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Abstract: This research focuses on developing and testing a method for classifying distur-
bances in power systems using machine learning algorithms and phasor measurement unit
(PMU) data. To enhance the speed and accuracy of disturbance classification, we employ
a range of ensemble machine learning techniques, including Random forest, AdaBoost,
Extreme gradient boosting (XGBoost), and LightGBM. The classification method was eval-
uated using both synthetic data, generated from transient simulations of the IEEE24 test
system, and real-world data from actual transient events in power systems. Among the
algorithms tested, XGBoost achieved the highest classification accuracy, with 96.8% for
synthetic data and 85.2% for physical data. Additionally, this study investigates the impact
of data sampling frequency and calculation window size on classification performance.
Through numerical experiments, we found that increasing the signal sampling rate beyond
5 kHz and extending the calculation window beyond 5 ms did not significantly improve
classification accuracy.

Keywords: power system; power system faults; bus voltage; fault simulation; fault
detection; machine learning; classification; phasor measurement units; digital signal
processing; phasor data concentrator; emergency control; short-circuit current; power grid

MSC: 68T01

1. Introduction
The key trends in the development of modern electric power systems (EPS) include the

widespread adoption of digital devices for recording, collecting, and analyzing electrical
parameters [1,2], the accelerated integration of renewable energy sources (RES) [3–7], and
the expansion of permissible operating conditions enabled by digital monitoring systems
and adaptive control [8–11]. A notable characteristic of modern EPS is the reduction
in system inertia, resulting from the growing share of RES alongside the retirement of
fossil fuel power plants. This reduction in inertia leads to faster transient processes and
diminishes the effectiveness of emergency control systems.
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The greatest impact of changes in the parameters of transient processes in EPS is
reflected in the operation of emergency control (EC) systems, providing dynamic stability
(TS). The triggering factor for the operation of these types of automation is the signal
of the fact and type of short circuit (SC). The traditional method for determining the SC
type is associated with the analysis of oscillograms of instantaneous current and voltage
values [12–15] through the use of digital signal processing (DSP) methods, which implement
calculations on a calculation window of several periods of industrial frequency [16]. In [17],
it was shown that for modern EPS with a reduced inertia value, determining the parameters
of the electrical mode and the fact of disturbance with a time delay corresponding to several
periods of industrial frequency can lead to a decrease in the accuracy of the operation of
EC devices and emergency control in general [18–23].

Today, one of the tools that can provide the identified requirements for EC systems is
the machine learning (ML) method. This class of methods is actively used for the following
tasks that arise during the operation of EPS:

• Forecasting power consumption [24,25];
• Forecasting the output power RES [26–29];
• Assessment of the technical condition of equipment [30–32];
• EPS stability assessment [33–37];
• EPS EC [38–42].

ML methods make it possible to achieve high performance and adaptability through
the use of non-deterministic approaches to data analysis without reference to the mathe-
matical model protected by EPS [43].

Determining the SC type based on synchronized vector measurements can be con-
sidered a classification problem with restrictions on the permissible time delay. Today,
an effective solution to problems of this class can be performed on the basis of ML algo-
rithms [44], which make it possible to achieve high performance and adaptability through
the use of non-deterministic approaches to data analysis without reference to the math-
ematical model protected by EPS. The use of ML methods makes it possible to identify
implicit correlations in data, ensure adaptability and additional training during opera-
tion [45]. These advantages of using ML algorithms in combination with synchronized
vector measurements [46] allow the development of an accelerated SC-type identification
method intended for use as a trigger for EC, providing EPS stability with reduced inertial
component values.

The SC-type identification algorithm can be implemented using a phasor data con-
centrator (PDC) [47,48], which combines and processes data from several PMUs. This
approach makes it possible to ensure redundancy of measurements characterizing the SC-
type, which allows for adaptability and variability in solving the classification problem.

The methodology proposed in the article is intended primarily for emergency au-
tomation to ensure the stability of power systems, for which the type of SC (single-phase
to ground, phase-to-phase, two-phase-ground, and three-phase to ground) has a greater
influence. The problem of determining damaged phases is not considered in this study and
is an area for future research.

The scientific novelty of the research lies in the development of an adaptive method
for assessing the SC type based on machine learning algorithms, taking into account the
redundancy of measurements and the flexibility of using existing measurements. On the
other hand, the scientific novelty of the research is determined by a flexible method for
determining the location of disturbances in EPS based on measurement redundancy and
determining the requirements for measuring systems and DSP algorithms.
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2. Power Systems SC Classification: State-of-the-Art Review
SC type definition refers to a multiclass supervised classification problem in which

a probabilistic estimate of the type of disturbance must be determined from an input set
of features. In this work, one of the following SCs is considered a disturbance type: three-
phase to ground, single-phase to ground, phase-to-phase, two-phase to ground. The SC
type identification task involves the use of hybrid algorithms that combine the approaches
of digital signal processing DSP [49] and ML methods.

