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Abstract: In this paper, new logical equivalences are presented within the simplifica-
tion logic with mixed attributes paradigm, which allow the obtention of bases of shorter,
easier-to-read attribute implications. In addition to the theoretical results which show
that the proposed equivalences indeed hold in simplification logic with mixed attributes,
experimental results which showcase the effectiveness of this method are also provided.
Furthermore, the simplification method presented is iterative and gives sufficiently good
results in only one or two iterations, therefore presenting itself as a reasonable procedure in
time-sensitive experiments.

Keywords: formal concept analysis; simplification logic; mixed attributes; size reduction;
implication basis

MSC: 03B50; 03G10; 06A15

1. Introduction
Formal concept analysis (FCA) was introduced in the 1980s by Rudolf Wille [1]. Since

the inception of this branch of mathematics, it has been established as a solid framework to
manage, extract, and reason with knowledge in databases. As a matter of fact, FCA-based
methods can be used instead of some state-of-the-art knowledge representation methods,
such as building ontologies; the results can be compared to AI-based systems [2], but
FCA provides a sound algebraic structure. Currently, the focus on FCA is two-fold. Some
authors are devoted to the efficiency of algorithms, since they are inherently exponen-
tial [3,4]; however, other groups of authors are devoted to the extension of FCA to broader
frameworks, such as versatility in the incidence relation such as in many-valued or fuzzy
approaches [5] or the philosophy behind concept-forming operators, such as necessity and
possibility operators in FCA [6]. Given a formal context, there are two main knowledge
structures that give a hierarchical biclustering of the knowledge within a database, namely
the concept lattice and the basis of valid implications. These two structures, while differ-
ent, are semantically equivalent; that is, all the information of the formal context can be
retrieved from them. In this paper, the focus will be on the latter. Implications in FCA are
deeply related to association rules, which are extensively used in several research areas
such as machine learning, data mining, and rough set theories, but they have a richer
algebraic background. The knowledge in a basis of implications can be used to reveal
hidden patterns and knowledge, which is useful to solve problems in currently relevant
areas such as e-learning assessment [7,8] or recommender systems [9,10].
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According to the first works on FCA, the incidence relation between a set of objects and
a set of attributes establishes the properties satisfied by each object; this is called positive
information. Nevertheless, sometimes an object not satisfying a property is also relevant.
For instance, consider a table whose objects are sea animals. The object “dolphin” does
not have the property “fish”. That is, for “dolphin”, not only is the positive information
“large” and “fast” relevant, but the negative information “is not a fish” is also relevant.
The references [11,12] have already worked on managing negative attributes in association
rules. In FCA, implications are exact association rules. Therefore, in this work, the main
framework will be that of FCA. The first references of managing negative information in
FCA appeared in the works by Missaoui et al. [13,14], in which the implications allowed
for positive and negative information. In these first steps in this research, the implications
were obtained from a double context formed by the original formal context juxtaposed
with its opposite. Even though the results obtained by these authors were promising,
the methods were highly redundant. Furthermore, the relationship between the positive
and negative information was neglected. This approach was optimised by the algebraic
proposal by Rodriguez-Jimenez et al. [15], which generalised FCA via a new set of concept-
forming operators and a Galois connection. In the cited paper, several algorithms were
proposed to obtain the concept lattice in this setting; furthermore, an axiomatic system
based on the simplification paradigm was proposed to manage mixed implications [16].
Hereinafter, the FCA setting that allows for positive and negative information will be called
the mixed-attributes framework.

In different research fields, such as AI, machine learning, database theory, and data
mining, the huge degree of redundancy in the rules extracted from a dataset is a very
common problem. It was the focus of Pérez-Gamez et al. [17] to study redundancy elim-
ination in implications with mixed attributes. This work is a natural sequel of the cited
reference. In this paper, the automated logic-based method developed, provided in the
reference, is updated with new rules in order to remove even more redundancy in a set
of mixed implications. In particular, new simplified mixed implicational systems and
axiomatic systems equivalent to those given in several equivalence rules are proposed in
the framework of FCA with mixed attributes.

In this paper, the automated logic-based method to remove redundancy in a set of
mixed implications provided in the reference is finetuned in terms of implementation. As
will be shown in the Results Section, the set of implications obtained after applying the
simplification algorithm presented in this paper reduced its size more than that obtained
after applying the two algorithms provided in [17]. Depending on the application in mind
for this system, the cardinality of the set of implications may also be relevant. The results of
this paper show that the cardinality of the set of implications was indeed more reduced with
the set of rules provided herein than with the ones in the cited reference. Nevertheless, this
more effective pruning has the setback of being more time-consuming. In the applications
of FCA, the retrieval of concise sets of implications is usually an offline procedure; hence,
it is only performed once. Whenever the experiments are time-sensitive, simplification
rules can be applied a fixed number of iterations, instead of following through with the
whole simplification. This method has been proven to reduce more than the sets of rules
in [17] even in one or two iterations. The study of the application of simplification only one
and two times was performed independently in order to compare it to the methods in the
cited reference and the total simplification procedure. As expected, one or two iterations of
the simplification algorithm reduced less than the whole procedure but were consistently
better than the whole simplification algorithm in the cited paper. Timewise, one or two
iterations of the simplification took significantly less time than the complete simplification
and even less than the second version of the simplification shown in the cited reference.
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This paper is structured as follows: Section 2 recalls the most relevant notions necessary
to be able to follow this work; these include the fundamentals of FCA and implicational
systems with mixed attributes. In Section 3, a simplified mixed implicational system is
presented. To perform this, a set of logical equivalences between sets of implications
are presented. In addition, the simplification rules are implemented as simplification
algorithms, which are proved to be sound. In Section 4, the experimental evaluation
of the results is shown. As mentioned above, the experimentation aims to compare the
performance of the algorithm proposed in terms of size reduction and cardinality reduction
and the time-consumption of a given set of implications. In light of some time-sensitive
experiments, the algorithm might be restricted to only one or two iterations. The last part of
the experimentation shows the results of applying the proposed algorithm restricted to one
or two iterations. This experimental evaluation is accompanied by a detailed explanation
of the data and implementation and an overall discussion of the results obtained. Section 5
concludes the paper with some conclusions and some hints about future work. For the
sake of readability, the equivalence rules obtained in [17] are collected in Appendix A.

2. Preliminaries
In this section, the results necessary to follow this work are presented, starting from

FCA with mixed attributes, the axioms and inference rules of the underlying logic, and the
latest results on equivalence rules. First of all, the main structure in this work is that of a
formal context [1].

Definition 1. A formal context, K, is a tuple (G, M, I) where G is a set of objects, M is a set of
attributes, and I ⊆ G × M is the so-called incidence relation.

