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Abstract: Road traffic accident severity prediction is crucial for implementing effective
safety measures and proactive traffic management strategies. Existing methods often treat
this as a nominal classification problem and use traditional feature selection techniques.
However, ordinal classification methods that account for the ordered nature of accident
severity (e.g., slight < serious < fatal injuries) in feature selection still need to be investi-
gated thoroughly. In this study, we propose a novel approach, the Ordinal Random Tree
with Rank-Oriented Feature Selection (ORT-ROFS), which utilizes the inherent ordering
of class labels both in the feature selection and prediction stages for accident severity
classification. The proposed approach enhances the model performance by separately
determining feature importance based on severity levels. The experiments demonstrated
the effectiveness of ORT-ROFS with an accuracy of 87.19%. According to the results, the
proposed method improved prediction accuracy by 10.81% over state-of-the-art studies on
average on different train–test split ratios. In addition, it achieved an average improvement
of 4.58% in accuracy over traditional methods. These findings suggest that ORT-ROFS is
a promising approach for accurate accident severity prediction, supporting road safety
planning and intervention strategies.

Keywords: machine learning; traffic accident severity prediction; ordinal classification; fea-
ture selection; random tree; road traffic accident; crash injury severity; traffic management;
mathematics

MSC: 68T01

1. Introduction
Road traffic accidents are being recognized as one of the most serious problems in the

world as they result in deaths, injuries, and disabilities after treatment. Moreover, they
cause public and economic losses each year. Accident severity is one of the major issues
related to road safety that requires further research. Prediction of injury severity is one
of the crucial and challenging problems in traffic safety management and control. The
problem is formed as a classification task in which class labels represent the severity of
the crash (slight, serious, or fatal). This information is vital for the development of road
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safety policies and the implementation of preventive measures aimed at reducing both
the occurrence and impact of accidents. As such, accurate severity prediction models can
help enhance the agency’s decision-making ability, contributing to safer road environments
and efficient emergency response systems. They can also assist in targeted interventions,
ensuring that high-risk areas receive more focused attention, while also aiding in the design
of infrastructure that better accommodates varying traffic conditions and safety needs [1].

This work aims to develop a machine learning (ML) model using historical accident
data that can accurately predict the severity level of a crash according to a set of influential
factors. If important factors that are responsible for leading to traffic accidents can be
better understood and forecasted, it can be possible to provide useful information about
the damages and their severity [2]. Forecasting potential road traffic accidents with the
aid of artificial-intelligence-based approaches can help to prevent them, warn drivers of
potential dangers, perform effective crash management methods, or improve the emergency
management process [3,4]. For instance, if the injury severity of a crash is predicted as
serious, emergency response personnel might prepare the required equipment to elevate
the efficiency of their response. However, despite the importance of this task, existing
methods often face challenges in effectively handling the complexity of traffic accident
data, particularly in accounting for the ordered nature of crash severity. Current models
that typically rely on nominal classification approaches do not exploit the inherent ranking
of severity levels (slight < serious < fatal), limiting their predictive accuracy.

Developing an accurate machine learning model for the prediction of road traffic
accident injury severity is a challenging task. First, incident severity datasets are generally
imbalanced, with fewer fatal classes than non-fatal ones. Overlooking this imbalance often
leads to weak or biased classifiers that struggle to predict the minority class (high-severity
crashes). Second, accidents are the result of non-linear and complex interactions between
different factors such as human characteristics, road conditions, vehicle properties, and
environmental elements [5]. Mathematically, accident data are typically characterized by
high dimensionality, multicollinearity, and nonlinearity. The dataset includes numerous
features such as driver-specific attributes (age, sex, education, years of experience, etc.),
vehicle type and age, weather conditions, road surface type, light conditions (daylight or
darkness), casualty class (driver, rider, pedestrian, passenger), road geometry, vehicle move-
ment, junction types, and the area where the accident occurred (e.g., residential, industrial,
rural areas) [6]. This study aims to determine the important factors that influence accident
severity in order to refine road safety and the effectiveness of accident prevention strategies.

In some previous studies, traditional classification methods such as naive Bayes, random
forest, and logistic regression have been employed for classifying accident seriousness [7].
However, these nominal classification methods ignore the inherent ordering of class labels
that reflect the severity of accidents, such as slight injury < serious injury < fatal injury. This
oversimplification may lead to misclassifications since it treats the severity levels just as
distinct categories rather than recognizing the ordinal relationship between them. Ordinal
classification (OC) [8] is a special type of supervised classification in machine learning in
which an inherent ordering exists among the classes, such as low, medium, and high. For
instance, class labels for a machine component can have ranking values such as healthy,
low-risk, medium-risk, high-risk, and critical failure arranged from the most favorable
situation to the most severe one. Similarly, traffic accident injury categories are ordered in
nature from most to least severe; therefore, ordinal classification is necessary to increase
the accuracy and effectiveness of severity estimation models. By incorporating ordinal
relationships, these models can better capture the nuances of accident severity, providing
more reliable outcomes for proactive traffic management and intervention.
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One promising technique for handling ordinal classification problems is binary de-
composition (BD) [9], which converts a multi-class ordinal problem into a series of binary
classification tasks. In this technique, data dependencies are extended with binary sets
for expressing the order relationships between class values. BD is a valuable approach
for applications where understanding the gradation of outcomes is essential for accurate
predictions. While BD simplifies ordinal classification tasks, the effectiveness of such
models can be further boosted when combined with techniques like the synthetic minority
oversampling technique (SMOTE) [10] to handle class imbalance, which is common in real-
world ordinal datasets. By generating synthetic examples for underrepresented severity
levels, SMOTE helps balance the class distribution and enriches machine learning models
to project minority classes without bias.

In addition to addressing class imbalance, the relevance of input features plays a sig-
nificant role in improving model proficiency. Feature selection (FS) [11,12] techniques are
necessary for enhancing the precision of machine learning models by identifying and retain-
ing the most relevant input features while eliminating irrelevant or redundant ones. Proper
feature selection upgrades model accuracy, reduces overfitting, and speeds up computation.
Traditional feature selection techniques may not fully capture the subtleties of relationships
in ordinal classification problems, leading to inefficient outcomes. This is because the rela-
tionships between features and class labels are more complex and require preserving the
intrinsic sequence of the target variable. Therefore, an advanced feature selection approach
that aligns with ordinal classification is essential for performance optimization, enabling
the model to better handle the complexities of forecasting ordered targets.

In this study, we propose a rank-oriented feature selection (ROFS) approach which
is specifically tailored for ordinal classification tasks, selecting features whose values
correspond to the ordered nature of the class labels. Unlike traditional feature selection
that might overlook this ordering, ROFS mathematically affirms that chosen features reflect
progressive or consistent trends across severity levels. For instance, in accident severity
prediction, ROFS might prioritize features like weather conditions or driver age according
to their ordered relationship with severity. For weather conditions, an increasingly severe
pattern (e.g., from light rain to heavy snow) might correlate with higher accident severity
levels. Similarly, driver age may follow an ordinal trend with severity, as very young or
elderly drivers might show increased risk due to factors like inexperience or diminished
reflexes. Conversely, ROFS might de-emphasize features like the ownership type of the
vehicle if its impact on severity fluctuates without a clear progression, such as in cases
where both personal ownership and firm ownership might correlate with varying severity
levels. By focusing on features that capture the ordinal structure, ROFS develops the
model’s estimation reliability, yielding more reliable insights for traffic safety interventions.

The random tree (RT) [13] algorithm is well-suited for classification tasks, particu-
larly when working with high-dimensional datasets that are common in traffic accident
data. RT excels in capturing complex patterns and interactions between various features,
which makes it particularly useful in the context of traffic accident severity prediction. Its
advantages include robustness to overfitting and high interpretability, which is essential
when domain experts need to understand and trust model functionalities. These properties
are particularly beneficial when dealing with often noisy variables present in accident
data, such as road conditions, weather, and driver behavior. However, RT faces some
limitations, such as inefficiency with sparse data and challenges in handling imbalanced
datasets, which can affect its performance in real-world scenarios. Additionally, its space
complexity and reliance on larger datasets for optimal performance may pose constraints
when resources or data are limited. To mitigate these issues, we employed techniques
like SMOTE for balancing datasets and optimized model implementation on appropriate
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hardware, ensuring practical feasibility. In this study, we adapted the random tree for
ordinal tasks, where class labels are ordered in nature (e.g., slight, serious, fatal injury); thus,
the random tree’s ability to model non-linear relationships becomes even more valuable.
The proposed approach (ordinal random tree) allows it to capture the ordered nature of
accident severity and tends to provide correct predictions.