The following ML methods have been used to solve the SC type identification problem:

• K–nearest neighbors algorithm (KNN) [50];
• Support vector machine (SVM) [51,52];
• Decision tree (DT) [53];
• Fuzzy logic (FL) [54];
• Artificial neural network (ANN) [55];
• Probabilistic neural network (PNN) [56];
• Convolutional neural network (CNN) [57];
• Deep learning (DL) [58,59].

Among the ML methods for multiclass classification, one of the most interpretable is
KNN. This method was developed in 1951 by E. Fix and D. Lawson [60]. The method is
based on the procedure for calculating the distance from the analyzed data instance to the
objects of the training sample. Classification of the analyzed data instance is performed
by determining the most frequently occurring class in the array of shortest distances. The
advantages of the KNN method include resistance to outliers and the ability to graphically
interpret the results of the algorithm. The disadvantages of the method include high
requirements for computing power due to the need to use the entire volume of the data
sample for classification and low classification speed due to the need to repeatedly calculate
the distance to selected elements of the data sample.

The authors of the study [50] proposed a method for identifying and classifying SCs
in electrical networks for further use in distance protection. The method proposed by
the authors uses a sliding calculation window with a width of half a period of industrial
frequency, in which the root mean square value of the instantaneous current signals is calcu-
lated, followed by checking the disturbance identification criterion using the KNN method.
To test the proposed method, the results of modeling transient processes for a five-node
EPS test model in Matlab Simulink with a numerical integration step corresponding to a
signal sampling frequency of 10 kHz are used. In a series of numerical experiments, the
accuracy of the algorithm was 98% with an average time delay of 15 ms (10 ms calculation
window and 5 ms calculation delay).

The SVM algorithm was developed by V. Vapnik and his colleagues in 1995 [61]. To
solve the classification problem, the SVM algorithm constructs a separating hyperplane
in a multidimensional feature space. The advantages of the SVM algorithm include its
universality due to the possibility of using kernels of varying degrees of nonlinearity, its
operating efficiency in high-dimensional spaces, and also the fact that the SVM algorithm
is based on the problem of convex quadratic programming, which ensures the uniqueness
of the solution. Among the disadvantages of the algorithm are its instability to noise in the
source data and lack of a kernel selection algorithm.

In [51], the SVM algorithm was used to identify and classify the SC type. The proposed
method for analyzing the type of disturbance in EPS uses a sliding calculation window
of 0.25 s. in which instantaneous values of currents and voltages are recorded and then
used as features for the SVM algorithm. To form a data sample, the results of a numerical
simulation of a series of transient processes in the EPS IEEE9 model were used. The total
data sample size was 25,168 scenarios with different types of SC and various parameters of
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the electrical mode of the test EPS. In a series of experiments, the accuracy of the proposed
method was 99.98%.

The authors of the study [52] also used the SVM algorithm to identify and classify
the SC type in electrical networks. The proposed technique consists of using the results of
applying the discrete wavelet transform (DWT) to instantaneous values of currents and
voltages as features for SVM. To test the proposed method, a two-machine EPS test model
was used, with a sampling frequency of instantaneous currents and voltages of 200 kHz.
The average SC type identification error was less than 3% with an average delay of 0.3 s.

The DT algorithm is a tree-based piecewise constant approximation algorithm [62–64],
the purpose of which is to form a system of rules aimed at identifying a data object for the
class being taken into account. The advantages of the algorithm include high interpretability,
the ability to use numerical and categorical data, and low requirements for computing
power. Among the disadvantages of the DT algorithm are its tendency to overfit, possible
instability of work, and the lack of an absolute guarantee of convergence.

To identify the SC type, a study [53] developed a technique that involved using the re-
sults of applying a discrete Fourier transform (DFT) with instantaneous current and voltage
signals as features for the DT algorithm. To form a data sample, the results of the numerical
simulation of disturbances in a two-machine EPS implemented in Matlab Simulink were
used. The sampling frequency of instantaneous current and voltage signals during the
simulation was chosen to be 20 kHz. The total data sample size was 2000 scenarios. For
the considered EPS test model, the average delay of the proposed SC type identification
technique was 30 ms with an accuracy of 100%.

The theory of fuzzy logic was proposed by L. Zadeh in 1965; according to this theory,
the function of membership of a data instance to a class is not a discrete function taking
the value 0 or 1, but continuous on the interval [0, 1] [65]. Fuzzy sets can be represented
through ANN. In this case, the membership function is interpreted through the activation
function, and the logical connections of the fuzzy set as special types of neurons. The
advantages of fuzzy logic include its reliability, high flexibility, and low requirements for
computing resources. Among the disadvantages of this approach are its inability to always
ensure acceptable accuracy, the lack of an algorithm for constructing fuzzy systems, and
the complexity of testing and debugging.