There are two main schools in this setting; one understands that gI̸ m, that is, (g, m) /∈ I,
means the absence of information on whether the object g has the attribute m or not. The
other uses gI̸ m as the object g does not have the attribute m. The latter approach could be
called that of Close-World Environments, where all the information is known and the objects
either have attributes or not. This is the line considered in this work. Several authors have
devoted their research to this situation; nevertheless, the approach followed in this paper
will be that of Rodríguez-Jiménez et al. [18]. Therefore, apart from the set of attributes M,
the opposite set will also be considered:

M = {m | m ∈ M}.

In this setting, the derivation operators relate the subsets of the objects X ∈ 2G to the
subsets of M ∪ M and are two mappings, ⇑ : 2G → 2M∪M and ⇓ : 2M∪M → 2G, which are
defined as follows:

X⇑ = {m ∈ M | gIm for all g ∈ X} ∪ {m ∈ M | gI̸ m for all g ∈ X},

Y⇓ = {g ∈ G | gIm for all m ∈ Y} ∩ {g ∈ G | gI̸ m for all m ∈ Y}.

Throughout this text, following the convention in this area of research, the union of
attributes and sets of attributes will be denoted by the juxtaposition; thus, M ∪ M will be
denoted by MM, and for A, B ⊆ MM, A ∪ B will be denoted by AB, and any a, b ∈ MM
{a} ∪ {b} = {a, b} will be denoted by ab, thus omitting the brackets, the commas, and the
union in order to simplify the notation.

Indeed, as expected, the pair of mappings defined above form a Galois connection [18]
and formal concepts can be defined from it.
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Definition 2. Given a formal context, K = ⟨G, M, I⟩, a pair, ⟨X, Y⟩ ∈ 2G × 2MM, is said to be a
mixed formal concept if X⇑ = Y and Y⇓ = X.

As usual, the set of mixed formal concepts can be endowed with an order relation that
makes it a complete lattice, which is called the mixed concept lattice.

Definition 3. Given a mixed formal context, K = ⟨G, M, I⟩, and two subsets of attributes,
A, B ∈ 2MM, an implication is an expression of the form A → B. The set of all the implications in
a formal context is denoted by LM. An implication, A → B, is said to be valid in the mixed formal
context if B ⊆ A⇑⇓.

Mixed-attribute logic (MixAtL) was presented and proved to be sound and com-
plete by [18]. This logic consists of two axioms and four inference rules, for all a, b ∈
MM, A, B, C ∈ 2MM.

[Inc] Inclusion: ⊢ AB → A.

[Cont] Contradiction: ⊢ aa → MM.

[Augm] Augmentation: A → B ⊢ AC → BC.

[Trans] Transitivity: A → B, B → C ⊢ A → C.

[Rft] Reflection: Aa → b ⊢ Ab → a.

[Tru] Trust: a → a ⊢ ∅ → a.

Definition 4. An implication, A → B, is said to be derived syntactically from a set of implications,
Σ, as is denoted by Σ ⊢ A → B if there exists a sequence of implications, φ1, . . . , φn, with
φn = A → B. For all 1 ≤ i ≤ n, φi is either an axiom, an implication in Σ, or can be obtained by
applying inference rules to the set of implications {φj | 1 ≤ j < i}. In such a case, the sequence
{φi | 1 ≤ i ≤ n} is said to be a proof of Σ ⊢ A → B.

In this paper, the focus will be on inference rules that allow the diminishing of the
size of sets of implications. In this sense, the approach followed is similar to that of
simplification logic (S) [19]. This area of FCA was introduced with the aim of reducing
redundancy inherent in sets of valid implications in a formal context. The axiomatic system
for S in the classical setting consists of one axiom, namely Reflexivity, and three inference
rules, Fragmentation, Composition, and Simplification. These rules are described as follows,
for all A, B, C, D ⊆ M.

[Ref] Reflexivity: ⊢S A → A.

[Frag] Fragmentation: A → BC ⊢S A → B.

[Comp] Composition: A → B, C → D ⊢S AC → BD.

[Simp] Simplification: A → B, C → D ⊢S A(C ∖ B) → D.

In the above, ∖ : 2M × 2M → 2M, defined by A ∖ B = {m ∈ M | m ∈ A and m /∈ B}, is the
set difference operator.

The notion of inference in S is defined analogously, as in Definition 4. The distinction
of the set of inference rules used is denoted by ⊢S . Some rules from simplification logic
which we will use in this paper are recalled below. Due to the definition of derivation, the
proof is straightforward and therefore omitted. Given a set of attributes, M, the following
inference rules hold for all A, B, C ∈ M.
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[GenRef] Generalised reflexivity: ⊢S A → C if C ⊆ A.

[Augm] Augmentation: A → B ⊢S AC → BC.

In simplification logic, some rules are, as a matter of fact, logical equivalences. The
main equivalence rules that we have in S are the following [19]:

[FragEq] {A → B} ≡ {A → B ∖ A}.

[UnEq] {A → B, A → C} ≡ {A → BC}.

[GenEq] {A → B, C → D} ≡ {A → BD} when A ⊆ C ⊆ AB.

[∅-Eq] {A → ∅} ≡ ∅.

[SimpEq] {A → B, C → D} ≡ {A → B, C ∖ B → D ∖ B} when A ⊆ C and A ∩ B = ∅.

[RSimpEq] {A → B, C → D} ≡ {A → B, C → D ∖ B} if A ⊆ CD and A ∩ B = ∅.

The inference rules and equivalences in simplification logic given so far are the ones
used in the classical approach of FCA. Even though these rules are still valid in the mixed-
attributes case, there are some rules that are specific to the mixed-attributes case.

In [18,20], the axiomatic system of simplification logic was extended to the mixed-
attributes setting. This axiomatic system contains one axiom schema and four inference
rules, for all A, B, C, D ⊆ MM, b ∈ MM.

[Ref] Reflexivity: ⊢S A → A.

[Simp] Simplification: A → B, C → D ⊢S A(C ∖ B) → D.

[Key] Key: A → b ⊢S Ab → MM.

[InKey] Inverse key: Ab → MM ⊢S A → b.

[Red] Reduction: Ab → C, Ab → C ⊢S A → C.

This axiomatic system is a proper extension of that of simplification logic; that is, all the
rules in the classical S can be derived from the axioms above [20]. The set of derived rules
can be further extended by a version of the ex-contradictione quodlibet and the contraposition
rule, for a, b ∈ MM.

[Cont] Contradiction: ⊢ aa → MM.

[Rft] Reflection: Aa → b ⊢ Ab → a.

Notice that [Key] is in fact the converse of [InKey], and they provide an equivalence
between the implications Ab → MM and A → b, which reflects the fact that whenever the
set A ∪ {b} is inconsistent, A → b should then hold. Moreover, a version of the well-known
cut rule arises as the equivalence between A → C and the set {Ab → C, Ab → C}.