In this study, we propose a novel method, called ordinal random tree with rank-
oriented feature selection (ORT-ROFS), to improve prediction accuracy for ordinal clas-
sification tasks. The problem in this study is to develop a machine learning model that
accurately predicts traffic accident severity levels according to a set of influential factors
such as weather conditions, driver characteristics, road variables, vehicle properties, and
environmental elements. As a solution, we propose a method (ORT-ROFS) that utilizes the
ordered nature of accident severity levels—ranging from slight to serious to fatal—both in
the feature selection and prediction stages. In the ORT-ROFS method, the influential fea-
tures, which demonstrate a clear relationship with the ordered classes, are selected, while
irrelevant features are eliminated. This method aims to accurately predict accident severity
levels, providing effective predictions for traffic safety management and policy-making.
This study analyzes daily data on road traffic accidents (RTA) that occurred between 2017
and 2020 in Addis Ababa City, Ethiopia, serving as the real-world context for the application
of the ORT-ROFS method.

The main contributions of the proposed method (ORT-ROFS) are summarized as follows:

• Novel ordinal classification method: Ordinal random tree (ORT) is introduced as an
innovative approach for traffic accident severity prediction for the first time in the
literature, addressing the limitations of traditional nominal classification methods.

• Handling ordinal complexity with binary decomposition: ORT uses binary decompo-
sition (BD) to transform the multi-class ordinal task into simpler two-class problems,
making it easier to model the progression in accident severity levels and boosting
classification accuracy.

• Selecting features based on class orderings: It incorporates rank-oriented feature selec-
tion (ROFS), a new technique that chooses features based on the ordered progression
of accident severity levels. Such selection advances the model’s ability to differentiate
between severity classes appropriately.

• Addressing class imbalance: Incident severity datasets often exhibit a class imbalance,
where the number of fatal incidents is substantially lower than non-fatal ones. ORT-
ROFS uses the synthetic minority over-sampling technique (SMOTE) to address this
imbalance by augmenting the minority fatal classes, achieving more robust predictions.

• Providing explainability with a tree structure: ORT-ROFS builds a tree-based model,
which can be easily interpretable, explainable, and understandable by humans while
maintaining high predictive accuracy. Since the tree model is like a flowchart, ORT-
ROFS can be seen as an explainable artificial intelligence (XAI) method.

• Enhanced prediction accuracy: Experimental results showed that ORT-ROFS achieved
an average improvement of 10.81% over state-of-the-art methods. In addition, it
demonstrated an average improvement of 4.58% in accuracy over traditional methods
by considering orders among class labels both in the feature selection and predic-
tion stages.

The organization of this paper is structured into six sections. Section 2 provides
an overview of existing research on predicting traffic accident severity. In Section 3, we
introduce the fundamental concepts behind the proposed method. Section 4 details the ex-
perimental studies, including information about the traffic accident severity data. Section 5
compares the functionality of ORT-ROFS with other state-of-the-art techniques. Finally,
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Section 6 concludes the study by stating the main findings and suggesting potential works
for future research to develop the field.

2. Related Works
In this section, the literature on road traffic accident severity is reviewed from dif-

ferent perspectives. The studies [14–28] are analyzed by categorizing them based on the
regions where they were conducted, the specific tasks they addressed, the machine learning
methods employed, and the evaluation metrics utilized.

Road traffic accident severity has been studied across various regions, including
Ecuador [14], Canada [15], the United Kingdom [16,25,26], the Republic of Serbia and the
Republic of Srpska [17], Saudi Arabia [18,20], the United States [19], Pakistan [21,22],
Portugal [23], Korea [24,27], and Australia [28]. In Ecuador, data from the national
public transport agency’s 2023 records shows that 20,994 traffic accidents occurred na-
tionwide, particularly in major cities like Guayaquil and Quito. Traffic accident risks
were analyzed using data from Quito and its surroundings [14]. The dataset includes
information on environmental conditions, traffic incidents, vehicles, and drivers. In
Canada, traffic accident severity in Montreal was investigated using data collected be-
tween 2012 and 2021 [15]. In the United Kingdom, traffic accidents have been exam-
ined extensively, including the analysis of accidents from 2005 to 2014 [16], a review
of 6515 accidents from 2005 to 2018 [25], and an examination of 10,000 accidents be-
tween 2011 and 2016 [26]. In the Republic of Serbia and Republic of Srpska, factors
such as road type, speed limits, average daily traffic volume, and terrain type were con-
sidered in analyzing traffic accidents [17]. In Saudi Arabia, data from Qassim province
(2017–2019) was used to analyze accident trends [18], while accidents in Al-Ahsa province
(2016–2018) were examined to identify contributing factors [20]. In the United States, ap-
proximately 2.25 million traffic accidents on urban roads were analyzed for severity using
data collected between 2016 and 2019 [19]. Accidents along Pakistan’s national highway
N-5 (2015–2019) were analyzed to identify causes and trends [21,22]. In Portugal, traffic
accident data from the Setúbal region (2016–2019) were studied to determine contributing
factors [23]. In Korea, hospital data was used to determine mortality rates from road traffic
accidents [24], while accident severity on the Naebu highway in Seoul was analyzed to
understand contributing factors [27]. Finally, in Australia, crash severity data from 74,909
traffic accidents in Victoria (2014–2019) was examined to uncover trends and underlying
causes [28].

Road traffic accident severity has been analyzed for various objectives, depending
on the dataset characteristics and study goals. Some analyses focused on regression
tasks [17,27], while others addressed classification tasks [14–16,18–26,28]. Regression
methods, both linear and nonlinear, were employed to identify influential factors and
uncover relationships between them, mathematically modeling the underlying patterns
in accident severity. They typically investigated the most significant factors affecting the
number and severity of traffic accidents. Studies highlighted the importance of identifying
key factors to mitigate accidents and enhance road safety [17,18,27].

In classification-focused research, the aim was to categorize complex traffic acci-
dent data into meaningful groups and predict future accident severity. Binary classifi-
cation techniques, such as distinguishing between fatal and non-fatal accidents, were
commonly applied [16,21–24,28]. Multi-class classification approaches were also utilized
to differentiate between severity levels (e.g., slight-serious-fatal or low-medium-high-
extreme) [14,15,19,20,25,26]. Some studies combined both binary and multi-class classifica-
tion methods to deliver a comprehensive assessment of accident severity [18].
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Traditional machine learning methods have been widely employed to analyze road
traffic accident severity, including support vector machine (SVM) [14,19,24,26,28], naive
Bayes (NB) [16,23], decision tree (DT) [23,27], random forest (RF) [14–16,18–21,23–25,27],
k-nearest neighbors (KNN) [19,25], logistic regression (LR) [16,18,20,23–25], artificial neural
networks (ANN) [14,16,17,19,26–28], and boosting algorithms [15,18,20–22]. Deep learning
techniques, such as convolutional neural networks (CNN), were also applied in some
studies [14].

Among ensemble learning methods, the RF algorithm was the most frequently used
due to its capacity to handle high-dimensional data and deliver high accuracy. Boosting
techniques like extreme gradient boosting (XGB) [15,18,20], categorical boosting (Cat-
Boost) [15,22], adaptive boosting (AdaBoost) [21,22], and light gradient boosting machine
(LGBM) [22] were employed in several studies. SVM and LR were also popular choices, as
well as other standard classification algorithms such as DT, ANN, NB, and KNN. In terms
of deep learning, CNN was specifically utilized to analyze accident severity in a study [14].