In [54], a combined approach was used to determine the type of SC, combining the
theory of fuzzy logic and DWT. Instantaneous current signals are used as input data,
to which DWT with Meyer wavelet is applied. To test the proposed methodology, a
two-machine model with a voltage class of 230 kV was used; the sampling frequency of
instantaneous currents and voltages was chosen equal to 10 kHz. Testing was performed
for different types of SCs simulated on different sections of the considered transmission
line. The SC type identification accuracy was 100% with an average time delay of 2 ms.

The beginning of ANN theory dates back to the early 1949s [66–69]. The develop-
ment of computer technology and the theory of optimization and statistics has led to the
active implementation of ANN. In particular, the depth of networks increased, and new
configurations appeared.

In the study [55], ANN was used to identify the SC type. A two-machine EPS imple-
mented in Matlab Simulink was used as a test model; the data sampling frequency was
chosen to be 1 kHz. Pre-emergency and emergency instantaneous values of currents and
voltages were used as input data. The total volume of the generated data sample was
7920 scenarios. During numerical experiments, an accuracy of 78.1% was achieved.

The authors of [56] proposed a method for identifying the SC type based on PNN.
The authors highlight the following advantages of this type of ANN: no need to train
on large amounts of data, higher accuracy compared to classical neural networks, and a
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more suitable structure for solving the classification problem. The results of applying DWT
with the Meyer wavelet to instantaneous current and voltage signals were used as initial
data. The methodology was tested on a two-node EPS model. During testing, an average
classification accuracy of 100% was obtained.

The study [57] proposed the use of CNN to identify SC type in electrical networks.
This type of neural network uses a combination of convolutional layers and subsampling
layers to recognize patterns in the source data. To train and test the proposed methodology,
records of disturbances in the power system of the Association of Southeast Asian Nations
in the period from 17 May 2017 to 17 January 2018 were used. The total data sample size
was 12,894 scenarios. The accuracy obtained during testing was 100%.

Studies [58,59] used deep ANNs for SC type classification. The study [58] uses the
results of applying the Hilbert-Huang transform to instantaneous current and voltage
signals as input to an ANN. A two-node model was used for testing; the total data sample
size was 3424 scenarios. The minimum classification accuracy on test data were 99.6%. A
study was also carried out of the influence of noise in the source data, distributed generation
and changes in the configuration of the electrical network on the result of classification of
the type of disturbance.

The authors of [59] also used deep ANN in combination with DWT, applied to instan-
taneous current and voltage values, to identify the SC type. The data sample was formed
as a result of modeling a series of transient processes in a test two-machine EPS at a data
sampling frequency of 20 kHz. During testing, the effectiveness of the proposed SC type
identification technique was shown in the presence of noise in the source data and changes
in the parameters of the protected EPS.

Table 1 provides an analysis of the reviewed ML methods used for SC type identifica-
tion. In Table 1, the symbol «–» indicates the absence of data.

Table 1. Analysis of ML algorithms used for SC type identification.

Algorithm Time Delay,
ms Accuracy, % Merits Drawbacks

KNN [50] 15 98.00
Resistance to outliers, the ability to
graphically interpret the results of

the algorithm.

High sensitivity to minor
variations can lead

to overfitting.

SVM [51,52]
250 99.98 Versatility, reliability, efficiency in

large-dimensional spaces.

High sensitivity to minor
variations can lead

to overfitting.

300 97.00

DT [53] 30 100.00
High interpretability, ability to use
numeric and categorical data, low
computing power requirements.

FL [54] 2 100.00 Reliability, high flexibility, low
requirements for computing resources.

ANN [55] – 78.10

High performance, ability to process
noisy data, fault tolerance.

The need for a large data
sample and high classification
accuracy indirectly indicates

retraining of algorithms.

PNN [56] – 100.00

CNN [57] – 100.00

DL [58,59]
210 99.60

20 99.70

Based on the analysis of the reviewed studies on SC type identification methods,
the following conclusions can be drawn: most studies utilize simple two-node EPS test
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models; they do not address the determination of the optimal calculation window size or
the sampling frequency of the input data. Additionally, the issue of retraining the machine
learning models used is not considered by the authors of these studies.

To overcome the shortcomings of the studies reviewed, more complex EPS models
can be used in combination with the following ensemble ML algorithms: Random forest
(RF) [70], Adaptive boosting (AdaBoost) [71], Extreme gradient boosting (XGBoost) [72],
Light gradient boosted machine (LightGBM) [73].

An ensemble algorithm is understood as an algorithm that combines the results of
individual simple algorithms [74]. This algorithm structure makes it possible to effectively
combat the problem of overfitting and ensure high performance of algorithms due to the
possibility of using parallel calculations.