[Ref] Reflexivity: ⊢ A → A.

[Simp] Simplification: A → B, C → D ⊢ A(C ∖ B) → D.

[Key′] Key: A → B, C → D ⊢ C → MM if A ⊆ C and B ∩ C ̸= ∅.

[InKey′] Inverse key: A → MM, C → D ⊢ C → Dx if there exists x ∈ A ∖ C and
A ∖ x ⊆ C.

[Red′] Reduction: A → B, C → D ⊢ C ∖ x → D if D ⊆ B and there exists x ∈ A ∩ C with
A ∖ x ⊆ C ∖ x.

Recently, authors have still been finding new inference rules and logical equivalences
that help reduce the size of implications in the mixed-attributes framework [17]. The
following result shows some of the most recent equivalence rules so far.
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Theorem 1 ([17]). Let K = (G, M, I) be a formal context. Then, the logical equivalences in Ap-
pendix A hold.

The current proposal builds on these results to provide new mechanisms for the
construction of more simplified implication systems. Let us recall that, in most previous
works, such as [15,18,20], the negative paradigm for attributes is not exploited in this
sense; a system of mixed implications has always been considered “as is”, i.e., there were
no methods to operate on it and provide deeper insight into the implicit knowledge it
represents. Note that in [17] the first idea about simplifying systems of mixed implications
was presented, together with the computational implementation of the methods proposed
therein. However, the optimal representation of mixed knowledge in the form of implication
systems is an open problem and the current work gives us a further step in that direction.

3. Simplification of Mixed Implications
In this section, a collection of logical equivalences between sets of attribute implications

are presented within the simplification logic framework. These rules allow us to represent
implicit knowledge in a formal context in a concise manner. An implicational system
with a huge size might enclose relevant information which cannot be interpreted by a
reader or would take a significant amount of time to process using a computer. Thus, the
simplification of its representation without a loss of information may help both experts
and the processing time in order to extract the knowledge in a more efficient way. The
following example will serve as a running illustration of the simplification rules throughout
this section; it shows how, from a formal context, the sets of implications obtained with
state-of-the-art methods can still be redundant.

Example 1. Let us consider the formal context of Table 1. In the table, only the positive context is
presented. The mixed context can be easily built from it.

The following system of implications is obtained by the means of the NextClosure algorithm [21]
and it is indeed a (sound and complete) basis of all the implications valid in the mixed formal context.
However, we can notice a certain amount of redundancy in the list.

{moon} →
{

small, near, medium, large
}

{near} → {moon}{
medium, large

}
→ {small}{

small
}

→ {moon, near}{
moon, small, large, near

}
→ {medium}{

moon, small, medium, near
}

→ {large}

{near} →
{

small, medium, large
}

{large} →
{

moon, small, medium, near
}

{medium} →
{

moon, small, large, near
}

{small} →
{

medium, large
}

{
small, near, moon, medium, large, moon

}
→

{
medium, large, small, near

}
{

small, near, moon, medium, large, near
}

→
{

medium, large, small, moon
}

{
small, medium, large, moon, small, medium, large, near

}
→ {near, moon}



Mathematics 2025, 13, 309 7 of 23

In the remainder of this section, this implicational system will be used to demonstrate the use
of the equivalence rules.

Table 1. Planets’ formal context.

small medium large near moon

Mercury × ×
Venus × ×
Earth × × ×
Mars × × ×

Jupiter × ×
Saturn × ×

Uranus × ×
Neptune × ×

Pluto × ×

3.1. Equivalence Rules for Implication Simplification

Without the loss of generality, we require that all implications A → B are consistent
(that is, A ∩ A = ∅) and reduced (A ∩ B = ∅). The first results about equivalence rules in
this section continue the philosophy of simplification logic, extending the equivalence rules
of S to the scenario with mixed attributes. In particular, we will focus on different strategies
to extend [SimpEq], [RSimpEq], and [GenEq]. We begin by presenting a technical lemma:

Lemma 1. Let K = (G, M, I) be a formal context, and A, B, C ⊆ MM such that there exists
x ∈ A ∩ C, y ∈ B ∩ C with A ∖ x ⊆ C ∖ {xy}. Then,

A → B ⊢ C ∖ x → x.

Proof. Let us consider A, B, C ⊆ MM under the assumptions of the lemma and suppose
that A → B. Then,

(1) C ∖ {xy} → A ∖ x (by [GenRef] on our premises);
(2) y → y (by [GenRef]);
(3) C ∖ x = (C ∖ {xy})y → (A ∖ x)y (by [Augm] on (1) and (2));
(4) A = (A ∖ x)x → B = (B ∖ y)y (by premise);
(5) (A ∖ x)xy → (B ∖ y)yy (by [Augm] on (2) and (4));
(6) (B ∖ y)yy → MM (by [Cont]);
(7) (A ∖ x)xy → MM (by [Simp] on (5) and (6));
(8) (A ∖ x)y → x (by [InKey] on (7));
(9) C ∖ x → x (by [Simp] on (3) and (8)).

The next result uses [SimpEq] as a basis to build an equivalence rule.

Theorem 2. Let K = (G, M, I) be a formal context and let A, B, C, D ⊆ MM.

[MixSimpEq] If there exists x ∈ A ∩ C, y ∈ B ∩ C with A ∖ x ⊆ C ∖ {xy}. Then,

{A → B, C → D} ≡ {A → B, C ∖ x → D}.

Proof. Let us consider A, B, C, D ⊆ MM, as above. Note that, in particular, Lemma 1 can
be applied; hence, from A → B, we can infer that C ∖ x → x.

⇒ It suffices to show that from {A → B, C → D}, we can infer that C ∖ x → D:
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(1) C → D (premise);
(2) C ∖ x → x (by Lemma 1);
(3) C ∖ x → C ∖ x (by [GenRef]);
(4) C ∖ x → (C ∖ x)x = C (by [Augm] in (2) and (3));
(5) C ∖ x → D (by [Simp] in (4) and (1)).

⇐ Now, we show that C → D can be deduced from {A → B, C ∖ x → D}.

(1) C ∖ x → D (premise);
(2) C → C ∖ x (by [GenRef]);
(3) C → D (by [Simp] in (2) and (1)).

Example 2. Let us consider, in our running example, the following implications:

A → B = {moon} → {small, near, medium, large}
C → D = {moon, small, large, near} → {medium}

We can apply the previous result, with x = moon ∈ A ∩ C and y = small ∈ B ∩ C, since
A ∖ x = ∅ ⊆ C ∖ {xy} = {large, near}. Then, we can simplify C → D as follows:

C ∖ x → D = {small, large, near} → {medium}

and {A → B, C → D} ≡ {A → B, C ∖ x → D}.