To evaluate model performance in regression tasks, mathematical metrics such as the co-
efficient of determination (r2) [17], root mean square error (RMSE) [17,27], and mean squared
error (MSE) [17,27] were commonly used. Lower RMSE and MSE values indicate better
model performance, while a higher r2 value signifies greater predictive accuracy. For classifi-
cation tasks, frequently used evaluation metrics included accuracy [14–16,18,20–26,28], preci-
sion [15,16,18–26,28], recall [15,16,18–24], F-measure [15,16,18–22,24–26,28], specificity [14,20],
sensitivity [14,20,26,28], area under the curve (AUC) [18,19,22,23], and receiver operating char-
acteristic (ROC) analysis [18,24]. Among these, accuracy, precision, recall, and F-measure were
the most commonly applied metrics for evaluating classification model performance. The
AUC metric was particularly effective in representing a model’s ability to distinguish between
classes. Studies [14,20] also used specificity and sensitivity to assess model effectiveness,
affording additional insights into classification performance. Furthermore, the ROC metric,
employed in [14,20], was used to analyze the relationship between the false positive rate (FPR)
and the true positive rate (TPR). Improved model performance was demonstrated by a larger
area under the ROC curve, mathematically quantifying the model’s discriminatory power.

Table 1 provides a comprehensive overview of related works, summarizing key as-
pects of the reviewed studies. The table includes columns for the year of publication
(Year), geographic regions where the studies were conducted (Region), methods employed
(Method), task types—classification (C) and regression (R), dataset time intervals (Period),
performance metrics of the applied methods (Metric), and whether the study addressed
ordinal classification tasks (Ordinal Classification). The metric column encompasses evalu-
ation measures such as accuracy (ACC), precision (P), recall (R), F-measure (F), specificity
(SPE), sensitivity (SEN), elapsed time (ET), coefficient of determination (r2), and Chi-square
(x2), as applicable. Classification, regression, and ordinal classification tasks are denoted
with a checkmark (

√
). This tabular representation makes available a concise yet thor-

ough summary of methodologies, study regions, and evaluation criteria in road traffic
accident severity research, enabling easy comparison and identification of trends across
the literature.

Unlike the studies discussed earlier, this research adopts an ordinal classification
approach, which is particularly suited for tasks like traffic accident severity prediction,
where the predicted classes exhibit a natural order. Traditional classification methods,
commonly used in prior studies, often overlook this inherent ordering, potentially leading
to suboptimal predictions. To address this gap, the current study introduces the ordinal
random tree with rank-oriented feature selection (ORT-ROFS) method. This novel approach
leverages the ordinal nature of the problem to enhance prediction performance across
multiple evaluation metrics, offering a significant contribution to the field.
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Table 1. Summary of related works on road traffic accidents severity.

Reference Year Region Method C R Period Metric Ordinal
Classification

Arciniegas-Ayala et al. [14] 2024 Ecuador
CNN, CNN-RF,

GPC-RBF,
SVM-RBF, ANN

√
* Unspecified ACC, SPE, SEN, ET X

Muktar and Fono [15] 2024 Canada XGB, CatBoost, RF,
GB

√
2012–2021 ACC, P, R, F X

Obasi and Benson [16] 2023 UK NB, RF, LR, ANN
√

2005–2014 ACC, P, R, F X

Gatarić et al. [17] 2023 Serbia
Srpska ANN

√
Unspecified RMSE, MBE, MPE,

x2, r2 X

Aldhari et al. [18] 2022 Saudi
Arabia XGB, RF, LR

√
2017–2019 ACC, AUC, ROC, P,

R, F X

Yan and Shen [19] 2022 USA ANN, KNN, SVM,
RF

√
2016–2019 AUC, P, R, F X

Islam et al. [20] 2022 Saudi
Arabia LR, RF, XGB

√
2009–2016 ACC, SPE, SEN,

P, R, F X

Khattak et al. [21] 2022 Pakistan RF, CART, LR,
AdaBoost

√
2015–2019 ACC, P, R, F X

Dong et al. [22] 2022 Pakistan
Natural GB,

CatBoost,
LGBM, AdaBoost

√
2015–2019 ACC, AUC, P, R, F X

Santos et al. [23] 2021 Portugal DT, RF, LR, NB
√

2016–2019 ACC, AUC, P, R X

Boo and Choi [24] 2021 Korea LR, RF, SVM
√

2013–2017 ACC, ROC, P, R, F X

Fiorentini and Losa [25] 2020 UK RT, KNN, LR, RF
√

Unspecified ACC, TPR, FPR,
TNR, F, P X

Assi et al. [26] 2020 UK ANN, FCM, SVM
√

2011–2016 ACC, SEN, F, P X

Lee et al. [27] 2020 Korea RF, ANN, DT
√

2007–2015 MSE, RMSE X

Assi et al. [28] 2020 Australia ANN, SVM
√

2014–2019 ACC, SEN, P, F X

Proposed Method Ethiopia ORT-ROFS
√

2017–2020 ACC, P, R, F
√

* Classification, regression, and ordinal classification tasks are denoted with a checkmark (
√

), otherwise with (X).

3. Material and Methods
3.1. General Description of the Proposed Method

The problem in this study lies in accurately predicting traffic accident severity levels,
which is challenging due to the complexity and imbalance of the data. The solution
we proposed integrates the ordinal random tree (ORT) model with the rank-oriented
feature selection (ROFS) approach, explicitly considering the ordered relationships among
class labels.

Although standard classification methods have been used for predicting accident
severity, they suffer from an important limitation: they ignore the relationship among
class labels. Road traffic accident injury severity ranges from no or slight injury to severe
injury and, lastly, to fatal injury. This ordered structure makes the classification problem
appropriate to be treated as an ordinal task. Taking this into consideration, our study
proposes a novel method, named Ordinal Random Tree with Rank-Oriented Feature Selec-
tion (ORT-ROFS), which is specifically designed to use order relationships among classes
during both feature selection and prediction. To address the ordinal nature of the problem,
ORT-ROFS transforms the multi-class classification problem into a set of binary classifi-
cation problems. For a dataset with k ordinal classes, ORT decomposes the problem into
k − 1 binary sub-problems. Each binary classifier is trained to differentiate samples above
and below a particular class threshold. This decomposition allows the model to capture
the ordering among classes, as each binary classifier addresses whether an instance falls
within or above a certain severity level. This transformation is essential for maintaining the
ordinal relationships and achieving improved prediction accuracy for ordered outcomes.

Figure 1 illustrates the overall architecture of the ORT-ROFS method, highlighting
how the ordinal classification problem is handled through binary decomposition. The
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process begins with addressing the imbalanced nature of the ordinal road traffic accidents
dataset, where the class distribution for different severity levels is often skewed, particularly
with fewer instances of more severe accidents (e.g., fatal injuries). Minor severity injury
classes are identified by analyzing the dataset, and these classes are targeted for synthetic
sample generation. The synthetic minority over-sampling technique (SMOTE) is applied to
generate synthetic samples for the minority classes, balancing the dataset to guarantee that
the model can learn from all severity levels. After that, binary decomposition is performed
on the balanced ordinal dataset. This decomposition breaks down the problem into multiple
binary sub-problems, each corresponding to a distinct severity threshold. By addressing
the binary decisions at each level, the method is able to capture the ordered nature of the
severity levels, confirming that the classification process respects the inherent hierarchy
from slight to fatal injuries.
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The architecture in Figure 1 visually demonstrates how the model progressively
distinguishes between classes at each threshold, thereby advancing predictive accuracy
through a step-by-step evaluation of the severity levels. Assume that each sample in the
dataset has numerous features (vehicle type, weather condition, age of driver, driving
experience in years, etc.) and is assigned into one of four categories on an ordinal scale
(very slight < slight < serious < fatal). The dataset is transformed by creating separate binary
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datasets, including D1, D2, and D3—each designed to capture the ordering information
among the class labels by corresponding to a threshold in injury severity (e.g., classes
greater than “very slight”, “slight”, and “serious”). For each threshold, a binary dataset is
generated to distinguish whether a sample falls above or below that level of severity. For
example, in the case of the classes > “very slight” threshold, samples with a severity of “very
slight” are labeled as 0, while samples with “slight”, “serious”, or “fatal” injuries are labeled
as 1. This binary labeling promotes that the classifier focuses on determining whether a
sample surpasses the “very slight” injury level. Similarly, for subsequent thresholds, the
process is repeated, with samples either being labeled as 0 or 1 based on whether their
severity exceeds the next defined threshold.

After the decomposition step, each binary dataset undergoes rank-oriented feature
selection to refine the feature set according to its respective severity level, strengthening
the model to consider only the most relevant features at each threshold. In other words, the
algorithm separately determines feature importance based on each severity level. Thus,
features are selected by taking into account the ranking of class values. Here, the square
root of the number of features is considered in each selection process.