3. Power Systems SC Classification Method
Identification of the SC type is based on the analysis of data received from the PMU

installed in the nodes of the EPS fragment in question. The implementation of the method-
ology presented in the work is possible on the basis of PDC, which ensures the collection
and primary processing of signals received from the PMU. To determine the composition
of the input data for the classification task, the approach of determining nodes near the
SC location is used. Individual criteria for classifying an SC as nearby for each EPS are
given in Table 2. For the classification task, the amplitudes and phases of voltages of nodes
nearby to the SC location are used, as well as the values of the amplitudes and phases of
currents along connections departing from the selected nodes. This approach provides
redundancy of information, which introduces additional degrees of freedom when solving
the classification problem with ML algorithms. The technique of identifying nodes near the
SC location also increases the speed of the classification procedure due to a reduction in the
dimension of the problem being solved.

Table 2. Criteria for classifying SC as nearby.

№ SC Type Criterion: Positive Sequence Voltage Value

1 Three-phase Less than 0.60 p.u.

2 Phase-to-phase Less than 0.70 p.u.

3 Two-phase to ground Less than 0.75 p.u.

4 Single phase Less than 0.80 p.u.

The criteria presented in Table 2 primarily depend on SC current levels, which are
influenced by the electrical network topology, the number of transformers with grounded
neutrals, the number of synchronous generators (SGs) connected to the network, and
the motor load. Recalculating the criteria requires a series of electromagnetic transient
analyses to account for changes in network topology, the number of SGs, motor load, and
transformer neutral operating modes. This process can be automated by pre-calculating
SC locations and types based on parameter changes within the EPS mathematical model.
Automating the update of the criteria in Table 2 is an essential task, which will be addressed
in future studies.

Figure 1 illustrates the methodology for selecting SC nodes near the location. Figure 1
shows the numbered EPS nodes, the red arrow indicates the SC location, the nodes nearby
to the SC location are highlighted in gray, and next to each node there is a PMU device
from which data are sent to the PDC.
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Figure 1. Illustrations of the technique for selecting nodes nearby to the SC site.

In this study, the criteria for classifying SC as nearby were obtained through a series
of numerical experiments in the IEEE24 digital model. To classify the SC type, a two-stage
technique was employed, intended for use in the operational control loop of EPS modes. A
block diagram of the proposed methodology for training an ML method is presented in
Figure 2. Figure 3 shows a block diagram of applying the trained ML method for emergency
control of EPS modes.
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The ML algorithm is trained using the following step-by-step technique:
Step 1: Data preparation, which involves generating a dataset consisting of results

from transient process simulations in the EPS mathematical model and records of real-
world transient events. Mathematical modeling enables the consideration of an extensive
range of SCs across various electrical network configurations. However, this approach relies
on model parameters that may differ significantly from actual system conditions [75,76]. In
contrast, real data capture the true characteristics of transient processes for specific SCs, but
its use is limited due to the unpredictability of SC frequency and parameters. By combining
both sources, we ensure the dataset is both comprehensive and representative. The initial
data consist of time series of current and voltage amplitudes and phases.

Step 2: Process the generated data sample in order to remove outliers, noise, perform
correlation analysis of features in relation to classes and cross-correlation of features.

Step 3: Feature selection. This procedure is performed to reduce the dimensionality
of the classification problem, which increases the speed of training and operation of the
ML model [77–79]. Today, the following approaches are used for selecting features: filter-
ing methods (chi-square test, Fisher test, correlation analysis); wrapper methods (direct
feature selection, sequential feature selection, exhaustive feature selection, recursive fea-
ture exclusion); built-in methods (L1 regularization, methods based on the RF algorithm).
The above feature selection methods are effective and are used in various applied data
analysis problems. Built-in methods provide the greatest efficiency and speed of feature
selection. Within the framework of international competitions in machine learning and
the data analysis Kaggle [80], one of the most frequently used feature selection methods is
Boruta [81,82]. This algorithm is based on the use of iterative training of the RF algorithm
with sequential analysis of the Z-score of features.

Step 4: Training pre-selected ML models.
Step 5: Testing the trained ML models.
Step 6: Selecting the ML model with the best SC type classification accuracy.
During testing, the following quality metrics are calculated [31,32]:

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)
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Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
(3)

F =
2·PR·RE
PR + RE

(4)

where TP—true positive responses, TN—true negative responses, FP—false positive re-
sponses, FN—false negative responses, Accuracy—SC type classification accuracy, Preci-
sion—proportion of correct model answers within the class, Recall—proportion true positive
classifications, F—harmonic mean between Precision and Recall.

When using the trained ML algorithm for the purposes of emergency control of EPS
modes, the block diagram is shown in Figure 2, the following computational steps are used:

Step 1: Obtaining measurements of the electrical parameters of the protected EPS.
Step 2: Processing measurements to remove outliers, noise, and missing data.
Step 3: If the onset of SC has been identified from the measurements obtained, then an

assessment of the SC type is performed. Identification of the beginning of the SC can be
performed by the accelerated method given in [83]. This accelerated algorithm is based on
the analysis of the first derivative of the change in instantaneous values of currents and
voltages over time.

