights into the encryption system’s
ability to produce random-like and uniformly dispersed data. Figure 10a,b below shows
the dispersion of the ciphertext in comparison to plaintext. The graphics depict the approx-
imately 500 characters used for this test on the X-axis, while the Y-axis contains the ASCII
values (encoding of alpha-numerical characters).

An important aspect of the proposed encryption algorithm lies in the choice of 16
rounds for encryption and decryption of data. This decision was made firstly by reporting to
the currently used algorithm, which also relies on multiple rounds, but secondly, and most
importantly, this was based on additional analyses meant to determine the optimal number
of rounds for achieving the maximum degree based on the avalanche effect, determined
by analyzing how a small change in plaintext or key affected the generated ciphertext.
Changing the value of one randomly chosen bit in either of the first two should produce a
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change in nearly half of the values of the ciphertext. Figure 11 presents the result of this
operation performed throughout a different number of rounds, showing that the desired
propriety is achieved around the chosen 16 rounds, which provides an optimal balance
between efficiency and performance of the algorithm.
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Following the statistical and graphical analysis of the system, it is essential to examine
another critical factor in ensuring data security, specifically a cryptanalysis based on the
secret key. The 224-bit key not only provides the rules necessary for RCA evolution but also
acts as a critical security measure. Its length makes brute-force attacks practically infeasible,
as the vast keyspace of 2224 potential keys ensures a high level of cryptographic strength.
Additionally, the structured allocation of bits based on neighborhood radius guarantees
that each RCA performs optimally within its designated role, contributing to the overall
security and efficiency of the encryption algorithm.

Moreover, the key contributes to preventing an attack based on reverse engineering
which can be attempted by starting from the final configurations of the system. This
assumes finding the last state of BCA and the last states of SCA, which in turn are secured
based on specific sections of the secret key, along with the rules for BCA (2128 possible
configurations), SCA (216 possible configurations), and PLCA and PRCA (each having 264

possible configurations). The large keyspace for each RCA rule’s possible configuration is
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assured by the length on 128 bits of blocks used in the algorithm, thus making this type of
attack computationally impractical.

Performance analyses were conducted to evaluate potential vulnerabilities of the
proposed encryption algorithm, particularly concerning its resistance to linear and differ-
ential cryptanalysis. These analyses focused on assessing the algorithm’s avalanche effect
across multiple test sequences in order to measure the sensitivity to changes in the key
and plaintext. Figure 12 shows the results of testing how small modifications in the key or
plaintext influenced the resulting ciphertext, demonstrating the algorithm’s robustness in
ensuring that minor input changes produce significant, seemingly random alterations in
the encrypted output, thereby reinforcing its security.
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Another key aspect of the encryption algorithm is its ability to ensure that even if the
same plaintext block appears multiple times, it is encrypted into a different ciphertext each
time. This is achieved because the encryption of each block begins with initial data derived
from the encryption of the previous block. This chaining process introduces variability
into the initial conditions for each block, ensuring that identical plaintexts are transformed
into unique ciphertexts, further enhancing the security of the system by preventing linear
cryptanalysis attacks.

An efficiency analysis was performed to evaluate the throughput of the proposed
encryption algorithm in Mbps, comparing its performance with other state-of-the-art al-
gorithms (Table 5). The results indicate that the algorithm’s performance is influenced by
its software-level implementation, as this study represents the initial phase of research.
The next phase involves transitioning the algorithm to a hardware implementation on plat-
forms such as FPGA, where significantly improved performance is anticipated. Dedicated
hardware often provides a performance gain factor in the range of 5 to 10 compared to
software implementations, leveraging the parallel nature of the algorithm and the inherent
efficiency of hardware acceleration. This transition is expected to further demonstrate the
potential of the proposed system in real-world applications.

Table 5. Comparative analysis results.

Algorithm [29] [30] [31] Proposed Algorithm

Mbps (avg.) 6.3558 10.3303 21.7254 19.4357

While our proposed encryption algorithm shares some structural similarities with DES
and AES, such as the use of fixed-size blocks and multiple rounds, it diverges significantly
in terms of design principles and underlying mechanisms.