After feature selection, each binary sub-problem is separately solved by constructing a
random tree classifier, denoted as RT1, RT2, and RT3. In the prediction phase, an unseen
query instance is processed by each of the random tree classifiers, the probability of each
on ordinal class labels is calculated, and finally the class with maximum probability is
chosen as the result of the classification. For example, the second random tree (RT2)
mathematically calculates the probability P(class > ”slight”|sample) that indicates the
likelihood of the sample’s severity being greater than “slight”, including “serious” and
“fatal”. Such probabilities reflect the binary decisions made by the classifiers at each severity
level. The maximum probability is then chosen, yielding the final severity classification
for a particular instance. This multi-step process, as displayed in Figure 1, allows the
ORT-ROFS method to leverage both the ordered nature of the labels and the strength of
binary classifiers, enhancing prediction accuracy for road traffic accident severity levels.

3.2. Formal Description of the Proposed Method
3.2.1. Class Imbalance Handling with SMOTE

Road traffic accidents data are acutely imbalanced since the number of observations
categorized in the slight injuries class (majority) is much higher than those categorized in
the serious or fatal injuries class (minority). Therefore, there is a significant difference in
the number of instances between the three classes that makes modeling difficult. When
an imbalanced dataset is utilized to implement a classification task, the majority class
dominates the classifier creation process, resulting in unsatisfactory prediction effectiveness.
On the other hand, the minority class also provides noteworthy information that must
be utilized. To handle such an unbalanced dataset, the synthetic minority oversampling
technique (SMOTE) was applied in this study due to its simple procedure. The application
of SMOTE involves identifying the subset of the dataset D that contains samples belonging
to the minority class ci, as mathematically presented in Equation (1):

Dminor =
{(

xj, yj
)
∈ D

∣∣ yj = ci and |ci| < threshold
}

(1)

Here, Dminor represents the subset of the dataset D containing samples from the
minority class ci. The condition |ci| < threshold guarantees that only underrepresented
classes are targeted, where |ci| denotes the cardinality of class ci (i.e., the number of samples
in ci). By balancing the dataset, this step establishes that the method effectively utilizes
information from all classes, considerably improving prediction accuracy for minority
classes. SMOTE works by generating synthetic instances for the minority class. Given a
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minority instance x ∈ Dminor, SMOTE creates a synthetic instance by interpolating between
x and one of its k-nearest neighbors as xNN . The synthetic instance, xsynthetic, is computed
through Equation (2) as follows:

xsynthetic = x + σ × (xNN − x) σ ∈ [0, 1] (2)

In this equation, x denotes a feature vector from the minority class and xNN denotes
one of its k-nearest neighbors. The synthetic instance, xsynthetic, is generated by interpolating
between x and xNN , with the interpolation factor controlled by σ, a random value between
0 and 1. This ascertains that the synthetic instance lies somewhere between the original
instance and its neighbor in the feature space, with the degree of interpolation determined
by σ. The technique balances the dataset by increasing the representation of the minority
class, enabling the classifier to learn more effectively from both the majority and minority
classes. This step heightens the productivity of the method, allowing it to more accurately
predict traffic accident severity levels, especially for the underrepresented serious and fatal
injury classes.

3.2.2. Ordinal Classification

Ordinal classification addresses problems where the target variable has a natural order.
In this study, we predict the ordered severity levels of traffic accidents, characterized by
class labels Y = {C1, C2, . . . , Ck}, where C1 < C2 < . . . < Ck. Given an input vector, the
objective is to assign one of these ordinal labels by calculating probabilities for each class
using Equations (3)–(5) as follows:

P(C1) = 1 − P(Class > C1) (3)

P(Ci) = P(Class > Ci−1)× (1 − P(Class > Ci)) i = 2, 3, . . . , k − 1 (4)

P(Ck) = P(Class > Ck−1) (5)

Here, P(C1) represents the probability of an instance belonging to the first class, while
P(Ci) with i = 2, 3, . . . , k − 1 calculates probabilities for intermediate classes using threshold
differences, and P(Ck) provides the probability of the final class. The term P(Class > Ci)

denotes the probability that the instance belongs to a class higher than Ci. These equations
affirm that the class with the highest probability is assigned to the instance, capturing the
ordinal nature of the classification task. In other words, binary classifiers are used for each
threshold between adjacent classes, preserving the ordinal structure of severity levels in traffic
accidents. The ORT predicts the accident severity by selecting the class label with the highest
probability for a given input instance, ensuring that the natural order of the severity levels is
respected. To illustrate, consider three severity levels: C1 = “Very Slight”, C2 = “Slight”, and
C3 = “Serious”. The estimation of the probability for the first ordinal class label depends on a
single classifier: 1 − P(class > C1) = 0.05, as well as for the last ordinal class: P(class > C2) = 0.7.
Here, for class labels in the middle of the range, the probability depends on a pair of classifiers
and is given by P (class > C1) × (1 − P (class > C2)) ∼= 0.25. The algorithm assigns the class with
the highest probability, which in this case is C3 as “Serious”, demonstrating how the ordinal
relationships are preserved while selecting the most probable class label.

3.2.3. Binary Decomposition

Binary decomposition is a powerful technique used to simplify complex classification
problems by converting a multi-class ordinal classification problem into a series of binary
classification tasks. This approach allows the model to focus on distinguishing between
ordered categories, effectively breaking down the problem into manageable sub-tasks
while preserving the ordinal relationships among the classes. For a given ordinal dataset
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D =
{(

xi, yj
)∣∣ j = 1, 2, . . . , n

}
with n instances, where xi signifies the input features,

and yj denotes the original ordinal class labels, the decomposition process constructs a
binary dataset for each class threshold Ci. Each instance is assigned a binary label yj

′,
mathematically defined in Equation (6) as follows:

Di =
{
(x i, y′j) : y′j = 0 i f yj ≤ Ci, else y′j = 1

}
(6)

This approach divides the original problem into k − 1 binary classification tasks,
where k is the total number of ordinal classes. By reducing the number of classes in
each sub-problem, binary decomposition simplifies the classification process and enables
the use of binary classification algorithms. Binary decomposition has a major advantage
because many well-established machine learning algorithms, such as decision trees, are
inherently designed for binary classification, enabling their effective application to ordinal
tasks. Each binary classifier focuses on distinguishing instances across a specific threshold
Ci, validating that the ordinal structure of the data is preserved. Additionally, by simplify-

ing the original multi-class problem into two-class sub-problems, binary decomposition
reduces computational complexity and facilitates more precise modeling. After solving
all k − 1 binary classification tasks independently, the output of the model with maxi-
mum probability is chosen to predict the final severity level for each input, maintaining
consistency with the ordinal structure of the target variable.

3.2.4. Rank-Oriented Feature Selection with Pearson Correlation

Rank-oriented feature selection (ROFS) aims to identify the most relevant features
for each binary classification problem within the proposed framework. In the context of
ordinal classification, where the target variable has a natural order (e.g., severity levels
of traffic accidents), the objective of ROFS is to select features that capture meaningful
relationships between the features and the target variable while maintaining the ordered
structure of the problem. To achieve this, Pearson correlation [29] is used to assess the linear
relationship between each feature and the ordinal target attribute. The Pearson correlation
coefficient quantifies the strength and direction of the linear relationship between two
variables, providing a measure of how well each feature correlates with the target. In
mathematical terms, the calculation is performed through Equations (7)–(9) as follows:

rx,y =
cov(x, y)√

var(x)× var(y)
(7)

cov(x, y) =
1
N

N

∑
i=1

(xi − x)× (yi − y) (8)

var(x) =
1
N

N

∑
i=1

(xi − x)2 (9)

The Pearson correlation coefficient rx,y quantifies the linear relationship between a
feature x and the target variable y by combining the covariance cov(x, y), which measures
how x and y vary together, and the variances var(x) and var(y), which capture the spread
of each variable. The covariance is calculated as the average product of the deviations of x
and y from their respective means x and y over N instances.

In the context of ROFS, features with high absolute Pearson correlation values are
deemed the most relevant for each binary classification task. This indicates that features
demonstrating a strong linear relationship with the target variable are selected. Pearson cor-
relation offers several advantages, namely that it reliably measures dependency, effectively
handles continuous data, and confirms both the strength and direction of relationships.
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Pearson correlation is used to optimize the feature set for each binary decomposition of the
ordinal classification task. This supports the idea that ROFS not only respects the natural
ordering of the labels but also significantly increases the accuracy of resulting classifiers.