The following lemma is a technical result that will be useful to prove the rest of the
theoretical results in this section.

Lemma 2. Given that A, B ⊆ MM and x ∈ A, y ∈ B:

{A → B} ≡ {A → B ∖ y, (A ∖ x)y → x}.

Proof. It suffices to apply [UnEq] and [RftEq] subsequently:

{A → B} [UnEq]≡ {A → B ∖ y, A = (A ∖ x)x → y}
[RftEq]≡ {A → B ∖ y, (A ∖ x)y → x}

By the virtue of Lemma 2, the following equivalence rules, which are extensions of
[SimpEq] and [RSimpEq] in the case of mixed attributes, can be proven to hold.

Theorem 3. Let K = (G, M, I) be a formal context and A, B, C, D ⊆ MM.

[MixSimpEq′] If there exist x ∈ A ∩ C, b ∈ B, and d ∈ D such that (A ∖ x)b ⊆ (C ∖ x)d, then

{A → B, C → D} ≡ {A → B, C → D ∖ d}

[MixSimpEq′′] If there exist x ∈ A and y ∈ B such that (A ∖ x)y ⊆ C, then

{A → B, C → D} ≡ {A → B, C ∖ x → D ∖ x}.

[MixRSimpEq] If there exist x ∈ A and y ∈ B such that (A ∖ x)y ⊆ CD, then

{A → B, C → D} ≡ {A → B, C → D ∖ x}.
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Proof. [MixSimpEq′] Let us consider the following chain:

{A → B, C → D} Lemma 2≡ {A → B ∖ b, (A ∖ x)b → x,

C → D ∖ d, (C ∖ x)d → x}
[SimpEq]≡ {A → B ∖ b, (A ∖ x)b → x,

C → D ∖ d, ((C ∖ x)d)∖ x → x ∖ x = ∅}
[∅-Eq]≡ {A → B ∖ b, (A ∖ x)b → x, C → D ∖ d}

Lemma 2≡ {A → B, C → D ∖ d}

where, in the second step, we use [SimpEq] for (A∖ x)b → x and (C ∖ x)d → x to produce
((C ∖ x)d)∖ x → ∅, which can be removed by the application of [∅-Eq].

[MixSimpEq′′] Let us use the following chain of equivalences to prove the statement:

{A → B, C → D} Lemma 2≡ {A → B ∖ y, (A ∖ x)y → x, C → D}
[SimpEq]≡ {A → B ∖ y, (A ∖ x)y → x, C ∖ x → D ∖ x}
Lemma 2≡ {A → B, C ∖ x → D ∖ x}

Note that, since A → B is consistent and reduced and (A ∖ x)y ⊆ C, we are able to
apply [SimpEq] correctly above.

[MixRSimpEq] The proof for this last part is completely analogous just by noticing that,
instead of [SimpEq], the conditions to apply [RSimpEq]are also met.

The use of these new rules can be exemplified with the running example of the planets
dataset. This is performed in the example below.

Example 3. For [MixSimpEq′], consider the implications

A → B = {medium, large} → {small}
C → D = {moon, small, large, near} → {medium}

By selecting x = large ∈ A ∩ C, b = small ∈ B, and d = medium ∈ D, we can verify that

(A ∖ x)b = {medium, small} ⊆ (C ∖ x)d = {moon, small, near, medium}.

Then, we can apply [MixSimpEq′]and simplify the right-hand side of C → D as C → D ∖ d. In
this case, D ∖ d = {medium}∖ {medium} = ∅; therefore, by using [∅-Eq], we can remove
C → D from the implicational system without affecting the associated closure system.

Now, for [MixSimpEq′′], consider

A → B = {near} → {moon}
C → D = {moon} → {small, near, medium, large}

By considering x = near ∈ A and y = moon ∈ B, we obtain

(A ∖ x)y = {moon} = C
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Therefore, we can apply [MixSimpEq′′] and subtract x = near from C and D, obtaining the new
implication C∖ x → D∖ x = {moon} → {small, medium, large} that substitutes the previous
C → D, and the implicational system is completely equivalent.

Finally, consider

A → B = {medium, large} → {small}
C → D = {moon, small, large, near} → {medium}

with x = medium ∈ A and y = small ∈ B. In this case,

(A ∖ x)y = {large, small} ⊆ CD = {moon, small, large, near, medium}

Since this is the condition in which to apply [MixRSimpEq], we substitute C → D with C → D∖ x
to obtain an equivalent system. But, D ∖ x = {medium}∖ {medium} = ∅, and by [∅-Eq]
we can remove this implication. In conclusion, {A → B, C → D} ≡ {A → B}.

The next result presents a strategy to extend the [GenEq] rule to mixed attributes.

Theorem 4. Let K = (G, M, I) be a formal context and A, B, C, D ⊆ MM. If there exist x ∈ C
and d ∈ D such that A ⊆ (C ∖ x)d ⊆ AB, then

{A → B, C → D} ≡ {A → Bx, C → D ∖ d}

Proof. It suffices to note that

{A → B, C → D} Lemma 2≡ {A → B, (C ∖ x)d → x, C → D ∖ d}
[GenEq]≡ {A → Bx, C → D ∖ d}

since [GenEq] can applied above, as A ⊆ (C ∖ x)d ⊆ AB.

Corollary 1. Let K = (G, M, I) be a formal context and A, B, C, D ⊆ MM.

[MixGenEq] Let x ∈ C and P = {d ∈ D : A ⊆ (C ∖ x)d ⊆ AB}. If P ̸= ∅, then

{A → B, C → D} ≡ {A → Bx, C → D ∖ P}.

Proof. Suppose that x ∈ C and P ̸= ∅. Let us denote P = {d1, . . . , dn}. Note that, by
Theorem 4, for all i, we have {A → B, C → di} ≡ {A → Bx, C → di ∖ di = ∅} ≡ {A →
Bx} by the application of [∅-Eq]. Then, it is easy to see that {A → B, C → d1, . . . , C →
dn} ≡ {A → Bx}. Therefore,

{A → B, C → D} [UnEq]≡ {A → B, C → D ∖ P,

C → d1, . . . , C → dn}
≡ {A → Bx, C → D ∖ P}

which finishes the proof.

The following example illustrates the use of the last results in the running dataset of
the planets.
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Example 4. Consider

A → B = {near} → {moon}
C → D = {moon} → {small, near, medium, large}

and x = moon ∈ C and d = near ∈ D. Since

A = {near} ⊆ (C ∖ x)d = {near} ⊆ AB = {near, moon},

we can apply [MixGenEq] to obtain {A → B, C → D} ≡ {A → Bx, C → D ∖ d}, where

A → Bx = {near} → {moon}
C → D ∖ d = {moon} → {small, medium, large}

Note that, in practice, for the same pair, {A → B, C → D}, there might be several
equivalence rules applicable, and they might give the same resulting implication set.
However, as it can be easily seen from the theoretical description, in general, they are
not equivalent and one should try to apply as many as possible in order to obtain the
best simplification.