Step 4: Identifying disturbance type using trained ML algorithm.
Step 5: Using SC type information in EPS EC.
To ensure redundancy of information, measurements for selected SC catches nearby

to the location are used to identify the SC type.
Table 3 provides a description of each stage of the SC type determination procedure.

Table 3. Description of the stages of the SC type identification technique.

№ Stage Description

1 Preparation of initial data

Mathematical modeling data and real records of
transient processes for the EPS under
consideration are used. An accelerated algorithm
is used to determine the amplitudes and phases
of current and voltage signals [84].

2 Data processing
Removal of outliers and filtering of
high-frequency components in the amplitude
and phase signals of currents and voltages.

3 Feature selection Feature selection is carried out by the Boruta
algorithm [81,82].

4 Training ML algorithms RF, AdaBoost, XGBoost, LightGBM were selected
as the models under consideration.

5 Testing ML algorithms Analysis of Accuracy, Precision, Recall, F values.

6 ML algorithm selection
The choice of model is made based on an
analysis of quality metrics, as well as an analysis
of performance.

During the study, the block diagram shown in Figure 3 was not implemented in full
due to the lack of a mathematical model for which there would be real data on transient
processes. Therefore, the study was carried out in the following way: for the IEEE24 mathe-
matical model [85,86], training and testing of ML models was carried out, an acceptable
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model was selected in terms of accuracy and speed, an acceptable size of the calculation
window and the sampling frequency of the original data were determined.

The next section provides testing of the proposed SC type identification method
on synthetic and physical data, as well as an assessment of the acceptable measurement
sampling frequency and the size of the calculation window of the synchrophasor evaluation
method.

4. Case Study
To test the SC type identification technique, two types of data were used: synthetic data,

generated using numerical modeling of transient processes in the IEEE24 model [85,86],
and physical data obtained from PMUs installed at real power generation facilities. To
take into account the influence of RES on determining the type and location of SC, three
equivalent wind generators (WG) were added to the IEEE24 model and nodes 1, 2, and 3,
simulating wind power plants.

4.1. Synthetic Data

To generate the data sample, the standard IEEE24 mathematical model [85,86], im-
plemented in Matlab Simulink, was used. The diagram of the IEEE24 model is shown in
Figure 4, the parameters of synchronous generators (SG) are given in Table 4, the load
parameters are presented in Table 5. The following notations are used in Table 4: Pref—rated
power, xd and xq—synchronous resistance along the d and axes q, xd ′ and xq ′—transition
resistances along the d and q axes; in Table 5 the following designations are used: P and
Q—active and reactive load of the node, Vmax and Vmin—maximum and minimum voltage
of the node in normal mode. Autotransformers and SGs were considered as grounding
points. The SC impedances used were 0.1 p.u. for single-phase to ground SC, 0.2 p.u. for
two-phase to ground SC, and 0.3 p.u. for phase-to-phase SC.

Table 4. Parameters of SGs used in the IEEE24 model.

Generator Pref, MW xd, p.u. xq, p.u. xd
′, p.u. xq

′, p.u.

WG1 150 – – – –

WG2 150 – – – –

WG7 300 – – – –

SG13 600 0.254 0.241 0.050 0.081

SG15 200 0.100 0.069 0.031 0.008

SG16 150 0.262 0.285 0.043 0.166

SG18 400 0.210 0.205 0.057 0.058

SG21 400 0.210 0.205 0.057 0.058

SG22 300 0.295 0.282 0.069 0.170

SG23 300 0.295 0.282 0.069 0.170

To form a data sample, a mathematical modeling procedure was used with varying
load levels in the nodes of the EPS mathematical model, location and type of SC, as well as
the load level SG, ensuring the maintenance of power balance. Varying the loads in the
nodes of the EPS mathematical model is performed by adding a random variable with
a normal distribution with variance to the base loads of the nodes given in Table 5. The
normal distribution is used taking into account the variance equal to 10% of the base load
of the node.
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The initial data are generated using a mathematical model of the EPS in Matlab
Simulink. This includes a list of nodes where SC events are modeled, as well as the
number of iterations involving load variations in the EPS nodes and single repairs of power
lines. As the load changes, generation is adjusted to maintain the balance of active and
reactive power within the EPS. Next, SC modeling is performed at selected EPS nodes
and the results are recorded. When the cycles of changing loads in the EPS nodes and
short-circuit modeling are completed, the algorithm is exited. The proposed algorithm
can be parallelized in cycles of changing load levels and single repairs of power lines and
enumerating nodes in which SC is modeled.
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Table 5. Parameters of IEEE24 model nodes.

Bus Number P, MW Q, MVAr Vmax, p.u. Vmin, p.u.