3.2.5. Random Tree Classifier

The random tree serves as the backbone for handling the binary classification tasks
created during the binary decomposition process in the proposed ORT-ROFS method. For
each binary dataset constructed based on specific class thresholds, a separate random tree
classifier is trained to model the decision boundaries relevant to that threshold. The random
tree algorithm is characterized by its hierarchical structure and inherent randomness,
making it a powerful tool for classification tasks. It grows a tree recursively by splitting
the dataset at each node based on an impurity reduction criterion, such as Entropy or Gini
indices [30], which measure the purity of the data after each split. From a mathematical
standpoint, these criteria are represented in Equations (10) and (11), respectively:

H(D) = −
k

∑
j=1

pj × log2 (p j) (10)

G(D) = 1 −
k

∑
j=1

p2
j (11)

where pj denotes the proportion of instances in the dataset that belong to the j-th class and
k represents the total number of classes. The Entropy function in Equation (10) measures the
uncertainty or disorder within the dataset, while the Gini index in Equation (11) quantifies
the degree of impurity or misclassification. Lower values of either measure indicate purer
splits, guiding the tree to better separate the classes.

In the ORT-ROFS method, random trees are built after the feature selection process,
confirming that only the most relevant features are considered during tree construction.
This approach combines the benefits of feature selection with the diversity and flexibility
of random trees. The random tree classifier is chosen for its ability to capture nonlinear
relationships between features and class labels, making it particularly effective for complex
tasks like predicting traffic accident severity. Additionally, it offers a highly interpretable
and understandable model, which is important for humans to rely on and manage decision
results in the context of explainable artificial intelligence (XAI). By combining rank-oriented
feature selection with the modeling power of random trees, ORT-ROFS provides an efficient
approach to dealing with complex ordinal classification problems.

3.3. ORT-ROFS Algorithm

The ordinal random tree with rank-oriented feature selection (ORT-ROFS) algorithm
(Algorithm 1) is a structured approach to solving ordinal classification problems by combining
synthetic oversampling, binary decomposition, feature selection, and random tree modeling.
The algorithm begins by handling class imbalance utilizing the synthetic minority oversam-
pling technique (SMOTE). Minority classes are identified by analyzing the class distribution
through counts, which records the number of instances for each class ci ϵ {c1, c2, . . .., ck}.
Classes with fewer instances than a predefined threshold are included in the DMinor, which
refers to minority classes. Synthetic samples are then generated for these underrepresented
classes, and the resulting samples are added back to the dataset D to achieve balance. This step
ensures that the model learns successfully from all classes, including the minority ones. Given
an ordinal dataset D = {(x1,y1), (x2,y2), . . ., (xn,yn)} with n instances and ordered class labels y ϵ
{c1, c2, . . ., ck}, the algorithm then decomposes the dataset into k − 1 binary datasets Di, where
each dataset represents a threshold ci separating adjacent classes. Instances in Di are labeled
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as 0 if their class yj < = ci, and 1 otherwise. Next, rank-oriented feature selection identifies
relevant features for each binary dataset Di using Pearson correlation, and these feature
subsets are merged into a unified set ROFS, which is applied to the entire dataset. The next
step involves training a random tree classifier for each binary dataset Di, with the resulting
models Mi aggregated into a collective model M*. Finally, for predicting the class label of new
instances in T, the algorithm evaluates the probability P(cj) of belonging to each class cj based
on ordinal-specific probability equations presented in the “Ordinal Classification” section.
These probabilities capture the ordered relationships among the classes, ensuring that the
ordinal nature of the problem is respected. The class with the highest calculated probability is
then assigned as the predicted label for the instance, reflecting the most likely severity level
based on the model’s evaluation. This approach effectively encodes the ordering information
among class labels in both feature selection and prediction to offer accurate predictions on
ordinal data.

Algorithm 1: Ordinal Random Tree with Rank-Oriented Feature Selection (ORT-ROFS)

Inputs:
D: the ordinal dataset with n instances such that D={(x1,y1), (x2,y2), . . ., (xn,yn)}
Y: ordinal class labels y ϵ {c1,c2, . . .,ck} with an order c1 < c2 < . . . < ck

Dminor : the minority class(es)
T: new instances to be predicted

Outputs:
Ŷ: predicted class labels for the inputs in T

//Step 1—Synthetic Minority Oversampling Technique (SMOTE)
for i = 1 to k do

foreach (xj,yj) in D
counts[yi]+ = 1

end foreach
if counts[i] < threshold

Minor.Add(i)
end if

end for
foreach class in DMinor

syntheticSamples = SMOTE (class)
D.Add (syntheticSamples)

end foreach
//Step 2—Construction of Binary Datasets
for i = 1 to k − 1 do

foreach (xj,yj) in D
if (yj < = ci)

Di.Add (xj,0)
else

Di.Add (xj,1)
end if

end foreach
end for
//Step 3—Rank-Oriented Feature Selection (ROFS)
ROFS = ∅
for i = 1 to k − 1 do

FS = FeatureAnalysis (Di)
ROFS = ROFS U FS

end for
D.Apply (ROFS)
//Step 4—Construction of Models
for i = 1 to k − 1 do

Mi =RandomTree (Di)
M* = M* U Mi

end for
//Step 5—Classification of New Samples in T
foreach x in T

y = M*(x) = MAX
P(c1) = 1 − P(Ax ≻ c1)
for i = 2 to k−1 do

P(ci) = P(Ax ≻ ci−1) × (1¯P(Ax ≻ ci))
end for
P(ck) = P(Ax ≻ ck−1))
Ŷ = Ŷ ∪ y

end foreach
End Algorithm
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The time complexity of the ORT-ROFS method is O((nlog n)× (k − 1)), where n is
the number of instances and k is the number of classes. This complexity aligns with the
base random tree algorithm, reflecting the efficiency of our proposed method.

3.4. Dataset Description

This study utilizes the Road Traffic Accident dataset, a comprehensive resource includ-
ing information about traffic accidents that occurred in Addis Ababa, Ethiopia, between
2017 and 2020. The dataset is publicly accessible via the Mendeley Data [31] and Kaggle [32]
repositories. The dataset contains 12,316 records with 32 features describing various aspects
of each accident. These features deliver detailed insights into factors influencing accidents
and their outcomes.

Table 2 summarizes the dataset attributes and their respective categories, providing
an overview of the key features used in the analysis. Key attributes include driver-related
information such as age, gender, education level, and driving experience, as well as details
about the accident site, such as road type, surface conditions, lighting, and weather con-
ditions. Additionally, the dataset records the number and types of vehicles involved, the
number of injuries, and the severity of injuries. This study specifically focuses on injury
severity, classified into three ordered categories: slight, serious, and fatal.

Table 2. Summary of dataset attributes and their respective categories.

No Feature Name Description Values

1 Hour The time the accident occurred Numeric

2 Day_of_week The day the accident occurred Monday, Sunday, Friday, Wednesday, Saturday, Thursday,
Tuesday

3 Age_band_of_driver The age range of the driver ‘Under 18’, 18–30, 31–50, ‘Over 51’

4 Sex_of_driver The gender of the driver Female, Male

5 Educational_level The education level of the driver ‘Junior high school’, ‘Above high school’, ‘Elementary school’,
‘High school’, Illiterate, ‘Writing and reading’

6 Vehicle_driver_relation The driver’s relationship to the vehicle involved in
the crash Employee, Owner, Other

7 Driving_experience The driving experience of the driver involved in the
accident 1–2 year, ‘Above 10 yr’, 5–10 yr, 2–5 yr, ‘No License’, ‘Below 1 yr’

8 Type_of_vehicle Type of vehicle involved in the accident

Automobile, ‘Public (>45 seats)’, ‘Lorry (41–100 Q)’,’Public (13–45
seats)’, ‘Lorry (11–40 Q)’,’Long lorry’, ‘Public (12 seats)’, Taxi,
‘Ridden horse’, ‘Pick up to 10 Q’, Station wagon, Turbo, Bajaj,

Motorcycle, ‘Special vehicle’, Bicycle, Other

9 Owner_of_vehicle The ownership type of vehicle Owner, Governmental, Organization, Other

10 Service_year_of_vehicle The time elapsed since the vehicle’s last service
before the accident ‘Above 10 yr’, 5–10 yrs, 1–2 yr, 2–5 yrs, ‘Below 1 yr’