The primary distinction lies in the use of reversible cellular automata as the foundation
of the encryption process. Unlike DES or AES, which rely on complex mathematical
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operations like substitution–permutation networks or modular arithmetic, our scheme
utilizes the inherent properties of RCAs, such as locality of interactions and reversibility.
These features enable efficient and bijective transformations, ensuring that the encryption
and decryption processes are symmetric and computationally lightweight.

Additionally, the multi-layer design of the proposed algorithm incorporates multiple
RCAs with distinct roles, each governed by rules determined by their radius. This ap-
proach introduces dynamic complexity into the encryption process, with operations such
as the shifting layer driven by shift cellular automaton (SCA) evolution. Such features are
not present in DES or AES, making our biologically inspired encryption system highly
adaptable and very versatile.

Moreover, the key structure in our algorithm is uniquely tailored to the RCA-based
architecture, incorporating specific rules for RCA evolution. This contrasts with the fixed-
length keys in DES and AES, offering a more flexible and scalable framework while main-
taining a secure 224-bit keyspace, addressing potential vulnerabilities such as identical
ciphertext for repeated plaintext blocks. These distinctions collectively highlight the contri-
butions and potential advantages of our algorithm over traditional encryption methods
like DES and AES. The proposed algorithm, leveraging reversible cellular automata, has
unique characteristics that make it particularly effective in certain specific applications and
aspects compared to AES, such as the following:

Hardware Implementation: The RCA-based encryption algorithm is inherently parallel
due to the local interaction rules of cellular automata. This makes it highly suitable for
implementation on FPGA or VLSI architectures, where its parallel nature can be fully
exploited. Such implementations could outperform AES in scenarios requiring high-speed,
energy-efficient encryption, such as real-time IoT communications and embedded systems.

Dynamic Key Behavior: The algorithm’s ability to produce different ciphertexts for
identical plaintext blocks due to its RCA-based architecture ensures enhanced security
against linear, pattern-based cryptanalysis. This makes it particularly effective in securing
communications where repeated data patterns are common, such as sensor networks and
multimedia transmissions.

Scalability and Customization: The flexibility in configuring the RCA rules and layers
allows the algorithm to be adapted to different security levels and computational environ-
ments. This adaptability makes it suitable for applications requiring tailored encryption,
such as lightweight cryptography for resource-constrained devices or high-security crypto-
graphic needs for critical infrastructure.

The proposed algorithm introduces unique advantages, such as leveraging reversible
cellular automata to achieve encryption and decryption through simple, local, and highly
parallelizable operations. Performance-wise, while the computational throughput of the
algorithm may be slightly lower in purely software implementations compared to AES, the
algorithm’s parallel-friendly nature makes it highly suitable for hardware implementation
using FPGA or VLSI, ensuring that the encryption and decryption processes are symmetric
and computationally lightweight offering potential gains in speed and energy efficiency.

5. Conclusions and Future Developments
Cryptosystems employing novel techniques and methodologies represent a highly

dynamic field of research, driven by the rapid advancements in technology and emerging
threats to classical encryption algorithms. The development of quantum computing, in
particular, poses a significant challenge to traditional cryptographic methods, as many
of these rely on mathematical problems that quantum algorithms are capable of solving
efficiently. In this context, finding alternatives to classical encryption algorithms has become
a critical area of study. The proposed encryption system aligns with this trend by leveraging
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reversible cellular automata in a multi-layer framework, introducing a biologically inspired,
computation-efficient approach. This work contributes to the exploration of innovative
solutions that address the evolving landscape of cryptographic security.

The multi-layer structure ensures that data undergo transformations at multiple levels,
with each RCA layer contributing a unique form of modification. The combination of local-
ized (radius-2) and extended (radius-3) dependencies prevents straightforward analysis
of the data, making the algorithm highly resistant to cryptographic attacks. Additionally,
the use of a 224-bit key along with a 128-bit block size and the secure handling of recovery
data further enhance the encryption system’s robustness.

The positive results obtained in this study pave the way for advancing system develop-
ment in order to overcome the limitations of the current implementation, such as its reliance
on software simulations. Future research will focus on hardware-level implementation,
particularly on FPGA platforms [32], to exploit the parallel nature of cellular automata
and further improve performance. Additional investigations into scalability and energy
efficiency are also planned. These advancements should further enhance the system’s
scalability and efficiency, making it suitable for real-time cryptographic applications in
various fields.
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