1 108.0 22.0 1.05 0.95
2 97.0 20.0 1.05 0.95
4 74.0 15.0 1.05 0.95
5 71.0 14.0 1.05 0.95
6 136.0 28.0 1.05 0.95
9 175.0 36.0 1.05 0.95
13 265.0 54.0 1.05 0.95
15 317.0 64.0 1.05 0.95
16 100.0 20.0 1.05 0.95
18 333.0 68.0 1.05 0.95
20 128.0 26.0 1.05 0.95
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Figure 5 shows graphs of changes in the active powers of WG1–WG3 depending on the
number of the simulated electrical mode. Data from the study [87] were used to simulate
the profile of change in active powers.
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Figure 5. WG1–WG3 active powers.

The following data are used to identify the SC type:

• Amplitude and phase values of three voltage phases, determined for a given value of
the sliding calculation window;

• Amplitude and phase values of three phases of currents of each connection, determined
for a given value of the sliding calculation window;

• SC type (1—three-phase to ground, 2—phase-to-phase, 3—two-phase to ground,
4—single-phase to ground).

Table 6 presents the characteristics of the data sample. The table presents the number
of SC types, SC duration, description of the features used in the data sample, num-
ber of transient processes, and distribution of transient process types for each class
under consideration.

Table 6. Description of synthetic data sampling parameters.

Characteristic Value

Number of SC types 4

SC duration 0.2 s

Features Amplitude values of currents and voltages of
phases A, B, and C, values of phase signals

Determining the list of nodes whose
parameters are included in the data sample According to Table 2

Number of transients 3600

Number of transients in each class

720—three-phase to ground SC
720—phase-to-phase SC

720—two-phase to ground SC
720—single-phase to ground SC

720—without SC
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To determine the parameters of instantaneous signals, the method presented in the
study [84] was used. Figure 5 shows a fragment of the initial mathematical data: the
instantaneous voltage signal of phase A and the calculated amplitude value in node 14,
obtained during the simulation of a phase-to-phase SC in node 20 with a duration of 0.2 s.
In Figure 6, the instantaneous voltage values of phase A are designated ua, the amplitude
values are designated Ua.
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After forming a data sample, the stage of removing outliers and filtering high-
frequency components in the signals of amplitudes and phases of currents and voltages is
performed. For mathematical signals, this stage is not used, i.e., the IEEE24 model does not
use the addition of noise and emissions characteristic of physical data.

To determine the significance of features, the Boruta algorithm [81,82] was used,
applied to the original data sample. Table 7 presents the average values of the sign
significance coefficients.

Table 7. Importance coefficients of data sample features.

Feature Importance

Phase A voltage module 9.48
Phase B voltage module 9.43
Phase C voltage module 9.41
Phase A current module 12.85
Phase B current module 12.84
Phase C current module 12.88

Voltage phase A 2.15
Voltage phase B 2.11
Voltage phase C 2.21
Current phase A 3.17
Current phase B 3.19
Current phase C 3.15

The average value of the significance coefficients of phase amplitude signals is four
times higher than the values of the significance coefficients of phase signals, which indicates
the possibility of removing current and voltage phase signals from the data sample.
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To train the RF, AdaBoost, XGBoost, and LightGBM algorithms, parameters were
adjusted using the grid search method [88]. The total data sample was divided into testing
and training with a ratio of 20/80%. Table 8 presents the optimal parameters obtained of
each algorithm and classification quality metrics on the test dataset.

Table 8. Parameters of the considered ML algorithms and classification quality metrics on a test
sample of synthetic data.

Parameter Value

RF

n_estimators 26
max_depth 7

min_samples_split 0.01
min_samples_leaf 0.01

max_features 2
Accuracy 85.3%

F 82.4%

XGBoost

n_estimators 28
max_depth 6

alpha 0.04
lambda 0.04
gamma 1

eta 0,01
learning_rate 1

Accuracy 96.8%
F 94.3%

AdaBoost

n_estimators 28
learning_rate 1

Accuracy 88.5%
F 87.9%

LightGBM

n_estimators 20
max_depth 8

alpha 0.06
lambda 0.06

num_leaves 40
learning_rate 1

Accuracy 86.3%
F 82.7%

Table 8 uses the following notations: n_estimators—number of base classi-
fiers, max_depth—depth of the base classifier tree, learning_rate—rate of gradi-
ent descent, min_samples_split—minimum number of data instances for splitting,
min_samples_leaf—limit on the number of objects in leaves, max_features—maximum
features for consideration within one base classifier, alpha—penalty for the values of weight
functions in L1 regularization, lambda—penalty for the values of weight functions in L2 reg-
ularization, gamma—minimum required reduction in the loss function when creating a new
sheet, eta—parameter weight compression to prevent overfitting, num_leaves—the maxi-
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mum number of leaves of the base classifier tree. A detailed description of the algorithm
parameters is given in the works: RF [89], XGBoost [90], AdaBoost [91], LightGBM [92].
Grid search was used to determine the optimal hyperparameters.