11 Defect_of_vehicle The defect status of the vehicle before the accident ‘No defect’, 7, 5

12 Area_accident_occured The area where the accident occurred

‘Office areas’, ‘Residential areas’, ‘Recreational areas’,’ Industrial
areas’, ‘Industrial areas’, ‘Church areas’, ‘Market areas’, ‘Rural

village areas’, ‘Hospital areas’, ‘Outside rural areas’, ‘School areas’,
‘Recreational areas’, ‘Rural village areas Office areas’, Other

13 Lanes_or_Medians The type of lane in which the vehicle was traveling
at the time of the accident

‘Double carriageway (median)’, ‘Undivided Two way’, ‘One way’,
‘Two-way (divided with broken lines road marking)’, ‘Two-way

(divided with solid lines road marking)’, Other

14 Road_allignment The terrain of the road where the accident occurred

‘Tangent road with flat terrain’, ‘Tangent road with mild grade and
flat terrain’, Escarpments, ‘Tangent road with rolling terrain’,

‘Gentle horizontal curve’, ‘Tangent road with mountainous terrain
and’, ‘Steep grade downward with mountainous terrain’, ‘Sharp
reverse curve’, ‘Steep grade upward with mountainous terrain’

15 Types_of_Junction The type of road junction where the accident
occurred

‘No junction’, ‘Y Shape’, Crossing, ‘O Shape’, ‘T Shape’, ‘X Shape’,
Other

16 Road_surface_type The type of road surface on which the accident
occurred

‘Earth roads’, ‘Asphalt roads’, ‘Gravel roads’, ‘Asphalt roads with
some distress’, Other

17 Road_surface_conditions The condition of the road surface Dry, Snow, ‘Wet or damp’, ‘Flood over 3 cm. deep’

18 Light_conditions The lighting conditions when the accident occurred Daylight, ‘Darkness—lights lit’, ‘Darkness—no lighting’,
‘Darkness—lights unlit’
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Table 2. Cont.

No Feature Name Description Values

19 Weather_conditions Weather conditions at the time of the accident Normal, Raining, Cloudy, ‘Raining and Windy’, Windy, Snow,
‘Fog or mist’, Other

20 Type_of_collision The manner in which the vehicles collided

‘Collision with roadside-parked vehicles’, ‘Vehicle with vehicle
collision’, ‘Collision with roadside objects’, ‘Collision with

animals’, Rollover, ‘Fall from vehicles’, ‘Collision with
pedestrians’, ‘With Train’, Other

21 Number_of_vehicles_involved The number of vehicles involved in the accident Numeric

22 Number_of_casualties The number of accident-related deaths Numeric

23 Vehicle_movement The driver’s behavior just before the accident
‘Going straight’, U-Turn, ‘Moving Backward’, Turnover, ‘Waiting

to go’, ‘Getting off’, Reversing, Parked, Stopping, Overtaking,
‘Entering a junction’, Other

24 Casualty_class The classification of the person injured or killed in
the accident ‘Driver or rider’, Pedestrian, Passenger

25 Sex_of_casualty Gender of the person injured or killed in the
accident Male, Female

26 Age_band_of_casualty The age range of the person injured or killed in the
accident 31–50, 18–30, ‘Under 18’, ‘Over 51’, 5

27 Casualty_severity The numeric value that indicates seriousness of the
injury Numeric

28 Work_of_casualty The employment status of the person injured or
killed in the accident Driver, Unemployed, Employee, Self-employed, Student, Other

29 Fitness_of_casualty The health condition of the person injured or killed
in the accident before the accident Normal, Deaf, Blind, Other

30 Pedestrian_movement If a pedestrian was involved, the pedestrian’s
movement and location at the time of the accident

‘Not a Pedestrian’, ‘Crossing from drivers nearside’, ‘Crossing
from nearside—masked by parked or stationary vehicle’,

‘Unknown or other’, ‘Crossing from offside—masked by parked or
stationary vehicle’, ‘In carriageway, stationary—not crossing
(standing or playing)’,’Walking along in carriageway, back to

traffic’, ‘Walking along in carriageway, facing traffic’, ‘In
carriageway, stationary—not crossing (standing or
playing)—masked by parked or stationary vehicle’

31 Cause_of_accident Cause of the accident

‘Moving Backward’, Overtaking, ‘Changing Lane to the left’,
‘Changing Lane to the right’, Overloading, ‘No priority to vehicle’,
‘No priority to pedestrian’, ‘No distancing’, ‘Getting off the vehicle
improperly’, ‘Improper parking’, Overspeed, ‘Driving carelessly’,

‘Driving at high speed’, ‘Driving to the left’, Overturning,
Turnover, ‘Driving under the influence of drugs’, ‘Drunk driving’,

Other

32 Accident_severity Severity of the accident ‘Slight Injury’, ‘Serious Injury’, ‘Fatal Injury’

4. Experimental Studies
In the experimental studies, the results were obtained using a real-world dataset of

road traffic accidents (RTA), illustrating the practical relevance of the method to traffic
safety management. When studying crash severity using historical traffic accident records,
severity level is regarded as a dependent (class) variable, whereas other features are referred
to as independent variables (predictors). The data was organized into injury severity levels,
which are classified into slight injuries, serious injuries, and fatalities.

To evaluate the performance of ORT-ROFS, we used 10-fold cross-validation, which
is a robust technique for estimating the model’s generalization ability. In 10-fold cross-
validation, the dataset is randomly divided into 10 equal-sized folds. The model is trained
on nine of these folds and tested on the remaining one. This process is repeated 10 times,
with each fold serving as the test set once. The final performance metrics are averaged across
all 10 folds, providing a reliable estimate of how the model will perform on unseen data.

Experimental studies were conducted to evaluate the performance of the proposed
ORT-ROFS method through various metrics, including accuracy, precision, recall, and
F-measure, by comparing it with alternative classification approaches. Additionally, we
present a detailed analysis using a confusion matrix derived from ORT-ROFS classifications
to establish a comprehensive evaluation of the method’s performance. The metrics are
defined using common terms such as true positives (TP), true negatives (TN), false positives
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(FP), and false negatives (FN), which are utilized to calculate the values for each metric. The
mathematical expressions for these metrics are included in Equations (12)–(15), as follows:

• Accuracy: It measures the proportion of correctly classified instances among the total
instances. It is a simple and widely used metric to evaluate the overall performance of
a machine-learning model.

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

• Precision: It evaluates the proportion of true positive predictions among all positive
predictions made by the model. It is particularly useful in imbalanced datasets.

Precision =
TP

TP + FP
(13)

• Recall: It is also known as sensitivity or true positive rate, and measures the proportion
of actual positive instances correctly identified.

Recall =
TP

TP + FN
(14)

• F-measure: It is the harmonic mean of precision and recall metrics, providing a balance
between the two. It is particularly useful when the dataset is imbalanced.

Fmeasure = 2 × Precision × Recall
Precision + Recall

(15)

The implementation of the ORT-ROFS method was developed in C# using the Weka
library [33]. All our experiments were conducted under consistent computational settings
on a standard computer machine (Intel® Core™ i7, 1.90 GHz, 8.00 GB RAM, manufactured
by Dell Inc., Round Rock, Texas, United States). In our experiments, the hyperparameters
for the techniques employed—SMOTE, ordinal classification, feature selection, and the
random tree classifier—were systematically tested across different ranges at each stage to
determine their optimal values for the given dataset. These ranges were carefully selected
based on prior research and experimental validation, ensuring that the final configurations
provided the best performance. The details of the hyperparameter tuning process and the
selected values are described below:

• SMOTE was used to address the class imbalance inherent in the road traffic accidents
dataset, particularly for the “serious injury” and “fatal injury” classes. SMOTE gener-
ates new samples according to the neighborhood strategy, where the key parameter
“nearestNeighbors” determines the number of neighbors considered when creating
synthetic examples. To determine the optimal parameter value, we systematically
tested a range of “nearestNeighbors” values (k = 5, 6, 7, 8, 9, 10). The results demon-
strated that k = 5 achieved the highest accuracy for the ORT-ROFS method, shown
in Table 3. Therefore, in our experiments, this parameter was set to 5. The other
key parameters of SMOTE include “ClassValue”, which specifies the target class for
oversampling, and “Percentage”, which defines the percentage increase in instances
for that class. Here, SMOTE was applied twice: the first time with “ClassValue” set to 2
and “Percentage” set to 400 to augment the “serious injury” class, and the second time
with “ClassValue” set to 3 and “Percentage” set to 200 to augment the “fatal injury”
class. These configurations were selected to balance the dataset while maintaining
meaningful relationships between the classes.
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Table 3. Accuracies of the ORT-ROFS method across different “nearestNeighbors” (k) values.