3.2. Simplification Algorithm

In this section, we present the algorithms (Algorithms 1–4) corresponding to the
equivalence rules stated in the theoretical section above. Note that Algorithm 3 includes
both [MixSimpEq′′] and [MixRSimpEq], since their application conditions are similar and
can be nested inside a single algorithm.

Our aim is to incorporate these algorithms into the main Simplify-Mixed algo-
rithm described in [17]. The following technical lemma aids in proving that the
algorithms converge.

Lemma 3. Let K = (G, M, I) be a formal context and A, B, C, D ∈ MM. An application of any
of Algorithms 1–4 to the pair (A → B, C → D), if both implications are consistent and reduced,
either keeps the implications unchanged or reduces the number of attributes in them.

Algorithm 1: Simplify-[MixSimpEq](A → B, C → D)

1 if A ∩ C ̸= ∅ and B ∩ C ̸= ∅ then
2 foreach x ∈ A ∩ C, y ∈ B ∩ C do
3 if A ∖ x ⊆ C ∖ {xy} then C := C ∖ x
4 if C ∩ A ̸= ∅ and D ∩ A ̸= ∅ then // Converse
5 foreach x ∈ C ∩ A, y ∈ D ∩ A do
6 if C ∖ x ⊆ A ∖ {xy} then A := A ∖ x
7 return (A → B, C → D)

Algorithm 2: Simplify-[MixSimpEq′](A → B, C → D)

1 if A ∩ C ̸= ∅ then
2 foreach x ∈ A ∩ C, b ∈ B, d ∈ D do
3 if (A ∖ x)b ⊆ (C ∖ x)d then D := D ∖ d
4 if (C ∖ x)d ⊆ (A ∖ x)b then B := B ∖ b // Converse

5 return (A → B, C → D)
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Algorithm 3: Simplify-[MixRSimpEq](A → B, C → D)

1 foreach x ∈ A, y ∈ B do
2 if (A ∖ x)y ⊆ CD then // [MixRSimpEq]
3 D := D ∖ x
4 if (A ∖ x)y ⊆ C then C := C ∖ x // [MixSimpEq′′]
5 foreach x ∈ C, y ∈ D do // Converse
6 if (C ∖ x)y ⊆ AB then
7 B := B ∖ x
8 if (C ∖ x)y ⊆ A then A := A ∖ x
9 return (A → B, C → D)

Algorithm 4: Simplify-[MixGenEq](A → B, C → D)

1 foreach x ∈ C do
2 P := ∅
3 foreach d ∈ D do
4 if A ⊆ (C ∖ x)d ⊆ AB then P := P ∪ {d}
5 if |P| > 1 or P = D then
6 B := B ∪ {x}
7 D := D ∖ P
// Converse

8 foreach x ∈ A do
9 P := ∅

10 foreach b ∈ B do
11 if C ⊆ (A ∖ x)b ⊆ CD then P := P ∪ {b}
12 if |P| > 1 or P = B then
13 D := D ∪ {x}
14 B := B ∖ P
15 return (A → B, C → D)

Proof. For Algorithms 1–3, it is clear that if the implications are modified, this is achieved
by removing attributes on the left-hand or the right-hand sides, as can be observed in the
theoretical description of [MixSimpEq], [MixSimpEq′], [MixSimpEq′′], and [MixRSimpEq].

The description of [MixGenEq]does not guarantee that the number of attributes is
reduced when the equivalence rule is applied since B is transformed into Bx. For this
reason, in Algorithm 4, we include a condition in lines 5 and 12 that forces the application
of the rule only when |P| > 1 (that is, when there is a reduction in the size as the number
of attributes removed from D is greater than 1) or when P = D, since in this case, the
implication C → D ∖ P = ∅ is removed by [∅-Eq]. In either case, the application of
the algorithm keeps the original implications or the number of attributes is reduced, thus
finishing the proof.

Theorem 5. Let us consider the incorporation of Algorithms 1–4 into the Simplify-Mixed
algorithm described in [17]. For an implicational system, Σ, the new algorithm finishes after
O(∥Σ∥ |Σ|2) simplification steps, where ∥Σ∥ denotes the aggregate number of attributes in all the
implications and |Σ| is the number of implications in the system.

Proof. By Lemma 3, the algorithm removes at least one attribute if one equivalence rule
is applied. Since the number of attributes and implications is finite, the algorithm will
reach a fixed point and terminate. Note that, in any iteration of the algorithm, every pair of
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implications is checked to perform a simplification if they meet the necessary conditions.
Therefore, there will be O(|Σ|2) checks in each iteration. There will be at most ∥Σ∥ iterations
since the worst case is to remove just one attribute from the entire implicational system
in every iteration. Thus, the worst-case scenario involves an aggregate of O(∥Σ∥ |Σ|2)
checks.

Note that this extension of the Simplify-Mixed algorithm from [17] is intended to
perform more exhaustive simplifications for the implications, maintaining its ability to
obtain sm-implicational systems.

Example 5. We go back to our running example. First, we show the sm-implicational system
obtained by the application of the basic algorithms in [17], corresponding to the equivalence rules
[ContEq], [ContEq′] and [RedEq]:

1 : {moon} →
{

small, near, medium, large
}

2 : {near} → {moon}
3 :

{
medium, large

}
→ {small}

4 :
{

small
}

→ {moon, near}

5 :
{

small, large
}

→ {medium}

6 :
{

small, medium
}

→ {large}

7 : {near} →
{

small, medium, large
}

8 : {large} →
{

moon, small, medium, near
}

9 : {medium} →
{

moon, small, large, near
}

10 : {small} →
{

medium, large
}

whose size is 36. Note the level of redundancy, such as by examining implications 3, 5, and 6. Then,
by using the optimised rules in [17], that is, the full Simplify-Mixed algorithm, we can obtain a
further simplified system as follows:

{moon} → {near}{
medium, large

}
→ {small}{

small
}

→ {moon, near}
{large} → {moon, near}
{medium} →

{
moon, large, near

}
{small} →

{
medium, large

}
Here, the size is 18 and the number of implications is reduced to 6. Now, the application of the
equivalence rules in this paper (together with the previous ones) leads us to obtain the following
sm-implicational system:
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{moon} → {near}{
medium, large

}
→ {small}

{near} → {small}
{medium} →

{
large

}
{small} →

{
medium, large

}
with a size of 12 and where the number of implications is further reduced to 5. All these three
implicational systems are equivalent, but it is clear that the last one presents the implicit core
knowledge in a more concise manner.