During the training process, after 40 iterations for all algorithms, steady-state values
of the Accuracy and F coefficients were achieved, which varied within 70–100%, which
indicates the determination of the optimal values of the algorithm parameters in the absence
of retraining, which is expressed in 100% accuracy at training set.

When comparing the results of SC type classification on a test sample of synthetic
data, the XGBoost algorithm achieved the highest values for both Accuracy and F-score.
Additionally, it exhibited the fastest training speed among the algorithms tested.

4.2. Determination of the Acceptable Value of the Calculated Window for Synchrophasor
Estimation and the Data Sampling Rate

To determine the optimal calculation windows and data sampling rate, the XGBoost
algorithm was repeatedly trained and tested by varying the sampling frequency from
20 kHz to 1 kHz in 1 kHz increments and adjusting the calculation window of the syn-
chrophasor estimation algorithm [84] from 1 ms to 10 ms. Accuracy and F values were
recorded during each iteration. The data sampling rate was modified using the decimation
procedure. Acceptable parameters were identified through an analysis of the distributions
of Accuracy and F values. Figure 7 illustrates the distribution of Accuracy, while Figure 8
shows the distribution of the F value. The legends in Figures 7 and 8 display the calculation
window values of the synchrophasor estimation algorithm [84].
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Figure 7. Distribution of the Accuracy value for the XGBoost algorithm when varying the size of the
calculation window and the sampling frequency of the source data.

In the distributions of the Accuracy and F parameters, the so-called “long tail” phe-
nomenon is observed when the calculation window reaches the value of 5 ms and a data
sampling frequency of 5 kHz. When the values of the calculation window and sampling
frequency increase above 5 ms and 5 kHz, the change in the Accuracy and F values does
not exceed 2%. Therefore, for the considered SC with a duration of 0.2 s, these parameters
are acceptable.

The values of the calculation window and the sampling frequency of the initial data are
not strictly specified parameters; their determination can be performed when implementing
the SC type identification algorithm. In this case, it is necessary to calculate the accuracy of
synchrophasor estimation and SC type identification over a predetermined time interval
to obtain characteristics similar to those shown in Figures 8 and 9. When obtaining these



Mathematics 2025, 13, 316 16 of 26

characteristics, acceptable calculation windows and sampling frequencies can be obtained
depending on the features of the analyzed signals.
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4.3. Physical Data

To test the proposed SC type identification method, a physical model [93] was used,
consisting of four SGs and infinite bus (IB), the connection diagram of which is shown in
Figure 9. SG parameters are presented in Table 9.

Table 9. Parameters of SGs.

Parameter Value

SG 8

Rotor type Salient-pole
Rated apparent capacity 15 kVA

Power factor 0.8
Rated voltage 230 V

Rated stator current 37.5 A
Base impedance 3.52 Ω
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Table 9. Cont.

Parameter Value

SG 42

Rotor type Non-salient-pole
Rated apparent capacity 5 kVA

Power factor 0.8
Rated voltage 230 V

Rated stator current 12.55 A
Base impedance 10.58 Ω

SG 47

Rotor type Non-salient-pole
Rated apparent capacity 5 kVA

Power factor 0.8
Rated voltage 230 V

Rated stator current 12.55 A
Base impedance 10.58 Ω

SG 64

Rotor type Non-salient-pole
Rated apparent capacity 5 kVA

Power factor 0.8
Rated voltage 230 V

Rated stator current 12.55 A
Base impedance 10.58 Ω

To test the proposed SC type identification technique, 200 SC records that occurred in
the physical EPS model were selected. Signals of instantaneous phase currents and phase
voltages were used as initial data. The SC type was determined by expert analysis of signal
oscillograms. Table 10 shows the data sampling parameters.

Table 10. Description of physical data sampling parameters.

Characteristic Value

Number of SC types 4

SC duration from 0.06 to 0.2 s

Features Amplitude values of currents and voltages of
phases A, B and C, phase signal values

Determining the list of nodes whose
parameters are included in the data sample According to Table 2

Number of transients 200

Number of transients in each class

40—three-phase to ground SC
40—phase-to-phase SC

40—two-phase to ground SC
40—single-phase to ground SC

40—without SC

Figures 10 and 11 show snippets of the data used. Figure 10 shows instanta-
neous current signals, Figure 11 shows instantaneous voltage signals. The legends of
Figures 10 and 11 show the designations of the phases of instantaneous signals.
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The total data sample was divided into testing and training with the ratio of 20/80%.
Table 11 presents the obtained optimal parameters of each algorithm and classification
quality metrics on the test data sample. Table 11 uses symbols similar to those in Table 8.

Table 11. Parameters of the considered ML algorithms and classification quality metrics on a test
sample of physical data.