Accuracy (%)

k ORT-ROFS

5 87.19
6 86.95
7 86.90
8 86.53
9 86.10

10 85.87

• For the process of ordinal classification, the “batchSize” was set to 100, which is the
default value. We tested various values for the “batchSize” parameter and observed
no significant changes in the results. The classifier was configured as “Random
Tree”, leveraging its ability to model nonlinear relationships in the data competently.
Here, the binary decomposition was employed to transform the ordinal problem into
multiple binary classification problems. This decomposition allows the random tree
classifier to handle ordinal relationships effectively.

• ROFS was employed to select the most relevant features while preserving the ordi-
nal relationships in the dataset. In our method, the attribute evaluator was set to
“CorrelationAttributeEval” to measure the correlation between each feature and the
target class, and the search method was configured as “Ranker” to rank and select
attributes based on their correlation scores. The evaluator calculates the Pearson cor-
relation coefficient for numeric attributes, while nominal attributes are evaluated by
treating each value as an indicator variable and computing an overall correlation via a
weighted average. Under these settings, key features including Hour, Day_of_week,
Age_band_of_driver, Types_of_junction, Light_conditions, Weather_conditions, Num-
ber_of_vehicles_involved, and Number_of_casualties were chosen as the most influ-
ential in predicting traffic accident severity. These selected features were then used for
classification, leading to effective prediction results.

• Random tree classifier served as the base classifier for the proposed ORT-ROFS method
due to its capability to model complex relationships. The “maxDepth”, determining the
maximum depth of the tree, was tested for values ranging from 1 to 20, as illustrated
in Figure 2. Setting “maxDepth” to “NaN” allows the tree to grow without restrictions,
effectively making it limitless. The results showed that accuracy steadily increased
and reached 87.08% at 20. Notably, the unrestricted setting of “maxDepth” achieved
an accuracy of 87.19%, which was slightly higher than the best accuracy observed
within the tested range. This indicates that while deeper trees generally lead to better
accuracy, allowing the tree to grow without restrictions can still yield competitive
results, demonstrating the flexibility of the model.

The “minNum”, representing the minimum number of instances per leaf, was tested
for values ranging from 1 to 100 in increments of 5, as represented in Figure 3. Initially set
to 1, this configuration allowed every leaf node to have at least one instance, achieving the
highest accuracy of 87.19%. However, as the “minNum” value increased, a steady decline
in accuracy was observed. For example, accuracy dropped to 85.37% at 5, 83.74% at 10,
and continued decreasing, reaching 73.90% at 100. This trend indicates that increasing the
minimum number of instances per leaf restricts the tree’s ability to capture finer-grained
patterns, leading to reduced predictive performance. Therefore, a lower “minNum” value
proves crucial for achieving optimal accuracy in this context.
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Additionally, the “minVarianceProp” hyperparameter, defining the minimum vari-
ance proportion required to split a node, was tested for values ranging from 0.0001 to
0.3. No changes in accuracy were observed across this range, with the default value of
0.001 providing consistent results. The “KValue”, which specifies the number of random
attributes to consider for splitting at each node, was tested with values of 0, 1, 3, 5, 7, and
9. Among these, the best accuracy was achieved when “KValue” was set to 0, meaning
int(log2(#predictors) + 1) attributes were considered. Other parameters include “batchSize”,
which was set to 100, and seed for reproducibility, set to 1. These parameter values were
chosen to mathematically balance tree complexity and computational competency while
maintaining model accuracy.

The performance of four methods—random tree (RT), ordinal random tree (ORT),
ordinal random tree with feature selection (ORT-FS), and ordinal random tree with rank-
oriented feature selection (ORT-ROFS)—was evaluated and compared in terms of accuracy.
These methods were tested on the same dataset under identical conditions, ensuring consis-
tent evaluation. The accuracy results for these methods are summarized in Table 4, where
the ORT-ROFS method demonstrated an advancement, achieving an average improvement
of 4.58% in accuracy.
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Table 4. Comparison of methods based on the accuracy performance metric.

Accuracy (%)

Dataset RT ORT ORT-FS ORT-ROFS
(Proposed)

Road Traffic Accident
(RTA) 84.09 84.65 81.44 87.19

In addition to the accuracy measure, the performance of ORT-ROFS was validated
using a range of evaluation metrics, confirming a complete assessment of its predictive
capability. As shown in Figure 4, ORT-ROFS achieved improvements of 4.71%, 4.58%, and
4.78% on average in precision, recall, and F-measure, respectively. These results highlight
the effectiveness of the proposed method in handling ordinal classification tasks while
utilizing its rank-oriented feature selection mechanism.
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The results presented in Table 4 and Figure 4 provide a comprehensive comparison of
the four methods. Additionally, we detail the performance of each method as follows:

• Random tree (RT) is the baseline method, showing an accuracy of 84.09%. This method
does not apply any specific handling of ordinal relationships or feature selection,
offering a solid but unspecialized approach to the dataset.

• Ordinal random tree (ORT), which incorporates handling for ordinal data through
binary decomposition of the target classes, achieved a slight improvement in accu-
racy of 84.65% over RT. By explicitly considering the ordered nature of the target
variable, ORT demonstrates that using the class ordinality can enhance classification
performance, even without feature selection.

• Ordinal random tree with feature selection (ORT-FS), which applies Pearson correlation
for feature selection on multi-class targets, achieved an accuracy of 81.44%. However,
despite the application of ordinal classification and feature selection, the approach
may not fully capture the nuances of ordinal relationships as effectively as ORT and
ORT-ROFS, resulting in lower performance.

• Ordinal random tree with rank-oriented feature selection (ORT-ROFS) mathematically
expressed the best performance across all metrics, with an accuracy of 87.19%. This
method, which applies the ROFS technique on binary class targets derived from
the dataset, yielded the highest precision of 87.20, recall of 87.19, and F-measure of
87.16. It showcased a superior ability to handle the ordinal nature of the data while
also selecting the most relevant features, leading to a noticeable improvement in
classification accuracy.
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Figure 5 illustrates the confusion matrix for the ORT-ROFS classification across the
road traffic accident dataset with class labels, including slight injury, serious injury, and
fatal injury. The diagonal elements indicate the number of instances accurately classified
for each injury category. For example, 9160 instances of slight injury were correctly classi-
fied from the total of 10,415 slight injury instances, 7623 instances of serious injury were
correctly identified from the total of 8715 serious injury instances, and 310 instances of fatal
injury were accurately recognized from the total of 474 fatal injury instances. Off-diagonal
elements display misclassifications: e.g., 15 instances of serious injury were misclassified as
fatal injury. The confusion matrix offers a complete overview of the model’s performance
across different classes, highlighting both correct classifications and misclassifications. The
background colors in the confusion matrix represent the distribution of values, where
darker shades indicate higher numbers of correct instances, and lighter shades represent
lower numbers of correct ones for each row. This color gradient visually emphasizes the
classification results, making it easier to distinguish between correct classifications and
misclassifications. Here, it provides valuable evaluations of the model’s ability to predict
the severity level of injuries in road traffic accidents.
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5. Discussion
In this section, we compared the performance of the proposed ORT-ROFS method with

state-of-the-art methods reported in previous studies [34–40] for the same road traffic accidents
(RTA) dataset. Table 5 provides a detailed comparison, including accuracy values and split
ratios within these studies. In the split ratio column, “NA” indicates that the split strategy
was not available in the related reference paper. The results show that ORT-ROFS consistently
outperformed competing methods across different split strategies for training and testing sets,
achieving accuracies of 86.69% (80:20 split), 86.88% (70:30 split), and 87.19% (10-fold cross-
validation). These values are higher than the accuracies obtained by state-of-the-art methods
under each corresponding split ratio, highlighting its robustness and adaptability to varying
data partitions. To clarify the methodology, we calculated our method’s improvement relative
to the state-of-the-art methods within each group of split strategies. On average, ORT-ROFS
demonstrated an improvement of 10.81% over the previous studies in terms of accuracy. The
proposed method mathematically excelled over decision-tree-based methods [39], such as the
random tree (84.51%), the J48 pruned tree (85.47%), and the logistic model tree (LMT) (84.74%).
Additionally, ORT-ROFS outperformed ensemble-learning-based methods, including extra
trees (81.35%) [40], random forest (RF) (84.49%) [35], adaptive boost classifier (85.30%) [38],
light gradient boosting machine (LGBM) (84%) [34], and gradient boosting (GB) (77.75%) [40].
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These results underscore the superiority of ORT-ROFS in handling complex ordinal data. As
seen in the results, standard classification methods like k-nearest neighbors are less effective
in capturing the order in the class labels reflecting the crash severity (slight < serious < fatal
injury). In summary, the consistently superior performance of ORT-ROFS over other competitive
methods underscored its capability of classifying ordinal road traffic accident severity data.