Example 6. Now, let us present a comparative example of our proposal with respect to the work
in [20]. Particularly, in that work (see Example 2 in the referenced paper), a formal context, taken
from [21], representing 130 developing countries as objects and six supranational associations of
countries (group of 77, non-aligned; LDC—Least Developed Countries, MSAC—Most Seriously
Affected Countries, OPEC—Organization of Petrol-Exporting Countries, and ACP—African,
Caribean, and Pacific Countries) as attributes, is used to demonstrate its ability to find a concise
system of mixed implications representing the implicit knowledge in the dataset.

The implication system found by their method is

{OPEC} →
{

Group of 77, Non − aligned, MSAC, LLDC
}{

MSAC, OPEC
}
→ {Group of 77}{

ACP, LLDC
}
→ {Group of 77}{

LLDC, OPEC, Non − aligned, MSAC
}
→

{
Group of 77

}
{Non − aligned} → {Group of 77}{

Group of 77, MSAC, ACP, OPEC, LLDC
}
→ {Non − aligned}

An aggregate of 24 attributes is present in these implications. The application of the
Simplify-Mixed algorithm from [17] leads to the following set of simplified implications:

{OPEC} →
{

Non − aligned, MSAC, LLDC
}{

MSAC, OPEC
}
→ {Group of 77}{

ACP, LLDC
}
→ {Group of 77}{

LLDC, OPEC, Non − aligned, MSAC
}
→

{
Group of 77

}
{

Group of 77
}
→

{
OPEC, Non − aligned

}
{

MSAC, ACP, OPEC, LLDC
}
→ {Non − aligned}

with an aggregate of 23 attributes. Thus, almost no reduction in size is achieved using the previous
equivalence rules, and the cardinality remains the same.

Finally, the application of our proposal provides the following set of mixed implications:

{OPEC} →
{

Non − aligned, MSAC, LLDC
}{

Group of 77
}
→

{
Non − aligned, MSAC

}
{

ACP, LLDC
}
→ {Group of 77}{

LLDC, Non − aligned, MSAC
}
→

{
Group of 77

}
{

MSAC, ACP, LLDC
}
→ {Non − aligned}
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with only 18 attributes in five implications. Therefore, these new equivalence rules are able to further
refine the implicational representation of the implicit knowledge present in the dataset, outperforming
previous approaches.

4. Experimental Evaluation
This section describes the experiments carried out to test the effectiveness of the

proposed algorithm in relation to those previously published in [17].

4.1. Data and Implementation

For this experimental section, different sets of mixed implications were constructed, to
which various redundancy elimination schemes were applied, including both classical [18]
and more recent ones [17], in addition to the algorithms proposed in the previous section,
Algorithms 1–4.

It is important to note that the generation of datasets with mixed implications requires
a specific approach. At the time of writing, there is no algorithm to obtain a basis of
implications, that is, a non-redundant, sound, and complete [18] set of implications from a
mixed formal context using the Galois connection and the simplification logic mentioned
in Section 2.

Hence, the construction of datasets needs to be conducted using a different approach.
One common strategy is to randomly introduce attributes with positive or negative val-
ues into the premises and conclusions. However, this approach often leads to the cre-
ation of contradictory implications, where the same attribute appears with both values.
Therefore, it is essential to carefully consider this issue and define a coherent strategy for
creating implications.

In order to more accurately reflect the potential outcomes that may arise in real-world
scenarios, it has been proposed to create random formal contexts, denoted by the set
K = (G, M, I), and to construct the juxtaposed context, denoted by the set K | K. The con-
text K is defined as the context resulting from changing the sign of the value in the relation
I from a positive value to a negative value or vice versa. From this combined context, a
system of implications is calculated using the NextClosure algorithm, as described in [21].
The system of implications thus calculated is sound and complete in the sense that they
are valid implications and that, furthermore, any valid implication in the context can be
syntactically deduced from them. Therefore, this is the most promising approach to find
such an implicational set, as needed for experiments.

Note that this approach of artificially duplicating the number of attributes to find a
basis of implications, as described in [14], does not use, neither explicitly nor implicitly,
the axioms and inference rules of simplification logic for mixed attributes. Particularly, it
contains a certain amount of redundancy since the complementation relation between an
attribute, a ∈ M, and its negation, a ∈ M, is not considered in this approach. The objective
of this experimental investigation is to quantify the reduction in the size of these sets of
implications by constructing equivalent sets using the proposed algorithms.

The experimental contexts K were constructed with the number of objects fixed at
|G| = 15 and considering a number of varying attributes, |M| ∈ {4, 8, 10, 15, 20}. To
simulate a greater number of scenarios, the density of the context, i.e., the ratio of the
cardinality of I compared to the size of the context |G × M|, was also considered as a
parameter for its construction. This was defined as the proportion of non-zero entries in
the binary table of the relation I. Three different values were considered for this variable,
0.1, 0.25, and 0.4, which modelled contexts of lower to higher densities. Finally, 10 formal
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contexts were constructed for each combination of parameters, in accordance with the
specifications previously outlined.

Implementation Details

All methods were implemented using the R programming language [22], leveraging
the capabilities of the fcaR library [23], which specialises in handling formal contexts and
extracting logical implications. To ensure transparency and reproducibility, the algorithmic
code, experimental configurations, and generated datasets were meticulously documented
and shared in a publicly accessible GitHub repository [24].

4.2. Simplification of Implications

In [17], two algorithms were designed, named Simplify-Mixed (v1) and (v2), for
redundancy elimination and the construction of simplified mixed implicational systems
(sm-implicational systems for short). The purpose of the algorithms proposed in this work
is to complement the more advanced version of that work, (v2), with more effective tools for
redundancy reduction. Consequently, we will refer to (v3) as the version of Simplify-Mixed
from [17] where the mechanisms of this work, Algorithms 1–4, were integrated.

The experimental comparison between the previous versions and (v3) were carried
out considering three particular dimensions, which quantified the reduction achieved when
operating on an initial system of implications, Σ, and obtaining an equivalent system, Σ′:

• The cardinality of Σ′, denoted by |Σ′|, allowed us to determine the reduction achieved
in the number of implications.

• The size of the set of implications, denoted by ||Σ′||, was the measure of the total
number of attributes appearing in the set.

• The execution time of each algorithm was measured in order to allow for an empirical
comparison of the computational cost of each algorithm.

It is important to note that the most interesting measures were the last two, as the size
of a set of implications, rather than its cardinality, determined the magnitude of the cost of
operating with those implications. This was because each operation with them (checking
inclusions, performing unions or differences of sets, etc.) was carried out attribute by
attribute. Consequently, in this analysis, greater importance is attached to achieving a
greater reduction in the size of a system of implications and to shorter execution times.