Parameter Value

RF

n_estimators 20
max_depth 6

min_samples_split 0.01
min_samples_leaf 0.01

max_features 4
Accuracy 74.8%

F 70.5%
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Table 11. Cont.

Parameter Value

XGBoost

n_estimators 20
max_depth 8

alpha 0.04
lambda 0.04
gamma 1

eta 0.01
learning_rate 1

Accuracy 85.2%
F 83.4%

AdaBoost

n_estimators 30
learning_rate 1

Accuracy 64.1%
F 62.6%

LightGBM

n_estimators 30
max_depth 9

alpha 0.06
lambda 0.06

num_leaves 60
learning_rate 1

Accuracy 79.5%
F 78.4%

When comparing the results of SC type classification on a test sample of physical
data, the maximum values of the Accuracy and F coefficients correspond to the XGBoost
algorithm, and the highest learning speed also corresponds to this algorithm.

The obtained results of SC classification on physical data differ from synthetic data in
lower accuracy, which is associated with the following factors:

• Significant distortion of the shape of the curve of instantaneous currents and voltages
obtained from the physical installation;

• Error in synchronization of measurements;
• Interference in the measuring system from electromagnetic fields caused by the prox-

imity of high-voltage equipment to the place of measurements.

To overcome the identified shortcomings of testing on a physical model, it is neces-
sary to consider signals from real EPS, for which the quality of measurements essentially
exceeds measurements on a physical model. This section of the study will demonstrate the
fundamental possibility of using the proposed approach to work in conditions of significant
distortions of the initial data.

5. Discussion
The SC classification time delay is a critical value for EPS emergency control. The

choice of control actions for maintaining TS in the post-emergency EPS operating mode is
intended for the screw disconnection of the load or SG to prevent disturbance development.
The speed of the transient process in EPS is determined by various factors such as: EPS
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inertia, the presence of control devices based on power electronics, the correctness of the SG
control system settings. The SC classification time delay makes the first contribution to the
overall delay in TS assessment and decision-making regarding the need to introduce control
in the EPS. In general, TS assessment is based on the analysis of differential equations
describing the dynamic model of the protected EPS. In this system of equations, the
smallest parameters are the time constants of automatic voltage control and power system
stabilizers, which exceed the SC classification delay value of 5 ms determined in this study.
Qualitatively, it can be stated that the SC classification delay value is acceptable for TS
analysis. However, more accurate results can only be obtained through experiments using
a real-time digital simulator.

6. Conclusions
One of the key features of modern EPS is the heightened demand for speed and

adaptability in EC systems. The growing share of RES, along with advancements in
digital control and monitoring systems, has altered the values of the inertial component,
which influences the speed of transient processes. Consequently, the development of
fundamentally new EC algorithms has become necessary [94].

In this study, an SC type identification technique was developed based on PMU data
and ML algorithms. The proposed methodology was tested on synthetic and physical
data. To generate the sample of synthetic data, the IEEE24 mathematical model was used,
implemented in Matlab Simulink. The total volume of the synthetic data sample was
300 transient processes. The XGBoost algorithm achieved the highest classification accuracy
for SC type in the synthetic data. For the physical data sample, changes derived from
real EPS were applied. The total sample size consisted of 200 transients, with XGBoost
again demonstrating the highest classification accuracy for SC type. Table 12 presents a
comparison of the Accuracy and F coefficients for the ML algorithms considered in the SC
type classification of both synthetic and physical data.

Table 12. Comparison of SC type classification results for synthetic and physical data.

Algorithm
Synthetic Data Physical Data

Accyracy, % F, % Accyracy, % F, %

RF 85.3 82.4 74.8 70.5
XGBoost 96.8 94.3 85.2 83.4
AdaBoost 88.5 87.9 64.1 62.6
LightGBM 96.3 82.7 79.5 78.4

The study examined the issue of assessing the acceptable signal sampling frequency
and the size of the calculation window of the method for synchrophasor estimation [84] for
SC type classification. The following acceptable parameters of signal sampling frequency
and calculation window size for SC type classification were determined: signal sampling
frequency 5 kHz and calculation window size 5 ms.

The approach to SC type classification proposed in the article can be used for more
complex EPS. In this case, SC type classification can be performed on several PDCs, and
the final classification result can be obtained by averaging or a more complex data analy-
sis procedure.

Future directions for research on this topic include the following:

• Consideration of large data samples generated for various EPS models, different short
circuit durations, and the presence of power electronics devices in EPS models [95].

• Development of an algorithm for additional training of the model during operation.
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• Determining the possibility of using ML algorithms to identify the type of SC using a
real-time digital simulator [96].

• Application of the proposed method to remove noise from the raw data for other
ML algorithms.

• The problem of identifying the entire spectrum of disturbances.
• Consideration of other ML methods for the problem of determining the type of SC

(SVM, ANN, CNN, PNN, etc.).
• The issue of a detailed study of the possibility of using the proposed method for

real signals.
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