Table 5. The comparison of the performance of the proposed method with already reported outputs
of the state-of-the-art methods on the same dataset in terms of accuracy (%).

Reference Year Method Split Ratio Accuracy (%)

Xiao and Duan [34] 2024 Light Gradient Boosting Machine + SMOTE NA 84.00

Obaid [35] 2024
Random Forest

80:20
84.49

Decision Tree 83.06

Ramya and Eswari [36] 2024

Logistic Regression

NA

87.00
Extreme Gradient Boosting 86.00

Decision Tree 74.00
Random Forest 84.00

Endalie and Abebe [37] 2023 Support Vector Machines 80:20 85.00

Kodepogu et al. [38] 2023

Decision Tree

80:20

83.30
Random Forest 77.40

K-Nearest Neighbors 82.20
Naive Bayes 85.30

Adaptive Boost Classifier 85.30

Adeliyi et al. [39] 2023

J48 Pruned Tree

10-fold-cross-
validation

85.47
Naive Bayes 83.53

Bagging 84.29
K-Nearest Neighbors 77.58
Logistic Model Tree 84.74

Decision Tree 84.52
Random Tree 84.51

Logistic Regression 84.51

Alhosani [40] 2022

Gradient Boosting

70:30

77.75
Random Forest 79.78

Logistic Regression 69.47
Decision Tree 53.10

Support Vector Classifier 56.67
Extra Trees 81.35

Proposed Approach ORT-ROFS
80:20 86.69
70:30 86.88

10-fold-cross-
validation 87.19

6. Conclusions and Future Works
Traffic accident severity prediction is a crucial task in attaining better transportation

safety and management, as it informs responsible authorities and the public about ways
to mitigate adverse effects. For this purpose, our paper presents the ordinal random tree
with rank-oriented feature selection (ORT-ROFS) method, which emphasizes the ordered
progression of severity levels and integrates innovative rank-oriented feature selection.
Leveraging the explainability of tree-based structures, the proposed method not only
enhances prediction accuracy but also provides valuable mathematical standpoints into the
contributing factors behind accident severity. By utilizing the ROFS technique, the model
identifies key features that expressively impact accident severity prediction. These features
include the time of the incident, day of the week, driver’s age group, type of junction, light
and weather conditions, the number of vehicles involved, and the number of casualties.

When evaluated on a real-world dataset of road traffic accidents in Addis Ababa,
Ethiopia (2017–2020), ORT-ROFS achieved substantial advances with an accuracy of 87.19%.
It demonstrated improvements of 4.58%, 4.71%, 4.58%, and 4.78% in accuracy, precision,
recall, and F-measure, respectively, when compared to its counterparts—random tree
(RT), ordinal random tree (ORT), and ordinal random tree with feature selection (ORT-
FS). Furthermore, the method surpassed state-of-the-art techniques, achieving a 10.81%
improvement in predictive accuracy on average. Traffic accident severity prediction is a
critical task to enable the efficiency of proactive traffic crash management. These results
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underscore the potential of ORT-ROFS to advance road safety strategies by enabling more
informed policy-making.

While the ORT-ROFS method has shown substantial promise, several future directions
can be explored. The integration of technological tools, such as web or mobile applications
enhanced with cloud computing, could further extend the applicability of the ORT-ROFS
method for both transportation authorities and individual drivers. Future research could
focus on the social implications of key features identified by the rank-oriented feature
selection mechanism, enabling targeted actions such as public awareness campaigns or in-
terventions to mitigate accident severity for specific regions or demographics. Additionally,
it can be applied to an expanded dataset that includes diverse regions to adapt it to a wide
range of environments and scenarios.
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Abbreviations

AdaBoost Adaptive boosting
ANN Artificial neural network
AUC Area under curve
BD Binary decomposition
CART Classification and regression trees
CatBoost Categorical boosting
CNN Convolutional neural network
DT Decision tree
FCM Fuzzy c-means
FPR False positive rate
FS Feature selection
GB Gradient boosting
GPC Gaussian process classifier
KNN K-nearest neighbors
LGBM Light gradient boosting machine
LR Logistic regression
MBE Mean bias error
ML Machine learning
MPE Mean percentage error
MSE Mean square error
NB Naive Bayes
OC Ordinal classification
ORT Ordinal random tree
ORT-FS Ordinal random tree with feature selection
ORT-ROFS Ordinal random tree with rank-oriented feature selection
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RBF Radial basis function
RF Random forest
RMSE Root mean square error
ROC Receiver operating characteristic
ROFS Rank-oriented feature selection
RT Random tree
RTA Road traffic accidents
SMOTE Synthetic minority oversampling technique
SVM Support vector machines
TNR True negative rate
TPR True positive rate
XGB Extreme gradient boosting

References
1. Ali, Y.; Hussain, F.; Haque, M.M. Advances, Challenges, and Future Research Needs in Machine Learning-Based Crash Prediction

Models: A Systematic Review. Accid. Anal. Prev. 2024, 194, 107378. [CrossRef] [PubMed]
2. Hee, L.V.; Khamis, N.; Noor, R.M.; Abdul Karim, S.A.; Puspitasari, P. Predicting Fatality in Road Traffic Accidents: A Review on

Techniques and Influential Factors. In Intelligent Systems Modeling and Simulation III; Abdul Karim, S.A., Ed.; Studies in Systems,
Decision and Control; Springer: Cham, Switzerland, 2024; Volume 553. [CrossRef]

3. Chai, A.B.Z.; Lau, B.T.; Tee, M.K.T.; McCarthy, C. Enhancing Road Safety with Machine Learning: Current Advances and Future
Directions in Accident Prediction Using Non-Visual Data. Eng. Appl. Artif. Intell. 2024, 137, 109086. [CrossRef]

4. Wen, X.; Xie, Y.; Jiang, L.; Pu, Z.; Ge, T. Applications of Machine Learning Methods in Traffic Crash Severity Modelling: Current
Status and Future Directions. Transp. Rev. 2021, 41, 855–879. [CrossRef]

5. Wang, J.; Zhao, C.; Liu, Z. Can Historical Accident Data Improve Sustainable Urban Traffic Safety? A Predictive Modeling Study.
Sustainability 2024, 16, 9642. [CrossRef]

6. Qi, Z.; Yao, J.; Zou, X.; Pu, K.; Qin, W.; Li, W. Investigating Factors Influencing Crash Severity on Mountainous Two-Lane Roads:
Machine Learning Versus Statistical Models. Sustainability 2024, 16, 7903. [CrossRef]

7. Pourroostaei Ardakani, S.; Liang, X.; Mengistu, K.T.; So, R.S.; Wei, X.; He, B.; Cheshmehzangi, A. Road Car Accident Prediction
Using a Machine-Learning-Enabled Data Analysis. Sustainability 2023, 15, 5939. [CrossRef]

8. Frank, E.; Hall, M. A Simple Approach to Ordinal Classification. In Machine Learning: ECML 2001; De Raedt, L., Flach, P., Eds.;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2167. [CrossRef]

9. Fürnkranz, J.; Hüllermeier, E.; Vanderlooy, S. Binary Decomposition Methods for Multipartite Ranking. In Machine Learning and
Knowledge Discovery in Databases; Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J., Eds.; Lecture Notes in Computer
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