In the following, we present the experimental results obtained by running the three
algorithms, (v1) to (v3), with the constructed dataset of mixed implications. In Figure 1,
the dependency of the size and cardinality of the final set, Σ′, is visualised as a function
of the same parameters of the initial set of implications, Σ. A clear linear trend can be
observed in all three cases. Furthermore, it is evident that, for both measures, the size and
cardinality for the final set of implications obtained with version (v3) were the smallest,
with a significant difference compared to the baseline versions, (v1) and (v2), with the latter
being the most efficient so far.

The linear trend allows for linear regression analysis of the data (already shown in
Figure 1), yielding the following results, where R2 is the coefficient of determination, which
in this case is the square of the correlation coefficient:

(v1): ||Σ′|| ≈ 0.747 · ||Σ|| − 64.419 R2 = 0.9648

|Σ′| ≈ 0.996 · |Σ| − 4.525 R2 = 0.9998

(v2): ||Σ′|| ≈ 0.574 · ||Σ|| − 80.415 R2 = 0.9406

|Σ′| ≈ 0.692 · |Σ| − 8.874 R2 = 0.9865
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(v3): ||Σ′|| ≈ 0.317 · ||Σ|| − 32.754 R2 = 0.9526

|Σ′| ≈ 0.463 · |Σ| − 3.028 R2 = 0.9738
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Figure 1. The size (left) and cardinality (right) of the resulting implicational system, Σ′, as a function
of the size and cardinality of the initial set, Σ.

This analysis demonstrates that algorithm (v3) was the most effective in reducing
redundancy, reducing the size of the system to only 31.7% of the original and its cardinality
to 46.3% of the original. Algorithm (v2) was the next most effective, reducing the size to
57.4% and the cardinality to 69.2%. The simplest version of Simplify-Mixed, (v1), reduced
the size to 74.7% and the cardinality to 99.6%. This indicates that (v1) barely eliminated
redundant implications but did eliminate approximately 25% of the initial appearances
of attributes, suggesting that these attributes may have been redundant. In contrast, (v3)
reduced the cardinality to less than half, thus eliminating a significant number of redundant
implications. This was achieved by identifying implications that could be syntactically
deduced from the rest. A similar outcome was observed with the attributes, where the final
size was less than one-third of the initial size. In comparison to (v2), it could be said that
(v3) eliminated over 50% more attributes than (v2).

The other dimension of this experiment was the execution time of each algorithm. (v3)
performed a greater number of checks in order to eliminate a large number of redundant
elements while maintaining equivalence with the initial implicational system. This resulted
in a longer execution time, as can be seen in Figure 2. The graph illustrates that (v3) was
the slowest algorithm, with an increase in time of approximately 45% compared to (v2) and
more than 200% compared to (v1). The average times (over all generated datasets) for each
algorithm were as follows: (v1) t = 26.2 s; (v2) t = 59.9 s; and (v3) t = 87.2 s. It can be
concluded that (v3) was the most effective in eliminating redundant elements according to
simplification logic, but it also had the longest execution time.

It is worth mentioning at this point that each of the algorithms being compared
performed a series of iterations until a fixed point was reached. This is defined as a set
of implications on which the associated equivalence rules have no effect. A descriptive
statistic of the number of iterations required to complete the process is as follows.

(v1): Minimum number of iterations: 1; maximum, 3; median, 2.
(v2): Minimum number of iterations: 2; maximum, 5; median, 3.
(v3): Minimum number of iterations: 2; maximum, 7; median, 2.
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This information can be employed as a potential solution to the elevated execution
time cost of (v3), as the performance of the three algorithms was analysed in an iteration-
by-iteration manner. That is, the size (number of attributes present) of the implication
set after the first, second, and subsequent iterations of each algorithm was evaluated in
comparison to the original size of the input set. Consequently, the execution time of (v3)
could be reduced by limiting the maximum number of iterations that it was permitted
to perform.
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Figure 2. The execution time of the three algorithms, as a function of the initial size, ||Σ||.

This analysis can be visualised in Figure 3. In order to normalise the results, the
proportion of attributes that remained present after each iteration was measured relatively
to the initial size, averaged over all executions. Thus, at the outset (iteration 0), the
normalised value was 1, while a value of 0.7 in iteration 1 signified that 70% of the attributes
remained present or 30% were eliminated as redundant. Consequently, the lower the value
expressed in the graph is, a greater reduction was achieved in one iteration. As illustrated
in the graph, on average, the initial iteration (v3) achieved superior outcomes not only in
comparison to (v1) and (v2) after the initial iteration but also throughout the execution
of the other algorithms. It should be noted that in Figure 3, for clarity, only the first four
iterations are shown, as the values obtained in the experiments began to stabilise from that
iteration and the reduction in size was less steep.

In light of these considerations, it was possible to propose simplified versions of (v3)
where the execution was limited to one or two iterations. These versions are denoted,
respectively, as (v3.1) and (v3.2). The behaviour of these two versions was analysed with
the same dataset, and the results can be observed in Figure 4. In this figure, the outcomes of
the algorithms (v1) and (v2) and the proposed and previously analysed algorithm (v3) are
presented, with a higher degree of transparency to facilitate their use as a reference without
obstructing the visualisation. The results of (v3.1) and (v3.2) are also displayed. On the left
side of the figure, it can be observed that both reduced versions were capable of achieving
a greater reduction in the size of the implication set than both the versions (v1) and (v2)
from [17]. In fact, (v3.2) achieved results that were practically comparable to those of (v3).
In contrast, with regard to execution time, on the right side of the figure, it can be observed
that the time taken by both algorithms was less than that taken by (v2), which obtained
superior results in the study in [17].
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Figure 3. The reduction in the proportion of attributes present after the first iterations of
each algorithm.
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Figure 4. The final size (left) and running time (right) as a function of ||Σ||, including the new
versions, (v3.1) and (v3.2).

A regression analysis analogous to the previous one was conducted, this time utilising
the outcomes of (v3.1) and (v3.2):

(v3.1): ||Σ′|| ≈ 0.408 · ||Σ|| − 48.827 R2 = 0.9438

|Σ′| ≈ 0.629 · |Σ| − 6.504 R2 = 0.9760

(v3.2): ||Σ′|| ≈ 0.333 · ||Σ|| − 36.128 R2 = 0.9494

|Σ′| ≈ 0.489 · |Σ| − 3.733 R2 = 0.9724

4.3. Discussion

In the context of mixed-attribute frameworks and implicational systems, it is necessary
to distinguish between two computational phases:
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1. The construction of a correct, complete implicational system, Σ, which, as much as
possible, is without superfluous or redundant implications.

2. The analysis of the syntactic derivation of an implication, A → B, from the determined
implication set, Σ, in the previous phase.

The objective of this study was to optimise the second phase of the process, transform-
ing the system Σ into an equivalent one, Σ′, with a smaller cardinality and size. From a
computational and practical standpoint, reducing the size of the system is relevant because
it implies that the syntactic derivation can be performed more efficiently, as the number of
operations (on sets of attributes) directly depends on this parameter.

In the experimentation, the only current mechanism [14] was used to construct a
correct and complete system of mixed implications, albeit with the presence of redundancy.
This is because this approach used classical logic, where contradictions or complementary
attributes did not appear. The performance of the new versions, (v3), (v3.1), and (v3.2), was
analysed in comparison to the already-known (v1) and (v2) published in [17].

Although it was demonstrated that the proposed model, (v3), yielded superior results
compared to the previous models, (v1) and (v2), the extensive number of tests conducted
resulted in a significant increase in execution time. Consequently, two new variants, (v3.1)
and (v3.2), were introduced. Limiting the maximum number of iterations resulted in a
significant reduction in computation time, although this was accompanied by a slight dete-
rioration in performance in comparison to (v3). Nevertheless, although they did not achieve
the optimal outcomes, (v3.1) and, in particular, (v3.2) yielded superior results compared to
(v2), the preceding version that was most effective in eliminating redundancies.

5. Conclusions and Future Work
In this work, new simplification schemes for implications in the mixed-attribute

paradigm are proposed. These schemes are based on the use of simplification logic, a
complete and sound axiomatic system to deal with implications where attributes are
marked with the sign + if the attribute is present or − otherwise. Note that in this
paradigm, there are only two possibilities for an attribute, to be present or to be absent.

Classically, implicational systems with mixed attributes are constructed in such a way
that they contain a lot of redundant items, that is, there are attributes and even implications
that are not relevant and whose removal would produce a completely equivalent system of
implications. For instance, every implication with a contradiction (of the kind Aaa → B,
for instance) can be straightforwardly derived from the axioms of simplification logic;
therefore, they can be safely removed from any system of implications.

Our proposal focuses on using this logic to obtain equivalence rules, that is, valid
transformations of the system of implications that produce a new equivalent system but
with a lower number of attributes, since this quantity measures the computational cost of
operating with the system. Some equivalence rules and their corresponding algorithms
were presented in [17]. In this work, it was shown that the proposed algorithm, (v3),
based on the equivalence rules herein developed, was able to outperform the previous
simplification schemes, (v1) and (v2) in [17], producing more reduced implicational systems.
To tackle the problem of the high computation time of (v3), two versions, (v3.1) and (v3.2),
which were only allowed to run for one and two iterations, respectively, were presented
and analysed. Both of them improved the results of (v2), with less computation time. Thus,
these versions are suitable for problems with large sizes, since they were able to obtain
competitive results in few iterations.

Among the lines of future research lies the development of algorithms to check whether
a system of implications contains some kind of redundancy from the standpoint of simplifi-
cation logic. In this sense, the objective is to obtain a minimal set of implications equivalent
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to the original one. On the other hand, it becomes more apparent that there is need to
design a method to directly build a basis of implications from the formal context and the
given Galois connection. This way, the theory behind the mixed-attributes paradigm will
need to be further extended, since some notions (such as pseudo-closed and pseudo-intents)
have to be defined properly in this setting.

Related to this line of work, defining a closure algorithm for mixed implications is
needed. That is, since an implicational system induces a closure operator equivalent to that
of the Galois connection, it becomes necessary to define such an algorithm that computes
the closure of a set, X, by the means of the complete and correct system of implications, Σ,
instead of using the concept-forming operators (⇑, ⇓). The main point would be to study
the feasibility of such an algorithm, analysing simplified versions of this setting (such as
considering only implications where the right-hand side size is one) to obtain and validate
the first approaches.

In the long term, this work will be extended to currently relevant frameworks of FCA
such as unknown information [17] or the multiadjoint approach [25].
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Appendix A. Equivalence Rules in Theorem 1
The following are the logical equivalences proven to hold in Theorem 1. Let

A, B, C, D ∈ MM; then, we have the following.

[KeyEq] If A ⊆ C and B ∩ C ̸= ∅, then

{A → B, C → D} ≡ {A → B}.

[InKeyEq] If there exists x ∈ A ∖ C such that A ∖ x ⊆ C, then

{A → MM, C → D} ≡ {A → MM, C → Dx}.

[RedEq] If D ⊆ B and there exists x ∈ A ∩ C, with A ∖ x ⊆ C ∖ x, then

{A → B, C → D} ≡ {A → B, C ∖ x → D}.

[ContEq] If A ∩ A ̸= ∅, then {A → B} ≡ ∅.

[ContEq′] If A ̸= ∅ and AB ∩ B ̸= ∅, then {A → B} ≡ {A → MM} ≡ {A ∖ x → x} for
any x ∈ A.
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[ContEq′′] If C ̸= ∅, A ⊆ CD and B ∩ CD ̸= ∅, then, for any x ∈ C,

{A → B, C → D} ≡ {A → B, C → MM} ≡ {A → B, C ∖ x → x}.

[KeyEq′] If there exist x ∈ A ∩ D and y ∈ B ∩ C with A ∖ x = C ∖ y, then

{A → B, C → D} ≡ {A → B ∖ y, C ∖ y → y} ≡ {A → B ∖ y, C → MM}.

[KeyEq′′] If A ⊆ C ̸= ∅ and B ∩ D ̸= ∅, for any x ∈ C, we then have that

{A → B, C → D} ≡ {A → B, C ∖ x → x}

[RedEq′] If D ⊆ B and there exists x ∈ A ∩ C such that A ∖ x = C ∖ x, then

{A → B, C → D} ≡ {A → B ∖ D, C ∖ x → D}

[RftEq] If there exist x ∈ A and y ∈ B ∩ C and A ∖ x = C ∖ y, then

{A → B, C → D} ≡ {A → B ∖ y, C → Dx}.

[RftEq′] If there exist x ∈ A ∩ D and y ∈ B ∩ C and A ∖ x ⊆ C ∖ y, then

{A → B, C → D} ≡ {A → B, C → D ∖ x}.

[MixUnEq] If there exist x ∈ A and y ∈ C such that A ∖ x = C ∖ y and b ∈ D, then

{A → b, C → D} ≡ {(A ∖ x)b → xy, C → D ∖ b}.

[RftUnitEq] If y ∈ C and there exist x ∈ A such that A ∖ x = C ∖ y, then

{A → y, C → D} ≡ {C → Dx}.

[MixUnUnitEq] If there exist x ∈ A and y ∈ C such that A ∖ x = C ∖ y, then

{A → b, C → b} ≡ {(A ∖ x)b → xy}.
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